Merge remote-tracking branch 'origin/master' into hitl

* origin/master: (34 commits)
  Reordering lib.rs
  Removing main.rs
  Adding support for multiple applications
  Fixing build
  Moving panic configuration
  Reordering
  Refactoring to support multiple apps
  Updating timer compare offsets
  reciprocal_pll: remove unneeded type cast
  revert changes in main.rs and server.rs
  dsp: add reciprocal_pll
  fix bug in which real signal component is assigned twice
  fix cargo fmt style
  use only integer iir
  remove TODO note relating ADC_BATCHES and calculate_timestamp_timer_period
  shift sin/cos before demodulation product to avoid i64
  use round up half integer rounding
  move timestamp handling into new TimestampHandler struct
  move lock-in code to main.rs
  remove debug_assert in divide_round
  ...
This commit is contained in:
Robert Jördens 2021-01-20 15:08:47 +01:00
commit 2236e5f8ab
25 changed files with 1658 additions and 2961 deletions

View File

@ -27,7 +27,6 @@ jobs:
command: fmt
args: --all -- --check
- uses: actions-rs/clippy-check@v1
continue-on-error: true
with:
token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -5,7 +5,7 @@ use core::ops::{Add, Mul, Neg};
pub type Complex<T> = (T, T);
/// Round up half.
/// Bit shift, round up half.
///
/// # Arguments
///
@ -20,6 +20,23 @@ pub fn shift_round(x: i32, shift: usize) -> i32 {
(x + (1 << (shift - 1))) >> shift
}
/// Integer division, round up half.
///
/// # Arguments
///
/// `dividend` - Value to divide.
/// `divisor` - Value that divides the
/// dividend. `dividend`+`divisor`-1 must be inside [i64::MIN,
/// i64::MAX].
///
/// # Returns
///
/// Divided and rounded value.
#[inline(always)]
pub fn divide_round(dividend: i64, divisor: i64) -> i64 {
(dividend + (divisor - 1)) / divisor
}
fn abs<T>(x: T) -> T
where
T: PartialOrd + Default + Neg<Output = T>,
@ -99,8 +116,8 @@ where
pub mod iir;
pub mod iir_int;
pub mod lockin;
pub mod pll;
pub mod reciprocal_pll;
pub mod trig;
pub mod unwrap;

