commit
1d0e1f9651
|
@ -5,7 +5,7 @@ use core::ops::{Add, Mul, Neg};
|
||||||
|
|
||||||
pub type Complex<T> = (T, T);
|
pub type Complex<T> = (T, T);
|
||||||
|
|
||||||
/// Round up half.
|
/// Bit shift, round up half.
|
||||||
///
|
///
|
||||||
/// # Arguments
|
/// # Arguments
|
||||||
///
|
///
|
||||||
|
@ -20,6 +20,23 @@ pub fn shift_round(x: i32, shift: usize) -> i32 {
|
||||||
(x + (1 << (shift - 1))) >> shift
|
(x + (1 << (shift - 1))) >> shift
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Integer division, round up half.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// `dividend` - Value to divide.
|
||||||
|
/// `divisor` - Value that divides the
|
||||||
|
/// dividend. `dividend`+`divisor`-1 must be inside [i64::MIN,
|
||||||
|
/// i64::MAX].
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
///
|
||||||
|
/// Divided and rounded value.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn divide_round(dividend: i64, divisor: i64) -> i64 {
|
||||||
|
(dividend + (divisor - 1)) / divisor
|
||||||
|
}
|
||||||
|
|
||||||
fn abs<T>(x: T) -> T
|
fn abs<T>(x: T) -> T
|
||||||
where
|
where
|
||||||
T: PartialOrd + Default + Neg<Output = T>,
|
T: PartialOrd + Default + Neg<Output = T>,
|
||||||
|
@ -99,8 +116,8 @@ where
|
||||||
|
|
||||||
pub mod iir;
|
pub mod iir;
|
||||||
pub mod iir_int;
|
pub mod iir_int;
|
||||||
pub mod lockin;
|
|
||||||
pub mod pll;
|
pub mod pll;
|
||||||
|
pub mod reciprocal_pll;
|
||||||
pub mod trig;
|
pub mod trig;
|
||||||
pub mod unwrap;
|
pub mod unwrap;
|
||||||
|
|
||||||
|
|
|
@ -1,518 +0,0 @@
|
||||||
//! Lock-in amplifier.
|
|
||||||
//!
|
|
||||||
//! Lock-in processing is performed through a combination of the
|
|
||||||
//! following modular processing blocks: demodulation, filtering,
|
|
||||||
//! decimation and computing the magnitude and phase from a complex
|
|
||||||
//! signal. These processing blocks are mutually independent.
|
|
||||||
//!
|
|
||||||
//! # Terminology
|
|
||||||
//!
|
|
||||||
//! * _demodulation signal_ - A copy of the reference signal that is
|
|
||||||
//! optionally frequency scaled and phase shifted. This is a complex
|
|
||||||
//! signal. The demodulation signals are used to demodulate the ADC
|
|
||||||
//! sampled signal.
|
|
||||||
//! * _internal clock_ - A fast internal clock used to increment a
|
|
||||||
//! counter for determining the 0-phase points of a reference signal.
|
|
||||||
//! * _reference signal_ - A constant-frequency signal used to derive
|
|
||||||
//! the demodulation signal.
|
|
||||||
//! * _timestamp_ - Timestamps record the timing of the reference
|
|
||||||
//! signal's 0-phase points. For instance, if a reference signal is
|
|
||||||
//! provided externally, a fast internal clock increments a
|
|
||||||
//! counter. When the external reference reaches the 0-phase point
|
|
||||||
//! (e.g., a positive edge), the value of the counter is recorded as a
|
|
||||||
//! timestamp. These timestamps are used to determine the frequency
|
|
||||||
//! and phase of the reference signal.
|
|
||||||
//!
|
|
||||||
//! # Usage
|
|
||||||
//!
|
|
||||||
//! The first step is to initialize a `Lockin` instance with
|
|
||||||
//! `Lockin::new()`. This provides the lock-in algorithms with
|
|
||||||
//! necessary information about the demodulation and filtering steps,
|
|
||||||
//! such as whether to demodulate with a harmonic of the reference
|
|
||||||
//! signal and the IIR biquad filter to use. There are then 4
|
|
||||||
//! different processing steps that can be used:
|
|
||||||
//!
