Merge pull request #196 from vertigo-designs/feature/pounder-timestamping
Feature/pounder timestamping
This commit is contained in:
commit
1307ddb0ba
6
.github/workflows/ci.yml
vendored
6
.github/workflows/ci.yml
vendored
@ -84,6 +84,12 @@ jobs:
|
||||
target/*/release/stabilizer
|
||||
stabilizer-release.bin
|
||||
|
||||
- name: Build (Pounder v1.1)
|
||||
uses: actions-rs/cargo@v1
|
||||
with:
|
||||
command: build
|
||||
args: --features pounder_v1_1
|
||||
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
|
2
Cargo.lock
generated
2
Cargo.lock
generated
@ -874,7 +874,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "stm32h7xx-hal"
|
||||
version = "0.8.0"
|
||||
source = "git+https://github.com/stm32-rs/stm32h7xx-hal?branch=dma#25ee0f3a9ae27d1fd6bb390d6045aa312f29f096"
|
||||
source = "git+https://github.com/stm32-rs/stm32h7xx-hal?branch=dma#3da22d4935c8f6e412b99e6662ec11da5265fb88"
|
||||
dependencies = [
|
||||
"bare-metal 1.0.0",
|
||||
"cast",
|
||||
|
@ -63,6 +63,7 @@ branch = "dma"
|
||||
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]
|
||||
bkpt = [ ]
|
||||
nightly = ["cortex-m/inline-asm", "dsp/nightly"]
|
||||
pounder_v1_1 = [ ]
|
||||
|
||||
[profile.dev]
|
||||
codegen-units = 1
|
||||
|
@ -172,6 +172,17 @@ impl<I: Interface> Ad9959<I> {
|
||||
|
||||
// Set the clock frequency to configure the device as necessary.
|
||||
ad9959.configure_system_clock(clock_frequency, multiplier)?;
|
||||
|
||||
// Latch the new clock configuration.
|
||||
io_update.set_high().or(Err(Error::Pin))?;
|
||||
|
||||
// Delay for at least 1 SYNC_CLK period for the update to occur. The SYNC_CLK is guaranteed
|
||||
// to be at least 250KHz (1/4 of 1MHz minimum REF_CLK). We use 5uS instead of 4uS to
|
||||
// guarantee conformance with datasheet requirements.
|
||||
delay.delay_us(5);
|
||||
|
||||
io_update.set_low().or(Err(Error::Pin))?;
|
||||
|
||||
Ok(ad9959)
|
||||
}
|
||||
|
||||
@ -195,7 +206,7 @@ impl<I: Interface> Ad9959<I> {
|
||||
///
|
||||
/// Returns:
|
||||
/// The actual frequency configured for the internal system clock.
|
||||
pub fn configure_system_clock(
|
||||
fn configure_system_clock(
|
||||
&mut self,
|
||||
reference_clock_frequency: f32,
|
||||
multiplier: u8,
|
||||
|
@ -58,11 +58,11 @@ macro_rules! adc_input {
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
fn address(&self) -> usize {
|
||||
// Note(unsafe): It is assumed that SPI is owned by another DMA transfer and this DMA is
|
||||
// only used for the transmit-half of DMA.
|
||||
let regs = unsafe { &*hal::stm32::$spi::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
®s.txdr as *const _ as usize
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -45,8 +45,8 @@ macro_rules! dac_output {
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO.
|
||||
fn address(&self) -> u32 {
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
fn address(&self) -> usize {
|
||||
&self.spi.inner().txdr as *const _ as usize
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21,6 +21,21 @@ pub const POUNDER_IO_UPDATE_DELAY: f32 = 900_e-9;
|
||||
|
||||
/// The duration to assert IO_Update for the pounder DDS.
|
||||
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder
|
||||
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 400MHz), this corresponds to
|
||||
// 40ns. To accomodate rounding errors, we use 50ns instead.
|
||||
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 500MHz), this corresponds to
|
||||
// 32ns. To accomodate rounding errors, we use 50ns instead.
|
||||
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9;
|
||||
|
||||
/// The DDS reference clock frequency in MHz.
|
||||
pub const DDS_REF_CLK: MegaHertz = MegaHertz(100);
|
||||
|
||||
/// The multiplier used for the DDS reference clock PLL.
