ionpak-thermostat/firmware/src/ethmac.rs

448 lines
15 KiB
Rust

use core::{slice, cmp};
use cortex_m::{self, asm::delay};
use tm4c129x;
use smoltcp::Result;
use smoltcp::time::Instant;
use smoltcp::wire::EthernetAddress;
use smoltcp::phy;
const EPHY_BMCR: u8 = 0x00; // Ethernet PHY Basic Mode Control
#[allow(dead_code)]
const EPHY_BMSR: u8 = 0x01; // Ethernet PHY Basic Mode Status
const EPHY_ID1: u8 = 0x02; // Ethernet PHY Identifier Register 1
const EPHY_ID2: u8 = 0x03; // Ethernet PHY Identifier Register 2
const EPHY_REGCTL: u8 = 0x0D; // Ethernet PHY Register Control
const EPHY_ADDAR: u8 = 0x0E; // Ethernet PHY Address or Data
const EPHY_LEDCFG: u8 = 0x25; // Ethernet PHY LED Configuration
// Transmit DMA descriptor flags
const EMAC_TDES0_OWN: u32 = 0x80000000; // Indicates that the descriptor is owned by the DMA
const EMAC_TDES0_LS: u32 = 0x20000000; // Last Segment
const EMAC_TDES0_FS: u32 = 0x10000000; // First Segment
const EMAC_TDES0_TCH: u32 = 0x00100000; // Second Address Chained
#[allow(dead_code)]
const EMAC_TDES1_TBS1: u32 = 0x00001FFF; // Transmit Buffer 1 Size
// Receive DMA descriptor flags
const EMAC_RDES0_OWN: u32 = 0x80000000; // indicates that the descriptor is owned by the DMA
const EMAC_RDES0_FL: u32 = 0x3FFF0000; // Frame Length
const EMAC_RDES0_ES: u32 = 0x00008000; // Error Summary
const EMAC_RDES0_FS: u32 = 0x00000200; // First Descriptor
const EMAC_RDES0_LS: u32 = 0x00000100; // Last Descriptor
const EMAC_RDES1_RCH: u32 = 0x00004000; // Second Address Chained
const EMAC_RDES1_RBS1: u32 = 0x00001FFF; // Receive Buffer 1 Size
const ETH_DESC_U32_SIZE: usize = 8;
const ETH_TX_BUFFER_COUNT: usize = 2;
const ETH_TX_BUFFER_SIZE: usize = 1536;
const ETH_RX_BUFFER_COUNT: usize = 3;
const ETH_RX_BUFFER_SIZE: usize = 1536;
fn phy_read(reg_addr: u8) -> u16 {
cortex_m::interrupt::free(|_cs| {
let emac0 = unsafe { &*tm4c129x::EMAC0::ptr() };
// Make sure the MII is idle
while emac0.miiaddr.read().miib().bit() {};
// Tell the MAC to read the given PHY register
unsafe {
emac0.miiaddr.write(|w| {
w.cr()._100_150()
.mii().bits(reg_addr & 0x1F)
.miib().bit(true)
});
}
// Wait for the read to complete
while emac0.miiaddr.read().miib().bit() {};
emac0.miidata.read().data().bits()
})
}
fn phy_write(reg_addr: u8, reg_data: u16) {
cortex_m::interrupt::free(|_cs| {
let emac0 = unsafe { &*tm4c129x::EMAC0::ptr() };
// Make sure the MII is idle
while emac0.miiaddr.read().miib().bit() {};
unsafe {
emac0.miidata.write(|w| {
w.data().bits(reg_data)
});
// Tell the MAC to write the given PHY register
emac0.miiaddr.write(|w| {
w.cr()._100_150()
.mii().bits(reg_addr & 0x1F)
.miiw().bit(true)
.miib().bit(true)
});
}
// Wait for the read to complete
while emac0.miiaddr.read().miib().bit() {};
})
}
// Writes a value to an extended PHY register in MMD address space
fn phy_write_ext(reg_addr: u8, reg_data: u16) {
phy_write(EPHY_REGCTL, 0x001F); // set address (datasheet page 1612)
phy_write(EPHY_ADDAR, reg_addr as u16);
phy_write(EPHY_REGCTL, 0x401F); // set write mode
phy_write(EPHY_ADDAR, reg_data);
}
