Adding support for pounder ETR timestamping

This commit is contained in:
Ryan Summers 2020-12-09 18:19:33 +01:00
parent e9d74ae6da
commit 72d14adfbf
8 changed files with 150 additions and 144 deletions

2
Cargo.lock generated
View File

@ -517,7 +517,7 @@ dependencies = [
[[package]] [[package]]
name = "stm32h7xx-hal" name = "stm32h7xx-hal"
version = "0.8.0" version = "0.8.0"
source = "git+https://github.com/quartiq/stm32h7xx-hal?branch=feature/number-of-transfers#e70a78788e74be5281321213b53e8cd1d213550e" source = "git+https://github.com/quartiq/stm32h7xx-hal?branch=feature/dma-buffer-swap/num-transfers#b87614f432a635e904dea2383ff481f3cc002e80"
dependencies = [ dependencies = [
"bare-metal 1.0.0", "bare-metal 1.0.0",
"cast", "cast",

View File

@ -54,7 +54,7 @@ default-features = false
[dependencies.stm32h7xx-hal] [dependencies.stm32h7xx-hal]
features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"] features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"]
git = "https://github.com/quartiq/stm32h7xx-hal" git = "https://github.com/quartiq/stm32h7xx-hal"
branch = "feature/number-of-transfers" branch = "feature/dma-buffer-swap/num-transfers"
[features] [features]
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"] semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]

View File

@ -58,11 +58,11 @@ macro_rules! adc_input {
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO to start a DMA /// Whenever the DMA request occurs, it should write into SPI's TX FIFO to start a DMA
/// transfer. /// transfer.
fn address(&self) -> u32 { fn address(&self) -> usize {
// Note(unsafe): It is assumed that SPI is owned by another DMA transfer and this DMA is // Note(unsafe): It is assumed that SPI is owned by another DMA transfer and this DMA is
// only used for the transmit-half of DMA. // only used for the transmit-half of DMA.
let regs = unsafe { &*hal::stm32::$spi::ptr() }; let regs = unsafe { &*hal::stm32::$spi::ptr() };
&regs.txdr as *const _ as u32 &regs.txdr as *const _ as usize
} }
} }

View File

@ -45,8 +45,8 @@ macro_rules! dac_output {
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8); const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO. /// Whenever the DMA request occurs, it should write into SPI's TX FIFO.
fn address(&self) -> u32 { fn address(&self) -> usize {
&self.spi.inner().txdr as *const _ as u32 &self.spi.inner().txdr as *const _ as usize
} }
} }

View File

@ -75,7 +75,7 @@ impl InputStamper {
// Utilize the TIM5 CH4 as an input capture channel - use TI4 (the DI0 input trigger) as the // Utilize the TIM5 CH4 as an input capture channel - use TI4 (the DI0 input trigger) as the
// capture source. // capture source.
let input_capture = let input_capture =
timer_channel.to_input_capture(timers::tim5::CC4S_A::TI4); timer_channel.to_input_capture(timers::CaptureTrigger::Input24);
// For small batch sizes, the overhead of DMA can become burdensome to the point where // For small batch sizes, the overhead of DMA can become burdensome to the point where
// timing is not met. The DMA requires 500ns overhead, whereas a direct register read only // timing is not met. The DMA requires 500ns overhead, whereas a direct register read only