|
||||
pub const DDS_MULTIPLIER: u8 = 5;
|
||||
|
||||
/// The DDS system clock frequency after the internal PLL multiplication.
|
||||
#[allow(dead_code)]
|
||||
pub const DDS_SYSTEM_CLK: MegaHertz =
|
||||
MegaHertz(DDS_REF_CLK.0 * DDS_MULTIPLIER as u32);
|
||||
|
||||
/// The divider from the DDS system clock to the SYNC_CLK output (sync-clk is always 1/4 of sysclk).
|
||||
#[allow(dead_code)]
|
||||
pub const DDS_SYNC_CLK_DIV: u8 = 4;
|
||||
|
@ -80,7 +80,7 @@ impl InputStamper {
|
||||
// Utilize the TIM5 CH4 as an input capture channel - use TI4 (the DI0 input trigger) as the
|
||||
// capture source.
|
||||
let input_capture =
|
||||
timer_channel.into_input_capture(timers::tim5::CC4S_A::TI4);
|
||||
timer_channel.into_input_capture(timers::CaptureTrigger::Input24);
|
||||
|
||||
Self {
|
||||
capture_channel: input_capture,
|
||||
|
74
src/main.rs
74
src/main.rs
@ -30,6 +30,9 @@ extern crate panic_halt;
|
||||
#[macro_use]
|
||||
extern crate log;
|
||||
|
||||
#[allow(unused_imports)]
|
||||
use core::convert::TryInto;
|
||||
|
||||
// use core::sync::atomic::{AtomicU32, AtomicBool, Ordering};
|
||||
use cortex_m_rt::exception;
|
||||
use rtic::cyccnt::{Instant, U32Ext};
|
||||
@ -60,7 +63,7 @@ use heapless::{consts::*, String};
|
||||
const ADC_SAMPLE_TICKS: u32 = 256;
|
||||
|
||||
// The desired ADC sample processing buffer size.
|
||||
const SAMPLE_BUFFER_SIZE: usize = 1;
|
||||
const SAMPLE_BUFFER_SIZE: usize = 8;
|
||||
|
||||
// The number of cascaded IIR biquads per channel. Select 1 or 2!
|
||||
const IIR_CASCADE_LENGTH: usize = 1;
|
||||
@ -220,6 +223,8 @@ const APP: () = {
|
||||
|
||||
pounder: Option<pounder::PounderDevices>,
|
||||
|
||||
pounder_stamper: Option<pounder::timestamp::Timestamper>,
|
||||
|
||||
// Format: iir_state[ch][cascade-no][coeff]
|
||||
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
|
||||
iir_state: [[iir::IIRState; IIR_CASCADE_LENGTH]; 2],
|
||||
@ -509,7 +514,7 @@ const APP: () = {
|
||||
delay.delay_ms(2u8);
|
||||
let (pounder_devices, dds_output) = if pounder_pgood.is_high().unwrap()
|
||||
{
|
||||
let mut ad9959 = {
|
||||
let ad9959 = {
|
||||
let qspi_interface = {
|
||||
// Instantiate the QUADSPI pins and peripheral interface.
|
||||
let qspi_pins = {
|
||||
@ -553,17 +558,24 @@ const APP: () = {
|
||||
pounder::QspiInterface::new(qspi).unwrap()
|
||||
};
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
let reset_pin = gpiog.pg6.into_push_pull_output();
|
||||
#[cfg(not(feature = "pounder_v1_1"))]
|
||||
let reset_pin = gpioa.pa0.into_push_pull_output();
|
||||
|
||||
let mut io_update = gpiog.pg7.into_push_pull_output();
|
||||
|
||||
let ref_clk: hal::time::Hertz =
|
||||
design_parameters::DDS_REF_CLK.into();
|
||||
|
||||
let ad9959 = ad9959::Ad9959::new(
|
||||
qspi_interface,
|
||||
reset_pin,
|
||||
&mut io_update,
|
||||
&mut delay,
|
||||
ad9959::Mode::FourBitSerial,
|
||||
100_000_000_f32,
|
||||
5,
|
||||
ref_clk.0 as f32,
|
||||
design_parameters::DDS_MULTIPLIER,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
@ -642,7 +654,6 @@ const APP: () = {
|
||||
|
||||
let pounder_devices = pounder::PounderDevices::new(
|
||||
io_expander,
|
||||
&mut ad9959,
|
||||
spi,
|
||||
adc1,
|
||||
adc2,
|
||||
@ -828,6 +839,51 @@ const APP: () = {
|
||||
)
|
||||
};
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
let pounder_stamper = {
|
||||
let etr_pin = gpioa.pa0.into_alternate_af3();
|
||||
|
||||
// The frequency in the constructor is dont-care, as we will modify the period + clock
|
||||
// source manually below.