View File

@ -1,518 +0,0 @@
//! Lock-in amplifier.
//!
//! Lock-in processing is performed through a combination of the
//! following modular processing blocks: demodulation, filtering,
//! decimation and computing the magnitude and phase from a complex
//! signal. These processing blocks are mutually independent.
//!
//! # Terminology
//!
//! * _demodulation signal_ - A copy of the reference signal that is
//! optionally frequency scaled and phase shifted. This is a complex
//! signal. The demodulation signals are used to demodulate the ADC
//! sampled signal.
//! * _internal clock_ - A fast internal clock used to increment a
//! counter for determining the 0-phase points of a reference signal.
//! * _reference signal_ - A constant-frequency signal used to derive
//! the demodulation signal.
//! * _timestamp_ - Timestamps record the timing of the reference
//! signal's 0-phase points. For instance, if a reference signal is
//! provided externally, a fast internal clock increments a
//! counter. When the external reference reaches the 0-phase point
//! (e.g., a positive edge), the value of the counter is recorded as a
//! timestamp. These timestamps are used to determine the frequency
//! and phase of the reference signal.
//!
//! # Usage
//!
//! The first step is to initialize a `Lockin` instance with
//! `Lockin::new()`. This provides the lock-in algorithms with
//! necessary information about the demodulation and filtering steps,
//! such as whether to demodulate with a harmonic of the reference
//! signal and the IIR biquad filter to use. There are then 4
//! different processing steps that can be used:
//!
//! * `demodulate` - Computes the phase of the demodulation signal
//! corresponding to each ADC sample, uses this phase to compute the
//! demodulation signal, and multiplies this demodulation signal by
//! the ADC-sampled signal. This is a method of `Lockin` since it
//! requires information about how to modify the reference signal for
//! demodulation.
//! * `filter` - Performs IIR biquad filtering of a complex
//! signals. This is commonly performed on the signal provided by the
//! demodulation step, but can be performed at any other point in the
//! processing chain or omitted entirely. `filter` is a method of
//! `Lockin` since it must hold onto the filter configuration and
//! state.
//! * `decimate` - This decimates a signal to reduce the load on the
//! DAC output. It does not require any state information and is
//! therefore a normal function.
//! * `magnitude_phase` - Computes the magnitude and phase of the
//! component of the ADC-sampled signal whose frequency is equal to
//! the demodulation frequency. This does not require any state
//! information and is therefore a normal function.
use super::iir::{IIRState, IIR};
use super::Complex;
use core::f32::consts::PI;
/// The number of ADC samples in one batch.
pub const ADC_SAMPLE_BUFFER_SIZE: usize = 16;
/// The number of outputs sent to the DAC for each ADC batch.
pub const DECIMATED_BUFFER_SIZE: usize = 1;
/// Treat the 2-element array as a FIFO. This allows new elements to
/// be pushed into the array, existing elements to shift back in the
/// array, and the last element to fall off the array.
trait Fifo2<T> {
fn push(&mut self, new_element: Option<T>);
}
impl<T: Copy> Fifo2<T> for [Option<T>; 2] {
/// Push a new element into the array. The existing elements move
/// backward in the array by one location, and the current last
/// element is discarded.
///
/// # Arguments
///
/// * `new_element` - New element pushed into the front of the
/// array.
fn push(&mut self, new_element: Option<T>) {
// For array sizes greater than 2 it would be preferable to
// use a rotating index to avoid unnecessary data
// copying. However, this would somewhat complicate the use of
// iterators and for 2 elements, shifting is inexpensive.
self[1] = self[0];
self[0] = new_element;
}
}
/// Performs lock-in amplifier processing of a signal.
pub struct Lockin {
phase_offset: f32,
sample_period: u32,
harmonic: u32,
timestamps: [Option<i32>; 2],
iir: IIR,
iirstate: [IIRState; 2],
}
impl Lockin {
/// Initialize a new `Lockin` instance.
///
/// # Arguments
///
/// * `phase_offset` - Phase offset (in radians) applied to the
/// demodulation signal.
/// * `sample_period` - ADC sampling period in terms of the
/// internal clock period.
/// * `harmonic` - Integer scaling factor used to adjust the
/// demodulation frequency. E.g., 2 would demodulate with the
/// first harmonic.
/// * `iir` - IIR biquad filter.
///
/// # Returns
///
/// New `Lockin` instance.
pub fn new(
phase_offset: f32,
sample_period: u32,
harmonic: u32,
iir: IIR,
) -> Self {
Lockin {
phase_offset: phase_offset,
sample_period: sample_period,
harmonic: harmonic,
timestamps: [None, None],
iir: iir,
iirstate: [[0.; 5]; 2],
}
}
/// Demodulate an input signal with the complex reference signal.
///
/// # Arguments
///
/// * `adc_samples` - One batch of ADC samples.
/// * `timestamps` - Counter values corresponding to the edges of
/// an external reference signal. The counter is incremented by a
/// fast internal clock.
///
/// # Returns
///
/// The demodulated complex signal as a `Result`. When there are
/// an insufficient number of timestamps to perform processing,
/// `Err` is returned.
///
/// # Assumptions
///
/// `demodulate` expects that the timestamp counter value is equal
/// to 0 when the ADC samples its first input in a batch. This can
/// be achieved by configuring the timestamp counter to overflow
/// at the end of the ADC batch sampling period.
pub fn demodulate(
&mut self,
adc_samples: &[i16],
timestamps: &[u16],
) -> Result<[Complex<f32>; ADC_SAMPLE_BUFFER_SIZE], &str> {
let sample_period = self.sample_period as i32;
// update old timestamps for new ADC batch
self.timestamps.iter_mut().for_each(|t| match *t {
Some(timestamp) => {
// Existing timestamps have aged by one ADC batch
// period since the last ADC batch.
*t = Some(
timestamp - ADC_SAMPLE_BUFFER_SIZE as i32 * sample_period,
);
}
None => (),
});
// return prematurely if there aren't enough timestamps for
// processing
let old_timestamp_count =
self.timestamps.iter().filter(|t| t.is_some()).count();
if old_timestamp_count + timestamps.len() < 2 {
return Err("insufficient timestamps");
}
let mut signal = [(0., 0.); ADC_SAMPLE_BUFFER_SIZE];
// if we have not yet recorded any timestamps, the first
// reference period must be computed from the first and
// second timestamps in the array
let mut timestamp_index: usize =
if old_timestamp_count == 0 { 1 } else { 0 };
// compute ADC sample phases, sines/cosines and demodulate
signal
.iter_mut()
.zip(adc_samples.iter())
.enumerate()
.for_each(|(i, (s, sample))| {
let adc_sample_count = i as i32 * sample_period;
// index of the closest timestamp that occurred after
// the current ADC sample
let closest_timestamp_after_index: i32 = if timestamps.len() > 0
{
// Linear search is fast because both the timestamps
// and ADC sample counts are sorted. Because of this,
// we only need to check timestamps that were also
// greater than the last ADC sample count.
while timestamp_index < timestamps.len() - 1
&& (timestamps[timestamp_index] as i32)
< adc_sample_count
{
timestamp_index += 1;
}
timestamp_index as i32
} else {
-1
};
// closest timestamp that occurred before the current
// ADC sample
let closest_timestamp_before: i32;
let reference_period = if closest_timestamp_after_index < 0 {
closest_timestamp_before = self.timestamps[0].unwrap();
closest_timestamp_before - self.timestamps[1].unwrap()
} else if closest_timestamp_after_index == 0 {
closest_timestamp_before = self.timestamps[0].unwrap();
timestamps[0] as i32 - closest_timestamp_before
} else {
closest_timestamp_before = timestamps
[(closest_timestamp_after_index - 1) as usize]
as i32;
timestamps[closest_timestamp_after_index as usize] as i32
- closest_timestamp_before
};
let integer_phase: i32 = (adc_sample_count
- closest_timestamp_before)
* self.harmonic as i32;
let phase = self.phase_offset
+ 2. * PI * integer_phase as f32 / reference_period as f32;
let (sine, cosine) = libm::sincosf(phase);
let sample = *sample as f32;
s.0 = sine * sample;
s.1 = cosine * sample;
});
// record new timestamps
let start_index: usize = if timestamps.len() < 2 {
0
} else {
timestamps.len() - 2
};
timestamps[start_index..]
.iter()
.for_each(|t| self.timestamps.push(Some(*t as i32)));
Ok(signal)
}
/// Filter the complex signal using the supplied biquad IIR. The
/// signal array is modified in place.
///
/// # Arguments
///
/// * `signal` - Complex signal to filter.
pub fn filter(&mut self, signal: &mut [Complex<f32>]) {
signal.iter_mut().for_each(|s| {
s.0 = self.iir.update(&mut self.iirstate[0], s.0);
s.1 = self.iir.update(&mut self.iirstate[1], s.1);
});
}
}
/// Decimate the complex signal to `DECIMATED_BUFFER_SIZE`. The ratio
/// of `ADC_SAMPLE_BUFFER_SIZE` to `DECIMATED_BUFFER_SIZE` must be a
/// power of 2.
///
/// # Arguments
///
/// * `signal` - Complex signal to decimate.
///
/// # Returns
///
/// The decimated signal.
pub fn decimate(
signal: [Complex<f32>; ADC_SAMPLE_BUFFER_SIZE],
) -> [Complex<f32>; DECIMATED_BUFFER_SIZE] {
let n_k = ADC_SAMPLE_BUFFER_SIZE / DECIMATED_BUFFER_SIZE;
debug_assert!(
ADC_SAMPLE_BUFFER_SIZE == DECIMATED_BUFFER_SIZE || n_k % 2 == 0
);
let mut signal_decimated = [(0_f32, 0_f32); DECIMATED_BUFFER_SIZE];
signal_decimated
.iter_mut()
.zip(signal.iter().step_by(n_k))
.for_each(|(s_d, s)| {
s_d.0 = s.0;
s_d.1 = s.1;
});
signal_decimated
}
/// Compute the magnitude and phase from the complex signal. The
/// signal array is modified in place.
///
/// # Arguments
///
/// * `signal` - Complex signal to decimate.
pub fn magnitude_phase(signal: &mut [Complex<f32>]) {
signal.iter_mut().for_each(|s| {
let new_i = libm::sqrtf([s.0, s.1].iter().map(|i| i * i).sum());
let new_q = libm::atan2f(s.1, s.0);
s.0 = new_i;
s.1 = new_q;
});
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing::complex_allclose;
#[test]
fn array_push() {
let mut arr: [Option<u32>; 2] = [None, None];
arr.push(Some(1));
assert_eq!(arr, [Some(1), None]);
arr.push(Some(2));
assert_eq!(arr, [Some(2), Some(1)]);
arr.push(Some(10));
assert_eq!(arr, [Some(10), Some(2)]);
}
#[test]
fn magnitude_phase_length_1_quadrant_1() {
let mut signal: [Complex<f32>; 1] = [(1., 1.)];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[(2_f32.sqrt(), PI / 4.)],
f32::EPSILON,
0.
));
signal = [(3_f32.sqrt() / 2., 1. / 2.)];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[(1., PI / 6.)],
f32::EPSILON,
0.
));
}
#[test]
fn magnitude_phase_length_1_quadrant_2() {
let mut signal = [(-1., 1.)];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[(2_f32.sqrt(), 3. * PI / 4.)],
f32::EPSILON,
0.
));
signal = [(-1. / 2., 3_f32.sqrt() / 2.)];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[(1_f32, 2. * PI / 3.)],
f32::EPSILON,
0.
));
}
#[test]
fn magnitude_phase_length_1_quadrant_3() {
let mut signal = [(-1. / 2_f32.sqrt(), -1. / 2_f32.sqrt())];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[(1_f32.sqrt(), -3. * PI / 4.)],
f32::EPSILON,
0.
));
signal = [(-1. / 2., -2_f32.sqrt())];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[((3. / 2.) as f32, -1.91063323625 as f32)],
f32::EPSILON,
0.
));
}
#[test]
fn magnitude_phase_length_1_quadrant_4() {
let mut signal = [(1. / 2_f32.sqrt(), -1. / 2_f32.sqrt())];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[(1_f32.sqrt(), -1. * PI / 4.)],
f32::EPSILON,
0.
));
signal = [(3_f32.sqrt() / 2., -1. / 2.)];
magnitude_phase(&mut signal);
assert!(complex_allclose(
&signal,
&[(1_f32, -PI / 6.)],
f32::EPSILON,
0.
));
}
#[test]
fn decimate_sample_16_decimated_1() {
let signal: [Complex<f32>; ADC_SAMPLE_BUFFER_SIZE] = [
(0.0, 1.6),
(0.1, 1.7),
(0.2, 1.8),
(0.3, 1.9),
(0.4, 2.0),
(0.5, 2.1),
(0.6, 2.2),
(0.7, 2.3),
(0.8, 2.4),
(0.9, 2.5),
(1.0, 2.6),
(1.1, 2.7),
(1.2, 2.8),
(1.3, 2.9),
(1.4, 3.0),
(1.5, 3.1),
];
assert_eq!(decimate(signal), [(0.0, 1.6)]);
}
#[test]
fn lockin_demodulate_valid_0() {
let mut lockin = Lockin::new(
0.,
200,
1,
IIR {
ba: [0_f32; 5],
y_offset: 0.,
y_min: -(1 << 15) as f32,
y_max: (1 << 15) as f32 - 1.,
},
);
assert_eq!(
lockin.demodulate(&[0; ADC_SAMPLE_BUFFER_SIZE], &[]),
Err("insufficient timestamps")
);
}
#[test]
fn lockin_demodulate_valid_1() {
let mut lockin = Lockin::new(
0.,
200,
1,
IIR {
ba: [0_f32; 5],
y_offset: 0.,
y_min: -(1 << 15) as f32,
y_max: (1 << 15) as f32 - 1.,
},
);
assert_eq!(
lockin.demodulate(&[0; ADC_SAMPLE_BUFFER_SIZE], &[0],),
Err("insufficient timestamps")
);
}
#[test]
fn lockin_demodulate_valid_2() {
let adc_period: u32 = 200;
let mut lockin = Lockin::new(
0.,
adc_period,
1,
IIR {
ba: [0_f32; 5],
y_offset: 0.,
y_min: -(1 << 15) as f32,
y_max: (1 << 15) as f32 - 1.,
},
);
let adc_samples: [i16; ADC_SAMPLE_BUFFER_SIZE] =
[-8, 7, -7, 6, -6, 5, -5, 4, -4, 3, -3, 2, -2, -1, 1, 0];
let reference_period: u16 = 2800;
let initial_phase_integer: u16 = 200;
let timestamps: &[u16] = &[
initial_phase_integer,
initial_phase_integer + reference_period,
];
let initial_phase: f32 =
-(initial_phase_integer as f32) / reference_period as f32 * 2. * PI;
let phase_increment: f32 =
adc_period as f32 / reference_period as f32 * 2. * PI;
let mut signal = [(0., 0.); ADC_SAMPLE_BUFFER_SIZE];
for (n, s) in signal.iter_mut().enumerate() {
let adc_phase = initial_phase + n as f32 * phase_increment;
let sine = adc_phase.sin();
let cosine = adc_phase.cos();
s.0 = sine * adc_samples[n] as f32;
s.1 = cosine * adc_samples[n] as f32;
}
let result = lockin.demodulate(&adc_samples, timestamps).unwrap();
assert!(
complex_allclose(&result, &signal, 0., 1e-5),
"\nsignal computed: {:?},\nsignal expected: {:?}",
result,
signal
);
}
}

92
dsp/src/reciprocal_pll.rs Normal file
View File

@ -0,0 +1,92 @@
use super::{divide_round, pll::PLL};
/// Processes external timestamps to produce the frequency and initial phase of the demodulation
/// signal.
pub struct TimestampHandler {
pll: PLL,
pll_shift_frequency: u8,
pll_shift_phase: u8,
// Index of the current ADC batch.
batch_index: u32,
// Most recent phase and frequency values of the external reference.
reference_phase: i64,
reference_frequency: i64,
adc_sample_ticks_log2: usize,
sample_buffer_size_log2: usize,
}
impl TimestampHandler {
/// Construct a new `TimestampHandler` instance.
///
/// # Args
/// * `pll_shift_frequency` - See `PLL::update()`.
/// * `pll_shift_phase` - See `PLL::update()`.
/// * `adc_sample_ticks_log2` - Number of ticks in one ADC sampling timer period.
/// * `sample_buffer_size_log2` - Number of ADC samples in one processing batch.
///
/// # Returns
/// New `TimestampHandler` instance.
pub fn new(
pll_shift_frequency: u8,
pll_shift_phase: u8,
adc_sample_ticks_log2: usize,
sample_buffer_size_log2: usize,
) -> Self {
TimestampHandler {
pll: PLL::default(),
pll_shift_frequency,
pll_shift_phase,
batch_index: 0,
reference_phase: 0,
reference_frequency: 0,
adc_sample_ticks_log2,
sample_buffer_size_log2,
}
}
/// Compute the initial phase and frequency of the demodulation signal.
///
/// # Args
/// * `timestamp` - Counter value corresponding to an external reference edge.
///
/// # Returns
/// Tuple consisting of the initial phase value and frequency of the demodulation signal.
pub fn update(&mut self, timestamp: Option<u32>) -> (u32, u32) {
if let Some(t) = timestamp {
let (phase, frequency) = self.pll.update(
t as i32,
self.pll_shift_frequency,
self.pll_shift_phase,
);
self.reference_phase = phase as u32 as i64;
self.reference_frequency = frequency as u32 as i64;
}
let demodulation_frequency = divide_round(
1 << (32 + self.adc_sample_ticks_log2),
self.reference_frequency,
) as u32;
let demodulation_initial_phase = divide_round(
(((self.batch_index as i64)
<< (self.adc_sample_ticks_log2
+ self.sample_buffer_size_log2))
- self.reference_phase)
<< 32,
self.reference_frequency,
) as u32;
if self.batch_index
< (1 << (32
- self.adc_sample_ticks_log2
- self.sample_buffer_size_log2))
- 1
{
self.batch_index += 1;
} else {
self.batch_index = 0;
self.reference_phase -= 1 << 32;
}
(demodulation_initial_phase, demodulation_frequency)
}
}

