ionpak-thermostat/firmware/src/ethmac.rs

447 lines
16 KiB
Rust
Raw Normal View History

2017-07-31 13:36:48 +08:00
use cortex_m;
use tm4c129x;
use core::slice;
use smoltcp::Error;
use smoltcp::phy::{DeviceLimits, Device};
use smoltcp::wire::{EthernetAddress};
const EPHY_BMCR: u8 = 0x00; // Ethernet PHY Basic Mode Control
const EPHY_BMSR: u8 = 0x01; // Ethernet PHY Basic Mode Status
const EPHY_ID1: u8 = 0x02; // Ethernet PHY Identifier Register 1
const EPHY_ID2: u8 = 0x03; // Ethernet PHY Identifier Register 2
const EPHY_REGCTL: u8 = 0x0D; // Ethernet PHY Register Control
const EPHY_ADDAR: u8 = 0x0E; // Ethernet PHY Address or Data
const EPHY_LEDCFG: u8 = 0x25; // Ethernet PHY LED Configuration
// Transmit DMA descriptor flags
const EMAC_TDES0_OWN: u32 = 0x80000000; // Indicates that the descriptor is owned by the DMA
const EMAC_TDES0_LS: u32 = 0x20000000; // Last Segment
const EMAC_TDES0_FS: u32 = 0x10000000; // First Segment
const EMAC_TDES0_TCH: u32 = 0x00100000; // Second Address Chained
const EMAC_TDES1_TBS1: u32 = 0x00001FFF; // Transmit Buffer 1 Size
// Receive DMA descriptor flags
const EMAC_RDES0_OWN: u32 = 0x80000000; // indicates that the descriptor is owned by the DMA
const EMAC_RDES0_FL: u32 = 0x3FFF0000; // Frame Length
const EMAC_RDES0_ES: u32 = 0x00008000; // Error Summary
const EMAC_RDES1_RCH: u32 = 0x00004000; // Second Address Chained
const EMAC_RDES1_RBS1: u32 = 0x00001FFF; // Receive Buffer 1 Size
const EMAC_RDES0_FS: u32 = 0x00000200; // First Descriptor
const EMAC_RDES0_LS: u32 = 0x00000100; // Last Descriptor
const ETH_DESC_U32_SIZE: usize = 8;
const ETH_TX_BUFFER_COUNT: usize = 2;
const ETH_TX_BUFFER_SIZE: usize = 1536;
const ETH_RX_BUFFER_COUNT: usize = 3;
const ETH_RX_BUFFER_SIZE: usize = 1536;
pub struct EmacData {
pub tx_desc_buf: [u32; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
pub rx_desc_buf: [u32; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
pub tx_cur_desc: usize,
pub rx_cur_desc: usize,
pub tx_counter: u32,
pub rx_counter: u32,
pub tx_pkt_buf: [u8; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
pub rx_pkt_buf: [u8; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
}
static mut EMAC_DATA: EmacData = EmacData {
tx_desc_buf: [0; ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
rx_desc_buf: [0; ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE],
tx_cur_desc: 0,
rx_cur_desc: 0,
tx_counter: 0,
rx_counter: 0,
tx_pkt_buf: [0; ETH_TX_BUFFER_COUNT * ETH_TX_BUFFER_SIZE],
rx_pkt_buf: [0; ETH_RX_BUFFER_COUNT * ETH_RX_BUFFER_SIZE],
};
pub fn delay(d: i32) {
for x in 0..d {
unsafe {
asm!("
NOP
");
}
}
}
fn phy_read(reg_addr: u8) -> u16 {
unsafe {
let emac0 = tm4c129x::EMAC0.get();
// Make sure the MII is idle
while (*emac0).miiaddr.read().miib().bit() {};
// Tell the MAC to read the given PHY register
(*emac0).miiaddr.write(|w| {
w.cr()._100_150()
.mii().bits(reg_addr & 0x1F)
.miib().bit(true)
} );
// Wait for the read to complete
while (*emac0).miiaddr.read().miib().bit() {};
(*emac0).miidata.read().data().bits()
}
}
fn phy_write(reg_addr: u8, reg_data: u16) {
unsafe {
let emac0 = tm4c129x::EMAC0.get();
// Make sure the MII is idle
while (*emac0).miiaddr.read().miib().bit() {};
(*emac0).miidata.write(|w| {
w.data().bits(reg_data)
} );
// Tell the MAC to write the given PHY register
(*emac0).miiaddr.write(|w| {
w.cr()._100_150()
.mii().bits(reg_addr & 0x1F)
.miiw().bit(true)
.miib().bit(true)
} );
// Wait for the read to complete