|
||||
let tim8 =
|
||||
dp.TIM8.timer(1.khz(), ccdr.peripheral.TIM8, &ccdr.clocks);
|
||||
let mut timestamp_timer = timers::PounderTimestampTimer::new(tim8);
|
||||
|
||||
// Pounder is configured to generate a 500MHz reference clock, so a 125MHz sync-clock is
|
||||
// output. As a result, dividing the 125MHz sync-clk provides a 31.25MHz tick rate for
|
||||
// the timestamp timer. 31.25MHz corresponds with a 32ns tick rate.
|
||||
timestamp_timer.set_external_clock(timers::Prescaler::Div4);
|
||||
timestamp_timer.start();
|
||||
|
||||
// We want the pounder timestamp timer to overflow once per batch.
|
||||
let tick_ratio = {
|
||||
let sync_clk_mhz: f32 = design_parameters::DDS_SYSTEM_CLK.0
|
||||
as f32
|
||||
/ design_parameters::DDS_SYNC_CLK_DIV as f32;
|
||||
sync_clk_mhz / design_parameters::TIMER_FREQUENCY.0 as f32
|
||||
};
|
||||
|
||||
let period = (tick_ratio
|
||||
* ADC_SAMPLE_TICKS as f32
|
||||
* SAMPLE_BUFFER_SIZE as f32) as u32
|
||||
/ 4;
|
||||
timestamp_timer.set_period_ticks((period - 1).try_into().unwrap());
|
||||
let tim8_channels = timestamp_timer.channels();
|
||||
|
||||
let stamper = pounder::timestamp::Timestamper::new(
|
||||
timestamp_timer,
|
||||
dma_streams.7,
|
||||
tim8_channels.ch1,
|
||||
&mut sampling_timer,
|
||||
etr_pin,
|
||||
);
|
||||
|
||||
Some(stamper)
|
||||
};
|
||||
|
||||
#[cfg(not(feature = "pounder_v1_1"))]
|
||||
let pounder_stamper = None;
|
||||
|
||||
// Start sampling ADCs.
|
||||
sampling_timer.start();
|
||||
timestamp_timer.start();
|
||||
@ -841,6 +897,7 @@ const APP: () = {
|
||||
input_stamper,
|
||||
dds_output,
|
||||
pounder: pounder_devices,
|
||||
pounder_stamper,
|
||||
|
||||
eeprom_i2c,
|
||||
net_interface: network_interface,
|
||||
@ -849,8 +906,13 @@ const APP: () = {
|
||||
}
|
||||
}
|
||||
|
||||
#[task(binds=DMA1_STR3, resources=[adcs, dacs, iir_state, iir_ch, dds_output, input_stamper], priority=2)]
|
||||
#[task(binds=DMA1_STR3, resources=[pounder_stamper, adcs, dacs, iir_state, iir_ch, dds_output, input_stamper], priority=2)]
|
||||
fn process(c: process::Context) {
|
||||
if let Some(stamper) = c.resources.pounder_stamper {
|
||||
let pounder_timestamps = stamper.acquire_buffer();
|
||||
info!("{:?}", pounder_timestamps);
|
||||
}
|
||||
|
||||
let adc_samples = [
|
||||
c.resources.adcs.0.acquire_buffer(),
|
||||
c.resources.adcs.1.acquire_buffer(),
|
||||
|
@ -3,6 +3,7 @@ use serde::{Deserialize, Serialize};
|
||||
mod attenuators;
|
||||
mod dds_output;
|
||||
mod rf_power;
|
||||
pub mod timestamp;
|
||||
|
||||
pub use dds_output::DdsOutput;
|
||||
|
||||
@ -274,7 +275,6 @@ impl PounderDevices {
|
||||
/// Construct and initialize pounder-specific hardware.