File diff suppressed because it is too large Load Diff

View File

@ -14,6 +14,9 @@ break DefaultHandler
break HardFault
break rust_begin_unwind
source ../../PyCortexMDebug/cmdebug/svd_gdb.py
svd_load ~/Downloads/STM32H743x.svd
load
# tbreak cortex_m_rt::reset_handler
monitor reset halt

295
src/bin/dual-iir.rs Normal file
View File

@ -0,0 +1,295 @@
#![deny(warnings)]
#![no_std]
#![no_main]
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
use stm32h7xx_hal as hal;
#[macro_use]
extern crate log;
use rtic::cyccnt::{Instant, U32Ext};
use heapless::{consts::*, String};
use stabilizer::{hardware, server};
use dsp::iir;
use hardware::{Adc0Input, Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
const SCALE: f32 = ((1 << 15) - 1) as f32;
const TCP_RX_BUFFER_SIZE: usize = 8192;
const TCP_TX_BUFFER_SIZE: usize = 8192;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
net_interface: hardware::Ethernet,
// Format: iir_state[ch][cascade-no][coeff]
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::IIRState; IIR_CASCADE_LENGTH]; 2],
#[init([[iir::IIR { ba: [1., 0., 0., 0., 0.], y_offset: 0., y_min: -SCALE - 1., y_max: SCALE }; IIR_CASCADE_LENGTH]; 2])]
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
}
#[init]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
// Enable ADC/DAC events
stabilizer.adcs.0.start();
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
net_interface: stabilizer.net.interface,
}
}
/// Main DSP processing routine for Stabilizer.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(),
];
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
for channel in 0..adc_samples.len() {
for sample in 0..adc_samples[0].len() {
let x = f32::from(adc_samples[channel][sample] as i16);
let mut y = x;
for i in 0..c.resources.iir_state[channel].len() {
y = c.resources.iir_ch[channel][i]
.update(&mut c.resources.iir_state[channel][i], y);
}
// Note(unsafe): The filter limits ensure that the value is in range.
// The truncation introduces 1/2 LSB distortion.
let y = unsafe { y.to_int_unchecked::<i16>() };
// Convert to DAC code
dac_samples[channel][sample] = y as u16 ^ 0x8000;
}
}
}
#[idle(resources=[net_interface, iir_state, iir_ch, afes])]
fn idle(mut c: idle::Context) -> ! {
let mut socket_set_entries: [_; 8] = Default::default();
let mut sockets =
smoltcp::socket::SocketSet::new(&mut socket_set_entries[..]);
let mut rx_storage = [0; TCP_RX_BUFFER_SIZE];
let mut tx_storage = [0; TCP_TX_BUFFER_SIZE];
let tcp_handle = {
let tcp_rx_buffer =
smoltcp::socket::TcpSocketBuffer::new(&mut rx_storage[..]);
let tcp_tx_buffer =
smoltcp::socket::TcpSocketBuffer::new(&mut tx_storage[..]);
let tcp_socket =
smoltcp::socket::TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer);
sockets.add(tcp_socket)
};
let mut server = server::Server::new();
let mut time = 0u32;
let mut next_ms = Instant::now();
// TODO: Replace with reference to CPU clock from CCDR.
next_ms += 400_000.cycles();
loop {
let tick = Instant::now() > next_ms;
if tick {
next_ms += 400_000.cycles();
time += 1;
}
{
let socket =
&mut *sockets.get::<smoltcp::socket::TcpSocket>(tcp_handle);
if socket.state() == smoltcp::socket::TcpState::CloseWait {
socket.close();
} else if !(socket.is_open() || socket.is_listening()) {
socket
.listen(1235)
.unwrap_or_else(|e| warn!("TCP listen error: {:?}", e));
} else {
server.poll(socket, |req| {
info!("Got request: {:?}", req);
stabilizer::route_request!(req,
readable_attributes: [
"stabilizer/iir/state": (|| {
let state = c.resources.iir_state.lock(|iir_state|
server::Status {
t: time,
x0: iir_state[0][0][0],
y0: iir_state[0][0][2],
x1: iir_state[1][0][0],
y1: iir_state[1][0][2],
});
Ok::<server::Status, ()>(state)
}),
// "_b" means cascades 2nd IIR
"stabilizer/iir_b/state": (|| { let state = c.resources.iir_state.lock(|iir_state|
server::Status {
t: time,
x0: iir_state[0][IIR_CASCADE_LENGTH-1][0],
y0: iir_state[0][IIR_CASCADE_LENGTH-1][2],
x1: iir_state[1][IIR_CASCADE_LENGTH-1][0],
y1: iir_state[1][IIR_CASCADE_LENGTH-1][2],
});
Ok::<server::Status, ()>(state)
}),
"stabilizer/afe0/gain": (|| c.resources.afes.0.get_gain()),
"stabilizer/afe1/gain": (|| c.resources.afes.1.get_gain())
],
modifiable_attributes: [
"stabilizer/iir0/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][0] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir1/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][0] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir_b0/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir_b1/state": server::IirRequest,(|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/afe0/gain": hardware::AfeGain, (|gain| {
c.resources.afes.0.set_gain(gain);
Ok::<(), ()>(())
}),
"stabilizer/afe1/gain": hardware::AfeGain, (|gain| {
c.resources.afes.1.set_gain(gain);
Ok::<(), ()>(())
})
]
)
});
}
}
let sleep = match c.resources.net_interface.poll(
&mut sockets,
smoltcp::time::Instant::from_millis(time as i64),
) {
Ok(changed) => !changed,
Err(smoltcp::Error::Unrecognized) => true,
Err(e) => {
info!("iface poll error: {:?}", e);
true
}
};
if sleep {
cortex_m::asm::wfi();
}
}
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};