View File

@ -58,10 +58,10 @@ use heapless::{consts::*, String};
// The number of ticks in the ADC sampling timer. The timer runs at 100MHz, so the step size is // The number of ticks in the ADC sampling timer. The timer runs at 100MHz, so the step size is
// equal to 10ns per tick. // equal to 10ns per tick.
const ADC_SAMPLE_TICKS: u32 = 256; const ADC_SAMPLE_TICKS: u32 = 128;
// The desired ADC sample processing buffer size. // The desired ADC sample processing buffer size.
const SAMPLE_BUFFER_SIZE: usize = 1; const SAMPLE_BUFFER_SIZE: usize = 8;
// The number of cascaded IIR biquads per channel. Select 1 or 2! // The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1; const IIR_CASCADE_LENGTH: usize = 1;
@ -853,15 +853,23 @@ const APP: () = {
let pounder_stamper = { let pounder_stamper = {
let etr_pin = gpioa.pa0.into_alternate_af3(); let etr_pin = gpioa.pa0.into_alternate_af3();
let timestamp_timer = pounder::timestamp::Timer::new(
dp.TIM8, // The frequency in the constructor is dont-care, as we will modify the period + clock
ccdr.peripheral.TIM8, // source manually below.
let tim8 =
dp.TIM8.timer(1.khz(), ccdr.peripheral.TIM8, &ccdr.clocks);
let mut timestamp_timer = timers::PounderTimestampTimer::new(tim8);
timestamp_timer.set_external_clock(timers::Prescaler::Div4);
timestamp_timer.set_period(128);
let tim8_channels = timestamp_timer.channels();
pounder::timestamp::Timestamper::new(
timestamp_timer,
dma_streams.7,
tim8_channels.ch1,
&mut sampling_timer,
etr_pin, etr_pin,
pounder::timestamp::Prescaler::Div4, )
sampling_timer.update_event(),
128,
);
pounder::timestamp::Timestamper::new(timestamp_timer, dma_streams.7)
}; };
// Start sampling ADCs. // Start sampling ADCs.
@ -888,6 +896,8 @@ const APP: () = {
#[task(binds=DMA1_STR3, resources=[pounder_stamper, adcs, dacs, iir_state, iir_ch, dds_output, input_stamper], priority=2)] #[task(binds=DMA1_STR3, resources=[pounder_stamper, adcs, dacs, iir_state, iir_ch, dds_output, input_stamper], priority=2)]
fn process(c: process::Context) { fn process(c: process::Context) {
let _pounder_timestamps = c.resources.pounder_stamper.acquire_buffer();
let adc_samples = [ let adc_samples = [
c.resources.adcs.0.acquire_buffer(), c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(), c.resources.adcs.1.acquire_buffer(),
@ -897,7 +907,6 @@ const APP: () = {
c.resources.dacs.1.acquire_buffer(), c.resources.dacs.1.acquire_buffer(),
]; ];
let _pounder_timestamps = c.resources.pounder_stamper.acquire_buffer();
let _timestamps = c.resources.input_stamper.acquire_buffer(); let _timestamps = c.resources.input_stamper.acquire_buffer();
for channel in 0..adc_samples.len() { for channel in 0..adc_samples.len() {

