Merge #188
188: pll: init r=jordens a=jordens Co-authored-by: Robert Jördens <rj@quartiq.de>
This commit is contained in:
commit
4412ad28c3
@ -1,4 +1,5 @@
|
||||
#![no_std]
|
||||
#![cfg_attr(not(test), no_std)]
|
||||
#![cfg_attr(feature = "nightly", feature(asm, core_intrinsics))]
|
||||
|
||||
pub mod iir;
|
||||
pub mod pll;
|
||||
|
77
dsp/src/pll.rs
Normal file
77
dsp/src/pll.rs
Normal file
@ -0,0 +1,77 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// Type-II, sampled phase, discrete time PLL
|
||||
///
|
||||
/// This PLL tracks the frequency and phase of an input signal with respect to the sampling clock.
|
||||
/// The transfer function is I^2,I from input phase to output phase and P,I from input phase to
|
||||
/// output frequency.
|
||||
///
|
||||
/// The PLL locks to any frequency (i.e. it locks to the alias in the first Nyquist zone) and is
|
||||
/// stable for any gain (1 <= shift <= 30). It has a single parameter that determines the loop
|
||||
/// bandwidth in octave steps. The gain can be changed freely between updates.
|
||||
///
|
||||
/// The frequency settling time constant for an (any) frequency jump is `1 << shift` update cycles.
|
||||
/// The phase settling time in response to a frequency jump is about twice that. The loop bandwidth
|
||||
/// is about `1/(2*pi*(1 << shift))` in units of the sample rate.
|
||||
///
|
||||
/// All math is naturally wrapping 32 bit integer. Phase and frequency are understood modulo that
|
||||
/// overflow in the first Nyquist zone. Expressing the IIR equations in other ways (e.g. single
|
||||
/// (T)-DF-{I,II} biquad/IIR) would break on overflow.
|
||||
///
|
||||
/// There are no floating point rounding errors here. But there is integer quantization/truncation
|
||||
/// error of the `shift` lowest bits leading to a phase offset for very low gains. Truncation
|
||||
/// bias is applied. Rounding is "half up".
|
||||
///
|
||||
/// This PLL does not unwrap phase slips during lock acquisition. This can and should be
|
||||
/// implemented elsewhere by (down) scaling and then unwrapping the input phase and (up) scaling
|
||||
/// and wrapping output phase and frequency. This affects dynamic range accordingly.
|
||||
///
|
||||
/// The extension to I^3,I^2,I behavior to track chirps phase-accurately or to i64 data to
|
||||
/// increase resolution for extremely narrowband applications is obvious.
|
||||
#[derive(Copy, Clone, Default, Deserialize, Serialize)]
|
||||
pub struct PLLState {
|
||||
// last input phase
|
||||
x: i32,
|
||||
// filtered frequency
|
||||
f: i32,
|
||||
// filtered output phase
|
||||
y: i32,
|
||||
}
|
||||
|
||||
impl PLLState {
|
||||
/// Update the PLL with a new phase sample.
|
||||
///
|
||||
/// Args:
|
||||
/// * `input`: New input phase sample.
|
||||
/// * `shift`: Error scaling. The frequency gain per update is `1/(1 << shift)`. The phase gain
|
||||
/// is always twice the frequency gain.
|
||||
///
|
||||
/// Returns:
|
||||
/// A tuple of instantaneous phase and frequency (the current phase increment).
|
||||
pub fn update(&mut self, x: i32, shift: u8) -> (i32, i32) {
|
||||
debug_assert!(shift >= 1 && shift <= 31);
|
||||
let bias = 1i32 << shift;
|
||||
let e = x.wrapping_sub(self.f);
|
||||
self.f = self.f.wrapping_add(
|
||||
(bias >> 1).wrapping_add(e).wrapping_sub(self.x) >> shift,
|
||||
);
|
||||
self.x = x;
|
||||
let f = self.f.wrapping_add(
|
||||
bias.wrapping_add(e).wrapping_sub(self.y) >> shift - 1,
|
||||
);
|
||||
self.y = self.y.wrapping_add(f);
|
||||
(self.y, f)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
#[test]
|
||||
fn mini() {
|
||||
let mut p = PLLState::default();
|
||||
let (y, f) = p.update(0x10000, 10);
|
||||
assert_eq!(y, 0xc2);
|
||||
assert_eq!(f, y);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user