ionpak-thermostat/firmware/src/main.rs

264 lines
8.6 KiB
Rust

#![feature(used, const_fn)]
#![no_std]
#[macro_use]
extern crate cortex_m;
extern crate cortex_m_rt;
extern crate tm4c129x;
use core::cell::Cell;
use cortex_m::ctxt::Local;
use cortex_m::exception::Handlers as ExceptionHandlers;
use tm4c129x::interrupt::Interrupt;
use tm4c129x::interrupt::Handlers as InterruptHandlers;
const LED1: u8 = 0x10; //PF1
const LED2: u8 = 0x40; //PF3
const HV_PWM: u8 = 0x01; //PF0
const FV_PWM: u8 = 0x04; //PF2
const FBV_PWM: u8 = 0x01; //PD5
const FD_ADC: u8 = 0x01; //PE0
const FV_ADC: u8 = 0x02; //PE1
const FBI_ADC: u8 = 0x04; //PE2
const IC_ADC: u8 = 0x08; //PE3
const FBV_ADC: u8 = 0x20; //PD5
const AV_ADC: u8 = 0x40; //PD6
const PWM_LOAD: u16 = (/*pwmclk*/16_000_000u32 / /*freq*/100_000) as u16;
const ADC_TIMER_LOAD: u32 = /*timerclk*/16_000_000 / /*freq*/100;
fn set_led(nr: u8, state: bool) {
cortex_m::interrupt::free(|cs| {
let gpio_k = tm4c129x::GPIO_PORTK.borrow(cs);
if state {
gpio_k.data.modify(|r, w| w.data().bits(r.data().bits() | nr))
} else {
gpio_k.data.modify(|r, w| w.data().bits(r.data().bits() & !nr))
}
});
}
fn set_hv_pwm(duty: u16) {
cortex_m::interrupt::free(|cs| {
let pwm0 = tm4c129x::PWM0.borrow(cs);
pwm0._0_cmpa.write(|w| w.compa().bits(duty));
});
}
fn set_fv_pwm(duty: u16) {
cortex_m::interrupt::free(|cs| {
let pwm0 = tm4c129x::PWM0.borrow(cs);
pwm0._1_cmpa.write(|w| w.compa().bits(duty));
});
}
fn set_fbv_pwm(duty: u16) {
cortex_m::interrupt::free(|cs| {
let pwm0 = tm4c129x::PWM0.borrow(cs);
pwm0._2_cmpa.write(|w| w.compa().bits(duty));
});
}
#[allow(dead_code)]
enum EmissionRange {
Low, // 22K
Med, // 22K//(200Ω + compensated diode)
High // 22K//(39Ω + uncompensated diode)
}
fn set_emission_range(range: EmissionRange) {
cortex_m::interrupt::free(|cs| {
let gpio_p = tm4c129x::GPIO_PORTP.borrow(cs);
gpio_p.data.modify(|r, w| {
let value = r.data().bits() & 0b100111;
match range {
EmissionRange::Low => w.data().bits(value | 0b000000),
EmissionRange::Med => w.data().bits(value | 0b001000),
EmissionRange::High => w.data().bits(value | 0b010000),
}
});
});
}
fn main() {
hprintln!("Hello, world!");
cortex_m::interrupt::free(|cs| {
let sysctl = tm4c129x::SYSCTL.borrow(cs);
let nvic = tm4c129x::NVIC.borrow(cs);
// Set up system timer
let systick = tm4c129x::SYST.borrow(cs);
systick.set_reload(systick.get_ticks_per_10ms());
systick.enable_counter();
systick.enable_interrupt();
// Bring up GPIO ports D, E, F, G, K, P
sysctl.rcgcgpio.modify(|_, w| {
w.r3().bit(true)
.r4().bit(true)
.r5().bit(true)
.r6().bit(true)
.r9().bit(true)
.r13().bit(true)
});
while !sysctl.prgpio.read().r3().bit() {}
while !sysctl.prgpio.read().r4().bit() {}
while !sysctl.prgpio.read().r5().bit() {}
while !sysctl.prgpio.read().r6().bit() {}
while !sysctl.prgpio.read().r9().bit() {}
while !sysctl.prgpio.read().r13().bit() {}
// Set up LEDs
let gpio_k = tm4c129x::GPIO_PORTK.borrow(cs);
gpio_k.dir.write(|w| w.dir().bits(LED1|LED2));
gpio_k.den.write(|w| w.den().bits(LED1|LED2));
// Set up gain and emission range control pins
let gpio_p = tm4c129x::GPIO_PORTP.borrow(cs);
gpio_p.dir.write(|w| w.dir().bits(0b111111));
gpio_p.den.write(|w| w.den().bits(0b111111));
// Set up PWMs
let gpio_f = tm4c129x::GPIO_PORTF_AHB.borrow(cs);
gpio_f.dir.write(|w| w.dir().bits(HV_PWM|FV_PWM));
gpio_f.den.write(|w| w.den().bits(HV_PWM|FV_PWM));
gpio_f.afsel.write(|w| w.afsel().bits(HV_PWM|FV_PWM));
gpio_f.pctl.write(|w| unsafe { w.pmc0().bits(6).pmc2().bits(6) });
let gpio_g = tm4c129x::GPIO_PORTG_AHB.borrow(cs);
gpio_g.dir.write(|w| w.dir().bits(FBV_PWM));
gpio_g.den.write(|w| w.den().bits(FBV_PWM));
gpio_g.afsel.write(|w| w.afsel().bits(FBV_PWM));
gpio_g.pctl.write(|w| unsafe { w.pmc0().bits(6) });
