dsp: add atan2
This commit is contained in:
parent
6d651da758
commit
5d055b01a0
|
@ -0,0 +1,126 @@
|
|||
use super::{abs, shift_round};
|
||||
|
||||
/// 2-argument arctangent function.
|
||||
///
|
||||
/// This implementation uses all integer arithmetic for fast
|
||||
/// computation. It is designed to have high accuracy near the axes
|
||||
/// and lower away from the axes. It is additionally designed so that
|
||||
/// the error changes slowly with respect to the angle.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `y` - Y-axis component.
|
||||
/// * `x` - X-axis component.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// The angle between the x-axis and the ray to the point (x,y). The
|
||||
/// result range is from i32::MIN to i32::MAX, where i32::MIN
|
||||
/// corresponds to an angle of -pi and i32::MAX corresponds to an
|
||||
/// angle of +pi.
|
||||
pub fn atan2(y: i32, x: i32) -> i32 {
|
||||
let y = y >> 16;
|
||||
let x = x >> 16;
|
||||
|
||||
let ux = abs::<i32>(x);
|
||||
let uy = abs::<i32>(y);
|
||||
|
||||
// Uses the general procedure described in the following
|
||||
// Mathematics stack exchange answer:
|
||||
//
|
||||
// https://math.stackexchange.com/a/1105038/583981
|
||||
//
|
||||
// The atan approximation method has been modified to be cheaper
|
||||
// to compute and to be more compatible with integer
|
||||
// arithmetic. The approximation technique used here is
|
||||
//
|
||||
// pi / 4 * x + 0.285 * x * (1 - abs(x))
|
||||
//
|
||||
// which is taken from Rajan 2006: Efficient Approximations for
|
||||
// the Arctangent Function.
|
||||
let (min, max) = if ux < uy { (ux, uy) } else { (uy, ux) };
|
||||
|
||||
if max == 0 {
|
||||
return 0;
|
||||
}
|
||||
|
||||
let ratio = (min << 15) / max;
|
||||
|
||||
let mut angle = {
|
||||
// pi/4, referenced to i16::MAX
|
||||
const PI_4_FACTOR: i32 = 25735;
|
||||
// 0.285, referenced to i16::MAX
|
||||
const FACTOR_0285: i32 = 9339;
|
||||
// 1/pi, referenced to u16::MAX
|
||||
const PI_INVERTED_FACTOR: i32 = 20861;
|
||||
|
||||
let r1 = shift_round(ratio * PI_4_FACTOR, 15);
|
||||
let r2 = shift_round(
|
||||
(shift_round(ratio * FACTOR_0285, 15)) * (i16::MAX as i32 - ratio),
|
||||
15,
|
||||
);
|
||||
(r1 + r2) * PI_INVERTED_FACTOR
|
||||
};
|
||||
|
||||
if uy > ux {
|
||||
angle = (i32::MAX >> 1) - angle;
|
||||
}
|
||||
|
||||
if x < 0 {
|
||||
angle = i32::MAX - angle;
|
||||
}
|
||||
|
||||
if y < 0 {
|
||||
angle *= -1;
|
||||
}
|
||||
|
||||
angle
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use core::f64::consts::PI;
|
||||
use crate::testing::isclose;
|
||||
|
||||
fn angle_to_axis(angle: f64) -> f64 {
|
||||
let angle = angle % (PI / 2.);
|
||||
(PI / 2. - angle).min(angle)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn absolute_error() {
|
||||
const NUM_VALS: usize = 1_001;
|
||||
let mut test_vals: [f64; NUM_VALS] = [0.; NUM_VALS];
|
||||
let val_bounds: (f64, f64) = (-1., 1.);
|
||||
let val_delta: f64 =
|
||||
(val_bounds.1 - val_bounds.0) / (NUM_VALS - 1) as f64;
|
||||
for i in 0..NUM_VALS {
|
||||
test_vals[i] = val_bounds.0 + i as f64 * val_delta;
|
||||
}
|
||||
|
||||
for &x in test_vals.iter() {
|
||||
for &y in test_vals.iter() {
|
||||
let atol: f64 = 4e-5;
|
||||
let rtol: f64 = 0.127;
|
||||
let actual = (y.atan2(x) as f64 * i16::MAX as f64).round()
|
||||
/ i16::MAX as f64;
|
||||
let tol = atol + rtol * angle_to_axis(actual).abs();
|
||||
let computed = (atan2(
|
||||
((y * i16::MAX as f64) as i32) << 16,
|
||||
((x * i16::MAX as f64) as i32) << 16,
|
||||
) >> 16) as f64
|
||||
/ i16::MAX as f64
|
||||
* PI;
|
||||
|
||||
if !isclose(computed, actual, 0., tol) {
|
||||
println!("(x, y) : {}, {}", x, y);
|
||||
println!("actual : {}", actual);
|
||||
println!("computed : {}", computed);
|
||||
println!("tolerance: {}\n", tol);
|
||||
assert!(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue