341: Feature/telemetry r=ryan-summers a=ryan-summers

This PR fixes #149 

This PR adds the following:
* A `SystemTimer` used for RTIC scheduling (required for schedule periods > ~2 seconds)
* A refactor of the `src/net` directory
* Addition of network stack sharing via proxy (identical to implementation from `shared-bus`)
* Addition of a telemetry task

This must be merged after #352 

Future Work:
* move `src/net/shared.rs` into `embedded-nal` or some other separate crate.
* Investigate removal of shared network stack by making smoltcp sockets owned and interrupt-safe

Co-authored-by: Ryan Summers <ryan.summers@vertigo-designs.com>
master
bors[bot] 2021-05-10 11:04:53 +00:00 committed by GitHub
commit 33549793ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 834 additions and 168 deletions

16
Cargo.lock generated
View File

@ -426,7 +426,7 @@ dependencies = [
[[package]]
name = "minimq"
version = "0.2.0"
source = "git+https://github.com/quartiq/minimq.git?rev=b3f364d#b3f364d55dea35da6572f78ddb91c87bfbb453bf"
source = "git+https://github.com/quartiq/minimq.git?rev=d2ec3e8#d2ec3e8351fa403ea96defd98c0b4410cbaa18a4"
dependencies = [
"bit_field",
"embedded-nal",
@ -708,6 +708,16 @@ dependencies = [
"syn",
]
[[package]]
name = "shared-bus"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "78b60428415b23ed3f0e3abc776e10e548cf2cbb4288e73d5d181a02b5a90b95"
dependencies = [
"cortex-m 0.6.7",
"embedded-hal",
]
[[package]]
name = "smoltcp"
version = "0.7.1"
@ -722,7 +732,7 @@ dependencies = [
[[package]]
name = "smoltcp-nal"
version = "0.1.0"
source = "git+https://github.com/quartiq/smoltcp-nal.git?rev=8468f11#8468f11abacd7aba82454e6904df19c1d1ab91bb"
source = "git+https://github.com/quartiq/smoltcp-nal.git?rev=4a1711c#4a1711c54cdf79f5ee8c1c99a1e8984f5944270c"
dependencies = [
"embedded-nal",
"heapless 0.6.1",
@ -753,6 +763,8 @@ dependencies = [
"panic-semihosting",
"paste",
"serde",
"serde-json-core",
"shared-bus",
"smoltcp-nal",
"stm32h7xx-hal",
]

View File

@ -45,6 +45,8 @@ dsp = { path = "dsp" }
ad9959 = { path = "ad9959" }
generic-array = "0.14"
miniconf = "0.1.0"
shared-bus = {version = "0.2.2", features = ["cortex-m"] }
serde-json-core = "0.3"
[dependencies.mcp23017]
git = "https://github.com/mrd0ll4r/mcp23017.git"
@ -60,11 +62,11 @@ rev = "c6f2b28"
[dependencies.smoltcp-nal]
git = "https://github.com/quartiq/smoltcp-nal.git"
rev = "8468f11"
rev = "4a1711c"
[dependencies.minimq]
git = "https://github.com/quartiq/minimq.git"
rev = "b3f364d"
rev = "d2ec3e8"
[features]
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]

View File

@ -9,11 +9,11 @@ use serde::Deserialize;
use dsp::iir;
use hardware::{
Adc0Input, Adc1Input, AfeGain, Dac0Output, Dac1Output, DigitalInput1,
InputPin, AFE0, AFE1,
Adc0Input, Adc1Input, AdcCode, AfeGain, Dac0Output, Dac1Output, DacCode,
DigitalInput0, DigitalInput1, InputPin, SystemTimer, AFE0, AFE1,
};
use net::{Action, MqttInterface};
use net::{NetworkUsers, Telemetry, TelemetryBuffer, UpdateState};
const SCALE: f32 = i16::MAX as _;
@ -26,6 +26,7 @@ pub struct Settings {
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
allow_hold: bool,
force_hold: bool,
telemetry_period: u16,
}
impl Default for Settings {
@ -43,42 +44,44 @@ impl Default for Settings {
allow_hold: false,
// Force suppress filter output updates.
force_hold: false,
// The default telemetry period in seconds.
telemetry_period: 10,
}
}
}
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = stabilizer::hardware::SystemTimer)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
digital_input1: DigitalInput1,
digital_inputs: (DigitalInput0, DigitalInput1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
mqtt: MqttInterface<Settings>,
network: NetworkUsers<Settings, Telemetry>,
settings: Settings,
telemetry: TelemetryBuffer,
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2],
settings: Settings,
}
#[init(spawn=[settings_update])]
#[init(spawn=[telemetry, settings_update])]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
let mqtt = MqttInterface::new(
let network = NetworkUsers::new(
stabilizer.net.stack,
"",
&net::get_device_prefix(
env!("CARGO_BIN_NAME"),
stabilizer.net.mac_address,
),
stabilizer.net.phy,
stabilizer.cycle_counter,
env!("CARGO_BIN_NAME"),
stabilizer.net.mac_address,
);
// Spawn a settings update for default settings.
c.spawn.settings_update().unwrap();
c.spawn.telemetry().unwrap();
// Enable ADC/DAC events
stabilizer.adcs.0.start();
@ -93,8 +96,9 @@ const APP: () = {
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
mqtt,
digital_input1: stabilizer.digital_inputs.1,
network,
digital_inputs: stabilizer.digital_inputs,
telemetry: net::TelemetryBuffer::default(),
settings: Settings::default(),
}
}
@ -115,7 +119,7 @@ const APP: () = {
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR4, resources=[adcs, digital_input1, dacs, iir_state, settings], priority=2)]
#[task(binds=DMA1_STR4, resources=[adcs, digital_inputs, dacs, iir_state, settings, telemetry], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
@ -127,9 +131,13 @@ const APP: () = {
c.resources.dacs.1.acquire_buffer(),
];
let digital_inputs = [
c.resources.digital_inputs.0.is_high().unwrap(),
c.resources.digital_inputs.1.is_high().unwrap(),
];
let hold = c.resources.settings.force_hold
|| (c.resources.digital_input1.is_high().unwrap()
&& c.resources.settings.allow_hold);
|| (digital_inputs[1] && c.resources.settings.allow_hold);
for channel in 0..adc_samples.len() {
for sample in 0..adc_samples[0].len() {
@ -145,29 +153,34 @@ const APP: () = {
// The truncation introduces 1/2 LSB distortion.
let y = unsafe { y.to_int_unchecked::<i16>() };
// Convert to DAC code
dac_samples[channel][sample] = y as u16 ^ 0x8000;
dac_samples[channel][sample] = DacCode::from(y).0;
}
}
// Update telemetry measurements.
c.resources.telemetry.adcs =
[AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];
c.resources.telemetry.dacs =
[DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];
c.resources.telemetry.digital_inputs = digital_inputs;
}
#[idle(resources=[mqtt], spawn=[settings_update])]
#[idle(resources=[network], spawn=[settings_update])]
fn idle(mut c: idle::Context) -> ! {
loop {
match c.resources.mqtt.lock(|mqtt| mqtt.update()) {
Some(Action::Sleep) => cortex_m::asm::wfi(),
Some(Action::UpdateSettings) => {
c.spawn.settings_update().unwrap()
}
_ => {}
match c.resources.network.lock(|net| net.update()) {
UpdateState::Updated => c.spawn.settings_update().unwrap(),
UpdateState::NoChange => cortex_m::asm::wfi(),
}
}
}
#[task(priority = 1, resources=[mqtt, afes, settings])]
#[task(priority = 1, resources=[network, afes, settings])]
fn settings_update(mut c: settings_update::Context) {
let settings = c.resources.mqtt.settings();
// Update the IIR channels.
let settings = c.resources.network.miniconf.settings();
c.resources.settings.lock(|current| *current = *settings);
// Update AFEs
@ -175,6 +188,30 @@ const APP: () = {
c.resources.afes.1.set_gain(settings.afe[1]);
}
#[task(priority = 1, resources=[network, settings, telemetry], schedule=[telemetry])]
fn telemetry(mut c: telemetry::Context) {
let telemetry: TelemetryBuffer =
c.resources.telemetry.lock(|telemetry| *telemetry);
let (gains, telemetry_period) = c
.resources
.settings
.lock(|settings| (settings.afe, settings.telemetry_period));
c.resources
.network
.telemetry
.publish(&telemetry.finalize(gains[0], gains[1]));
// Schedule the telemetry task in the future.
c.schedule
.telemetry(
c.scheduled
+ SystemTimer::ticks_from_secs(telemetry_period as u32),
)
.unwrap();
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }

View File

@ -2,6 +2,7 @@
#![no_std]
#![no_main]
use embedded_hal::digital::v2::InputPin;
use generic_array::typenum::U4;
use serde::Deserialize;
@ -11,12 +12,13 @@ use dsp::{Accu, Complex, ComplexExt, Lockin, RPLL};
use stabilizer::net;
use stabilizer::hardware::{
design_parameters, setup, Adc0Input, Adc1Input, AfeGain, Dac0Output,
Dac1Output, InputStamper, AFE0, AFE1,
design_parameters, setup, Adc0Input, Adc1Input, AdcCode, AfeGain,
Dac0Output, Dac1Output, DacCode, DigitalInput0, DigitalInput1,
InputStamper, SystemTimer, AFE0, AFE1,
};
use miniconf::Miniconf;
use stabilizer::net::{Action, MqttInterface};
use net::{NetworkUsers, Telemetry, TelemetryBuffer, UpdateState};
// A constant sinusoid to send on the DAC output.
// Full-scale gives a +/- 10.24V amplitude waveform. Scale it down to give +/- 1V.
@ -54,6 +56,7 @@ pub struct Settings {
lockin_phase: i32,
output_conf: [Conf; 2],
telemetry_period: u16,
}
impl Default for Settings {
@ -70,38 +73,39 @@ impl Default for Settings {
lockin_phase: 0, // Demodulation LO phase offset
output_conf: [Conf::InPhase, Conf::Quadrature],
// The default telemetry period in seconds.
telemetry_period: 10,
}
}
}
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = stabilizer::hardware::SystemTimer)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
mqtt: MqttInterface<Settings>,
network: NetworkUsers<Settings, Telemetry>,
settings: Settings,
telemetry: TelemetryBuffer,
digital_inputs: (DigitalInput0, DigitalInput1),
timestamper: InputStamper,
pll: RPLL,
lockin: Lockin<U4>,
}
#[init(spawn=[settings_update])]
#[init(spawn=[settings_update, telemetry])]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = setup(c.core, c.device);
let mqtt = MqttInterface::new(
let network = NetworkUsers::new(
stabilizer.net.stack,
"",
&net::get_device_prefix(
env!("CARGO_BIN_NAME"),
stabilizer.net.mac_address,
),
stabilizer.net.phy,
stabilizer.cycle_counter,
env!("CARGO_BIN_NAME"),
stabilizer.net.mac_address,
);
let settings = Settings::default();
@ -111,8 +115,9 @@ const APP: () = {
+ design_parameters::SAMPLE_BUFFER_SIZE_LOG2,
);
// Spawn a settings update for default settings.
// Spawn a settings and telemetry update for default settings.
c.spawn.settings_update().unwrap();
c.spawn.telemetry().unwrap();
// Enable ADC/DAC events
stabilizer.adcs.0.start();
@ -133,8 +138,10 @@ const APP: () = {
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
mqtt,
network,
digital_inputs: stabilizer.digital_inputs,
timestamper: stabilizer.timestamper,
telemetry: net::TelemetryBuffer::default(),
settings,
@ -150,7 +157,7 @@ const APP: () = {
/// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal.
/// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale.
/// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available.
#[task(binds=DMA1_STR4, resources=[adcs, dacs, lockin, timestamper, pll, settings], priority=2)]
#[task(binds=DMA1_STR4, resources=[adcs, dacs, lockin, timestamper, pll, settings, telemetry], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
@ -226,27 +233,31 @@ const APP: () = {
Conf::Modulation => DAC_SEQUENCE[i] as i32,
};
*sample = value as u16 ^ 0x8000;
*sample = DacCode::from(value as i16).0;
}
}
// Update telemetry measurements.
c.resources.telemetry.adcs =
[AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];
c.resources.telemetry.dacs =
[DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];
}
#[idle(resources=[mqtt], spawn=[settings_update])]
#[idle(resources=[network], spawn=[settings_update])]
fn idle(mut c: idle::Context) -> ! {
loop {
match c.resources.mqtt.lock(|mqtt| mqtt.update()) {
Some(Action::Sleep) => cortex_m::asm::wfi(),
Some(Action::UpdateSettings) => {
c.spawn.settings_update().unwrap()
}
_ => {}
match c.resources.network.lock(|net| net.update()) {
UpdateState::Updated => c.spawn.settings_update().unwrap(),
UpdateState::NoChange => cortex_m::asm::wfi(),
}
}
}
#[task(priority = 1, resources=[mqtt, settings, afes])]
#[task(priority = 1, resources=[network, settings, afes])]
fn settings_update(mut c: settings_update::Context) {
let settings = c.resources.mqtt.settings();
let settings = c.resources.network.miniconf.settings();
c.resources.afes.0.set_gain(settings.afe[0]);
c.resources.afes.1.set_gain(settings.afe[1]);
@ -254,6 +265,35 @@ const APP: () = {
c.resources.settings.lock(|current| *current = *settings);
}
#[task(priority = 1, resources=[network, digital_inputs, settings, telemetry], schedule=[telemetry])]
fn telemetry(mut c: telemetry::Context) {
let mut telemetry: TelemetryBuffer =
c.resources.telemetry.lock(|telemetry| *telemetry);
telemetry.digital_inputs = [
c.resources.digital_inputs.0.is_high().unwrap(),
c.resources.digital_inputs.1.is_high().unwrap(),
];
let (gains, telemetry_period) = c
.resources
.settings
.lock(|settings| (settings.afe, settings.telemetry_period));
c.resources
.network
.telemetry
.publish(&telemetry.finalize(gains[0], gains[1]));
// Schedule the telemetry task in the future.
c.schedule
.telemetry(
c.scheduled
+ SystemTimer::ticks_from_secs(telemetry_period as u32),
)
.unwrap();
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }

View File

@ -84,6 +84,24 @@ use hal::dma::{
MemoryToPeripheral, PeripheralToMemory, Transfer,
};
/// A type representing an ADC sample.
#[derive(Copy, Clone)]
pub struct AdcCode(pub u16);
impl Into<f32> for AdcCode {
/// Convert raw ADC codes to/from voltage levels.
///
/// # Note
/// This does not account for the programmable gain amplifier at the signal input.
fn into(self) -> f32 {
// The ADC has a differential input with a range of +/- 4.096 V and 16-bit resolution.
// The gain into the two inputs is 1/5.
let adc_volts_per_lsb = 5.0 / 2.0 * 4.096 / (1u16 << 15) as f32;
(self.0 as i16) as f32 * adc_volts_per_lsb
}
}
// The following data is written by the timer ADC sample trigger into the SPI CR1 to start the
// transfer. Data in AXI SRAM is not initialized on boot, so the contents are random. This value is
// initialized during setup.

View File

@ -20,6 +20,18 @@ pub struct ProgrammableGainAmplifier<A0, A1> {
a1: A1,
}
impl Gain {
/// Get the AFE gain as a numerical value.
pub fn as_multiplier(self) -> f32 {
match self {
Gain::G1 => 1.0,
Gain::G2 => 2.0,
Gain::G5 => 5.0,
Gain::G10 => 10.0,
}
}
}
impl TryFrom<u8> for Gain {
type Error = ();

View File

@ -7,25 +7,30 @@ use stm32h7xx_hal::{
prelude::*,
};
const NUM_SOCKETS: usize = 4;
use heapless::{consts, Vec};
use smoltcp_nal::smoltcp;
use embedded_hal::digital::v2::{InputPin, OutputPin};
use super::{
adc, afe, cycle_counter::CycleCounter, dac, design_parameters,
digital_input_stamper, eeprom, pounder, timers, DdsOutput, DigitalInput0,
DigitalInput1, EthernetPhy, NetworkStack, AFE0, AFE1,
digital_input_stamper, eeprom, pounder, system_timer, timers, DdsOutput,
DigitalInput0, DigitalInput1, EthernetPhy, NetworkStack, AFE0, AFE1,
};
pub struct NetStorage {
pub ip_addrs: [smoltcp::wire::IpCidr; 1],
pub sockets: [Option<smoltcp::socket::SocketSetItem<'static>>; 2],
// Note: There is an additional socket set item required for the DHCP socket.
pub sockets:
[Option<smoltcp::socket::SocketSetItem<'static>>; NUM_SOCKETS + 1],
pub socket_storage: [SocketStorage; NUM_SOCKETS],
pub neighbor_cache:
[Option<(smoltcp::wire::IpAddress, smoltcp::iface::Neighbor)>; 8],
pub routes_cache:
[Option<(smoltcp::wire::IpCidr, smoltcp::iface::Route)>; 8],
pub tx_storage: [u8; 4096],
pub rx_storage: [u8; 4096],
pub dhcp_rx_metadata: [smoltcp::socket::RawPacketMetadata; 1],
pub dhcp_tx_metadata: [smoltcp::socket::RawPacketMetadata; 1],
@ -33,6 +38,21 @@ pub struct NetStorage {
pub dhcp_rx_storage: [u8; 600],
}
#[derive(Copy, Clone)]
pub struct SocketStorage {
rx_storage: [u8; 1024],
tx_storage: [u8; 1024],
}
impl SocketStorage {
const fn new() -> Self {
Self {
rx_storage: [0; 1024],
tx_storage: [0; 1024],
}
}
}
impl NetStorage {
pub fn new() -> Self {
NetStorage {
@ -42,9 +62,8 @@ impl NetStorage {
)],
neighbor_cache: [None; 8],
routes_cache: [None; 8],
sockets: [None, None],
tx_storage: [0; 4096],
rx_storage: [0; 4096],
sockets: [None, None, None, None, None],
socket_storage: [SocketStorage::new(); NUM_SOCKETS],
dhcp_tx_storage: [0; 600],
dhcp_rx_storage: [0; 600],
dhcp_rx_metadata: [smoltcp::socket::RawPacketMetadata::EMPTY; 1],
@ -98,7 +117,7 @@ static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
/// `Some(devices)` if pounder is detected, where `devices` is a `PounderDevices` structure
/// containing all of the pounder hardware interfaces in a disabled state.
pub fn setup(
mut core: rtic::export::Peripherals,
mut core: rtic::Peripherals,
device: stm32h7xx_hal::stm32::Peripherals,
) -> (StabilizerDevices, Option<PounderDevices>) {
let pwr = device.PWR.constrain();
@ -141,7 +160,18 @@ pub fn setup(
init_log(logger).unwrap();
}
let mut delay = hal::delay::Delay::new(core.SYST, ccdr.clocks);
// Set up the system timer for RTIC scheduling.
{
let tim15 =
device
.TIM15
.timer(10.khz(), ccdr.peripheral.TIM15, &ccdr.clocks);
system_timer::SystemTimer::initialize(tim15);
}
let mut delay = asm_delay::AsmDelay::new(asm_delay::bitrate::Hertz(
ccdr.clocks.c_ck().0,
));
let gpioa = device.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = device.GPIOB.split(ccdr.peripheral.GPIOB);
@ -562,19 +592,25 @@ pub fn setup(
let mut sockets =
smoltcp::socket::SocketSet::new(&mut store.sockets[..]);
let tcp_socket = {
let rx_buffer = smoltcp::socket::TcpSocketBuffer::new(
&mut store.rx_storage[..],
);
let tx_buffer = smoltcp::socket::TcpSocketBuffer::new(
&mut store.tx_storage[..],
);
let mut handles: Vec<smoltcp::socket::SocketHandle, consts::U64> =
Vec::new();
for storage in store.socket_storage.iter_mut() {
let tcp_socket = {
let rx_buffer = smoltcp::socket::TcpSocketBuffer::new(
&mut storage.rx_storage[..],
);
let tx_buffer = smoltcp::socket::TcpSocketBuffer::new(
&mut storage.tx_storage[..],
);
smoltcp::socket::TcpSocket::new(rx_buffer, tx_buffer)
};
smoltcp::socket::TcpSocket::new(rx_buffer, tx_buffer)
};
let handle = sockets.add(tcp_socket);
let handle = sockets.add(tcp_socket);
(sockets, [handle])
handles.push(handle).unwrap();
}
(sockets, handles)
};
let dhcp_client = {

View File

@ -69,6 +69,28 @@ use hal::dma::{
static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 3]; 2] =
[[[0; SAMPLE_BUFFER_SIZE]; 3]; 2];
/// Custom type for referencing DAC output codes.
/// The internal integer is the raw code written to the DAC output register.
#[derive(Copy, Clone)]
pub struct DacCode(pub u16);
impl Into<f32> for DacCode {
fn into(self) -> f32 {
// The DAC output range in bipolar mode (including the external output op-amp) is +/- 4.096
// V with 16-bit resolution. The anti-aliasing filter has an additional gain of 2.5.
let dac_volts_per_lsb = 4.096 * 2.5 / (1u16 << 15) as f32;
(self.0 as i16).wrapping_add(i16::MIN) as f32 * dac_volts_per_lsb
}
}
impl From<i16> for DacCode {
/// Encode signed 16-bit values into DAC offset binary for a bipolar output configuration.
fn from(value: i16) -> Self {
Self(value.wrapping_add(i16::MIN) as u16)
}
}
macro_rules! dac_output {
($name:ident, $index:literal, $data_stream:ident,
$spi:ident, $trigger_channel:ident, $dma_req:ident) => {

View File

@ -16,14 +16,16 @@ pub mod design_parameters;
mod digital_input_stamper;
mod eeprom;
pub mod pounder;
mod system_timer;
mod timers;
pub use adc::{Adc0Input, Adc1Input};
pub use adc::{Adc0Input, Adc1Input, AdcCode};
pub use afe::Gain as AfeGain;
pub use cycle_counter::CycleCounter;
pub use dac::{Dac0Output, Dac1Output};
pub use dac::{Dac0Output, Dac1Output, DacCode};
pub use digital_input_stamper::InputStamper;
pub use pounder::DdsOutput;
pub use system_timer::SystemTimer;
// Type alias for the analog front-end (AFE) for ADC0.
pub type AFE0 = afe::ProgrammableGainAmplifier<

View File

@ -0,0 +1,115 @@
///! System timer used for RTIC scheduling
///!
///! # Design
///! The SystemTimer is an RTIC monotonic timer that can be used for scheduling tasks in RTIC.
///! This timer is used in place of the cycle counter to allow the timer to tick at a slower rate
///! than the CPU clock. This allows for longer scheduling periods with less resolution. This is
///! needed for infrequent (e.g. multiple second) telemetry periods.
///!
///! # Limitations
///! This implementation relies on sufficient timer polling to not miss timer counter overflows. If
///! the timer is not polled often enough, it's possible that an overflow would be missed and time
///! would "halt" for a shore period of time. This could be fixed in the future by instead
///! listening for the overflow interrupt instead of polling the overflow state.
use hal::prelude::*;
use stm32h7xx_hal as hal;
// A global buffer indicating how many times the internal counter has overflowed.
static mut OVERFLOWS: u32 = 0;
/// System timer used for implementing RTIC scheduling.
///
/// # Note
/// The system timer must be initialized before being used.
pub struct SystemTimer {}
impl SystemTimer {
/// Initialize the system timer.
///
/// # Args
/// * `timer` - The hardware timer used for implementing the RTIC monotonic.
pub fn initialize(mut timer: hal::timer::Timer<hal::device::TIM15>) {
timer.pause();
// Have the system timer operate at a tick rate of 10KHz (100uS per tick). With this
// configuration and a 65535 period, we get an overflow once every 6.5 seconds.
timer.set_tick_freq(10.khz());
timer.apply_freq();
timer.resume();
}
/// Convert a provided number of seconds into timer ticks.
pub fn ticks_from_secs(secs: u32) -> i32 {
(secs * 10_000) as i32
}
}
impl rtic::Monotonic for SystemTimer {
// Instants are stored in 32-bit signed integers. With a 10KHz tick rate, this means an
// instant can store up to ~59 hours of time before overflowing.
type Instant = i32;
fn ratio() -> rtic::Fraction {
rtic::Fraction {
// At 10KHz with a 400MHz CPU clock, the CPU clock runs 40,000 times faster than
// the system timer.
numerator: 40_000,
denominator: 1,
}
}
/// Get the current time instant.
///
/// # Note
/// The time will overflow into -59 hours after the first 59 hours. This time value is intended
/// for use in calculating time delta, and should not be used for timestamping purposes due to
/// roll-over.
fn now() -> i32 {
// Note(unsafe): Multiple interrupt contexts have access to the underlying timer, so care
// is taken when reading and modifying register values.
let regs = unsafe { &*hal::device::TIM15::ptr() };
cortex_m::interrupt::free(|_cs| {
loop {
// Checking for overflows of the current counter must be performed atomically. Any
// other task that is accessing the current time could potentially race for the
// registers. Note that this is only required for writing to global state (e.g. timer
// registers and overflow counter)
// Check for overflows and clear the overflow bit atomically. This must be done in
// a critical section to prevent race conditions on the status register.
if regs.sr.read().uif().bit_is_set() {
regs.sr.modify(|_, w| w.uif().clear_bit());
unsafe {
OVERFLOWS += 1;
}
}
let current_value = regs.cnt.read().bits();
// Check that an overflow didn't occur since we just cleared the overflow bit. If
// it did, loop around and retry.
if regs.sr.read().uif().bit_is_clear() {
// Note(unsafe): We are in a critical section, so it is safe to read the
// global variable.
return unsafe {
((OVERFLOWS << 16) + current_value) as i32
};
}
}
})
}
/// Reset the timer count.
unsafe fn reset() {
// Note: The timer must be safely configured in `SystemTimer::initialize()`.
let regs = &*hal::device::TIM15::ptr();
OVERFLOWS = 0;
regs.cnt.reset();
}
/// Get a timestamp correlating to zero time.
fn zero() -> i32 {
0
}
}

View File

@ -1,27 +1,33 @@
use crate::hardware::{
design_parameters::MQTT_BROKER, CycleCounter, EthernetPhy, NetworkStack,
};
///! Stabilizer Run-time Settings Client
///!
///! # Design
///! Stabilizer allows for settings to be configured at run-time via MQTT using miniconf.
///! Settings are written in serialized JSON form to the settings path associated with the setting.
///!
///! # Limitations
///! The MQTT client logs failures to subscribe to the settings topic, but does not re-attempt to
///connect to it when errors occur.
///!
///! Respones to settings updates are sent without quality-of-service guarantees, so there's no
///! guarantee that the requestee will be informed that settings have been applied.
use heapless::{consts, String};
use super::{Action, MqttMessage, SettingsResponse};
use super::{MqttMessage, NetworkReference, SettingsResponse, UpdateState};
use crate::hardware::design_parameters::MQTT_BROKER;
/// MQTT settings interface.
pub struct MqttInterface<S>
pub struct MiniconfClient<S>
where
S: miniconf::Miniconf + Default + Clone,
{
default_response_topic: String<consts::U128>,
mqtt: minimq::MqttClient<minimq::consts::U256, NetworkStack>,
mqtt: minimq::MqttClient<minimq::consts::U256, NetworkReference>,
settings: S,
clock: CycleCounter,
phy: EthernetPhy,
network_was_reset: bool,
subscribed: bool,
settings_prefix: String<consts::U64>,
}
impl<S> MqttInterface<S>
impl<S> MiniconfClient<S>
where
S: miniconf::Miniconf + Default + Clone,
{
@ -31,15 +37,7 @@ where
/// * `stack` - The network stack to use for communication.
/// * `client_id` - The ID of the MQTT client. May be an empty string for auto-assigning.
/// * `prefix` - The MQTT device prefix to use for this device.
/// * `phy` - The PHY driver for querying the link state.
/// * `clock` - The clock to utilize for querying the current system time.
pub fn new(
stack: NetworkStack,
client_id: &str,
prefix: &str,
phy: EthernetPhy,
clock: CycleCounter,
) -> Self {
pub fn new(stack: NetworkReference, client_id: &str, prefix: &str) -> Self {
let mqtt =
minimq::MqttClient::new(MQTT_BROKER.into(), client_id, stack)
.unwrap();
@ -54,10 +52,7 @@ where
mqtt,
settings: S::default(),
settings_prefix,
clock,
phy,
default_response_topic: response_topic,
network_was_reset: false,
subscribed: false,
}
}
@ -66,31 +61,7 @@ where
///
/// # Returns
/// An option containing an action that should be completed as a result of network servicing.
pub fn update(&mut self) -> Option<Action> {
// First, service the network stack to process any inbound and outbound traffic.
let sleep = match self.mqtt.network_stack.poll(self.clock.current_ms())
{
Ok(updated) => !updated,
Err(err) => {
log::info!("Network error: {:?}", err);
false
}
};
// If the PHY indicates there's no more ethernet link, reset the DHCP server in the network
// stack.
match self.phy.poll_link() {
true => self.network_was_reset = false,
// Only reset the network stack once per link reconnection. This prevents us from
// sending an excessive number of DHCP requests.
false if !self.network_was_reset => {
self.network_was_reset = true;
self.mqtt.network_stack.handle_link_reset();
}
_ => {}
};
pub fn update(&mut self) -> UpdateState {
let mqtt_connected = match self.mqtt.is_connected() {
Ok(connected) => connected,
Err(minimq::Error::Network(
@ -167,30 +138,24 @@ where
.ok();
}) {
// If settings updated,
Ok(_) => {
if update {
Some(Action::UpdateSettings)
} else if sleep {
Some(Action::Sleep)
} else {
None
}
}
Err(minimq::Error::Disconnected) => {
Ok(_) if update => UpdateState::Updated,
Ok(_) => UpdateState::NoChange,
Err(minimq::Error::SessionReset) => {
self.subscribed = false;
None
UpdateState::NoChange
}
Err(minimq::Error::Network(
smoltcp_nal::NetworkError::NoIpAddress,
)) => None,
)) => UpdateState::NoChange,
Err(error) => {
log::info!("Unexpected error: {:?}", error);
None
UpdateState::NoChange
}
}
}
/// Get the current settings from miniconf.
pub fn settings(&self) -> &S {
&self.settings
}