View File

@ -1,117 +1,19 @@
///! ADC sample timestamper using external Pounder reference clock. ///! ADC sample timestamper using external Pounder reference clock.
use stm32h7xx_hal as hal; use stm32h7xx_hal as hal;
use hal::{ use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer};
dma::{
dma::{DMAReq, DmaConfig},
traits::TargetAddress,
PeripheralToMemory, Transfer,
},
rcc::ResetEnable,
};
use crate::{timers, SAMPLE_BUFFER_SIZE}; use crate::{timers, SAMPLE_BUFFER_SIZE};
struct TimestampDma {
_dma_request: timers::tim2::UpdateEvent,
}
pub struct Timer {
timer: hal::stm32::TIM8,
dma: Option<TimestampDma>,
}
// Note(unsafe): This is safe to implement because we take ownership of the DMA request.
// Additionally, we only read the registers in PeripheralToMemory mode, so it is always safe to
// access them.
unsafe impl TargetAddress<PeripheralToMemory> for TimestampDma {
// TIM8 is a 16-bit timer.
type MemSize = u16;
// Note: It is safe for us to us the TIM2_UPDATE DMA request because the Timer
// maintains ownership of the UpdateEvent object for this timer.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_UP as u8);
fn address(&self) -> u32 {
let regs = unsafe { &*hal::stm32::TIM8::ptr() };
&regs.cnt as *const _ as u32
}
}
pub enum Prescaler {
Div4,
Div8,
}
impl Timer {
pub fn new(
timer: hal::stm32::TIM8,
prec: hal::rcc::rec::Tim8,
_external_source: hal::gpio::gpioa::PA0<
hal::gpio::Alternate<hal::gpio::AF3>,
>,
prescaler: Prescaler,
update_event: timers::tim2::UpdateEvent,
period: u16,
) -> Self {
prec.reset().enable();
let divisor = match prescaler {
Prescaler::Div4 => hal::stm32::tim1::smcr::ETPS_A::DIV4,
Prescaler::Div8 => hal::stm32::tim1::smcr::ETPS_A::DIV8,
};
// Configure the timer to utilize an external clock source with the provided divider on the
// ETR.
timer
.smcr
.modify(|_, w| w.etps().variant(divisor).ece().set_bit());
// Set the timer period and generate an update of the timer registers so that ARR takes
// effect.
timer.arr.write(|w| w.arr().bits(period));
timer.egr.write(|w| w.ug().set_bit());
// Allow TIM2 updates to generate DMA requests.
update_event.listen_dma();
// Enable the timer.
timer.cr1.modify(|_, w| w.cen().set_bit());
let dma = TimestampDma {
_dma_request: update_event,
};
Self {
timer,
dma: Some(dma),
}
}
/// Update the timer period.
///
/// # Note
/// Timer period updates will take effect after the current period elapses.
fn set_period(&mut self, period: u16) {
// Modify the period register.
self.timer.arr.write(|w| w.arr().bits(period));
}
fn dma_transfer(&mut self) -> TimestampDma {
self.dma.take().unwrap()
}
}
#[link_section = ".axisram.buffers"] #[link_section = ".axisram.buffers"]
static mut BUF: [[u16; SAMPLE_BUFFER_SIZE]; 3] = [[0; SAMPLE_BUFFER_SIZE]; 3]; static mut BUF: [[u16; SAMPLE_BUFFER_SIZE]; 3] = [[0; SAMPLE_BUFFER_SIZE]; 3];
pub struct Timestamper { pub struct Timestamper {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>, next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
timer: Timer, timer: timers::PounderTimestampTimer,
transfer: Transfer< transfer: Transfer<
hal::dma::dma::Stream7<hal::stm32::DMA1>, hal::dma::dma::Stream7<hal::stm32::DMA1>,
TimestampDma, timers::tim8::Channel1InputCapture,
PeripheralToMemory, PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE], &'static mut [u16; SAMPLE_BUFFER_SIZE],
>, >,
@ -119,19 +21,36 @@ pub struct Timestamper {
impl Timestamper { impl Timestamper {
pub fn new( pub fn new(
mut timer: Timer, mut timestamp_timer: timers::PounderTimestampTimer,
stream: hal::dma::dma::Stream7<hal::stm32::DMA1>, stream: hal::dma::dma::Stream7<hal::stm32::DMA1>,
capture_channel: timers::tim8::Channel1,
sampling_timer: &mut timers::SamplingTimer,
_clock_input: hal::gpio::gpioa::PA0<
hal::gpio::Alternate<hal::gpio::AF3>,
>,
) -> Self { ) -> Self {
let config = DmaConfig::default() let config = DmaConfig::default()
.memory_increment(true) .memory_increment(true)
.circular_buffer(true) .circular_buffer(true)
.double_buffer(true); .double_buffer(true);
// The sampling timer should generate a trigger output when CH1 comparison occurs.
sampling_timer.generate_trigger(timers::TriggerGenerator::ComparePulse);
// The timestamp timer trigger input should use TIM2 (SamplingTimer)'s trigger, which is
// mapped to ITR1.
timestamp_timer.set_trigger_source(timers::TriggerSource::Trigger1);
// The capture channel should capture whenever the trigger input occurs.
let input_capture = capture_channel
.to_input_capture(timers::CaptureTrigger::TriggerInput);
input_capture.listen_dma();
// The data transfer is always a transfer of data from the peripheral to a RAM buffer. // The data transfer is always a transfer of data from the peripheral to a RAM buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> = let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init( Transfer::init(
stream, stream,
timer.dma_transfer(), input_capture,
// Note(unsafe): The BUF[0] and BUF[1] is "owned" by this peripheral. // Note(unsafe): The BUF[0] and BUF[1] is "owned" by this peripheral.
// It shall not be used anywhere else in the module. // It shall not be used anywhere else in the module.
unsafe { &mut BUF[0] }, unsafe { &mut BUF[0] },
@ -139,10 +58,10 @@ impl Timestamper {
config, config,
); );
data_transfer.start(|_| {}); data_transfer.start(|capture_channel| capture_channel.enable());
Self { Self {
timer, timer: timestamp_timer,
transfer: data_transfer, transfer: data_transfer,
next_buffer: unsafe { Some(&mut BUF[2]) }, next_buffer: unsafe { Some(&mut BUF[2]) },
} }
@ -165,7 +84,6 @@ impl Timestamper {
let next_buffer = self.next_buffer.take().unwrap(); let next_buffer = self.next_buffer.take().unwrap();
// Start the next transfer. // Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _, _) = let (prev_buffer, _, _) =
self.transfer.next_transfer(next_buffer).unwrap(); self.transfer.next_transfer(next_buffer).unwrap();