struct RxRing {
desc_buf: [u32; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
cur_desc: usize,
counter: u32,
pkt_buf: [u8; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
}
impl RxRing {
fn new() -> RxRing {
RxRing {
desc_buf: [0; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
cur_desc: 0,
counter: 0,
pkt_buf: [0; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
}
}
fn init(&mut self) {
// Initialize RX DMA descriptors
for x in 0..ETH_RX_BUFFER_COUNT {
let p = x * ETH_DESC_U32_SIZE;
let r = x * ETH_RX_BUFFER_SIZE;
// The descriptor is initially owned by the DMA
self.desc_buf[p + 0] = EMAC_RDES0_OWN;
// Use chain structure rather than ring structure
self.desc_buf[p + 1] =
EMAC_RDES1_RCH | ((ETH_RX_BUFFER_SIZE as u32) & EMAC_RDES1_RBS1);
// Receive buffer address
self.desc_buf[p + 2] = (&self.pkt_buf[r] as *const u8) as u32;
// Next descriptor address
if x != ETH_RX_BUFFER_COUNT - 1 {
self.desc_buf[p + 3] =
(&self.desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32;
} else {
self.desc_buf[p + 3] =
(&self.desc_buf[0] as *const u32) as u32;
}
// Extended status
self.desc_buf[p + 4] = 0;
// Reserved field
self.desc_buf[p + 5] = 0;
// Transmit frame time stamp
self.desc_buf[p + 6] = 0;
self.desc_buf[p + 7] = 0;
}
}
fn buf_owned(&self) -> bool {
self.desc_buf[self.cur_desc + 0] & EMAC_RDES0_OWN == 0
}
fn buf_valid(&self) -> bool {
self.desc_buf[self.cur_desc + 0] &
(EMAC_RDES0_FS | EMAC_RDES0_LS | EMAC_RDES0_ES) ==
(EMAC_RDES0_FS | EMAC_RDES0_LS)
}
unsafe fn buf_as_slice<'a>(&self) -> &'a mut [u8] {
let len = (self.desc_buf[self.cur_desc + 0] & EMAC_RDES0_FL) >> 16;
let len = cmp::min(len as usize, ETH_RX_BUFFER_SIZE);
let addr = self.desc_buf[self.cur_desc + 2] as *mut u8;
slice::from_raw_parts_mut(addr, len)
}
fn buf_release(&mut self) {
self.cur_desc += ETH_DESC_U32_SIZE;
if self.cur_desc == self.desc_buf.len() {
self.cur_desc = 0;
}
self.counter += 1;
self.desc_buf[self.cur_desc + 0] = EMAC_RDES0_OWN;
}
}
struct TxRing {
desc_buf: [u32; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
cur_desc: usize,
counter: u32,
pkt_buf: [u8; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
}
impl TxRing {
fn new() -> TxRing {
TxRing {
desc_buf: [0; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
cur_desc: 0,
counter: 0,
pkt_buf: [0; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
}
}
fn init(&mut self) {
// Initialize TX DMA descriptors
for x in 0..ETH_TX_BUFFER_COUNT {
let p = x * ETH_DESC_U32_SIZE;
let r = x * ETH_TX_BUFFER_SIZE;
// Initialize transmit flags
self.desc_buf[p + 0] = 0;
// Initialize transmit buffer size
self.desc_buf[p + 1] = 0;
// Transmit buffer address
self.desc_buf[p + 2] = (&self.pkt_buf[r] as *const u8) as u32;
// Next descriptor address
if x != ETH_TX_BUFFER_COUNT - 1 {
self.desc_buf[p + 3] =
(&self.desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32;
} else {
self.desc_buf[p + 3] =
(&self.desc_buf[0] as *const u32) as u32;
}
// Reserved fields
self.desc_buf[p + 4] = 0;
self.desc_buf[p + 5] = 0;
// Transmit frame time stamp
self.desc_buf[p + 6] = 0;
