Refactoring timer channels to macros, adding safety notes

This commit is contained in:
Ryan Summers 2020-11-23 14:30:29 +01:00
parent 91809cf255
commit 11e6688a14
5 changed files with 150 additions and 133 deletions

1
Cargo.lock generated
View File

@ -474,6 +474,7 @@ dependencies = [
"nb 1.0.0",
"panic-halt",
"panic-semihosting",
"paste",
"serde",
"serde-json-core",
"smoltcp",

View File

@ -40,6 +40,7 @@ embedded-hal = "0.2.4"
nb = "1.0.0"
asm-delay = "0.9.0"
enum-iterator = "0.6.0"
paste = "1"
[dependencies.mcp23017]
git = "https://github.com/mrd0ll4r/mcp23017.git"

View File

@ -42,13 +42,18 @@ static mut ADC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
/// SPI2 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI2 TX FIFO
/// whenever the tim2 update dma request occurs.
struct SPI2 {}
struct SPI2 {
_channel: sampling_timer::tim2::Channel1,
}
impl SPI2 {
pub fn new() -> Self {
Self {}
pub fn new(_channel: sampling_timer::tim2::Channel1) -> Self {
Self { _channel }
}
}
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
// may only be used if ownership of the timer2 channel 1 compare channel is assured, which is
// ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
/// SPI2 is configured to operate using 16-bit transfer words.
type MemSize = u16;
@ -59,6 +64,8 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
/// Whenever the DMA request occurs, it should write into SPI2's TX FIFO to start a DMA
/// transfer.
fn address(&self) -> u32 {
// Note(unsafe): It is assumed that SPI2 is owned by another DMA transfer and this DMA is
// only used for the transmit-half of DMA.
let regs = unsafe { &*hal::stm32::SPI2::ptr() };
&regs.txdr as *const _ as u32
}
@ -66,13 +73,18 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
/// SPI3 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI3 TX FIFO
/// whenever the tim2 update dma request occurs.
struct SPI3 {}
struct SPI3 {
_channel: sampling_timer::tim2::Channel2,
}
impl SPI3 {
pub fn new() -> Self {
Self {}
pub fn new(_channel: sampling_timer::tim2::Channel2) -> Self {
Self { _channel }
}
}
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
// may only be used if ownership of the timer2 channel 2 compare channel is assured, which is
// ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
/// SPI3 is configured to operate using 16-bit transfer words.
type MemSize = u16;
@ -83,6 +95,8 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
/// Whenever the DMA request occurs, it should write into SPI3's TX FIFO to start a DMA
/// transfer.
fn address(&self) -> u32 {
// Note(unsafe): It is assumed that SPI3 is owned by another DMA transfer and this DMA is
// only used for the transmit-half of DMA.
let regs = unsafe { &*hal::stm32::SPI3::ptr() };
&regs.txdr as *const _ as u32
}
@ -144,7 +158,7 @@ impl Adc0Input {
spi: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream0<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream1<hal::stm32::DMA1>,
trigger_channel: sampling_timer::Timer2Channel1,
trigger_channel: sampling_timer::tim2::Channel1,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
@ -164,7 +178,10 @@ impl Adc0Input {
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init(
trigger_stream,
SPI2::new(),
SPI2::new(trigger_channel),
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never
// actually modified. It technically only needs to be immutably borrowed, but the
// current HAL API only supports mutable borrows.
unsafe { &mut SPI_START },
None,
trigger_config,
@ -192,6 +209,8 @@ impl Adc0Input {
Transfer::init(
data_stream,
spi,
// Note(unsafe): The ADC0_BUF0 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
unsafe { &mut ADC0_BUF0 },
None,
data_config,
@ -210,6 +229,8 @@ impl Adc0Input {
trigger_transfer.start(|_| {});
Self {
// Note(unsafe): The ADC0_BUF1 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC0_BUF1) },
transfer: data_transfer,
_trigger_transfer: trigger_transfer,
@ -265,7 +286,7 @@ impl Adc1Input {
spi: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream2<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream3<hal::stm32::DMA1>,
trigger_channel: sampling_timer::Timer2Channel2,
trigger_channel: sampling_timer::tim2::Channel2,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
@ -285,7 +306,7 @@ impl Adc1Input {
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init(
trigger_stream,
SPI3::new(),
SPI3::new(trigger_channel),
unsafe { &mut SPI_START },
None,
trigger_config,
@ -314,6 +335,8 @@ impl Adc1Input {
Transfer::init(
data_stream,
spi,
// Note(unsafe): The ADC1_BUF0 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
unsafe { &mut ADC1_BUF0 },
None,
data_config,
@ -332,6 +355,8 @@ impl Adc1Input {
trigger_transfer.start(|_| {});
Self {
// Note(unsafe): The ADC1_BUF1 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC1_BUF1) },
transfer: data_transfer,
_trigger_transfer: trigger_transfer,