|
||||
///
|
||||
/// Args:
|
||||
/// * `ad9959` - The DDS driver for the pounder hardware.
|
||||
/// * `attenuator_spi` - A SPI interface to control digital attenuators.
|
||||
/// * `adc1` - The ADC1 peripheral for measuring power.
|
||||
/// * `adc2` - The ADC2 peripheral for measuring power.
|
||||
@ -282,7 +282,6 @@ impl PounderDevices {
|
||||
/// * `adc2_in_p` - The input channel for the RF power measurement on IN1.
|
||||
pub fn new(
|
||||
mcp23017: mcp23017::MCP23017<hal::i2c::I2c<hal::stm32::I2C1>>,
|
||||
ad9959: &mut ad9959::Ad9959<QspiInterface>,
|
||||
attenuator_spi: hal::spi::Spi<hal::stm32::SPI1, hal::spi::Enabled, u8>,
|
||||
adc1: hal::adc::Adc<hal::stm32::ADC1, hal::adc::Enabled>,
|
||||
adc2: hal::adc::Adc<hal::stm32::ADC2, hal::adc::Enabled>,
|
||||
@ -314,14 +313,10 @@ impl PounderDevices {
|
||||
.write_gpio(mcp23017::Port::GPIOB, 1 << 5)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
|
||||
// Select the on-board clock with a 4x prescaler (400MHz).
|
||||
devices
|
||||
.mcp23017
|
||||
.digital_write(EXT_CLK_SEL_PIN, false)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
ad9959
|
||||
.configure_system_clock(100_000_000f32, 4)
|
||||
.map_err(|_| Error::Dds)?;
|
||||
|
||||
Ok(devices)
|
||||
}
|
||||
|
140
src/pounder/timestamp.rs
Normal file
140
src/pounder/timestamp.rs
Normal file
@ -0,0 +1,140 @@
|
||||
///! ADC sample timestamper using external Pounder reference clock.
|
||||
///!
|
||||
///! # Design
|
||||
///!
|
||||
///! The pounder timestamper utilizes the pounder SYNC_CLK output as a fast external reference clock
|
||||
///! for recording a timestamp for each of the ADC samples.
|
||||
///!
|
||||
///! To accomplish this, a timer peripheral is configured to be driven by an external clock input.
|
||||
///! Due to the limitations of clock frequencies allowed by the timer peripheral, the SYNC_CLK input
|
||||
///! is divided by 4. This clock then clocks the timer peripheral in a free-running mode with an ARR
|
||||
///! (max count register value) configured to overflow once per ADC sample batch.
|
||||
///!
|
||||
///! Once the timer is configured, an input capture is configured to record the timer count
|
||||
///! register. The input capture is configured to utilize an internal trigger for the input capture.
|
||||
///! The internal trigger is selected such that when a sample is generated on ADC0, the input
|
||||
///! capture is simultaneously triggered. This results in the input capture triggering identically
|
||||
///! to when the ADC samples the input.
|
||||
///!
|
||||
///! Once the input capture is properly configured, a DMA transfer is configured to collect all of
|
||||
///! timestamps. The DMA transfer collects 1 timestamp for each ADC sample collected. In order to
|
||||
///! avoid potentially losing a timestamp for a sample, the DMA transfer operates in double-buffer
|
||||
///! mode. As soon as the DMA transfer completes, the hardware automatically swaps over to a second
|
||||
///! buffer to continue capturing. This alleviates timing sensitivities of the DMA transfer
|
||||
///! schedule.
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer};
|
||||
|
||||
use crate::{timers, SAMPLE_BUFFER_SIZE};
|
||||
|
||||
// Three buffers are required for double buffered mode - 2 are owned by the DMA stream and 1 is the
|
||||
// working data provided to the application. These buffers must exist in a DMA-accessible memory
|
||||
// region. Note that AXISRAM is not initialized on boot, so their initial contents are undefined.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut BUF: [[u16; SAMPLE_BUFFER_SIZE]; 3] = [[0; SAMPLE_BUFFER_SIZE]; 3];
|
||||
|
||||
/// Software unit to timestamp stabilizer ADC samples using an external pounder reference clock.