View File

@ -1,8 +1,40 @@
///! The sampling timer is used for managing ADC sampling and external reference timestamping. ///! The sampling timer is used for managing ADC sampling and external reference timestamping.
use super::hal; use super::hal;
#[allow(dead_code)]
pub enum CaptureTrigger {
Input13 = 0b01,
Input24 = 0b10,
TriggerInput = 0b11,
}
#[allow(dead_code)]
pub enum TriggerGenerator {
Reset = 0b000,
Enable = 0b001,
Update = 0b010,
ComparePulse = 0b011,
Ch1Compare = 0b100,
Ch2Compare = 0b101,
Ch3Compare = 0b110,
Ch4Compare = 0b111,
}
#[allow(dead_code)]
pub enum TriggerSource {
Trigger0 = 0,
Trigger1 = 0b01,
Trigger2 = 0b10,
Trigger3 = 0b11,
}
pub enum Prescaler {
Div4 = 0b10,
Div8 = 0b11,
}
macro_rules! timer_channels { macro_rules! timer_channels {
($name:ident, $TY:ident, u32) => { ($name:ident, $TY:ident, $size:ty) => {
paste::paste! { paste::paste! {
/// The timer used for managing ADC sampling. /// The timer used for managing ADC sampling.
@ -14,6 +46,7 @@ macro_rules! timer_channels {
impl $name { impl $name {
/// Construct the sampling timer. /// Construct the sampling timer.
#[allow(dead_code)]
pub fn new(mut timer: hal::timer::Timer<hal::stm32::[< $TY>]>) -> Self { pub fn new(mut timer: hal::timer::Timer<hal::stm32::[< $TY>]>) -> Self {
timer.pause(); timer.pause();
@ -30,6 +63,7 @@ macro_rules! timer_channels {
} }
/// Get the timer capture/compare channels. /// Get the timer capture/compare channels.
#[allow(dead_code)]
pub fn channels(&mut self) -> [< $TY:lower >]::Channels { pub fn channels(&mut self) -> [< $TY:lower >]::Channels {
self.channels.take().unwrap() self.channels.take().unwrap()
} }
@ -42,19 +76,36 @@ macro_rules! timer_channels {
/// Get the period of the timer. /// Get the period of the timer.
#[allow(dead_code)] #[allow(dead_code)]
pub fn get_period(&self) -> u32 { pub fn get_period(&self) -> $size {
let regs = unsafe { &*hal::stm32::$TY::ptr() }; let regs = unsafe { &*hal::stm32::$TY::ptr() };
regs.arr.read().arr().bits() regs.arr.read().arr().bits()
} }
/// Manually set the period of the timer. /// Manually set the period of the timer.
#[allow(dead_code)] #[allow(dead_code)]
pub fn set_period(&mut self, period: u32) { pub fn set_period(&mut self, period: $size) {
let regs = unsafe { &*hal::stm32::$TY::ptr() }; let regs = unsafe { &*hal::stm32::$TY::ptr() };
regs.arr.write(|w| w.arr().bits(period)); regs.arr.write(|w| w.arr().bits(period));
} }
/// Clock the timer from an external source.
///
/// # Note:
/// * Currently, only an external source applied to ETR is supported.
///
/// # Args
/// * `prescaler` - The prescaler to use for the external source.
#[allow(dead_code)]
pub fn set_external_clock(&mut self, prescaler: Prescaler) {
let regs = unsafe { &*hal::stm32::$TY::ptr() };
regs.smcr.modify(|_, w| w.etps().bits(prescaler as u8).ece().set_bit());
// Use a DIV4 prescaler.
}
/// Start the timer. /// Start the timer.
#[allow(dead_code)]
pub fn start(mut self) { pub fn start(mut self) {
// Force a refresh of the frequency settings. // Force a refresh of the frequency settings.
self.timer.apply_freq(); self.timer.apply_freq();
@ -62,12 +113,26 @@ macro_rules! timer_channels {
self.timer.reset_counter(); self.timer.reset_counter();
self.timer.resume(); self.timer.resume();
} }
#[allow(dead_code)]
pub fn generate_trigger(&mut self, source: TriggerGenerator) {