|
|
||||||
//! * `demodulate` - Computes the phase of the demodulation signal
|
|
||||||
//! corresponding to each ADC sample, uses this phase to compute the
|
|
||||||
//! demodulation signal, and multiplies this demodulation signal by
|
|
||||||
//! the ADC-sampled signal. This is a method of `Lockin` since it
|
|
||||||
//! requires information about how to modify the reference signal for
|
|
||||||
//! demodulation.
|
|
||||||
//! * `filter` - Performs IIR biquad filtering of a complex
|
|
||||||
//! signals. This is commonly performed on the signal provided by the
|
|
||||||
//! demodulation step, but can be performed at any other point in the
|
|
||||||
//! processing chain or omitted entirely. `filter` is a method of
|
|
||||||
//! `Lockin` since it must hold onto the filter configuration and
|
|
||||||
//! state.
|
|
||||||
//! * `decimate` - This decimates a signal to reduce the load on the
|
|
||||||
//! DAC output. It does not require any state information and is
|
|
||||||
//! therefore a normal function.
|
|
||||||
//! * `magnitude_phase` - Computes the magnitude and phase of the
|
|
||||||
//! component of the ADC-sampled signal whose frequency is equal to
|
|
||||||
//! the demodulation frequency. This does not require any state
|
|
||||||
//! information and is therefore a normal function.
|
|
||||||
|
|
||||||
use super::iir::{IIRState, IIR};
|
|
||||||
use super::Complex;
|
|
||||||
use core::f32::consts::PI;
|
|
||||||
|
|
||||||
/// The number of ADC samples in one batch.
|
|
||||||
pub const ADC_SAMPLE_BUFFER_SIZE: usize = 16;
|
|
||||||
/// The number of outputs sent to the DAC for each ADC batch.
|
|
||||||
pub const DECIMATED_BUFFER_SIZE: usize = 1;
|
|
||||||
|
|
||||||
/// Treat the 2-element array as a FIFO. This allows new elements to
|
|
||||||
/// be pushed into the array, existing elements to shift back in the
|
|
||||||
/// array, and the last element to fall off the array.
|
|
||||||
trait Fifo2<T> {
|
|
||||||
fn push(&mut self, new_element: Option<T>);
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T: Copy> Fifo2<T> for [Option<T>; 2] {
|
|
||||||
/// Push a new element into the array. The existing elements move
|
|
||||||
/// backward in the array by one location, and the current last
|
|
||||||
/// element is discarded.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `new_element` - New element pushed into the front of the
|
|
||||||
/// array.
|
|
||||||
fn push(&mut self, new_element: Option<T>) {
|
|
||||||
// For array sizes greater than 2 it would be preferable to
|
|
||||||
// use a rotating index to avoid unnecessary data
|
|
||||||
// copying. However, this would somewhat complicate the use of
|
|
||||||
// iterators and for 2 elements, shifting is inexpensive.
|
|
||||||
self[1] = self[0];
|
|
||||||
self[0] = new_element;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Performs lock-in amplifier processing of a signal.
|
|
||||||
pub struct Lockin {
|
|
||||||
phase_offset: f32,
|
|
||||||
sample_period: u32,
|
|
||||||
harmonic: u32,
|
|
||||||
timestamps: [Option<i32>; 2],
|
|
||||||
iir: IIR,
|
|
||||||
iirstate: [IIRState; 2],
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Lockin {
|
|
||||||
/// Initialize a new `Lockin` instance.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `phase_offset` - Phase offset (in radians) applied to the
|
|
||||||
/// demodulation signal.
|
|
||||||
/// * `sample_period` - ADC sampling period in terms of the
|
|
||||||
/// internal clock period.
|
|
||||||
/// * `harmonic` - Integer scaling factor used to adjust the
|
|
||||||
/// demodulation frequency. E.g., 2 would demodulate with the
|
|
||||||
/// first harmonic.
|
|
||||||
/// * `iir` - IIR biquad filter.
|
|
||||||
///
|
|
||||||
/// # Returns
|
|
||||||
///
|
|
||||||
/// New `Lockin` instance.
|
|
||||||
pub fn new(
|
|
||||||
phase_offset: f32,
|
|
||||||
sample_period: u32,
|
|
||||||
harmonic: u32,
|
|
||||||
iir: IIR,
|
|
||||||
) -> Self {
|
|
||||||
Lockin {
|
|
||||||
phase_offset: phase_offset,
|
|
||||||
sample_period: sample_period,
|
|
||||||
harmonic: harmonic,
|
|
||||||
timestamps: [None, None],
|
|
||||||
iir: iir,
|
|
||||||
iirstate: [[0.; 5]; 2],
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Demodulate an input signal with the complex reference signal.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `adc_samples` - One batch of ADC samples.