|
||||
pub struct Timestamper {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
timer: timers::PounderTimestampTimer,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream7<hal::stm32::DMA1>,
|
||||
timers::tim8::Channel1InputCapture,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
}
|
||||
|
||||
impl Timestamper {
|
||||
/// Construct the pounder sample timestamper.
|
||||
///
|
||||
/// # Note
|
||||
/// The DMA is immediately configured after instantiation. It will not collect any samples
|
||||
/// until the sample timer begins to cause input capture triggers.
|
||||
///
|
||||
/// # Args
|
||||
/// * `timestamp_timer` - The timer peripheral used for capturing timestamps from.
|
||||
/// * `stream` - The DMA stream to use for collecting timestamps.
|
||||
/// * `capture_channel` - The input capture channel for collecting timestamps.
|
||||
/// * `sampling_timer` - The stabilizer ADC sampling timer.
|
||||
/// * `_clock_input` - The input pin for the external clock from Pounder.
|
||||
///
|
||||
/// # Returns
|
||||
/// The new pounder timestamper in an operational state.
|
||||
pub fn new(
|
||||
mut timestamp_timer: timers::PounderTimestampTimer,
|
||||
stream: hal::dma::dma::Stream7<hal::stm32::DMA1>,
|
||||
capture_channel: timers::tim8::Channel1,
|
||||
sampling_timer: &mut timers::SamplingTimer,
|
||||
_clock_input: hal::gpio::gpioa::PA0<
|
||||
hal::gpio::Alternate<hal::gpio::AF3>,
|
||||
>,
|
||||
) -> Self {
|
||||
let config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.circular_buffer(true)
|
||||
.double_buffer(true);
|
||||
|
||||
// The sampling timer should generate a trigger output when CH1 comparison occurs.
|
||||
sampling_timer.generate_trigger(timers::TriggerGenerator::ComparePulse);
|
||||
|
||||
// The timestamp timer trigger input should use TIM2 (SamplingTimer)'s trigger, which is
|
||||
// mapped to ITR1.
|
||||
timestamp_timer.set_trigger_source(timers::TriggerSource::Trigger1);
|
||||
|
||||
// The capture channel should capture whenever the trigger input occurs.
|
||||
let input_capture = capture_channel
|
||||
.into_input_capture(timers::CaptureTrigger::TriggerInput);
|
||||
input_capture.listen_dma();
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
stream,
|
||||
input_capture,
|
||||
// Note(unsafe): BUF[0] and BUF[1] are "owned" by this peripheral.
|
||||
// They shall not be used anywhere else in the module.
|
||||
unsafe { &mut BUF[0] },
|
||||
unsafe { Some(&mut BUF[1]) },
|
||||
config,
|
||||
);
|
||||
|
||||
data_transfer.start(|capture_channel| capture_channel.enable());
|
||||
|
||||
Self {
|
||||
timer: timestamp_timer,
|
||||
transfer: data_transfer,
|
||||
|
||||
// Note(unsafe): BUF[2] is "owned" by this peripheral. It shall not be used anywhere
|
||||
// else in the module.
|
||||
next_buffer: unsafe { Some(&mut BUF[2]) },
|
||||
}
|
||||
}
|
||||
|
||||
/// Update the period of the underlying timestamp timer.
|
||||
pub fn update_period(&mut self, period: u16) {
|
||||
self.timer.set_period_ticks(period);
|
||||
}
|
||||
|
||||
/// Obtain a buffer filled with timestamps.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with timestamps.
|
||||
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
||||
// no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Start the next transfer.
|
||||
let (prev_buffer, _, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer); // .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
}
|
||||
}
|
168
src/timers.rs
168
src/timers.rs
@ -1,69 +1,178 @@
|
||||
///! The sampling timer is used for managing ADC sampling and external reference timestamping.
|
||||
use super::hal;
|
||||
|
||||
/// The source of an input capture trigger.
|
||||
#[allow(dead_code)]
|
||||
pub enum CaptureTrigger {
|
||||
Input13 = 0b01,
|
||||
Input24 = 0b10,
|
||||
TriggerInput = 0b11,
|
||||
}
|
||||
|
||||
/// The event that should generate an external trigger from the peripheral.