self.desc_buf[p + 7] = 0;
}
}
fn buf_owned(&self) -> bool {
self.desc_buf[self.cur_desc + 0] & EMAC_TDES0_OWN == 0
}
unsafe fn buf_as_slice<'a>(&mut self, len: usize) -> &'a mut [u8] {
let len = cmp::min(len, ETH_TX_BUFFER_SIZE);
self.desc_buf[self.cur_desc + 1] = len as u32;
let addr = self.desc_buf[self.cur_desc + 2] as *mut u8;
slice::from_raw_parts_mut(addr, len)
}
fn buf_release(&mut self) {
self.desc_buf[self.cur_desc + 0] =
EMAC_TDES0_OWN | EMAC_TDES0_LS | EMAC_TDES0_FS | EMAC_TDES0_TCH;
cortex_m::interrupt::free(|_cs| {
let emac0 = unsafe { &*tm4c129x::EMAC0::ptr() };
// Clear TU flag to resume processing
emac0.dmaris.write(|w| w.tu().bit(true));
// Instruct the DMA to poll the transmit descriptor list
unsafe { emac0.txpolld.write(|w| w.tpd().bits(0)); }
});
self.cur_desc += ETH_DESC_U32_SIZE;
if self.cur_desc == self.desc_buf.len() {
self.cur_desc = 0;
}
self.counter += 1;
}
}
pub struct Device {
rx: RxRing,
tx: TxRing,
}
impl Device {
pub fn new() -> Device {
Device {
rx: RxRing::new(),
tx: TxRing::new(),
}
}
// After `init` is called, `Device` shall not be moved.
pub unsafe fn init(&mut self, mac: EthernetAddress) {
self.rx.init();
self.tx.init();
cortex_m::interrupt::free(|_cs| {
let sysctl = &*tm4c129x::SYSCTL::ptr();
let emac0 = &*tm4c129x::EMAC0::ptr();
sysctl.rcgcemac.modify(|_, w| w.r0().bit(true)); // Bring up MAC
sysctl.sremac.modify(|_, w| w.r0().bit(true)); // Activate MAC reset
delay(16);
sysctl.sremac.modify(|_, w| w.r0().bit(false)); // Dectivate MAC reset
sysctl.rcgcephy.modify(|_, w| w.r0().bit(true)); // Bring up PHY
sysctl.srephy.modify(|_, w| w.r0().bit(true)); // Activate PHY reset
delay(16);
sysctl.srephy.modify(|_, w| w.r0().bit(false)); // Dectivate PHY reset
while !sysctl.premac.read().r0().bit() {} // Wait for the MAC to come out of reset
while !sysctl.prephy.read().r0().bit() {} // Wait for the PHY to come out of reset
delay(10000);
emac0.dmabusmod.modify(|_, w| w.swr().bit(true)); // Reset MAC DMA
while emac0.dmabusmod.read().swr().bit() {} // Wait for the MAC DMA to come out of reset
delay(1000);
emac0.miiaddr.write(|w| w.cr()._100_150()); // Set the MII CSR clock speed.
// Checking PHY
if (phy_read(EPHY_ID1) != 0x2000) | (phy_read(EPHY_ID2) != 0xA221) {
panic!("PHY ID error!");
}
// Reset PHY transceiver
phy_write(EPHY_BMCR, 1); // Initiate MII reset
while (phy_read(EPHY_BMCR) & 1) == 1 {}; // Wait for the reset to be completed
// Configure PHY LEDs
phy_write_ext(EPHY_LEDCFG, 0x0008); // LED0 Link OK/Blink on TX/RX Activity
// Tell the PHY to start an auto-negotiation cycle
phy_write(EPHY_BMCR, 0b00010010_00000000); // ANEN and RESTARTAN
// Set the DMA operation mode
emac0.dmaopmode.write(|w|
w.rsf().bit(true) // Receive Store and Forward
.tsf().bit(true) // Transmit Store and Forward
.ttc()._64() // Transmit Threshold Control
.rtc()._64() // Receive Threshold Control
);
// Set the bus mode register.
emac0.dmabusmod.write(|w|
w.atds().bit(true)
.aal().bit(true) // Address Aligned Beats
.usp().bit(true) // Use Separate Programmable Burst Length ???