|
|
||||||
/// * `timestamps` - Counter values corresponding to the edges of
|
|
||||||
/// an external reference signal. The counter is incremented by a
|
|
||||||
/// fast internal clock.
|
|
||||||
///
|
|
||||||
/// # Returns
|
|
||||||
///
|
|
||||||
/// The demodulated complex signal as a `Result`. When there are
|
|
||||||
/// an insufficient number of timestamps to perform processing,
|
|
||||||
/// `Err` is returned.
|
|
||||||
///
|
|
||||||
/// # Assumptions
|
|
||||||
///
|
|
||||||
/// `demodulate` expects that the timestamp counter value is equal
|
|
||||||
/// to 0 when the ADC samples its first input in a batch. This can
|
|
||||||
/// be achieved by configuring the timestamp counter to overflow
|
|
||||||
/// at the end of the ADC batch sampling period.
|
|
||||||
pub fn demodulate(
|
|
||||||
&mut self,
|
|
||||||
adc_samples: &[i16],
|
|
||||||
timestamps: &[u16],
|
|
||||||
) -> Result<[Complex<f32>; ADC_SAMPLE_BUFFER_SIZE], &str> {
|
|
||||||
let sample_period = self.sample_period as i32;
|
|
||||||
// update old timestamps for new ADC batch
|
|
||||||
self.timestamps.iter_mut().for_each(|t| match *t {
|
|
||||||
Some(timestamp) => {
|
|
||||||
// Existing timestamps have aged by one ADC batch
|
|
||||||
// period since the last ADC batch.
|
|
||||||
*t = Some(
|
|
||||||
timestamp - ADC_SAMPLE_BUFFER_SIZE as i32 * sample_period,
|
|
||||||
);
|
|
||||||
}
|
|
||||||
None => (),
|
|
||||||
});
|
|
||||||
|
|
||||||
// return prematurely if there aren't enough timestamps for
|
|
||||||
// processing
|
|
||||||
let old_timestamp_count =
|
|
||||||
self.timestamps.iter().filter(|t| t.is_some()).count();
|
|
||||||
if old_timestamp_count + timestamps.len() < 2 {
|
|
||||||
return Err("insufficient timestamps");
|
|
||||||
}
|
|
||||||
|
|
||||||
let mut signal = [(0., 0.); ADC_SAMPLE_BUFFER_SIZE];
|
|
||||||
// if we have not yet recorded any timestamps, the first
|
|
||||||
// reference period must be computed from the first and
|
|
||||||
// second timestamps in the array
|
|
||||||
let mut timestamp_index: usize =
|
|
||||||
if old_timestamp_count == 0 { 1 } else { 0 };
|
|
||||||
|
|
||||||
// compute ADC sample phases, sines/cosines and demodulate
|
|
||||||
signal
|
|
||||||
.iter_mut()
|
|
||||||
.zip(adc_samples.iter())
|
|
||||||
.enumerate()
|
|
||||||
.for_each(|(i, (s, sample))| {
|
|
||||||
let adc_sample_count = i as i32 * sample_period;
|
|
||||||
// index of the closest timestamp that occurred after
|
|
||||||
// the current ADC sample
|
|
||||||
let closest_timestamp_after_index: i32 = if timestamps.len() > 0
|
|
||||||
{
|
|
||||||
// Linear search is fast because both the timestamps
|
|
||||||
// and ADC sample counts are sorted. Because of this,
|
|
||||||
// we only need to check timestamps that were also
|
|
||||||
// greater than the last ADC sample count.