let regs = unsafe { &*hal::stm32::$TY::ptr() };
// Note(unsafe) The TriggerGenerator enumeration is specified such that this is
// always in range.
regs.cr2.modify(|_, w| w.mms().bits(source as u8));
}
#[allow(dead_code)]
pub fn set_trigger_source(&mut self, source: TriggerSource) {
let regs = unsafe { &*hal::stm32::$TY::ptr() };
// Note(unsafe) The TriggerSource enumeration is specified such that this is
// always in range.
regs.smcr.modify(|_, w| unsafe { w.ts().bits(source as u8) } );
}
} }
pub mod [< $TY:lower >] { pub mod [< $TY:lower >] {
pub use hal::stm32::tim2::ccmr1_input::{CC1S_A, CC2S_A};
pub use hal::stm32::tim2::ccmr2_input::{CC3S_A, CC4S_A};
use stm32h7xx_hal as hal; use stm32h7xx_hal as hal;
use hal::dma::{traits::TargetAddress, PeripheralToMemory, dma::DMAReq}; use hal::dma::{traits::TargetAddress, PeripheralToMemory, dma::DMAReq};
use hal::stm32::$TY; use hal::stm32::$TY;
@ -86,10 +151,17 @@ macro_rules! timer_channels {
/// Enable DMA requests upon timer updates. /// Enable DMA requests upon timer updates.
#[allow(dead_code)] #[allow(dead_code)]
pub fn listen_dma(&self) { pub fn listen_dma(&self) {
// Note(unsafe): We perofmr only atomic operations on the timer registers. // Note(unsafe): We perform only atomic operations on the timer registers.
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
regs.dier.modify(|_, w| w.ude().set_bit()); regs.dier.modify(|_, w| w.ude().set_bit());
} }
/// Trigger a DMA request manually
#[allow(dead_code)]
pub fn trigger(&self) {
let regs = unsafe { &*<$TY>::ptr() };
regs.egr.write(|w| w.ug().set_bit());
}
} }
/// The channels representing the timer. /// The channels representing the timer.
@ -104,6 +176,7 @@ macro_rules! timer_channels {
/// Construct a new set of channels. /// Construct a new set of channels.
/// ///
/// Note(unsafe): This is only safe to call once. /// Note(unsafe): This is only safe to call once.
#[allow(dead_code)]
pub unsafe fn new() -> Self { pub unsafe fn new() -> Self {
Self { Self {
ch1: Channel1::new(), ch1: Channel1::new(),
@ -114,15 +187,15 @@ macro_rules! timer_channels {
} }
} }
timer_channels!(1, $TY, ccmr1); timer_channels!(1, $TY, ccmr1, $size);
timer_channels!(2, $TY, ccmr1); timer_channels!(2, $TY, ccmr1, $size);
timer_channels!(3, $TY, ccmr2); timer_channels!(3, $TY, ccmr2, $size);
timer_channels!(4, $TY, ccmr2); timer_channels!(4, $TY, ccmr2, $size);
} }
} }
}; };
($index:expr, $TY:ty, $ccmrx:expr) => { ($index:expr, $TY:ty, $ccmrx:expr, $size:ty) => {
paste::paste! { paste::paste! {
/// A capture/compare channel of the timer. /// A capture/compare channel of the timer.
pub struct [< Channel $index >] {} pub struct [< Channel $index >] {}
@ -135,6 +208,7 @@ macro_rules! timer_channels {
/// ///
/// Note(unsafe): This function must only be called once. Once constructed, the /// Note(unsafe): This function must only be called once. Once constructed, the
/// constructee guarantees to never modify the timer channel. /// constructee guarantees to never modify the timer channel.
#[allow(dead_code)]
unsafe fn new() -> Self { unsafe fn new() -> Self {
Self {} Self {}
} }
@ -151,9 +225,10 @@ macro_rules! timer_channels {
/// # Args /// # Args
/// * `value` - The value to compare the sampling timer's counter against. /// * `value` - The value to compare the sampling timer's counter against.