View File

@ -1,25 +1,87 @@
///! Stabilizer ADC management interface
///!
///! The Stabilizer ADCs utilize three DMA channels each: one to trigger sampling, one to collect
///! samples, and one to clear the EOT flag betwen samples. The SPI interfaces are configured
///! for receiver-only operation. A timer channel is
///! configured to generate a DMA write into the SPI CR1 register, which initiates a SPI transfer and
///! results in a single ADC sample read for both channels. A separate timer channel is configured to
///! occur immediately before the trigger channel, which initiates a write to the IFCR (flag-clear)
///! register to clear the EOT flag, which allows for a new transmission to be generated by the
///! trigger channel.
///! # Design
///!
///! In order to read multiple samples without interrupting the CPU, a separate DMA transfer is
///! configured to read from each of the ADC SPI RX FIFOs. Due to the design of the SPI peripheral,
///! these DMA transfers stall when no data is available in the FIFO. Thus, the DMA transfer only
///! completes after all samples have been read. When this occurs, a CPU interrupt is generated so
///! that software can process the acquired samples from both ADCs. Only one of the ADC DMA streams
///! is configured to generate an interrupt to handle both transfers, so it is necessary to ensure
///! both transfers are completed before reading the data. This is usually not significant for
///! busy-waiting because the transfers should complete at approximately the same time.
use super::{
hal, timers, DMAReq, DmaConfig, MemoryToPeripheral, PeripheralToMemory,
Priority, TargetAddress, Transfer, SAMPLE_BUFFER_SIZE,
///! Stabilizer ADCs are connected to the MCU via a simplex, SPI-compatible interface. The ADCs
///! require a setup conversion time after asserting the CSn (convert) signal to generate the ADC
///! code from the sampled level. Once the setup time has elapsed, the ADC data is clocked out of
///! MISO. The internal setup time is managed by the SPI peripheral via a CSn setup time parameter
///! during SPI configuration, which allows offloading the management of the setup time to hardware.
///!
///! Because of the SPI-compatibility of the ADCs, a single SPI peripheral + DMA is used to automate
///! the collection of multiple ADC samples without requiring processing by the CPU, which reduces
///! overhead and provides the CPU with more time for processing-intensive tasks, like DSP.
///!
///! The automation of sample collection utilizes three DMA streams, the SPI peripheral, and two
///! timer compare channel for each ADC. One timer comparison channel is configured to generate a
///! comparison event every time the timer is equal to a specific value. Each comparison then
///! generates a DMA transfer event to write into the SPI CR1 register to initiate the transfer.
///! This allows the SPI interface to periodically read a single sample. The other timer comparison
///! channel is configured to generate a comparison event slightly before the first (~10 timer
///! cycles). This channel triggers a separate DMA stream to clear the EOT flag within the SPI
///! peripheral. The EOT flag must be cleared after each transfer or the SPI peripheral will not
///! properly complete the single conversion. Thus, by using two DMA streams and timer comparison
///! channels, the SPI can regularly acquire ADC samples.
///!
///! In order to collect the acquired ADC samples into a RAM buffer, a final DMA transfer is
///! configured to read from the SPI RX FIFO into RAM. The request for this transfer is connected to
///! the SPI RX data signal, so the SPI peripheral will request to move data into RAM whenever it is
///! available. When enough samples have been collected, a transfer-complete interrupt is generated
///! and the ADC samples are available for processing.
///!
///! The SPI peripheral internally has an 8- or 16-byte TX and RX FIFO, which corresponds to a 4- or
///! 8-sample buffer for incoming ADC samples. During the handling of the DMA transfer completion,
///! there is a small window where buffers are swapped over where it's possible that a sample could
///! be lost. In order to avoid this, the SPI RX FIFO is effectively used as a "sample overflow"
///! region and can buffer a number of samples until the next DMA transfer is configured. If a DMA
///! transfer is still not set in time, the SPI peripheral will generate an input-overrun interrupt.
///! This interrupt then serves as a means of detecting if samples have been lost, which will occur
///! whenever data processing takes longer than the collection period.
///!
///!
///! ## Starting Data Collection
///!
///! Because the DMA data collection is automated via timer count comparisons and DMA transfers, the
///! ADCs can be initialized and configured, but will not begin sampling the external ADCs until the
///! sampling timer is enabled. As such, the sampling timer should be enabled after all
///! initialization has completed and immediately before the embedded processing loop begins.
///!
///!
///! ## Batch Sizing
///!
///! The ADCs collect a group of N samples, which is referred to as a batch. The size of the batch
///! is configured by the user at compile-time to allow for a custom-tailored implementation. Larger
///! batch sizes generally provide for lower overhead and more processing time per sample, but come
///! at the expense of increased input -> output latency.
///!
///!
///! # Note
///!
///! While there are two ADCs, only a single ADC is configured to generate transfer-complete
///! interrupts. This is done because it is assumed that the ADCs will always be sampled
///! simultaneously. If only a single ADC is used, it must always be ADC0, as ADC1 will not generate
///! transfer-complete interrupts.
///!
///! There is a very small amount of latency between sampling of ADCs due to bus matrix priority. As
///! such, one of the ADCs will be sampled marginally earlier before the other because the DMA
///! requests are generated simultaneously. This can be avoided by providing a known offset to the
///! sample DMA requests, which can be completed by setting e.g. ADC0's comparison to a counter
///! value of 0 and ADC1's comparison to a counter value of 1.
///!
///! In this implementation, single buffer mode DMA transfers are used because the SPI RX FIFO can
///! be used as a means to both detect and buffer ADC samples during the buffer swap-over. Because
///! of this, double-buffered mode does not offer any advantages over single-buffered mode (unless
///! double-buffered mode offers less overhead due to the DMA disable/enable procedure).
use stm32h7xx_hal as hal;
use crate::SAMPLE_BUFFER_SIZE;
use super::timers;
use hal::dma::{
config::Priority,
dma::{DMAReq, DmaConfig},
traits::TargetAddress,
MemoryToPeripheral, PeripheralToMemory, Transfer,
};
// The following data is written by the timer ADC sample trigger into the SPI CR1 to start the
@ -119,13 +181,13 @@ macro_rules! adc_input {
PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
_trigger_transfer: Transfer<
trigger_transfer: Transfer<
hal::dma::dma::$trigger_stream<hal::stm32::DMA1>,
[< $spi CR >],
MemoryToPeripheral,
&'static mut [u32; 1],
>,
_flag_clear_transfer: Transfer<
clear_transfer: Transfer<
hal::dma::dma::$clear_stream<hal::stm32::DMA1>,
[< $spi IFCR >],
MemoryToPeripheral,
@ -172,7 +234,7 @@ macro_rules! adc_input {
clear_channel.listen_dma();
clear_channel.to_output_compare(0);
let mut clear_transfer: Transfer<
let clear_transfer: Transfer<
_,
_,
MemoryToPeripheral,
@ -191,7 +253,7 @@ macro_rules! adc_input {
// Generate DMA events when an output compare of the timer hits the specified
// value.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(2);
trigger_channel.to_output_compare(2 + $index);
// The trigger stream constantly writes to the SPI CR1 using a static word
// (which is a static value to enable the SPI transfer). Thus, neither the
@ -209,7 +271,7 @@ macro_rules! adc_input {
};
// Construct the trigger stream to write from memory to the peripheral.
let mut trigger_transfer: Transfer<
let trigger_transfer: Transfer<
_,
_,
MemoryToPeripheral,
@ -244,7 +306,7 @@ macro_rules! adc_input {
// The data transfer is always a transfer of data from the peripheral to a RAM
// buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
let data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init(
data_stream,
spi,
@ -255,29 +317,30 @@ macro_rules! adc_input {
data_config,
);
data_transfer.start(|spi| {
// Allow the SPI RX FIFO to generate DMA transfer requests when data is
// available.
spi.enable_dma_rx();
// Each transaction is 1 word (16 bytes).
spi.inner().cr2.modify(|_, w| w.tsize().bits(1));
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
});
clear_transfer.start(|_| {});
trigger_transfer.start(|_| {});
Self {
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It
// shall not be used anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
transfer: data_transfer,
_trigger_transfer: trigger_transfer,
_flag_clear_transfer: clear_transfer,
trigger_transfer,
clear_transfer,
}
}
/// Enable the ADC DMA transfer sequence.
pub fn start(&mut self) {
self.transfer.start(|spi| {
spi.enable_dma_rx();
spi.inner().cr2.modify(|_, w| w.tsize().bits(1));
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
});
self.clear_transfer.start(|_| {});
self.trigger_transfer.start(|_| {});
}
/// Obtain a buffer filled with ADC samples.
///
/// # Returns