while (*emac0).miiaddr.read().miib().bit() {};
}
}
// Writes a value to an extended PHY register in MMD address space
fn phy_write_ext(reg_addr: u8, reg_data: u16) {
phy_write(EPHY_REGCTL, 0x001F); // set address (datasheet page 1612)
phy_write(EPHY_ADDAR, reg_addr as u16);
phy_write(EPHY_REGCTL, 0x401F); // set write mode
phy_write(EPHY_ADDAR, reg_data);
}
pub fn init(mac_addr: [u8; 6]) {
cortex_m::interrupt::free(|cs| {
let sysctl = tm4c129x::SYSCTL.borrow(cs);
let emac0 = tm4c129x::EMAC0.borrow(cs);
sysctl.rcgcemac.modify(|_, w| w.r0().bit(true)); // Bring up MAC
sysctl.sremac.modify(|_, w| w.r0().bit(true)); // Activate MAC reset
delay(16);
sysctl.sremac.modify(|_, w| w.r0().bit(false)); // Dectivate MAC reset
sysctl.rcgcephy.modify(|_, w| w.r0().bit(true)); // Bring up PHY
sysctl.srephy.modify(|_, w| w.r0().bit(true)); // Activate PHY reset
delay(16);
sysctl.srephy.modify(|_, w| w.r0().bit(false)); // Dectivate PHY reset
while !sysctl.premac.read().r0().bit() {} // Wait for the MAC to come out of reset
while !sysctl.prephy.read().r0().bit() {} // Wait for the PHY to come out of reset
delay(10000);
emac0.dmabusmod.modify(|_, w| w.swr().bit(true)); // Reset MAC DMA
while emac0.dmabusmod.read().swr().bit() {} // Wait for the MAC DMA to come out of reset
delay(1000);
emac0.miiaddr.write(|w| w.cr()._100_150()); // Set the MII CSR clock speed.
// Checking PHY
if (phy_read(EPHY_ID1) != 0x2000) | (phy_read(EPHY_ID2) != 0xA221) { // TM4C1294 PHY IDs
panic!("PHY ID error!");
}
// Reset PHY transceiver
phy_write(EPHY_BMCR, 1); // Initiate MII reset
while 1 == (phy_read(EPHY_BMCR) & 1) {}; // Wait for the reset to be completed
// Configure PHY LEDs
phy_write_ext(EPHY_LEDCFG, 0x0008); //LED0 Link OK/Blink on TX/RX Activit
// Tell the PHY to start an auto-negotiation cycle
phy_write(EPHY_BMCR, 0b00010010_00000000); //ANEN and RESTARTAN
// Set the DMA operation mode
emac0.dmaopmode.write(|w|
w.rsf().bit(true) // Receive Store and Forward
.tsf().bit(true) // Transmit Store and Forward
.ttc()._64() // Transmit Threshold Control
.rtc()._64() // Receive Threshold Control
);
// Set the bus mode register.
emac0.dmabusmod.write(|w| unsafe {
w.atds().bit(true)
.aal().bit(true) // Address Aligned Beats
.usp().bit(true) // Use Separate Programmable Burst Length ???
.rpbl().bits(1) // RX DMA Programmable Burst Length
.pbl().bits(1) // Programmable Burst Length
.pr().bits(0) // Priority Ratio 1:1
});
// Disable all the MMC interrupts as these are enabled by default at reset.
emac0.mmcrxim.write(|w| unsafe { w.bits(0xFFFFFFFF)});
emac0.mmctxim.write(|w| unsafe { w.bits(0xFFFFFFFF)});
// Set MAC configuration options
emac0.cfg.write(|w|
w.dupm().bit(true) // MAC operates in full-duplex mode
.ipc().bit(true) // Checksum Offload Enable
.prelen()._7() // 7 bytes of preamble
.ifg()._96() // 96 bit times
.bl()._1024() // Back-Off Limit 1024
.ps().bit(true) // ?
);
// Set the maximum receive frame size
emac0.wdogto.write(|w| unsafe {
w.bits(0) // ??? no use watchdog
});
// Set the high 2 bytes of the MAC address
emac0.addr0h.write(|w| unsafe { w.addrhi().bits(mac_addr[4] as u16 | ((mac_addr[5] as u16) << 8)) });
// Set the low 4 bytes of the MAC address
emac0.addr0l.write(|w| unsafe {
w.addrlo().bits(mac_addr[0] as u32 | ((mac_addr[1] as u32) << 8) | ((mac_addr[2] as u32) << 16) | ((mac_addr[3] as u32) << 24))
} );
// Set MAC filtering options (?)
emac0.framefltr.write(|w|
w.hpf().bit(true) // Hash or Perfect Filter
// .hmc().bit(true) // Hash Multicast ???