.rpbl().bits(1) // RX DMA Programmable Burst Length
.pbl().bits(1) // Programmable Burst Length
.pr().bits(0) // Priority Ratio 1:1
);
// Disable all the MMC interrupts as these are enabled by default at reset.
emac0.mmcrxim.write(|w| w.bits(0xFFFFFFFF));
emac0.mmctxim.write(|w| w.bits(0xFFFFFFFF));
// Set MAC configuration options
emac0.cfg.write(|w|
w.dupm().bit(true) // MAC operates in full-duplex mode
.ipc().bit(true) // Checksum Offload Enable
.prelen()._7() // 7 bytes of preamble
.ifg()._96() // 96 bit times
.bl()._1024() // Back-Off Limit 1024
.ps().bit(true) // ?
);
// Set the maximum receive frame size
emac0.wdogto.write(|w|
w.bits(0) // ??? no use watchdog
);
// Set the MAC address
emac0.addr0l.write(|w|
w.addrlo().bits( mac.0[0] as u32 |
((mac.0[1] as u32) << 8) |
((mac.0[2] as u32) << 16) |
((mac.0[3] as u32) << 24))
);
emac0.addr0h.write(|w|
w.addrhi().bits( mac.0[4] as u16 |
((mac.0[5] as u16) << 8))
);
// Set MAC filtering options (?)
emac0.framefltr.write(|w|
w.hpf().bit(true) // Hash or Perfect Filter
//.hmc().bit(true) // Hash Multicast ???
.pm().bit(true) // Pass All Multicast
);
// Initialize hash table
emac0.hashtbll.write(|w| w.htl().bits(0));
emac0.hashtblh.write(|w| w.hth().bits(0));
emac0.flowctl.write(|w| w.bits(0)); // Disable flow control ???
emac0.txdladdr.write(|w| /*unsafe*/ {
w.bits((&mut self.tx.desc_buf[0] as *mut u32) as u32)
});
emac0.rxdladdr.write(|w| /*unsafe*/ {
w.bits((&mut self.rx.desc_buf[0] as *mut u32) as u32)
});
// Manage MAC transmission and reception
emac0.cfg.modify(|_, w|
w.re().bit(true) // Receiver Enable
.te().bit(true) // Transmiter Enable
);
// Manage DMA transmission and reception
emac0.dmaopmode.modify(|_, w|
w.sr().bit(true) // Start Receive
.st().bit(true) // Start Transmit
);
});
}
}
impl<'a, 'b> phy::Device<'a> for &'b mut Device {
type RxToken = RxToken<'a>;
type TxToken = TxToken<'a>;
fn capabilities(&self) -> phy::DeviceCapabilities {
let mut capabilities = phy::DeviceCapabilities::default();
capabilities.max_transmission_unit = 1500;
capabilities.max_burst_size = Some(ETH_RX_BUFFER_COUNT);
capabilities
}
fn receive(&mut self) -> Option<(RxToken, TxToken)> {
// Skip all queued packets with errors.
while self.rx.buf_owned() && !self.rx.buf_valid() {
self.rx.buf_release()
}
if !(self.rx.buf_owned() && self.tx.buf_owned()) {
return None
}
Some((RxToken(&mut self.rx), TxToken(&mut self.tx)))
}
fn transmit(&mut self) -> Option<TxToken> {
if !self.tx.buf_owned() {
return None
}
Some(TxToken(&mut self.tx))
}
}
pub struct RxToken<'a>(&'a mut RxRing);
impl<'a> phy::RxToken for RxToken<'a> {
fn consume<R, F>(self, _timestamp: Instant, f: F) -> Result<R>
where F: FnOnce(&mut [u8]) -> Result<R> {
let result = f(unsafe { self.0.buf_as_slice() });
self.0.buf_release();
result
}
}
pub struct TxToken<'a>(&'a mut TxRing);
impl<'a> phy::TxToken for TxToken<'a> {
fn consume<R, F>(self, _timestamp: Instant, len: usize, f: F) -> Result<R>
where F: FnOnce(&mut [u8]) -> Result<R> {
let result = f(unsafe { self.0.buf_as_slice(len) });
self.0.buf_release();
result
}
}