|
||||
#[allow(dead_code)]
|
||||
pub enum TriggerGenerator {
|
||||
Reset = 0b000,
|
||||
Enable = 0b001,
|
||||
Update = 0b010,
|
||||
ComparePulse = 0b011,
|
||||
Ch1Compare = 0b100,
|
||||
Ch2Compare = 0b101,
|
||||
Ch3Compare = 0b110,
|
||||
Ch4Compare = 0b111,
|
||||
}
|
||||
|
||||
/// Selects the trigger source for the timer peripheral.
|
||||
#[allow(dead_code)]
|
||||
pub enum TriggerSource {
|
||||
Trigger0 = 0,
|
||||
Trigger1 = 0b01,
|
||||
Trigger2 = 0b10,
|
||||
Trigger3 = 0b11,
|
||||
}
|
||||
|
||||
/// Prescalers for externally-supplied reference clocks.
|
||||
pub enum Prescaler {
|
||||
Div1 = 0b00,
|
||||
Div2 = 0b01,
|
||||
Div4 = 0b10,
|
||||
Div8 = 0b11,
|
||||
}
|
||||
|
||||
macro_rules! timer_channels {
|
||||
($name:ident, $TY:ident, u32) => {
|
||||
($name:ident, $TY:ident, $size:ty) => {
|
||||
paste::paste! {
|
||||
|
||||
/// The timer used for managing ADC sampling.
|
||||
pub struct $name {
|
||||
timer: hal::timer::Timer<hal::stm32::[< $TY >]>,
|
||||
channels: Option<[< $TY:lower >]::Channels>,
|
||||
update_event: Option<[< $TY:lower >]::UpdateEvent>,
|
||||
}
|
||||
|
||||
impl $name {
|
||||
/// Construct the sampling timer.
|
||||
#[allow(dead_code)]
|
||||
pub fn new(mut timer: hal::timer::Timer<hal::stm32::[< $TY>]>) -> Self {
|
||||
timer.pause();
|
||||
|
||||
Self {
|
||||
timer,
|
||||
// Note(unsafe): Once these channels are taken, we guarantee that we do not modify any
|
||||
// of the underlying timer channel registers, as ownership of the channels is now
|
||||
// provided through the associated channel structures. We additionally guarantee this
|
||||
// can only be called once because there is only one Timer2 and this resource takes
|
||||
// ownership of it once instantiated.
|
||||
// Note(unsafe): Once these channels are taken, we guarantee that we do not
|
||||
// modify any of the underlying timer channel registers, as ownership of the
|
||||
// channels is now provided through the associated channel structures. We
|
||||
// additionally guarantee this can only be called once because there is only
|
||||
// one Timer2 and this resource takes ownership of it once instantiated.
|
||||
channels: unsafe { Some([< $TY:lower >]::Channels::new()) },
|
||||
update_event: unsafe { Some([< $TY:lower >]::UpdateEvent::new()) },
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the timer capture/compare channels.
|
||||
#[allow(dead_code)]
|
||||
pub fn channels(&mut self) -> [< $TY:lower >]::Channels {
|
||||
self.channels.take().unwrap()
|
||||
}
|
||||
|
||||
/// Get the timer update event.
|
||||
#[allow(dead_code)]
|
||||
pub fn update_event(&mut self) -> [< $TY:lower >]::UpdateEvent {
|
||||
self.update_event.take().unwrap()
|
||||
}
|
||||
|
||||
/// Get the period of the timer.
|
||||
#[allow(dead_code)]
|
||||
pub fn get_period(&self) -> u32 {
|
||||
pub fn get_period(&self) -> $size {
|
||||
let regs = unsafe { &*hal::stm32::$TY::ptr() };
|
||||
regs.arr.read().arr().bits()
|
||||
}
|
||||
|
||||
/// Manually set the period of the timer.
|
||||
#[allow(dead_code)]
|
||||
pub fn set_period_ticks(&mut self, period: u32) {
|
||||
pub fn set_period_ticks(&mut self, period: $size) {
|
||||
let regs = unsafe { &*hal::stm32::$TY::ptr() };
|
||||
regs.arr.write(|w| w.arr().bits(period));
|
||||
}
|
||||
|
||||
/// Clock the timer from an external source.
|
||||
///
|
||||
/// # Note:
|
||||
/// * Currently, only an external source applied to ETR is supported.