.pm().bit(true) // Pass All Multicast
);
// Initialize hash table
emac0.hashtbll.write(|w| unsafe { w.htl().bits(0 as u32)});
emac0.hashtblh.write(|w| unsafe { w.hth().bits(0 as u32)});
emac0.flowctl.write(|w| unsafe { w.bits(0)}); // Disable flow control ???
// Initialize TX DMA descriptors
for x in 0..ETH_TX_BUFFER_COUNT {
let p = x * ETH_DESC_U32_SIZE;
let r = x * ETH_TX_BUFFER_SIZE;
unsafe {
// Initialize transmit flags
EMAC_DATA.tx_desc_buf[p + 0] = 0;
// Initialize transmit buffer size
EMAC_DATA.tx_desc_buf[p + 1] = 0;
// Transmit buffer address
EMAC_DATA.tx_desc_buf[p + 2] = (&EMAC_DATA.tx_pkt_buf[r] as *const u8) as u32;
// Next descriptor address
if x != ETH_TX_BUFFER_COUNT - 1 {
EMAC_DATA.tx_desc_buf[p + 3] = (&EMAC_DATA.tx_desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32;
} else {
EMAC_DATA.tx_desc_buf[p + 3] = (&EMAC_DATA.tx_desc_buf[0] as *const u32) as u32;
}
// Reserved fields
EMAC_DATA.tx_desc_buf[p + 4] = 0;
EMAC_DATA.tx_desc_buf[p + 5] = 0;
// Transmit frame time stamp
EMAC_DATA.tx_desc_buf[p + 6] = 0;
EMAC_DATA.tx_desc_buf[p + 7] = 0;
}
}
// Initialize RX DMA descriptors
for x in 0..ETH_RX_BUFFER_COUNT {
let p = x * ETH_DESC_U32_SIZE;
let r = x * ETH_RX_BUFFER_SIZE;
unsafe {
// The descriptor is initially owned by the DMA
EMAC_DATA.rx_desc_buf[p + 0] = EMAC_RDES0_OWN;
// Use chain structure rather than ring structure
EMAC_DATA.rx_desc_buf[p + 1] = EMAC_RDES1_RCH | ((ETH_RX_BUFFER_SIZE as u32) & EMAC_RDES1_RBS1);
// Receive buffer address
EMAC_DATA.rx_desc_buf[p + 2] = (&EMAC_DATA.rx_pkt_buf[r] as *const u8) as u32;
// Next descriptor address
if x != ETH_RX_BUFFER_COUNT - 1 {
EMAC_DATA.rx_desc_buf[p + 3] = (&EMAC_DATA.rx_desc_buf[p + ETH_DESC_U32_SIZE] as *const u32) as u32;
} else {
EMAC_DATA.rx_desc_buf[p + 3] = (&EMAC_DATA.rx_desc_buf[0] as *const u32) as u32;
}
// Extended status
EMAC_DATA.rx_desc_buf[p + 4] = 0;
// Reserved field
EMAC_DATA.rx_desc_buf[p + 5] = 0;
// Transmit frame time stamp
EMAC_DATA.rx_desc_buf[p + 6] = 0;
EMAC_DATA.rx_desc_buf[p + 7] = 0;
}
}
unsafe {
EMAC_DATA.tx_cur_desc = 0;
EMAC_DATA.rx_cur_desc = 0;
}
emac0.txdladdr.write(|w| unsafe { w.bits((&EMAC_DATA.tx_desc_buf[0] as *const u32) as u32)});
emac0.rxdladdr.write(|w| unsafe { w.bits((&EMAC_DATA.rx_desc_buf[0] as *const u32) as u32)});
// Manage MAC transmission and reception
emac0.cfg.modify(|_, w|
w.re().bit(true) // Receiver Enable
.te().bit(true) // Transmiter Enable
);
// Manage DMA transmission and reception
emac0.dmaopmode.modify(|_, w|
w.sr().bit(true) // Start Receive
.st().bit(true) // Start Transmit
);
println!("EMAC init done");
});
}
pub fn info() {
unsafe {
static mut BMSR1: u16 = 0;
static mut R1: u32 = 0;
// Display EMAC status(es) if need
let emac0 = tm4c129x::EMAC0.get();
// let r = (*emac0).dmaris.read().bits();
let r = 0;
if R1 != r {
println!("R=0x{:08x}", r);
}
R1 = r;
// Display PHY/media status
let bmsr = phy_read(EPHY_BMSR);
if BMSR1 != bmsr {
println!("PHY BMSR=0x{:04x}", bmsr);
}
BMSR1 = bmsr;
// Display packets count
let rxp = EMAC_DATA.rx_counter;
EMAC_DATA.rx_counter = 0;
let txp = EMAC_DATA.tx_counter;