#[allow(dead_code)] #[allow(dead_code)]
pub fn to_output_compare(&self, value: u32) { pub fn to_output_compare(&self, value: $size) {
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
assert!(value <= regs.arr.read().bits()); let arr = regs.arr.read().bits() as $size;
assert!(value <= arr);
regs.[< ccr $index >].write(|w| w.ccr().bits(value)); regs.[< ccr $index >].write(|w| w.ccr().bits(value));
regs.[< $ccmrx _output >]() regs.[< $ccmrx _output >]()
.modify(|_, w| unsafe { w.[< cc $index s >]().bits(0) }); .modify(|_, w| unsafe { w.[< cc $index s >]().bits(0) });
@ -164,9 +239,12 @@ macro_rules! timer_channels {
/// # Args /// # Args
/// * `input` - The input source for the input capture event. /// * `input` - The input source for the input capture event.
#[allow(dead_code)] #[allow(dead_code)]
pub fn to_input_capture(self, input: hal::stm32::tim2::[< $ccmrx _input >]::[< CC $index S_A >]) -> [< Channel $index InputCapture >]{ pub fn to_input_capture(self, input: super::CaptureTrigger) -> [< Channel $index InputCapture >]{
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
regs.[< $ccmrx _input >]().modify(|_, w| w.[< cc $index s>]().variant(input));
// Note(unsafe): The bit configuration is guaranteed to be valid by the
// CaptureTrigger enum definition.
regs.[< $ccmrx _input >]().modify(|_, w| unsafe { w.[< cc $index s>]().bits(input as u8) });
[< Channel $index InputCapture >] {} [< Channel $index InputCapture >] {}
} }
@ -175,7 +253,7 @@ macro_rules! timer_channels {
impl [< Channel $index InputCapture >] { impl [< Channel $index InputCapture >] {
/// Get the latest capture from the channel. /// Get the latest capture from the channel.
#[allow(dead_code)] #[allow(dead_code)]
pub fn latest_capture(&mut self) -> Option<u32> { pub fn latest_capture(&mut self) -> Option<$size> {
// Note(unsafe): This channel owns all access to the specific timer channel. // Note(unsafe): This channel owns all access to the specific timer channel.
// Only atomic operations on completed on the timer registers. // Only atomic operations on completed on the timer registers.
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
@ -221,13 +299,13 @@ macro_rules! timer_channels {
// is safe as it is only completed once per channel and each DMA request is allocated to // is safe as it is only completed once per channel and each DMA request is allocated to
// each channel as the owner. // each channel as the owner.
unsafe impl TargetAddress<PeripheralToMemory> for [< Channel $index InputCapture >] { unsafe impl TargetAddress<PeripheralToMemory> for [< Channel $index InputCapture >] {
type MemSize = u32; type MemSize = $size;
const REQUEST_LINE: Option<u8> = Some(DMAReq::[< $TY _CH $index >]as u8); const REQUEST_LINE: Option<u8> = Some(DMAReq::[< $TY _CH $index >]as u8);
fn address(&self) -> u32 { fn address(&self) -> usize {
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
&regs.[<ccr $index >] as *const _ as u32 &regs.[<ccr $index >] as *const _ as usize
} }
} }
} }
@ -236,3 +314,4 @@ macro_rules! timer_channels {
timer_channels!(SamplingTimer, TIM2, u32); timer_channels!(SamplingTimer, TIM2, u32);
timer_channels!(TimestampTimer, TIM5, u32); timer_channels!(TimestampTimer, TIM5, u32);
timer_channels!(PounderTimestampTimer, TIM8, u16);