View File

@ -0,0 +1,822 @@
///! Stabilizer hardware configuration
///!
///! This file contains all of the hardware-specific configuration of Stabilizer.
use crate::ADC_SAMPLE_TICKS;
#[cfg(feature = "pounder_v1_1")]
use crate::SAMPLE_BUFFER_SIZE;
#[cfg(feature = "pounder_v1_1")]
use core::convert::TryInto;
use smoltcp::{iface::Routes, wire::Ipv4Address};
use stm32h7xx_hal::{
self as hal,
ethernet::{self, PHY},
prelude::*,
};
use embedded_hal::digital::v2::{InputPin, OutputPin};
use super::{
adc, afe, dac, design_parameters, digital_input_stamper, eeprom, pounder,
timers, DdsOutput, Ethernet, AFE0, AFE1,
};
// Network storage definition for the ethernet interface.
struct NetStorage {
ip_addrs: [smoltcp::wire::IpCidr; 1],
neighbor_cache:
[Option<(smoltcp::wire::IpAddress, smoltcp::iface::Neighbor)>; 8],
routes_storage: [Option<(smoltcp::wire::IpCidr, smoltcp::iface::Route)>; 1],
}
/// The available networking devices on Stabilizer.
pub struct NetworkDevices {
pub interface: Ethernet,
pub phy: ethernet::phy::LAN8742A<ethernet::EthernetMAC>,
}
/// The available hardware interfaces on Stabilizer.
pub struct StabilizerDevices {
pub afes: (AFE0, AFE1),
pub adcs: (adc::Adc0Input, adc::Adc1Input),
pub dacs: (dac::Dac0Output, dac::Dac1Output),
pub timestamper: digital_input_stamper::InputStamper,
pub adc_dac_timer: timers::SamplingTimer,
pub timestamp_timer: timers::TimestampTimer,
pub net: NetworkDevices,
}
/// The available Pounder-specific hardware interfaces.
pub struct PounderDevices {
pub pounder: pounder::PounderDevices,
pub dds_output: DdsOutput,
#[cfg(feature = "pounder_v1_1")]
pub timestamper: pounder::timestamp::Timestamper,
}
#[link_section = ".sram3.eth"]
/// Static storage for the ethernet DMA descriptor ring.
static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
/// Static, global-scope network storage for the ethernet interface.
///
/// This is a static singleton so that the network storage can be referenced from all contexts.
static mut NET_STORE: NetStorage = NetStorage {
// Placeholder for the real IP address, which is initialized at runtime.
ip_addrs: [smoltcp::wire::IpCidr::Ipv6(
smoltcp::wire::Ipv6Cidr::SOLICITED_NODE_PREFIX,
)],
neighbor_cache: [None; 8],
routes_storage: [None; 1],
};
/// Configure the stabilizer hardware for operation.
///
/// # Args
/// * `core` - The RTIC core for configuring the cortex-M core of the device.
/// * `device` - The microcontroller peripherals to be configured.
///
/// # Returns
/// (stabilizer, pounder) where `stabilizer` is a `StabilizerDevices` structure containing all
/// stabilizer hardware interfaces in a disabled state. `pounder` is an `Option` containing
/// `Some(devices)` if pounder is detected, where `devices` is a `PounderDevices` structure
/// containing all of the pounder hardware interfaces in a disabled state.
pub fn setup(
mut core: rtic::export::Peripherals,
device: stm32h7xx_hal::stm32::Peripherals,
) -> (StabilizerDevices, Option<PounderDevices>) {
let pwr = device.PWR.constrain();
let vos = pwr.freeze();
// Enable SRAM3 for the ethernet descriptor ring.
device.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit());
// Clear reset flags.
device.RCC.rsr.write(|w| w.rmvf().set_bit());
// Select the PLLs for SPI.
device
.RCC
.d2ccip1r
.modify(|_, w| w.spi123sel().pll2_p().spi45sel().pll2_q());
let rcc = device.RCC.constrain();
let ccdr = rcc
.use_hse(8.mhz())
.sysclk(400.mhz())
.hclk(200.mhz())
.per_ck(100.mhz())
.pll2_p_ck(100.mhz())
.pll2_q_ck(100.mhz())
.freeze(vos, &device.SYSCFG);
#[cfg(feature = "semihosting")]
{
use cortex_m_log::log::{init as init_log, Logger};
use cortex_m_log::printer::semihosting::{hio::HStdout, InterruptOk};
use log::LevelFilter;
static mut LOGGER: Option<Logger<InterruptOk<HStdout>>> = None;
let logger = Logger {
inner: InterruptOk::<_>::stdout().unwrap(),
level: LevelFilter::Info,
};
let logger = unsafe { LOGGER.get_or_insert(logger) };
init_log(logger).unwrap();
}
let mut delay = hal::delay::Delay::new(core.SYST, ccdr.clocks);
let gpioa = device.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = device.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = device.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiod = device.GPIOD.split(ccdr.peripheral.GPIOD);
let gpioe = device.GPIOE.split(ccdr.peripheral.GPIOE);
let gpiof = device.GPIOF.split(ccdr.peripheral.GPIOF);
let mut gpiog = device.GPIOG.split(ccdr.peripheral.GPIOG);
let dma_streams =
hal::dma::dma::StreamsTuple::new(device.DMA1, ccdr.peripheral.DMA1);
// Configure timer 2 to trigger conversions for the ADC
let mut sampling_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
// dont-care.
let mut timer2 =
device
.TIM2
.timer(1.khz(), ccdr.peripheral.TIM2, &ccdr.clocks);
// Configure the timer to count at the designed tick rate. We will manually set the
// period below.
timer2.pause();
timer2.reset_counter();
timer2.set_tick_freq(design_parameters::TIMER_FREQUENCY);
let mut sampling_timer = timers::SamplingTimer::new(timer2);
sampling_timer.set_period_ticks((ADC_SAMPLE_TICKS - 1) as u32);
// The sampling timer is used as the master timer for the shadow-sampling timer. Thus,
// it generates a trigger whenever it is enabled.
sampling_timer
};
let mut shadow_sampling_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
// dont-care.
let mut timer3 =
device
.TIM3
.timer(1.khz(), ccdr.peripheral.TIM3, &ccdr.clocks);
// Configure the timer to count at the designed tick rate. We will manually set the
// period below.
timer3.pause();
timer3.reset_counter();
timer3.set_tick_freq(design_parameters::TIMER_FREQUENCY);
let mut shadow_sampling_timer =
timers::ShadowSamplingTimer::new(timer3);
shadow_sampling_timer.set_period_ticks(ADC_SAMPLE_TICKS - 1);
// The shadow sampling timer is a slave-mode timer to the sampling timer. It should
// always be in-sync - thus, we configure it to operate in slave mode using "Trigger
// mode".
// For TIM3, TIM2 can be made the internal trigger connection using ITR1. Thus, the
// SamplingTimer start now gates the start of the ShadowSamplingTimer.
shadow_sampling_timer.set_slave_mode(
timers::TriggerSource::Trigger1,
timers::SlaveMode::Trigger,
);
shadow_sampling_timer
};
let sampling_timer_channels = sampling_timer.channels();
let shadow_sampling_timer_channels = shadow_sampling_timer.channels();
let mut timestamp_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
// dont-care.
let mut timer5 =
device
.TIM5
.timer(1.khz(), ccdr.peripheral.TIM5, &ccdr.clocks);
// Configure the timer to count at the designed tick rate. We will manually set the
// period below.
timer5.pause();
timer5.set_tick_freq(design_parameters::TIMER_FREQUENCY);
// The timestamp timer must run at exactly a multiple of the sample timer based on the
// batch size. To accomodate this, we manually set the prescaler identical to the sample
// timer, but use a period that is longer.
let mut timer = timers::TimestampTimer::new(timer5);
let period = digital_input_stamper::calculate_timestamp_timer_period();
timer.set_period_ticks(period);
timer
};
let timestamp_timer_channels = timestamp_timer.channels();
// Configure the SPI interfaces to the ADCs and DACs.
let adcs = {
let adc0 = {
let spi_miso = gpiob
.pb14
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiob
.pb10
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpiob
.pb9
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Receiver)
.cs_delay(design_parameters::ADC_SETUP_TIME);
let spi: hal::spi::Spi<_, _, u16> = device.SPI2.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI2,
&ccdr.clocks,
);
adc::Adc0Input::new(
spi,
dma_streams.0,
dma_streams.1,
dma_streams.2,
sampling_timer_channels.ch1,
shadow_sampling_timer_channels.ch1,
)
};
let adc1 = {
let spi_miso = gpiob
.pb4
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpioc
.pc10
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioa
.pa15
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Receiver)
.cs_delay(design_parameters::ADC_SETUP_TIME);
let spi: hal::spi::Spi<_, _, u16> = device.SPI3.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI3,
&ccdr.clocks,
);
adc::Adc1Input::new(
spi,
dma_streams.3,
dma_streams.4,
dma_streams.5,
sampling_timer_channels.ch2,
shadow_sampling_timer_channels.ch2,
)
};
(adc0, adc1)
};
let dacs = {
let _dac_clr_n = gpioe.pe12.into_push_pull_output().set_high().unwrap();
let _dac0_ldac_n =
gpioe.pe11.into_push_pull_output().set_low().unwrap();
let _dac1_ldac_n =
gpioe.pe15.into_push_pull_output().set_low().unwrap();
let dac0_spi = {
let spi_miso = gpioe
.pe5
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpioe
.pe2
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioe
.pe4
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.swap_mosi_miso();
device.SPI4.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI4,
&ccdr.clocks,
)
};
let dac1_spi = {
let spi_miso = gpiof
.pf8
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiof
.pf7
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpiof
.pf6
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.suspend_when_inactive()
.swap_mosi_miso();
device.SPI5.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI5,
&ccdr.clocks,
)
};
let dac0 = dac::Dac0Output::new(
dac0_spi,
dma_streams.6,
sampling_timer_channels.ch3,
);
let dac1 = dac::Dac1Output::new(
dac1_spi,