View File

@ -6,21 +6,129 @@
///! streaming over raw UDP/TCP sockets. This module encompasses the main processing routines
///! related to Stabilizer networking operations.
use heapless::{consts, String};
use miniconf::Miniconf;
use serde::Serialize;
use core::fmt::Write;
mod messages;
mod mqtt_interface;
mod miniconf_client;
mod network_processor;
mod shared;
mod telemetry;
use crate::hardware::{CycleCounter, EthernetPhy, NetworkStack};
use messages::{MqttMessage, SettingsResponse};
pub use mqtt_interface::MqttInterface;
/// Potential actions for firmware to take.
pub enum Action {
/// Indicates that firmware can sleep for the next event.
Sleep,
pub use miniconf_client::MiniconfClient;
pub use network_processor::NetworkProcessor;
pub use shared::NetworkManager;
pub use telemetry::{Telemetry, TelemetryBuffer, TelemetryClient};
/// Indicates that settings have updated and firmware needs to propogate changes.
UpdateSettings,
pub type NetworkReference = shared::NetworkStackProxy<'static, NetworkStack>;
#[derive(Copy, Clone, PartialEq)]
pub enum UpdateState {
NoChange,
Updated,
}
/// A structure of Stabilizer's default network users.
pub struct NetworkUsers<S: Default + Clone + Miniconf, T: Serialize> {
pub miniconf: MiniconfClient<S>,
pub processor: NetworkProcessor,
pub telemetry: TelemetryClient<T>,
}
impl<S, T> NetworkUsers<S, T>
where
S: Default + Clone + Miniconf,
T: Serialize,
{
/// Construct Stabilizer's default network users.
///
/// # Args
/// * `stack` - The network stack that will be used to share with all network users.
/// * `phy` - The ethernet PHY connecting the network.
/// * `cycle_counter` - The clock used for measuring time in the network.
/// * `app` - The name of the application.
/// * `mac` - The MAC address of the network.
///
/// # Returns
/// A new struct of network users.
pub fn new(
stack: NetworkStack,
phy: EthernetPhy,
cycle_counter: CycleCounter,
app: &str,
mac: smoltcp_nal::smoltcp::wire::EthernetAddress,
) -> Self {
let stack_manager =
cortex_m::singleton!(: NetworkManager = NetworkManager::new(stack))
.unwrap();
let processor = NetworkProcessor::new(
stack_manager.acquire_stack(),
phy,
cycle_counter,
);
let prefix = get_device_prefix(app, mac);
let settings = MiniconfClient::new(
stack_manager.acquire_stack(),
&get_client_id(app, "settings", mac),
&prefix,
);
let telemetry = TelemetryClient::new(
stack_manager.acquire_stack(),
&get_client_id(app, "tlm", mac),
&prefix,
);
NetworkUsers {
miniconf: settings,
processor,
telemetry,
}
}
/// Update and process all of the network users state.
///
/// # Returns
/// An indication if any of the network users indicated a state change.
pub fn update(&mut self) -> UpdateState {
// Poll for incoming data.
let poll_result = self.processor.update();
// Update the MQTT clients.
self.telemetry.update();
match self.miniconf.update() {
UpdateState::Updated => UpdateState::Updated,
UpdateState::NoChange => poll_result,
}
}
}
/// Get an MQTT client ID for a client.
///
/// # Args
/// * `app` - The name of the application
/// * `client` - The unique tag of the client
/// * `mac` - The MAC address of the device.
///
/// # Returns
/// A client ID that may be used for MQTT client identification.
fn get_client_id(
app: &str,
client: &str,
mac: smoltcp_nal::smoltcp::wire::EthernetAddress,
) -> String<consts::U64> {
let mut identifier = String::new();
write!(&mut identifier, "{}-{}-{}", app, mac, client).unwrap();
identifier
}
/// Get the MQTT prefix of a device.
@ -35,26 +143,10 @@ pub fn get_device_prefix(
app: &str,
mac: smoltcp_nal::smoltcp::wire::EthernetAddress,
) -> String<consts::U128> {
let mac_string = {
let mut mac_string: String<consts::U32> = String::new();
let mac = mac.as_bytes();
// Note(unwrap): 32-bytes is guaranteed to be valid for any mac address, as the address has
// a fixed length.
write!(
&mut mac_string,
"{:02x}-{:02x}-{:02x}-{:02x}-{:02x}-{:02x}",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]
)
.unwrap();
mac_string
};
// Note(unwrap): The mac address + binary name must be short enough to fit into this string. If
// they are defined too long, this will panic and the device will fail to boot.
let mut prefix: String<consts::U128> = String::new();
write!(&mut prefix, "dt/sinara/{}/{}", app, mac_string).unwrap();
write!(&mut prefix, "dt/sinara/{}/{}", app, mac).unwrap();
prefix
}