View File

@ -25,13 +25,18 @@ static mut DAC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
static mut DAC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
/// SPI4 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI4 TX FIFO
struct SPI4 {}
struct SPI4 {
_channel: sampling_timer::tim2::Channel3,
}
impl SPI4 {
pub fn new() -> Self {
Self {}
pub fn new(_channel: sampling_timer::tim2::Channel3) -> Self {
Self { _channel }
}
}
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
// Additionally, it is only safe if the SPI TX functionality is never used, which is managed by the
// Dac0Output.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
/// SPI2 is configured to operate using 16-bit transfer words.
type MemSize = u16;
@ -41,19 +46,25 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
/// Whenever the DMA request occurs, it should write into SPI4's TX FIFO.
fn address(&self) -> u32 {
// Note(unsafe): This is only safe as long as no other users write to the SPI TX FIFO.
let regs = unsafe { &*hal::stm32::SPI4::ptr() };
&regs.txdr as *const _ as u32
}
}
/// SPI5 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI5 TX FIFO
struct SPI5 {}
struct SPI5 {
_channel: sampling_timer::tim2::Channel4,
}
impl SPI5 {
pub fn new() -> Self {
Self {}
pub fn new(_channel: sampling_timer::tim2::Channel4) -> Self {
Self { _channel }
}
}
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
// Additionally, it is only safe if the SPI TX functionality is never used, which is managed by the
// Dac1Output.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
/// SPI5 is configured to operate using 16-bit transfer words.
type MemSize = u16;
@ -63,6 +74,7 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
/// Whenever the DMA request occurs, it should write into SPI5's TX FIFO
fn address(&self) -> u32 {
// Note(unsafe): This is only safe as long as no other users write to the SPI TX FIFO.
let regs = unsafe { &*hal::stm32::SPI5::ptr() };
&regs.txdr as *const _ as u32
}
@ -98,6 +110,7 @@ impl DacOutputs {
/// Represents data associated with DAC0.
pub struct Dac0Output {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
_spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
transfer: Transfer<
hal::dma::dma::Stream4<hal::stm32::DMA1>,
@ -118,7 +131,7 @@ impl Dac0Output {
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>,
trigger_channel: sampling_timer::Timer2Channel3,
trigger_channel: sampling_timer::tim2::Channel3,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
@ -133,7 +146,8 @@ impl Dac0Output {
// Construct the trigger stream to write from memory to the peripheral.
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
stream,
SPI4::new(),
SPI4::new(trigger_channel),
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
unsafe { &mut DAC0_BUF0 },
None,
trigger_config,
@ -153,6 +167,7 @@ impl Dac0Output {
Self {
transfer,
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
next_buffer: unsafe { Some(&mut DAC0_BUF1) },
_spi: spi,
first_transfer: true,
@ -189,6 +204,7 @@ impl Dac0Output {
/// Represents the data output stream from DAC1.
pub struct Dac1Output {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
_spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
transfer: Transfer<
hal::dma::dma::Stream5<hal::stm32::DMA1>,
@ -209,7 +225,7 @@ impl Dac1Output {
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
stream: hal::dma::dma::Stream5<hal::stm32::DMA1>,
trigger_channel: sampling_timer::Timer2Channel4,
trigger_channel: sampling_timer::tim2::Channel4,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
@ -225,7 +241,8 @@ impl Dac1Output {
// Construct the stream to write from memory to the peripheral.
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
stream,
SPI5::new(),
SPI5::new(trigger_channel),
// Note(unsafe): This buffer is only used once and provided to the transfer.
unsafe { &mut DAC1_BUF0 },
None,
trigger_config,
@ -244,6 +261,7 @@ impl Dac1Output {
spi.inner().cr1.modify(|_, w| w.cstart().started());
Self {
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
next_buffer: unsafe { Some(&mut DAC1_BUF1) },
transfer,
_spi: spi,