dma_streams.7,
sampling_timer_channels.ch4,
);
(dac0, dac1)
};
let afes = {
let afe0 = {
let a0_pin = gpiof.pf2.into_push_pull_output();
let a1_pin = gpiof.pf5.into_push_pull_output();
afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin)
};
let afe1 = {
let a0_pin = gpiod.pd14.into_push_pull_output();
let a1_pin = gpiod.pd15.into_push_pull_output();
afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin)
};
(afe0, afe1)
};
let input_stamper = {
let trigger = gpioa.pa3.into_alternate_af2();
digital_input_stamper::InputStamper::new(
trigger,
timestamp_timer_channels.ch4,
)
};
let mut eeprom_i2c = {
let sda = gpiof.pf0.into_alternate_af4().set_open_drain();
let scl = gpiof.pf1.into_alternate_af4().set_open_drain();
device.I2C2.i2c(
(scl, sda),
100.khz(),
ccdr.peripheral.I2C2,
&ccdr.clocks,
)
};
// Configure ethernet pins.
{
// Reset the PHY before configuring pins.
let mut eth_phy_nrst = gpioe.pe3.into_push_pull_output();
eth_phy_nrst.set_low().unwrap();
delay.delay_us(200u8);
eth_phy_nrst.set_high().unwrap();
let _rmii_ref_clk = gpioa
.pa1
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_mdio = gpioa
.pa2
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_mdc = gpioc
.pc1
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_crs_dv = gpioa
.pa7
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_rxd0 = gpioc
.pc4
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_rxd1 = gpioc
.pc5
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_tx_en = gpiob
.pb11
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_txd0 = gpiob
.pb12
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_txd1 = gpiog
.pg14
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
}
let mac_addr = match eeprom::read_eui48(&mut eeprom_i2c) {
Err(_) => {
info!("Could not read EEPROM, using default MAC address");
smoltcp::wire::EthernetAddress([0x10, 0xE2, 0xD5, 0x00, 0x03, 0x00])
}
Ok(raw_mac) => smoltcp::wire::EthernetAddress(raw_mac),
};
let network_devices = {
// Configure the ethernet controller
let (eth_dma, eth_mac) = unsafe {
ethernet::new_unchecked(
device.ETHERNET_MAC,
device.ETHERNET_MTL,
device.ETHERNET_DMA,
&mut DES_RING,
mac_addr,
ccdr.peripheral.ETH1MAC,
&ccdr.clocks,
)
};
// Reset and initialize the ethernet phy.
let mut lan8742a =
ethernet::phy::LAN8742A::new(eth_mac.set_phy_addr(0));
lan8742a.phy_reset();
lan8742a.phy_init();
unsafe { ethernet::enable_interrupt() };
let store = unsafe { &mut NET_STORE };
store.ip_addrs[0] = smoltcp::wire::IpCidr::new(
smoltcp::wire::IpAddress::v4(10, 0, 16, 99),
24,
);
let default_v4_gw = Ipv4Address::new(10, 0, 16, 1);
let mut routes = Routes::new(&mut store.routes_storage[..]);
routes.add_default_ipv4_route(default_v4_gw).unwrap();
let neighbor_cache =
smoltcp::iface::NeighborCache::new(&mut store.neighbor_cache[..]);
let interface = smoltcp::iface::EthernetInterfaceBuilder::new(eth_dma)
.ethernet_addr(mac_addr)
.neighbor_cache(neighbor_cache)
.ip_addrs(&mut store.ip_addrs[..])
.routes(routes)
.finalize();
NetworkDevices {
interface,
phy: lan8742a,
}
};
let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
let mut fp_led_1 = gpiod.pd6.into_push_pull_output();
let mut fp_led_2 = gpiog.pg4.into_push_pull_output();
let mut fp_led_3 = gpiod.pd12.into_push_pull_output();
fp_led_0.set_low().unwrap();
fp_led_1.set_low().unwrap();
fp_led_2.set_low().unwrap();
fp_led_3.set_low().unwrap();
// Measure the Pounder PGOOD output to detect if pounder is present on Stabilizer.
let pounder_pgood = gpiob.pb13.into_pull_down_input();
delay.delay_ms(2u8);
let pounder = if pounder_pgood.is_high().unwrap() {
let ad9959 = {
let qspi_interface = {
// Instantiate the QUADSPI pins and peripheral interface.
let qspi_pins = {
let _qspi_ncs = gpioc
.pc11
.into_alternate_af9()
.set_speed(hal::gpio::Speed::VeryHigh);
let clk = gpiob
.pb2
.into_alternate_af9()
.set_speed(hal::gpio::Speed::VeryHigh);
let io0 = gpioe
.pe7
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
let io1 = gpioe
.pe8
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
let io2 = gpioe
.pe9
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
let io3 = gpioe
.pe10
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
(clk, io0, io1, io2, io3)
};
let qspi = hal::qspi::Qspi::bank2(
device.QUADSPI,
qspi_pins,
design_parameters::POUNDER_QSPI_FREQUENCY,
&ccdr.clocks,
ccdr.peripheral.QSPI,
);
pounder::QspiInterface::new(qspi).unwrap()
};
#[cfg(feature = "pounder_v1_1")]
let reset_pin = gpiog.pg6.into_push_pull_output();
#[cfg(not(feature = "pounder_v1_1"))]
let reset_pin = gpioa.pa0.into_push_pull_output();
let mut io_update = gpiog.pg7.into_push_pull_output();
let ref_clk: hal::time::Hertz =
design_parameters::DDS_REF_CLK.into();
let ad9959 = ad9959::Ad9959::new(
qspi_interface,
reset_pin,
&mut io_update,
&mut delay,
ad9959::Mode::FourBitSerial,
ref_clk.0 as f32,
design_parameters::DDS_MULTIPLIER,
)
.unwrap();
// Return IO_Update
gpiog.pg7 = io_update.into_analog();
ad9959
};
let io_expander = {
let sda = gpiob.pb7.into_alternate_af4().set_open_drain();
let scl = gpiob.pb8.into_alternate_af4().set_open_drain();
let i2c1 = device.I2C1.i2c(
(scl, sda),
100.khz(),
ccdr.peripheral.I2C1,
&ccdr.clocks,
);
mcp23017::MCP23017::default(i2c1).unwrap()
};
let spi = {
let spi_mosi = gpiod
.pd7
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_miso = gpioa
.pa6
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiog
.pg11
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
});
// The maximum frequency of this SPI must be limited due to capacitance on the MISO
// line causing a long RC decay.
device.SPI1.spi(
(spi_sck, spi_miso, spi_mosi),
config,
5.mhz(),
ccdr.peripheral.SPI1,
&ccdr.clocks,
)
};
let (adc1, adc2) = {
let (mut adc1, mut adc2) = hal::adc::adc12(
device.ADC1,
device.ADC2,
&mut delay,
ccdr.peripheral.ADC12,
&ccdr.clocks,
);
let adc1 = {
adc1.calibrate();
adc1.enable()
};
let adc2 = {
adc2.calibrate();
adc2.enable()
};
(adc1, adc2)
};
let adc1_in_p = gpiof.pf11.into_analog();
let adc2_in_p = gpiof.pf14.into_analog();
let pounder_devices = pounder::PounderDevices::new(
io_expander,
spi,
adc1,
adc2,
adc1_in_p,
adc2_in_p,
)
.unwrap();
let dds_output = {
let io_update_trigger = {
let _io_update = gpiog
.pg7
.into_alternate_af2()
.set_speed(hal::gpio::Speed::VeryHigh);
// Configure the IO_Update signal for the DDS.
let mut hrtimer = pounder::hrtimer::HighResTimerE::new(
device.HRTIM_TIME,
device.HRTIM_MASTER,
device.HRTIM_COMMON,
ccdr.clocks,
ccdr.peripheral.HRTIM,
);
// IO_Update occurs after a fixed delay from the QSPI write. Note that the timer
// is triggered after the QSPI write, which can take approximately 120nS, so
// there is additional margin.
hrtimer.configure_single_shot(
pounder::hrtimer::Channel::Two,
design_parameters::POUNDER_IO_UPDATE_DURATION,
design_parameters::POUNDER_IO_UPDATE_DELAY,
);
// Ensure that we have enough time for an IO-update every sample.
let sample_frequency = {
let timer_frequency: hal::time::Hertz =
design_parameters::TIMER_FREQUENCY.into();
timer_frequency.0 as f32 / ADC_SAMPLE_TICKS as f32
};
let sample_period = 1.0 / sample_frequency;
assert!(
sample_period > design_parameters::POUNDER_IO_UPDATE_DELAY
);
hrtimer
};
let (qspi, config) = ad9959.freeze();
DdsOutput::new(qspi, io_update_trigger, config)
};
#[cfg(feature = "pounder_v1_1")]
let pounder_stamper = {
let dma2_streams = hal::dma::dma::StreamsTuple::new(
device.DMA2,
ccdr.peripheral.DMA2,
);
let etr_pin = gpioa.pa0.into_alternate_af3();
// The frequency in the constructor is dont-care, as we will modify the period + clock
// source manually below.
let tim8 =
device
.TIM8
.timer(1.khz(), ccdr.peripheral.TIM8, &ccdr.clocks);
let mut timestamp_timer = timers::PounderTimestampTimer::new(tim8);
// Pounder is configured to generate a 500MHz reference clock, so a 125MHz sync-clock is
// output. As a result, dividing the 125MHz sync-clk provides a 31.25MHz tick rate for
// the timestamp timer. 31.25MHz corresponds with a 32ns tick rate.
timestamp_timer.set_external_clock(timers::Prescaler::Div4);
timestamp_timer.start();
// We want the pounder timestamp timer to overflow once per batch.
let tick_ratio = {
let sync_clk_mhz: f32 = design_parameters::DDS_SYSTEM_CLK.0
as f32
/ design_parameters::DDS_SYNC_CLK_DIV as f32;
sync_clk_mhz / design_parameters::TIMER_FREQUENCY.0 as f32
};
let period = (tick_ratio
* ADC_SAMPLE_TICKS as f32
* SAMPLE_BUFFER_SIZE as f32) as u32
/ 4;
timestamp_timer.set_period_ticks((period - 1).try_into().unwrap());
let tim8_channels = timestamp_timer.channels();
pounder::timestamp::Timestamper::new(
timestamp_timer,
dma2_streams.0,
tim8_channels.ch1,
&mut sampling_timer,
etr_pin,
)
};
Some(PounderDevices {
pounder: pounder_devices,
dds_output,
#[cfg(feature = "pounder_v1_1")]
timestamper: pounder_stamper,
})
} else {
None
};
let stabilizer = StabilizerDevices {
afes,
adcs,
dacs,
timestamper: input_stamper,
net: network_devices,
adc_dac_timer: sampling_timer,
timestamp_timer,
};
// info!("Version {} {}", build_info::PKG_VERSION, build_info::GIT_VERSION.unwrap());
// info!("Built on {}", build_info::BUILT_TIME_UTC);
// info!("{} {}", build_info::RUSTC_VERSION, build_info::TARGET);
// Enable the instruction cache.
core.SCB.enable_icache();
// Utilize the cycle counter for RTIC scheduling.
core.DWT.enable_cycle_counter();
(stabilizer, pounder)
}