View File

@ -0,0 +1,77 @@
///! Task to process network hardware.
///!
///! # Design
///! The network processir is a small taks to regularly process incoming data over ethernet, handle
///! the ethernet PHY state, and reset the network as appropriate.
use super::{NetworkReference, UpdateState};
use crate::hardware::{CycleCounter, EthernetPhy};
/// Processor for managing network hardware.
pub struct NetworkProcessor {
stack: NetworkReference,
phy: EthernetPhy,
clock: CycleCounter,
network_was_reset: bool,
}
impl NetworkProcessor {
/// Construct a new network processor.
///
/// # Args
/// * `stack` - A reference to the shared network stack
/// * `phy` - The ethernet PHY used for the network.
/// * `clock` - The clock used for providing time to the network.
///
/// # Returns
/// The newly constructed processor.
pub fn new(
stack: NetworkReference,
phy: EthernetPhy,
clock: CycleCounter,
) -> Self {
Self {
stack,
phy,
clock,
network_was_reset: false,
}
}
/// Process and update the state of the network.
///
/// # Note
/// This function should be called regularly before other network tasks to update the state of
/// all relevant network sockets.
///
/// # Returns
/// An update state corresponding with any changes in the underlying network.
pub fn update(&mut self) -> UpdateState {
// Service the network stack to process any inbound and outbound traffic.
let now = self.clock.current_ms();
let result = match self.stack.lock(|stack| stack.poll(now)) {
Ok(true) => UpdateState::Updated,
Ok(false) => UpdateState::NoChange,
Err(err) => {
log::info!("Network error: {:?}", err);
UpdateState::Updated
}
};
// If the PHY indicates there's no more ethernet link, reset the DHCP server in the network
// stack.
match self.phy.poll_link() {
true => self.network_was_reset = false,
// Only reset the network stack once per link reconnection. This prevents us from
// sending an excessive number of DHCP requests.
false if !self.network_was_reset => {
self.network_was_reset = true;
self.stack.lock(|stack| stack.handle_link_reset());
}
_ => {}
};
result
}
}

91
src/net/shared.rs Normal file
View File

@ -0,0 +1,91 @@
///! Network Stack Sharing Utilities
///!
///! # Design
///! This module provides a mechanism for sharing a single network stack safely between drivers
///that may or may not execute in multiple contexts. The design copies that of `shared-bus`.
///!
///! Specifically, the network stack is stored in a global static singleton and proxies to the
///! underlying stack are handed out. The proxies provide an identical API for the
///! `embedded_nal::TcpStack` stack trait, so they can be provided direclty to drivers that require
///! a network stack.
///!
///! In order to ensure that pre-emption does not occur while accessing the same network stack from
///! multiple interrupt contexts, the proxy uses an atomic boolean check - if the flag indicates the
///! stack is in use, the proxy will generate a panic. The actual synchronization mechanism (mutex)
///! leverages RTIC resource allocation. All devices that use the underlying network stack must be
///! placed in a single RTIC resource, which will cause RTIC to prevent contention for the
///! underlying network stack.
use minimq::embedded_nal;
use shared_bus::{AtomicCheckMutex, BusMutex};
use crate::hardware::NetworkStack;
/// A manager for a shared network stack.
pub struct NetworkManager {
mutex: AtomicCheckMutex<NetworkStack>,
}
/// A basic proxy that references a shared network stack.
pub struct NetworkStackProxy<'a, S> {
mutex: &'a AtomicCheckMutex<S>,
}
impl<'a, S> NetworkStackProxy<'a, S> {
/// Using the proxy, access the underlying network stack directly.
///
/// # Args
/// * `f` - A closure which will be provided the network stack as an argument.
///
/// # Returns
/// Any value returned by the provided closure
pub fn lock<R, F: FnOnce(&mut S) -> R>(&mut self, f: F) -> R {
self.mutex.lock(|stack| f(stack))
}
}
// A simple forwarding macro taken from the `embedded-nal` to forward the embedded-nal API into the
// proxy structure.
macro_rules! forward {
($func:ident($($v:ident: $IT:ty),*) -> $T:ty) => {
fn $func(&self, $($v: $IT),*) -> $T {
self.mutex.lock(|stack| stack.$func($($v),*))
}
}
}
// Implement a TCP stack for the proxy if the underlying network stack implements it.
impl<'a, S> embedded_nal::TcpStack for NetworkStackProxy<'a, S>
where
S: embedded_nal::TcpStack,
{
type TcpSocket = S::TcpSocket;
type Error = S::Error;
forward! {open(mode: embedded_nal::Mode) -> Result<S::TcpSocket, S::Error>}
forward! {connect(socket: S::TcpSocket, remote: embedded_nal::SocketAddr) -> Result<S::TcpSocket, S::Error>}
forward! {is_connected(socket: &S::TcpSocket) -> Result<bool, S::Error>}
forward! {write(socket: &mut S::TcpSocket, buffer: &[u8]) -> embedded_nal::nb::Result<usize, S::Error>}
forward! {read(socket: &mut S::TcpSocket, buffer: &mut [u8]) -> embedded_nal::nb::Result<usize, S::Error>}
forward! {close(socket: S::TcpSocket) -> Result<(), S::Error>}
}
impl NetworkManager {
/// Construct a new manager for a shared network stack
///
/// # Args
/// * `stack` - The network stack that is being shared.
pub fn new(stack: NetworkStack) -> Self {
Self {
mutex: AtomicCheckMutex::create(stack),
}
}
/// Acquire a proxy to the shared network stack.
///
/// # Returns
/// A proxy that can be used in place of the network stack. Note the requirements of
/// concurrency listed in the description of this file for usage.
pub fn acquire_stack(&'_ self) -> NetworkStackProxy<'_, NetworkStack> {
NetworkStackProxy { mutex: &self.mutex }
}
}