|
|
||||||
while timestamp_index < timestamps.len() - 1
|
|
||||||
&& (timestamps[timestamp_index] as i32)
|
|
||||||
< adc_sample_count
|
|
||||||
{
|
|
||||||
timestamp_index += 1;
|
|
||||||
}
|
|
||||||
timestamp_index as i32
|
|
||||||
} else {
|
|
||||||
-1
|
|
||||||
};
|
|
||||||
|
|
||||||
// closest timestamp that occurred before the current
|
|
||||||
// ADC sample
|
|
||||||
let closest_timestamp_before: i32;
|
|
||||||
let reference_period = if closest_timestamp_after_index < 0 {
|
|
||||||
closest_timestamp_before = self.timestamps[0].unwrap();
|
|
||||||
closest_timestamp_before - self.timestamps[1].unwrap()
|
|
||||||
} else if closest_timestamp_after_index == 0 {
|
|
||||||
closest_timestamp_before = self.timestamps[0].unwrap();
|
|
||||||
timestamps[0] as i32 - closest_timestamp_before
|
|
||||||
} else {
|
|
||||||
closest_timestamp_before = timestamps
|
|
||||||
[(closest_timestamp_after_index - 1) as usize]
|
|
||||||
as i32;
|
|
||||||
timestamps[closest_timestamp_after_index as usize] as i32
|
|
||||||
- closest_timestamp_before
|
|
||||||
};
|
|
||||||
|
|
||||||
let integer_phase: i32 = (adc_sample_count
|
|
||||||
- closest_timestamp_before)
|
|
||||||
* self.harmonic as i32;
|
|
||||||
let phase = self.phase_offset
|
|
||||||
+ 2. * PI * integer_phase as f32 / reference_period as f32;
|
|
||||||
let (sine, cosine) = libm::sincosf(phase);
|
|
||||||
let sample = *sample as f32;
|
|
||||||
s.0 = sine * sample;
|
|
||||||
s.1 = cosine * sample;
|
|
||||||
});
|
|
||||||
|
|
||||||
// record new timestamps
|
|
||||||
let start_index: usize = if timestamps.len() < 2 {
|
|
||||||
0
|
|
||||||
} else {
|
|
||||||
timestamps.len() - 2
|
|
||||||
};
|
|
||||||
timestamps[start_index..]
|
|
||||||
.iter()
|
|
||||||
.for_each(|t| self.timestamps.push(Some(*t as i32)));
|
|
||||||
|
|
||||||
Ok(signal)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Filter the complex signal using the supplied biquad IIR. The
|
|
||||||
/// signal array is modified in place.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `signal` - Complex signal to filter.
|
|
||||||
pub fn filter(&mut self, signal: &mut [Complex<f32>]) {
|
|
||||||
signal.iter_mut().for_each(|s| {
|
|
||||||
s.0 = self.iir.update(&mut self.iirstate[0], s.0);
|
|
||||||
s.1 = self.iir.update(&mut self.iirstate[1], s.1);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Decimate the complex signal to `DECIMATED_BUFFER_SIZE`. The ratio
|
|
||||||
/// of `ADC_SAMPLE_BUFFER_SIZE` to `DECIMATED_BUFFER_SIZE` must be a
|
|
||||||
/// power of 2.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `signal` - Complex signal to decimate.
|
|
||||||
///
|
|
||||||
/// # Returns
|
|
||||||
///
|
|
||||||
/// The decimated signal.
|
|
||||||
pub fn decimate(
|
|
||||||
signal: [Complex<f32>; ADC_SAMPLE_BUFFER_SIZE],
|
|
||||||
) -> [Complex<f32>; DECIMATED_BUFFER_SIZE] {
|
|
||||||
let n_k = ADC_SAMPLE_BUFFER_SIZE / DECIMATED_BUFFER_SIZE;
|
|
||||||
debug_assert!(
|
|
||||||
ADC_SAMPLE_BUFFER_SIZE == DECIMATED_BUFFER_SIZE || n_k % 2 == 0
|
|
||||||
);
|
|
||||||
|
|
||||||
let mut signal_decimated = [(0_f32, 0_f32); DECIMATED_BUFFER_SIZE];
|
|
||||||
|
|
||||||
signal_decimated
|
|
||||||
.iter_mut()
|
|
||||||
.zip(signal.iter().step_by(n_k))
|
|
||||||
.for_each(|(s_d, s)| {
|
|
||||||
s_d.0 = s.0;
|
|
||||||
s_d.1 = s.1;
|
|
||||||
});
|
|
||||||
|
|
||||||
signal_decimated
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Compute the magnitude and phase from the complex signal. The
|
|
||||||
/// signal array is modified in place.