View File

@ -1,11 +1,64 @@
///! Stabilizer DAC management interface
///!
///! The Stabilizer DAC utilize a DMA channel to generate output updates. A timer channel is
///! configured to generate a DMA write into the SPI TXFIFO, which initiates a SPI transfer and
///! results in DAC update for both channels.
use super::{
hal, timers, DMAReq, DmaConfig, MemoryToPeripheral, TargetAddress,
Transfer, SAMPLE_BUFFER_SIZE,
///! # Design
///!
///! Stabilizer DACs are connected to the MCU via a simplex, SPI-compatible interface. Each DAC
///! accepts a 16-bit output code.
///!
///! In order to maximize CPU processing time, the DAC code updates are offloaded to hardware using
///! a timer compare channel, DMA stream, and the DAC SPI interface.
///!
///! The timer comparison channel is configured to generate a DMA request whenever the comparison
///! occurs. Thus, whenever a comparison happens, a single DAC code can be written to the output. By
///! configuring a DMA stream for a number of successive DAC codes, hardware can regularly update
///! the DAC without requiring the CPU.
///!
///! In order to ensure alignment between the ADC sample batches and DAC output code batches, a DAC
///! output batch is always exactly 3 batches after the ADC batch that generated it.
///!
///! The DMA transfer for the DAC output codes utilizes a double-buffer mode to avoid losing any
///! transfer events generated by the timer (for example, when 2 update cycles occur before the DMA
///! transfer completion is handled). In this mode, by the time DMA swaps buffers, there is always a valid buffer in the
///! "next-transfer" double-buffer location for the DMA transfer. Once a transfer completes,
///! software then has exactly one batch duration to fill the next buffer before its
///! transfer begins. If software does not meet this deadline, old data will be repeatedly generated
///! on the output and output will be shifted by one batch.
///!
///! ## Multiple Samples to Single DAC Codes
///!
///! For some applications, it may be desirable to generate a single DAC code from multiple ADC
///! samples. In order to maintain timing characteristics between ADC samples and DAC code outputs,
///! applications are required to generate one DAC code for each ADC sample. To accomodate mapping
///! multiple inputs to a single output, the output code can be repeated a number of times in the
///! output buffer corresponding with the number of input samples that were used to generate it.
///!
///!
///! # Note
///!
///! There is a very small amount of latency between updating the two DACs due to bus matrix
///! priority. As such, one of the DACs will be updated marginally earlier before the other because
///! the DMA requests are generated simultaneously. This can be avoided by providing a known offset
///! to other DMA requests, which can be completed by setting e.g. DAC0's comparison to a
///! counter value of 2 and DAC1's comparison to a counter value of 3. This will have the effect of
///! generating the DAC updates with a known latency of 1 timer tick to each other and prevent the
///! DMAs from racing for the bus. As implemented, the DMA channels utilize natural priority of the
///! DMA channels to arbitrate which transfer occurs first.
///!
///!
///! # Limitations
///!
///! While double-buffered mode is used for DMA to avoid lost DAC-update events, there is no check
///! for re-use of a previously provided DAC output buffer. It is assumed that the DMA request is
///! served promptly after the transfer completes.
use stm32h7xx_hal as hal;
use crate::SAMPLE_BUFFER_SIZE;
use super::timers;
use hal::dma::{
dma::{DMAReq, DmaConfig},
traits::TargetAddress,
MemoryToPeripheral, Transfer,
};
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
@ -13,8 +66,8 @@ use super::{
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
// startup are undefined. The dimensions are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
#[link_section = ".axisram.buffers"]
static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 3]; 2] =
[[[0; SAMPLE_BUFFER_SIZE]; 3]; 2];
macro_rules! dac_output {
($name:ident, $index:literal, $data_stream:ident,
@ -32,6 +85,16 @@ macro_rules! dac_output {
) -> Self {
Self { _channel, spi }
}
/// Start the SPI and begin operating in a DMA-driven transfer mode.
pub fn start_dma(&mut self) {
// Allow the SPI FIFOs to operate using only DMA data channels.
self.spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
self.spi.inner().cr1.modify(|_, w| w.spe().set_bit());
self.spi.inner().cr1.modify(|_, w| w.cstart().started());
}
}
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
@ -60,7 +123,6 @@ macro_rules! dac_output {
MemoryToPeripheral,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
first_transfer: bool,
}
impl $name {
@ -78,11 +140,12 @@ macro_rules! dac_output {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
trigger_channel.to_output_compare(4 + $index);
// The stream constantly writes to the TX FIFO to write new update codes.
let trigger_config = DmaConfig::default()
.memory_increment(true)
.double_buffer(true)
.peripheral_increment(false);
// Listen for any potential SPI error signals, which may indicate that we are not generating
@ -90,12 +153,15 @@ macro_rules! dac_output {
let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error);
// Allow the SPI FIFOs to operate using only DMA data channels.
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
// AXISRAM is uninitialized. As such, we manually zero-initialize it here before
// starting the transfer.
// Note(unsafe): We currently own all DAC_BUF[index] buffers and are not using them
// elsewhere, so it is safe to access them here.
for buf in unsafe { DAC_BUF[$index].iter_mut() } {
for byte in buf.iter_mut() {
*byte = 0;
}
}
// Construct the trigger stream to write from memory to the peripheral.
let transfer: Transfer<_, _, MemoryToPeripheral, _> =
@ -104,50 +170,38 @@ macro_rules! dac_output {
$spi::new(trigger_channel, spi),
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
unsafe { &mut DAC_BUF[$index][0] },
None,
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
unsafe { Some(&mut DAC_BUF[$index][1]) },
trigger_config,
);
Self {
transfer,
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
next_buffer: unsafe { Some(&mut DAC_BUF[$index][1]) },
first_transfer: true,
next_buffer: unsafe { Some(&mut DAC_BUF[$index][2]) },
}
}
pub fn start(&mut self) {
self.transfer.start(|spi| spi.start_dma());
}
/// Acquire the next output buffer to populate it with DAC codes.
pub fn acquire_buffer(
&mut self,
) -> &'static mut [u16; SAMPLE_BUFFER_SIZE] {
self.next_buffer.take().unwrap()
}
pub fn acquire_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
// Note: If a device hangs up, check that this conditional is passing correctly, as
// there is no time-out checks here in the interest of execution speed.
while !self.transfer.get_transfer_complete_flag() {}
/// Enqueue the next buffer for transmission to the DAC.
///
/// # Args
/// * `data` - The next data to write to the DAC.
pub fn release_buffer(
&mut self,
next_buffer: &'static mut [u16; SAMPLE_BUFFER_SIZE],
) {
// If the last transfer was not complete, we didn't write all our previous DAC codes.
// Wait for all the DAC codes to get written as well.
if self.first_transfer {
self.first_transfer = false
} else {
// Note: If a device hangs up, check that this conditional is passing correctly, as
// there is no time-out checks here in the interest of execution speed.
while !self.transfer.get_transfer_complete_flag() {}
}
let next_buffer = self.next_buffer.take().unwrap();
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _, _) =
self.transfer.next_transfer(next_buffer).unwrap();
// .unwrap_none() https://github.com/rust-lang/rust/issues/62633
self.next_buffer.replace(prev_buffer);
self.next_buffer.as_mut().unwrap()
}
}
};

View File

@ -1,4 +1,4 @@
use super::hal::time::MegaHertz;
use stm32h7xx_hal::time::MegaHertz;
/// The ADC setup time is the number of seconds after the CSn line goes low before the serial clock
/// may begin. This is used for performing the internal ADC conversion.
@ -17,13 +17,13 @@ pub const POUNDER_QSPI_FREQUENCY: MegaHertz = MegaHertz(40);
// Pounder Profile writes are always 16 bytes, with 2 cycles required per byte, coming out to a
// total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so this comes out to an offset
// of 800nS. We use 900ns to be safe.
pub const POUNDER_IO_UPDATE_DELAY: f32 = 900_e-9;
pub const POUNDER_IO_UPDATE_DELAY: f32 = 900e-9;
/// The duration to assert IO_Update for the pounder DDS.
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 500MHz), this corresponds to
// 32ns. To accomodate rounding errors, we use 50ns instead.
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9;
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50e-9;
/// The DDS reference clock frequency in MHz.
pub const DDS_REF_CLK: MegaHertz = MegaHertz(100);

View File

@ -24,15 +24,16 @@
///!
///! This module only supports DI0 for timestamping due to trigger constraints on the DIx pins. If
///! timestamping is desired in DI1, a separate timer + capture channel will be necessary.
use super::{hal, timers, ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
use super::{hal, timers};
use crate::{ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
/// Calculate the period of the digital input timestampe timer.
/// Calculate the period of the digital input timestamp timer.
///
/// # Note
/// The period returned will be 1 less than the required period in timer ticks. The value returned
/// can be immediately programmed into a hardware timer period register.
///
/// The period is calcualted to be some power-of-two multiple of the batch size, such that N batches
/// The period is calculated to be some power-of-two multiple of the batch size, such that N batches
/// will occur between each timestamp timer overflow.
///
/// # Returns
@ -89,6 +90,7 @@ impl InputStamper {
}
/// Start to capture timestamps on DI0.
#[allow(dead_code)]
pub fn start(&mut self) {
self.capture_channel.enable();
}
@ -101,6 +103,7 @@ impl InputStamper {
///
/// To prevent timestamp loss, the batch size and sampling rate must be adjusted such that at
/// most one timestamp will occur in each data processing cycle.
#[allow(dead_code)]
pub fn latest_timestamp(&mut self) -> Option<u32> {
self.capture_channel
.latest_capture()

View File

@ -2,7 +2,6 @@ use embedded_hal::blocking::i2c::WriteRead;
const I2C_ADDR: u8 = 0x50;
#[allow(dead_code)]
pub fn read_eui48<T>(i2c: &mut T) -> Result<[u8; 6], T::Error>
where
T: WriteRead,

69
src/hardware/mod.rs Normal file
View File

@ -0,0 +1,69 @@
///! Module for all hardware-specific setup of Stabilizer
use stm32h7xx_hal as hal;
#[cfg(feature = "semihosting")]
use panic_semihosting as _;
#[cfg(not(any(feature = "nightly", feature = "semihosting")))]
use panic_halt as _;
mod adc;
mod afe;
mod configuration;
mod dac;
mod design_parameters;
mod digital_input_stamper;
mod eeprom;
mod pounder;
mod timers;
pub use adc::{Adc0Input, Adc1Input};
pub use afe::Gain as AfeGain;
pub use dac::{Dac0Output, Dac1Output};
pub use pounder::DdsOutput;
// Type alias for the analog front-end (AFE) for ADC0.
pub type AFE0 = afe::ProgrammableGainAmplifier<
hal::gpio::gpiof::PF2<hal::gpio::Output<hal::gpio::PushPull>>,
hal::gpio::gpiof::PF5<hal::gpio::Output<hal::gpio::PushPull>>,
>;
// Type alias for the analog front-end (AFE) for ADC1.
pub type AFE1 = afe::ProgrammableGainAmplifier<
hal::gpio::gpiod::PD14<hal::gpio::Output<hal::gpio::PushPull>>,
hal::gpio::gpiod::PD15<hal::gpio::Output<hal::gpio::PushPull>>,
>;
// Type alias for the ethernet interface on Stabilizer.
pub type Ethernet = smoltcp::iface::EthernetInterface<
'static,
'static,
'static,
hal::ethernet::EthernetDMA<'static>,
>;
pub use configuration::{setup, PounderDevices, StabilizerDevices};
#[inline(never)]
#[panic_handler]
#[cfg(all(feature = "nightly", not(feature = "semihosting")))]
fn panic(_info: &core::panic::PanicInfo) -> ! {
let gpiod = unsafe { &*hal::stm32::GPIOD::ptr() };
gpiod.odr.modify(|_, w| w.odr6().high().odr12().high()); // FP_LED_1, FP_LED_3
#[cfg(feature = "nightly")]
core::intrinsics::abort();
#[cfg(not(feature = "nightly"))]
unsafe {
core::intrinsics::abort();
}
}
#[cortex_m_rt::exception]
fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! {
panic!("HardFault at {:#?}", ef);
}
#[cortex_m_rt::exception]
fn DefaultHandler(irqn: i16) {
panic!("Unhandled exception (IRQn = {})", irqn);
}