145
src/net/telemetry.rs Normal file
View File

@ -0,0 +1,145 @@
///! Stabilizer Telemetry Capabilities
///!
///! # Design
///! Telemetry is reported regularly using an MQTT client. All telemetry is reported in SI units
///! using standard JSON format.
///!
///! In order to report ADC/DAC codes generated during the DSP routines, a telemetry buffer is
///! employed to track the latest codes. Converting these codes to SI units would result in
///! repetitive and unnecessary calculations within the DSP routine, slowing it down and limiting
///! sampling frequency. Instead, the raw codes are stored and the telemetry is generated as
///! required immediately before transmission. This ensures that any slower computation required
///! for unit conversion can be off-loaded to lower priority tasks.
use heapless::{consts, String, Vec};
use minimq::QoS;
use serde::Serialize;
use super::NetworkReference;
use crate::hardware::{
design_parameters::MQTT_BROKER, AdcCode, AfeGain, DacCode,
};
/// The telemetry client for reporting telemetry data over MQTT.
pub struct TelemetryClient<T: Serialize> {
mqtt: minimq::MqttClient<minimq::consts::U256, NetworkReference>,
telemetry_topic: String<consts::U128>,
_telemetry: core::marker::PhantomData<T>,
}
/// The telemetry buffer is used for storing sample values during execution.
///
/// # Note
/// These values can be converted to SI units immediately before reporting to save processing time.
/// This allows for the DSP process to continually update the values without incurring significant
/// run-time overhead during conversion to SI units.
#[derive(Copy, Clone)]
pub struct TelemetryBuffer {
/// The latest input sample on ADC0/ADC1.
pub adcs: [AdcCode; 2],
/// The latest output code on DAC0/DAC1.
pub dacs: [DacCode; 2],
/// The latest digital input states during processing.
pub digital_inputs: [bool; 2],
}
/// The telemetry structure is data that is ultimately reported as telemetry over MQTT.
///
/// # Note
/// This structure should be generated on-demand by the buffer when required to minimize conversion
/// overhead.
#[derive(Serialize)]
pub struct Telemetry {
adcs: [f32; 2],
dacs: [f32; 2],
digital_inputs: [bool; 2],
}
impl Default for TelemetryBuffer {
fn default() -> Self {
Self {
adcs: [AdcCode(0), AdcCode(0)],
dacs: [DacCode(0), DacCode(0)],
digital_inputs: [false, false],
}
}
}
impl TelemetryBuffer {
/// Convert the telemetry buffer to finalized, SI-unit telemetry for reporting.
///
/// # Args
/// * `afe0` - The current AFE configuration for channel 0.
/// * `afe1` - The current AFE configuration for channel 1.
///
/// # Returns
/// The finalized telemetry structure that can be serialized and reported.
pub fn finalize(self, afe0: AfeGain, afe1: AfeGain) -> Telemetry {
let in0_volts = Into::<f32>::into(self.adcs[0]) / afe0.as_multiplier();
let in1_volts = Into::<f32>::into(self.adcs[1]) / afe1.as_multiplier();
Telemetry {
adcs: [in0_volts, in1_volts],
dacs: [self.dacs[0].into(), self.dacs[1].into()],
digital_inputs: self.digital_inputs,
}
}
}
impl<T: Serialize> TelemetryClient<T> {
/// Construct a new telemetry client.
///
/// # Args
/// * `stack` - A reference to the (shared) underlying network stack.
/// * `client_id` - The MQTT client ID of the telemetry client.
/// * `prefix` - The device prefix to use for MQTT telemetry reporting.
///
/// # Returns
/// A new telemetry client.
pub fn new(stack: NetworkReference, client_id: &str, prefix: &str) -> Self {
let mqtt =
minimq::MqttClient::new(MQTT_BROKER.into(), client_id, stack)
.unwrap();
let mut telemetry_topic: String<consts::U128> = String::from(prefix);
telemetry_topic.push_str("/telemetry").unwrap();
Self {
mqtt,
telemetry_topic,
_telemetry: core::marker::PhantomData::default(),
}
}
/// Publish telemetry over MQTT
///
/// # Note
/// Telemetry is reported in a "best-effort" fashion. Failure to transmit telemetry will cause
/// it to be silently dropped.
///
/// # Args
/// * `telemetry` - The telemetry to report
pub fn publish(&mut self, telemetry: &T) {
let telemetry: Vec<u8, consts::U256> =
serde_json_core::to_vec(telemetry).unwrap();
self.mqtt
.publish(&self.telemetry_topic, &telemetry, QoS::AtMostOnce, &[])
.ok();
}
/// Update the telemetry client
///
/// # Note
/// This function is provided to force the underlying MQTT state machine to process incoming
/// and outgoing messages. Without this, the client will never connect to the broker. This
/// should be called regularly.
pub fn update(&mut self) {
match self.mqtt.poll(|_client, _topic, _message, _properties| {}) {
Err(minimq::Error::Network(
smoltcp_nal::NetworkError::NoIpAddress,
)) => {}
Err(error) => log::info!("Unexpected error: {:?}", error),
_ => {}
}
}
}