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `signal` - Complex signal to decimate.
|
|
||||||
pub fn magnitude_phase(signal: &mut [Complex<f32>]) {
|
|
||||||
signal.iter_mut().for_each(|s| {
|
|
||||||
let new_i = libm::sqrtf([s.0, s.1].iter().map(|i| i * i).sum());
|
|
||||||
let new_q = libm::atan2f(s.1, s.0);
|
|
||||||
s.0 = new_i;
|
|
||||||
s.1 = new_q;
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::*;
|
|
||||||
use crate::testing::complex_allclose;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn array_push() {
|
|
||||||
let mut arr: [Option<u32>; 2] = [None, None];
|
|
||||||
arr.push(Some(1));
|
|
||||||
assert_eq!(arr, [Some(1), None]);
|
|
||||||
arr.push(Some(2));
|
|
||||||
assert_eq!(arr, [Some(2), Some(1)]);
|
|
||||||
arr.push(Some(10));
|
|
||||||
assert_eq!(arr, [Some(10), Some(2)]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn magnitude_phase_length_1_quadrant_1() {
|
|
||||||
let mut signal: [Complex<f32>; 1] = [(1., 1.)];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[(2_f32.sqrt(), PI / 4.)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
|
|
||||||
signal = [(3_f32.sqrt() / 2., 1. / 2.)];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[(1., PI / 6.)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn magnitude_phase_length_1_quadrant_2() {
|
|
||||||
let mut signal = [(-1., 1.)];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[(2_f32.sqrt(), 3. * PI / 4.)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
|
|
||||||
signal = [(-1. / 2., 3_f32.sqrt() / 2.)];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[(1_f32, 2. * PI / 3.)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn magnitude_phase_length_1_quadrant_3() {
|
|
||||||
let mut signal = [(-1. / 2_f32.sqrt(), -1. / 2_f32.sqrt())];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[(1_f32.sqrt(), -3. * PI / 4.)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
|
|
||||||
signal = [(-1. / 2., -2_f32.sqrt())];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[((3. / 2.) as f32, -1.91063323625 as f32)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn magnitude_phase_length_1_quadrant_4() {
|
|
||||||
let mut signal = [(1. / 2_f32.sqrt(), -1. / 2_f32.sqrt())];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[(1_f32.sqrt(), -1. * PI / 4.)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
|
|
||||||
signal = [(3_f32.sqrt() / 2., -1. / 2.)];
|
|
||||||
magnitude_phase(&mut signal);
|
|
||||||
assert!(complex_allclose(
|
|
||||||
&signal,
|
|
||||||
&[(1_f32, -PI / 6.)],
|
|
||||||
f32::EPSILON,
|
|
||||||
0.
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn decimate_sample_16_decimated_1() {
|
|
||||||
let signal: [Complex<f32>; ADC_SAMPLE_BUFFER_SIZE] = [
|
|
||||||
(0.0, 1.6),
|
|
||||||
(0.1, 1.7),
|
|
||||||
(0.2, 1.8),
|
|
||||||
(0.3, 1.9),
|
|
||||||
(0.4, 2.0),
|
|
||||||
(0.5, 2.1),
|
|
||||||
(0.6, 2.2),
|
|
||||||
(0.7, 2.3),
|
|
||||||
(0.8, 2.4),
|
|
||||||
(0.9, 2.5),
|
|
||||||
(1.0, 2.6),
|
|
||||||
(1.1, 2.7),
|
|
||||||
(1.2, 2.8),
|
|
||||||
(1.3, 2.9),
|
|
||||||
(1.4, 3.0),
|
|
||||||
(1.5, 3.1),
|
|
||||||
];
|
|
||||||
assert_eq!(decimate(signal), [(0.0, 1.6)]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn lockin_demodulate_valid_0() {
|
|
||||||
let mut lockin = Lockin::new(
|
|
||||||
0.,
|
|
||||||
200,
|
|
||||||
1,
|
|
||||||
IIR {
|
|
||||||
ba: [0_f32; 5],
|
|
||||||
y_offset: 0.,
|
|
||||||
y_min: -(1 << 15) as f32,