View File

@ -1,6 +1,58 @@
///! The DdsOutput is used as an output stream to the pounder DDS.
use super::QspiInterface;
use crate::hrtimer::HighResTimerE;
///!
///! # Design
///!
///! The DDS stream interface is a means of quickly updating pounder DDS (direct digital synthesis)
///! outputs of the AD9959 DDS chip. The DDS communicates via a quad-SPI interface and a single
///! IO-update output pin.
///!
///! In order to update the DDS interface, the frequency tuning word, amplitude control word, and
///! the phase offset word for a channel can be modified to change the frequency, amplitude, or
///! phase on any of the 4 available output channels. Changes do not propagate to DDS outputs until
///! the IO-update pin is toggled high to activate the new configurations. This allows multiple
///! channels or parameters to be updated and then effects can take place simultaneously.
///!
///! In this implementation, the phase, frequency, or amplitude can be updated for any single
///! collection of outputs simultaneously. This is done by serializing the register writes to the
///! DDS into a single buffer of data and then writing the data over QSPI to the DDS.
///!
///! In order to minimize software overhead, data is written directly into the QSPI output FIFO. In
///! order to accomplish this most efficiently, serialized data is written as 32-bit words to
///! minimize the number of bus cycles necessary to write to the peripheral FIFO. A consequence of
///! this is that additional unneeded register writes may be appended to align a transfer to 32-bit
///! word sizes.
///!
///! In order to pulse the IO-update signal, the high-resolution timer output is used. The timer is
///! configured to assert the IO-update signal after a predefined delay and then de-assert the
///! signal after a predefined assertion duration. This allows for the actual QSPI transfer and
///! IO-update toggle to be completed asynchronously to the rest of software processing - that is,
///! software can schedule the DDS updates and then continue data processing. DDS updates then take
///! place in the future when the IO-update is toggled by hardware.
///!
///!
///! # Limitations
///!
///! The QSPI output FIFO is used as an intermediate buffer for holding pending QSPI writes. Because
///! of this, the implementation only supports up to 16 serialized bytes (the QSPI FIFO is 4 32-bit
///! words wide) in a single update.
///!
///! There is currently no synchronization between completion of the QSPI data write and the
///! IO-update signal. It is currently assumed that the QSPI transfer will always complete within a
///! predefined delay (the pre-programmed IO-update timer delay).
///!
///!
///! # Future Improvement
///!
///! In the future, it would be possible to utilize a DMA transfer to complete the QSPI transfer.
///! Once the QSPI transfer completed, this could trigger the IO-update timer to start to
///! asynchronously complete IO-update automatically. This would allow for arbitrary profile sizes
///! and ensure that IO-update was in-sync with the QSPI transfer.
///!
///! Currently, serialization is performed on each processing cycle. If there is a
///! compile-time-known register update sequence needed for the application, the serialization
///! process can be done once and then register values can be written into a pre-computed serialized
///! buffer to avoid the software overhead of much of the serialization process.
use super::{hrtimer::HighResTimerE, QspiInterface};
use ad9959::{Channel, DdsConfig, ProfileSerializer};
use stm32h7xx_hal as hal;
@ -37,6 +89,7 @@ impl DdsOutput {
}
/// Get a builder for serializing a Pounder DDS profile.
#[allow(dead_code)]
pub fn builder(&mut self) -> ProfileBuilder {
let builder = self.config.builder();
ProfileBuilder {
@ -92,6 +145,7 @@ impl<'a> ProfileBuilder<'a> {
/// * `ftw` - If provided, indicates a frequency tuning word for the channels.
/// * `pow` - If provided, indicates a phase offset word for the channels.
/// * `acr` - If provided, indicates the amplitude control register for the channels.
#[allow(dead_code)]
pub fn update_channels(
mut self,
channels: &[Channel],
@ -104,6 +158,7 @@ impl<'a> ProfileBuilder<'a> {
}
/// Write the profile to the DDS asynchronously.
#[allow(dead_code)]
pub fn write_profile(mut self) {
let profile = self.serializer.finalize();
self.dds_stream.write_profile(profile);

View File

@ -1,8 +1,11 @@
///! The HRTimer (High Resolution Timer) is used to generate IO_Update pulses to the Pounder DDS.
use crate::hal;
use hal::rcc::{rec, CoreClocks, ResetEnable};
use stm32h7xx_hal::{
self as hal,
rcc::{rec, CoreClocks, ResetEnable},
};
/// A HRTimer output channel.
#[allow(dead_code)]
pub enum Channel {
One,
Two,

View File

@ -2,7 +2,10 @@ use serde::{Deserialize, Serialize};
mod attenuators;
mod dds_output;
pub mod hrtimer;
mod rf_power;
#[cfg(feature = "pounder_v1_1")]
pub mod timestamp;
pub use dds_output::DdsOutput;
@ -27,13 +30,11 @@ const ATT_LE0_PIN: u8 = 8;
pub enum Error {
Spi,
I2c,
Dds,
Qspi,
Bounds,
InvalidAddress,
InvalidChannel,
Adc,
Access,
}
#[derive(Debug, Copy, Clone)]

View File

@ -26,7 +26,7 @@ use stm32h7xx_hal as hal;
use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer};
use crate::{timers, SAMPLE_BUFFER_SIZE};
use crate::{hardware::timers, SAMPLE_BUFFER_SIZE};
// Three buffers are required for double buffered mode - 2 are owned by the DMA stream and 1 is the
// working data provided to the application. These buffers must exist in a DMA-accessible memory
@ -89,7 +89,7 @@ impl Timestamper {
input_capture.listen_dma();
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
let data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init(
stream,
input_capture,
@ -100,8 +100,6 @@ impl Timestamper {
config,
);
data_transfer.start(|capture_channel| capture_channel.enable());
Self {
timer: timestamp_timer,
transfer: data_transfer,
@ -112,7 +110,15 @@ impl Timestamper {
}
}
/// Start the DMA transfer for collecting timestamps.
#[allow(dead_code)]
pub fn start(&mut self) {
self.transfer
.start(|capture_channel| capture_channel.enable());
}
/// Update the period of the underlying timestamp timer.
#[allow(dead_code)]
pub fn update_period(&mut self, period: u16) {
self.timer.set_period_ticks(period);
}
@ -121,6 +127,7 @@ impl Timestamper {
///
/// # Returns
/// A reference to the underlying buffer that has been filled with timestamps.
#[allow(dead_code)]
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
// Wait for the transfer to fully complete before continuing.
// Note: If a device hangs up, check that this conditional is passing correctly, as there is

View File

@ -32,6 +32,7 @@ pub enum TriggerSource {
}
/// Prescalers for externally-supplied reference clocks.
#[allow(dead_code)]
pub enum Prescaler {
Div1 = 0b00,
Div2 = 0b01,
@ -40,6 +41,7 @@ pub enum Prescaler {
}
/// Optional slave operation modes of a timer.
#[allow(dead_code)]
pub enum SlaveMode {
Disabled = 0,
Trigger = 0b0110,

15
src/lib.rs Normal file
View File

@ -0,0 +1,15 @@
#![no_std]
#[macro_use]
extern crate log;
pub mod hardware;
pub mod server;
// The number of ticks in the ADC sampling timer. The timer runs at 100MHz, so the step size is
// equal to 10ns per tick.
// Currently, the sample rate is equal to: Fsample = 100/256 MHz = 390.625 KHz
const ADC_SAMPLE_TICKS: u16 = 256;
// The desired ADC sample processing buffer size.
const SAMPLE_BUFFER_SIZE: usize = 8;

File diff suppressed because it is too large Load Diff

View File

@ -1,13 +1,64 @@
use heapless::{consts::*, String, Vec};
use core::fmt::Write;
use heapless::{consts::*, String, Vec};
use serde::{Deserialize, Serialize};
use serde_json_core::{de::from_slice, ser::to_string};
use smoltcp as net;
use super::iir;
use super::net;
use dsp::iir;
#[macro_export]
macro_rules! route_request {
($request:ident,
readable_attributes: [$($read_attribute:tt: $getter:tt),*],
modifiable_attributes: [$($write_attribute:tt: $TYPE:ty, $setter:tt),*]) => {
match $request.req {
server::AccessRequest::Read => {
match $request.attribute {
$(
$read_attribute => {
#[allow(clippy::redundant_closure_call)]
let value = match $getter() {
Ok(data) => data,
Err(_) => return server::Response::error($request.attribute,
"Failed to read attribute"),
};
let encoded_data: String<U256> = match serde_json_core::to_string(&value) {
Ok(data) => data,
Err(_) => return server::Response::error($request.attribute,
"Failed to encode attribute value"),
};
server::Response::success($request.attribute, &encoded_data)
},
)*
_ => server::Response::error($request.attribute, "Unknown attribute")
}
},
server::AccessRequest::Write => {
match $request.attribute {
$(
$write_attribute => {
let new_value = match serde_json_core::from_str::<$TYPE>(&$request.value) {
Ok(data) => data,
Err(_) => return server::Response::error($request.attribute,
"Failed to decode value"),
};
#[allow(clippy::redundant_closure_call)]
match $setter(new_value) {
Ok(_) => server::Response::success($request.attribute, &$request.value),
Err(_) => server::Response::error($request.attribute,
"Failed to set attribute"),
}
}
)*
_ => server::Response::error($request.attribute, "Unknown attribute")
}
}
}
}
}
#[derive(Deserialize, Serialize, Debug)]
pub enum AccessRequest {