|
||||
///
|
||||
/// # Args
|
||||
/// * `prescaler` - The prescaler to use for the external source.
|
||||
#[allow(dead_code)]
|
||||
pub fn set_external_clock(&mut self, prescaler: Prescaler) {
|
||||
let regs = unsafe { &*hal::stm32::$TY::ptr() };
|
||||
regs.smcr.modify(|_, w| w.etps().bits(prescaler as u8).ece().set_bit());
|
||||
|
||||
// Clear any other prescaler configuration.
|
||||
regs.psc.write(|w| w.psc().bits(0));
|
||||
}
|
||||
|
||||
/// Start the timer.
|
||||
pub fn start(mut self) {
|
||||
#[allow(dead_code)]
|
||||
pub fn start(&mut self) {
|
||||
// Force a refresh of the frequency settings.
|
||||
self.timer.apply_freq();
|
||||
|
||||
self.timer.reset_counter();
|
||||
|
||||
self.timer.resume();
|
||||
}
|
||||
|
||||
/// Configure the timer peripheral to generate a trigger based on the provided
|
||||
/// source.
|
||||
#[allow(dead_code)]
|
||||
pub fn generate_trigger(&mut self, source: TriggerGenerator) {
|
||||
let regs = unsafe { &*hal::stm32::$TY::ptr() };
|
||||
// Note(unsafe) The TriggerGenerator enumeration is specified such that this is
|
||||
// always in range.
|
||||
regs.cr2.modify(|_, w| w.mms().bits(source as u8));
|
||||
|
||||
}
|
||||
|
||||
/// Select a trigger source for the timer peripheral.
|
||||
#[allow(dead_code)]
|
||||
pub fn set_trigger_source(&mut self, source: TriggerSource) {
|
||||
let regs = unsafe { &*hal::stm32::$TY::ptr() };
|
||||
// Note(unsafe) The TriggerSource enumeration is specified such that this is
|
||||
// always in range.
|
||||
regs.smcr.modify(|_, w| unsafe { w.ts().bits(source as u8) } );
|
||||
}
|
||||
}
|
||||
|
||||
pub mod [< $TY:lower >] {
|
||||
pub use hal::stm32::tim2::ccmr1_input::{CC1S_A, CC2S_A};
|
||||
pub use hal::stm32::tim2::ccmr2_input::{CC3S_A, CC4S_A};
|
||||
|
||||
use stm32h7xx_hal as hal;
|
||||
use hal::dma::{traits::TargetAddress, PeripheralToMemory, dma::DMAReq};
|
||||
use hal::stm32::$TY;
|
||||
|
||||
pub struct UpdateEvent {}
|
||||
|
||||
impl UpdateEvent {
|
||||
/// Create a new update event
|
||||
///
|
||||
/// Note(unsafe): This is only safe to call once.
|
||||
#[allow(dead_code)]
|
||||
pub unsafe fn new() -> Self {
|
||||
Self {}
|
||||
}
|
||||
|
||||
/// Enable DMA requests upon timer updates.
|
||||
#[allow(dead_code)]
|
||||
pub fn listen_dma(&self) {
|
||||
// Note(unsafe): We perform only atomic operations on the timer registers.
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
regs.dier.modify(|_, w| w.ude().set_bit());
|
||||
}
|
||||
|
||||
/// Trigger a DMA request manually
|
||||
#[allow(dead_code)]
|
||||
pub fn trigger(&self) {
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
regs.egr.write(|w| w.ug().set_bit());
|
||||
}
|
||||
}
|
||||
|
||||
/// The channels representing the timer.
|
||||
pub struct Channels {
|
||||
pub ch1: Channel1,
|
||||
@ -76,6 +185,7 @@ macro_rules! timer_channels {
|
||||
/// Construct a new set of channels.
|
||||
///
|
||||
/// Note(unsafe): This is only safe to call once.