View File

@ -1,12 +1,10 @@
///! The sampling timer is used for managing ADC sampling and external reference timestamping.
use super::hal;
pub use hal::stm32::tim2::ccmr2_input::CC4S_A;
/// The timer used for managing ADC sampling.
pub struct SamplingTimer {
timer: hal::timer::Timer<hal::stm32::TIM2>,
channels: Option<TimerChannels>,
channels: Option<tim2::Channels>,
}
impl SamplingTimer {
@ -16,12 +14,17 @@ impl SamplingTimer {
Self {
timer,
channels: Some(TimerChannels::new()),
// Note(unsafe): Once these channels are taken, we guarantee that we do not modify any
// of the underlying timer channel registers, as ownership of the channels is now
// provided through the associated channel structures. We additionally guarantee this
// can only be called once because there is only one Timer2 and this resource takes
// ownership of it once instantiated.
channels: unsafe { Some(tim2::Channels::new()) },
}
}
/// Get the timer capture/compare channels.
pub fn channels(&mut self) -> TimerChannels {
pub fn channels(&mut self) -> tim2::Channels {
self.channels.take().unwrap()
}
@ -32,116 +35,85 @@ impl SamplingTimer {
}
}
/// The capture/compare channels for the sampling timer.
///
/// # Note
/// This should not be instantiated directly.
pub struct TimerChannels {
pub ch1: Timer2Channel1,
pub ch2: Timer2Channel2,
pub ch3: Timer2Channel3,
pub ch4: Timer2Channel4,
macro_rules! timer_channel {
($name:ident, $TY:ty, ($ccxde:expr, $ccrx:expr, $ccmrx_output:expr, $ccxs:expr)) => {
pub struct $name {}
paste::paste! {
impl $name {
/// Construct a new timer channel.
///
/// Note(unsafe): This function must only be called once. Once constructed, the
/// constructee guarantees to never modify the timer channel.
unsafe fn new() -> Self {
Self {}
}
/// Allow CH4 to generate DMA requests.
pub fn listen_dma(&self) {
let regs = unsafe { &*<$TY>::ptr() };
regs.dier.modify(|_, w| w.[< $ccxde >]().set_bit());
}
/// Operate CH2 as an output-compare.
///
/// # Args
/// * `value` - The value to compare the sampling timer's counter against.
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*<$TY>::ptr() };
assert!(value <= regs.arr.read().bits());
regs.[< $ccrx >].write(|w| w.ccr().bits(value));
regs.[< $ccmrx_output >]()
.modify(|_, w| unsafe { w.[< $ccxs >]().bits(0) });
}
}
}
};
}
impl TimerChannels {
fn new() -> Self {
pub mod tim2 {
use stm32h7xx_hal as hal;
/// The channels representing the timer.
pub struct Channels {
pub ch1: Channel1,
pub ch2: Channel2,
pub ch3: Channel3,
pub ch4: Channel4,
}
impl Channels {
/// Construct a new set of channels.
///
/// Note(unsafe): This is only safe to call once.
pub unsafe fn new() -> Self {
Self {
ch1: Timer2Channel1 {},
ch2: Timer2Channel2 {},
ch3: Timer2Channel3 {},
ch4: Timer2Channel4 {},
ch1: Channel1::new(),
ch2: Channel2::new(),
ch3: Channel3::new(),
ch4: Channel4::new(),
}
}
}
/// Representation of CH1 of TIM2.
pub struct Timer2Channel1 {}
impl Timer2Channel1 {
/// Allow CH1 to generate DMA requests.
pub fn listen_dma(&self) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.dier.modify(|_, w| w.cc1de().set_bit());
}
/// Operate CH1 as an output-compare.
///
/// # Args
/// * `value` - The value to compare the sampling timer's counter against.
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
assert!(value <= regs.arr.read().bits());
regs.ccr1.write(|w| w.ccr().bits(value));
regs.ccmr1_output()
.modify(|_, w| unsafe { w.cc1s().bits(0) });
}
}
/// Representation of CH2 of TIM2.
pub struct Timer2Channel2 {}
impl Timer2Channel2 {
/// Allow CH2 to generate DMA requests.
pub fn listen_dma(&self) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.dier.modify(|_, w| w.cc2de().set_bit());
}
/// Operate CH2 as an output-compare.
///
/// # Args
/// * `value` - The value to compare the sampling timer's counter against.
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
assert!(value <= regs.arr.read().bits());
regs.ccr2.write(|w| w.ccr().bits(value));
regs.ccmr1_output()
.modify(|_, w| unsafe { w.cc2s().bits(0) });
}
}
/// Representation of CH3 of TIM2.
pub struct Timer2Channel3 {}
impl Timer2Channel3 {
/// Allow CH4 to generate DMA requests.
pub fn listen_dma(&self) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.dier.modify(|_, w| w.cc3de().set_bit());
}
/// Operate CH2 as an output-compare.
///
/// # Args
/// * `value` - The value to compare the sampling timer's counter against.
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
assert!(value <= regs.arr.read().bits());
regs.ccr3.write(|w| w.ccr().bits(value));
regs.ccmr2_output()
.modify(|_, w| unsafe { w.cc3s().bits(0) });
}
}
/// Representation of CH4 of TIM2.
pub struct Timer2Channel4 {}
impl Timer2Channel4 {
/// Allow CH4 to generate DMA requests.
pub fn listen_dma(&self) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
regs.dier.modify(|_, w| w.cc4de().set_bit());
}
/// Operate CH2 as an output-compare.
///
/// # Args
/// * `value` - The value to compare the sampling timer's counter against.
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
assert!(value <= regs.arr.read().bits());
regs.ccr4.write(|w| w.ccr().bits(value));
regs.ccmr2_output()
.modify(|_, w| unsafe { w.cc4s().bits(0) });
}
}
timer_channel!(
Channel1,
hal::stm32::TIM2,
(cc1de, ccr1, ccmr1_output, cc1s)
);
timer_channel!(
Channel2,
hal::stm32::TIM2,
(cc2de, ccr2, ccmr1_output, cc1s)
);
timer_channel!(
Channel3,
hal::stm32::TIM2,
(cc3de, ccr3, ccmr2_output, cc3s)
);
timer_channel!(
Channel4,
hal::stm32::TIM2,
(cc4de, ccr4, ccmr2_output, cc4s)
);
}