|
|
||||||
y_max: (1 << 15) as f32 - 1.,
|
|
||||||
},
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
lockin.demodulate(&[0; ADC_SAMPLE_BUFFER_SIZE], &[]),
|
|
||||||
Err("insufficient timestamps")
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn lockin_demodulate_valid_1() {
|
|
||||||
let mut lockin = Lockin::new(
|
|
||||||
0.,
|
|
||||||
200,
|
|
||||||
1,
|
|
||||||
IIR {
|
|
||||||
ba: [0_f32; 5],
|
|
||||||
y_offset: 0.,
|
|
||||||
y_min: -(1 << 15) as f32,
|
|
||||||
y_max: (1 << 15) as f32 - 1.,
|
|
||||||
},
|
|
||||||
);
|
|
||||||
assert_eq!(
|
|
||||||
lockin.demodulate(&[0; ADC_SAMPLE_BUFFER_SIZE], &[0],),
|
|
||||||
Err("insufficient timestamps")
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn lockin_demodulate_valid_2() {
|
|
||||||
let adc_period: u32 = 200;
|
|
||||||
let mut lockin = Lockin::new(
|
|
||||||
0.,
|
|
||||||
adc_period,
|
|
||||||
1,
|
|
||||||
IIR {
|
|
||||||
ba: [0_f32; 5],
|
|
||||||
y_offset: 0.,
|
|
||||||
y_min: -(1 << 15) as f32,
|
|
||||||
y_max: (1 << 15) as f32 - 1.,
|
|
||||||
},
|
|
||||||
);
|
|
||||||
let adc_samples: [i16; ADC_SAMPLE_BUFFER_SIZE] =
|
|
||||||
[-8, 7, -7, 6, -6, 5, -5, 4, -4, 3, -3, 2, -2, -1, 1, 0];
|
|
||||||
let reference_period: u16 = 2800;
|
|
||||||
let initial_phase_integer: u16 = 200;
|
|
||||||
let timestamps: &[u16] = &[
|
|
||||||
initial_phase_integer,
|
|
||||||
initial_phase_integer + reference_period,
|
|
||||||
];
|
|
||||||
let initial_phase: f32 =
|
|
||||||
-(initial_phase_integer as f32) / reference_period as f32 * 2. * PI;
|
|
||||||
let phase_increment: f32 =
|
|
||||||
adc_period as f32 / reference_period as f32 * 2. * PI;
|
|
||||||
let mut signal = [(0., 0.); ADC_SAMPLE_BUFFER_SIZE];
|
|
||||||
for (n, s) in signal.iter_mut().enumerate() {
|
|
||||||
let adc_phase = initial_phase + n as f32 * phase_increment;
|
|
||||||
let sine = adc_phase.sin();
|
|
||||||
let cosine = adc_phase.cos();
|
|
||||||
s.0 = sine * adc_samples[n] as f32;
|
|
||||||
s.1 = cosine * adc_samples[n] as f32;
|
|
||||||
}
|
|
||||||
let result = lockin.demodulate(&adc_samples, timestamps).unwrap();
|
|
||||||
assert!(
|
|
||||||
complex_allclose(&result, &signal, 0., 1e-5),
|
|
||||||
"\nsignal computed: {:?},\nsignal expected: {:?}",
|
|
||||||
result,
|
|
||||||
signal
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -0,0 +1,92 @@
|
||||||
|
use super::{divide_round, pll::PLL};
|
||||||
|
|
||||||
|
/// Processes external timestamps to produce the frequency and initial phase of the demodulation
|
||||||
|
/// signal.
|
||||||
|
pub struct TimestampHandler {
|
||||||
|
pll: PLL,
|
||||||
|
pll_shift_frequency: u8,
|
||||||
|
pll_shift_phase: u8,
|
||||||
|
// Index of the current ADC batch.
|
||||||
|
batch_index: u32,
|
||||||
|
// Most recent phase and frequency values of the external reference.
|
||||||
|
reference_phase: i64,
|
||||||
|
reference_frequency: i64,
|
||||||
|
adc_sample_ticks_log2: usize,
|
||||||
|
sample_buffer_size_log2: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl TimestampHandler {
|
||||||
|
/// Construct a new `TimestampHandler` instance.
|
||||||
|
///
|
||||||
|
/// # Args
|
||||||
|
/// * `pll_shift_frequency` - See `PLL::update()`.
|
||||||
|
/// * `pll_shift_phase` - See `PLL::update()`.
|
||||||
|
/// * `adc_sample_ticks_log2` - Number of ticks in one ADC sampling timer period.
|
||||||
|
/// * `sample_buffer_size_log2` - Number of ADC samples in one processing batch.