|
||||
#[allow(dead_code)]
|
||||
pub unsafe fn new() -> Self {
|
||||
Self {
|
||||
ch1: Channel1::new(),
|
||||
@ -86,15 +196,15 @@ macro_rules! timer_channels {
|
||||
}
|
||||
}
|
||||
|
||||
timer_channels!(1, $TY, ccmr1);
|
||||
timer_channels!(2, $TY, ccmr1);
|
||||
timer_channels!(3, $TY, ccmr2);
|
||||
timer_channels!(4, $TY, ccmr2);
|
||||
timer_channels!(1, $TY, ccmr1, $size);
|
||||
timer_channels!(2, $TY, ccmr1, $size);
|
||||
timer_channels!(3, $TY, ccmr2, $size);
|
||||
timer_channels!(4, $TY, ccmr2, $size);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
($index:expr, $TY:ty, $ccmrx:expr) => {
|
||||
($index:expr, $TY:ty, $ccmrx:expr, $size:ty) => {
|
||||
paste::paste! {
|
||||
/// A capture/compare channel of the timer.
|
||||
pub struct [< Channel $index >] {}
|
||||
@ -107,6 +217,7 @@ macro_rules! timer_channels {
|
||||
///
|
||||
/// Note(unsafe): This function must only be called once. Once constructed, the
|
||||
/// constructee guarantees to never modify the timer channel.
|
||||
#[allow(dead_code)]
|
||||
unsafe fn new() -> Self {
|
||||
Self {}
|
||||
}
|
||||
@ -123,9 +234,10 @@ macro_rules! timer_channels {
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
#[allow(dead_code)]
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
pub fn to_output_compare(&self, value: $size) {
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
let arr = regs.arr.read().bits() as $size;
|
||||
assert!(value <= arr);
|
||||
regs.[< ccr $index >].write(|w| w.ccr().bits(value));
|
||||
regs.[< $ccmrx _output >]()
|
||||
.modify(|_, w| unsafe { w.[< cc $index s >]().bits(0) });
|
||||
@ -136,9 +248,12 @@ macro_rules! timer_channels {
|
||||
/// # Args
|
||||
/// * `input` - The input source for the input capture event.
|
||||
#[allow(dead_code)]
|
||||
pub fn into_input_capture(self, input: hal::stm32::tim2::[< $ccmrx _input >]::[< CC $index S_A >]) -> [< Channel $index InputCapture >]{
|
||||
pub fn into_input_capture(self, input: super::CaptureTrigger) -> [< Channel $index InputCapture >]{
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
regs.[< $ccmrx _input >]().modify(|_, w| w.[< cc $index s>]().variant(input));
|
||||
|
||||
// Note(unsafe): The bit configuration is guaranteed to be valid by the
|
||||
// CaptureTrigger enum definition.
|
||||
regs.[< $ccmrx _input >]().modify(|_, w| unsafe { w.[< cc $index s>]().bits(input as u8) });
|
||||
|
||||
[< Channel $index InputCapture >] {}
|
||||
}
|
||||
@ -147,7 +262,7 @@ macro_rules! timer_channels {
|
||||
impl [< Channel $index InputCapture >] {
|
||||
/// Get the latest capture from the channel.
|
||||
#[allow(dead_code)]
|
||||
pub fn latest_capture(&mut self) -> Result<Option<u32>, ()> {
|
||||
pub fn latest_capture(&mut self) -> Result<Option<$size>, ()> {
|
||||
// Note(unsafe): This channel owns all access to the specific timer channel.
|
||||
// Only atomic operations on completed on the timer registers.
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
@ -204,13 +319,13 @@ macro_rules! timer_channels {
|
||||
// is safe as it is only completed once per channel and each DMA request is allocated to
|
||||
// each channel as the owner.
|
||||
unsafe impl TargetAddress<PeripheralToMemory> for [< Channel $index InputCapture >] {
|
||||
type MemSize = u32;
|
||||
type MemSize = $size;
|
||||
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::[< $TY _CH $index >]as u8);
|
||||
|
||||
fn address(&self) -> u32 {
|
||||
fn address(&self) -> usize {
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
®s.[<ccr $index >] as *const _ as u32
|
||||
®s.[<ccr $index >] as *const _ as usize
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -219,3 +334,4 @@ macro_rules! timer_channels {
|
||||
|
||||
timer_channels!(SamplingTimer, TIM2, u32);
|
||||
timer_channels!(TimestampTimer, TIM5, u32);
|
||||
timer_channels!(PounderTimestampTimer, TIM8, u16);
|
||||
|
Loading…
Reference in New Issue
Block a user