sysctl.rcgcpwm.modify(|_, w| w.r0().bit(true));
while !sysctl.prpwm.read().r0().bit() {}
let pwm0 = tm4c129x::PWM0.borrow(cs);
// HV_PWM
pwm0._0_gena.write(|w| w.actload().zero().actcmpad().one());
pwm0._0_load.write(|w| w.load().bits(PWM_LOAD));
pwm0._0_cmpa.write(|w| w.compa().bits(0));
pwm0._0_ctl.write(|w| w.enable().bit(true));
// FV_PWM
pwm0._1_gena.write(|w| w.actload().zero().actcmpad().one());
pwm0._1_load.write(|w| w.load().bits(PWM_LOAD));
pwm0._1_cmpa.write(|w| w.compa().bits(0));
pwm0._1_ctl.write(|w| w.enable().bit(true));
// FBV_PWM
pwm0._2_gena.write(|w| w.actload().zero().actcmpad().one());
pwm0._2_load.write(|w| w.load().bits(PWM_LOAD));
pwm0._2_cmpa.write(|w| w.compa().bits(0));
pwm0._2_ctl.write(|w| w.enable().bit(true));
// Enable all at once
pwm0.enable.write(|w| {
w.pwm0en().bit(true)
.pwm2en().bit(true)
.pwm4en().bit(true)
});
// Set up ADC
let gpio_d = tm4c129x::GPIO_PORTD_AHB.borrow(cs);
let gpio_e = tm4c129x::GPIO_PORTE_AHB.borrow(cs);
gpio_d.afsel.write(|w| w.afsel().bits(FBV_ADC|AV_ADC));
gpio_d.amsel.write(|w| w.amsel().bits(FBV_ADC|AV_ADC));
gpio_e.afsel.write(|w| w.afsel().bits(FD_ADC|FV_ADC|FBI_ADC|IC_ADC));
gpio_e.amsel.write(|w| w.amsel().bits(FD_ADC|FV_ADC|FBI_ADC|IC_ADC));
sysctl.rcgcadc.modify(|_, w| w.r0().bit(true));
while !sysctl.pradc.read().r0().bit() {}
let adc0 = tm4c129x::ADC0.borrow(cs);
adc0.actss.write(|w| w.asen0().bit(true));
adc0.im.write(|w| w.mask0().bit(true));
adc0.emux.write(|w| w.em0().timer());
adc0.sac.write(|w| w.avg()._64x());
adc0.ctl.write(|w| w.vref().bit(true));
adc0.ssmux0.write(|w| {
w.mux0().bits(0) //IC_ADC
.mux1().bits(1) //FBI_ADC
.mux2().bits(2) //FV_ADC
.mux3().bits(3) //FD_ADC
.mux4().bits(5) //AV_ADC
.mux5().bits(6) //FBV_ADC
});
adc0.ssctl0.write(|w| w.end5().bit(true));
adc0.sstsh0.write(|w| {
w.tsh0()._256()
.tsh1()._256()
.tsh2()._256()
.tsh3()._256()
.tsh4()._256()
.tsh5()._256()
});
nvic.enable(Interrupt::ADC0SS0);
// Set up ADC timer
sysctl.rcgctimer.modify(|_, w| w.r0().bit(true));
while !sysctl.prtimer.read().r0().bit() {}
let timer0 = tm4c129x::TIMER0.borrow(cs);
timer0.cfg.write(|w| w.cfg()._32_bit_timer());
timer0.tamr.write(|w| w.tamr().period());
timer0.tailr.write(|w| unsafe { w.bits(ADC_TIMER_LOAD) });
timer0.adcev.write(|w| w.tatoadcen().bit(true));
timer0.cc.write(|w| w.altclk().bit(true));
timer0.ctl.write(|w| w.taen().bit(true));
set_emission_range(EmissionRange::Med);
set_hv_pwm(PWM_LOAD/64);
set_fv_pwm(PWM_LOAD/16);
set_fbv_pwm(PWM_LOAD/8);
});
}
use cortex_m::exception::SysTick;
extern fn sys_tick(ctxt: SysTick) {
static ELAPSED: Local<Cell<u32>, SysTick> = Local::new(Cell::new(0));
let elapsed = ELAPSED.borrow(&ctxt);
elapsed.set(elapsed.get() + 1);
if elapsed.get() % 100 == 0 {
set_led(LED1, true);
set_led(LED2, false);
}
if elapsed.get() % 100 == 50 {
set_led(LED1, false);
set_led(LED2, true);
}
}
use tm4c129x::interrupt::ADC0SS0;
extern fn adc0_ss0(_ctxt: ADC0SS0) {
cortex_m::interrupt::free(|cs| {
let adc0 = tm4c129x::ADC0.borrow(cs);
if adc0.ostat.read().ov0().bit() {
panic!("ADC FIFO overflowed")
}
let _ic_sample = adc0.ssfifo0.read().data();
let _fbi_sample = adc0.ssfifo0.read().data();
let _fv_sample = adc0.ssfifo0.read().data();
let _fd_sample = adc0.ssfifo0.read().data();
let _av_sample = adc0.ssfifo0.read().data();
let _fbv_sample = adc0.ssfifo0.read().data();
})
}
#[used]
#[link_section = ".rodata.exceptions"]
pub static EXCEPTIONS: ExceptionHandlers = ExceptionHandlers {
sys_tick: sys_tick,
..cortex_m::exception::DEFAULT_HANDLERS
};
#[used]
#[link_section = ".rodata.interrupts"]
pub static INTERRUPTS: InterruptHandlers = InterruptHandlers {
ADC0SS0: adc0_ss0,
..tm4c129x::interrupt::DEFAULT_HANDLERS
};