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
/// New `TimestampHandler` instance.
|
||||||
|
pub fn new(
|
||||||
|
pll_shift_frequency: u8,
|
||||||
|
pll_shift_phase: u8,
|
||||||
|
adc_sample_ticks_log2: usize,
|
||||||
|
sample_buffer_size_log2: usize,
|
||||||
|
) -> Self {
|
||||||
|
TimestampHandler {
|
||||||
|
pll: PLL::default(),
|
||||||
|
pll_shift_frequency,
|
||||||
|
pll_shift_phase,
|
||||||
|
batch_index: 0,
|
||||||
|
reference_phase: 0,
|
||||||
|
reference_frequency: 0,
|
||||||
|
adc_sample_ticks_log2,
|
||||||
|
sample_buffer_size_log2,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Compute the initial phase and frequency of the demodulation signal.
|
||||||
|
///
|
||||||
|
/// # Args
|
||||||
|
/// * `timestamp` - Counter value corresponding to an external reference edge.
|
||||||
|
///
|
||||||
|
/// # Returns
|
||||||
|
/// Tuple consisting of the initial phase value and frequency of the demodulation signal.
|
||||||
|
pub fn update(&mut self, timestamp: Option<u32>) -> (u32, u32) {
|
||||||
|
if let Some(t) = timestamp {
|
||||||
|
let (phase, frequency) = self.pll.update(
|
||||||
|
t as i32,
|
||||||
|
self.pll_shift_frequency,
|
||||||
|
self.pll_shift_phase,
|
||||||
|
);
|
||||||
|
self.reference_phase = phase as u32 as i64;
|
||||||
|
self.reference_frequency = frequency as u32 as i64;
|
||||||
|
}
|
||||||
|
|
||||||
|
let demodulation_frequency = divide_round(
|
||||||
|
1 << (32 + self.adc_sample_ticks_log2),
|
||||||
|
self.reference_frequency,
|
||||||
|
) as u32;
|
||||||
|
let demodulation_initial_phase = divide_round(
|
||||||
|
(((self.batch_index as i64)
|
||||||
|
<< (self.adc_sample_ticks_log2
|
||||||
|
+ self.sample_buffer_size_log2))
|
||||||
|
- self.reference_phase)
|
||||||
|
<< 32,
|
||||||
|
self.reference_frequency,
|
||||||
|
) as u32;
|
||||||
|
|
||||||
|
if self.batch_index
|
||||||
|
< (1 << (32
|
||||||
|
- self.adc_sample_ticks_log2
|
||||||
|
- self.sample_buffer_size_log2))
|
||||||
|
- 1
|
||||||
|
{
|
||||||
|
self.batch_index += 1;
|
||||||
|
} else {
|
||||||
|
self.batch_index = 0;
|
||||||
|
self.reference_phase -= 1 << 32;
|
||||||
|
}
|
||||||
|
|
||||||
|
(demodulation_initial_phase, demodulation_frequency)
|
||||||
|
}
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -26,13 +26,13 @@
|
||||||
///! timestamping is desired in DI1, a separate timer + capture channel will be necessary.
|
///! timestamping is desired in DI1, a separate timer + capture channel will be necessary.
|
||||||
use super::{hal, timers, ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
|
use super::{hal, timers, ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
|
||||||
|
|
||||||
/// Calculate the period of the digital input timestampe timer.
|
/// Calculate the period of the digital input timestamp timer.
|
||||||
///
|
///
|
||||||
/// # Note
|
/// # Note
|
||||||
/// The period returned will be 1 less than the required period in timer ticks. The value returned
|
/// The period returned will be 1 less than the required period in timer ticks. The value returned
|
||||||
/// can be immediately programmed into a hardware timer period register.
|
/// can be immediately programmed into a hardware timer period register.
|
||||||
///
|
///
|
||||||
/// The period is calcualted to be some power-of-two multiple of the batch size, such that N batches
|
/// The period is calculated to be some power-of-two multiple of the batch size, such that N batches
|
||||||
/// will occur between each timestamp timer overflow.
|
/// will occur between each timestamp timer overflow.
|
||||||
///
|
///
|
||||||
/// # Returns
|
/// # Returns
|
||||||
|
|
Loading…
Reference in New Issue