EMAC_DATA.tx_counter = 0;
if (0 != rxp) || (0 != txp) {
println!("RX_PKT={} TX_PKT={}", rxp, txp);
}
}
}
fn release_rx_buf() {
unsafe {
EMAC_DATA.rx_cur_desc += ETH_DESC_U32_SIZE;
if EMAC_DATA.rx_cur_desc >= (ETH_RX_BUFFER_COUNT * ETH_DESC_U32_SIZE) {
EMAC_DATA.rx_cur_desc = 0;
}
EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] = EMAC_RDES0_OWN; // release descriptor
}
}
pub struct EthernetDevice;
impl Device for EthernetDevice {
type RxBuffer = RxBuffer;
type TxBuffer = TxBuffer;
fn limits(&self) -> DeviceLimits {
let mut limits = DeviceLimits::default();
limits.max_transmission_unit = 1500;
limits.max_burst_size = Some(ETH_RX_BUFFER_COUNT);
limits
}
fn receive(&mut self) -> Result<Self::RxBuffer, Error> {
unsafe {
if 0 == (EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] & EMAC_RDES0_OWN) {
// check for the whole packet in the buffer and no any error
if (EMAC_RDES0_FS | EMAC_RDES0_LS) == EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] & (EMAC_RDES0_FS | EMAC_RDES0_LS | EMAC_RDES0_ES) {
// Retrieve the length of the frame
let mut n = (EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 0] & EMAC_RDES0_FL) >> 16;
// Limit the number of data to read
if n > ETH_RX_BUFFER_SIZE as u32 { n = ETH_RX_BUFFER_SIZE as u32; }
Ok(RxBuffer(slice::from_raw_parts(EMAC_DATA.rx_desc_buf[EMAC_DATA.rx_cur_desc + 2] as * mut u8,
n as usize)))
} else {
// Ignore invalid frame
release_rx_buf();
Err(Error::Exhausted)
}
} else {
Err(Error::Exhausted) // currently no bufferes to process
}
}
}
fn transmit(&mut self, length: usize) -> Result<Self::TxBuffer, Error> {
unsafe {
// Check if the TX DMA buffer released
if 0 == (EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 0] & EMAC_TDES0_OWN) {
// Write the number of bytes to send
EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 1] = length as u32 & EMAC_TDES1_TBS1;
Ok(TxBuffer(slice::from_raw_parts_mut(EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 2] as * mut u8,
ETH_TX_BUFFER_SIZE)))
} else {
// to do if need: Instruct the DMA to poll the receive descriptor list
Err(Error::Exhausted)
}
}
}
}
pub struct RxBuffer(&'static [u8]);
impl AsRef<[u8]> for RxBuffer {
fn as_ref(&self) -> &[u8] { self.0 }
}
impl Drop for RxBuffer {
fn drop(&mut self) {
release_rx_buf();
unsafe { EMAC_DATA.rx_counter += 1 }; // Increment RX statistics
}
}
pub struct TxBuffer(&'static mut [u8]);
impl AsRef<[u8]> for TxBuffer {
fn as_ref(&self) -> &[u8] { self.0 }
}
impl AsMut<[u8]> for TxBuffer {
fn as_mut(&mut self) -> &mut [u8] { self.0 }
}
impl Drop for TxBuffer {
fn drop(&mut self) {
unsafe {
// Use chain structure rather than ring structure
// Set LS and FS flags as the data fits in a single buffer and give the ownership of the descriptor to the DMA
EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 0] = EMAC_TDES0_LS | EMAC_TDES0_FS | EMAC_TDES0_TCH;
EMAC_DATA.tx_desc_buf[EMAC_DATA.tx_cur_desc + 0] |= EMAC_TDES0_OWN; // Set ownersip for DMA here
cortex_m::interrupt::free(|cs| {
let emac0 = tm4c129x::EMAC0.borrow(cs);
// Clear TU flag to resume processing
emac0.dmaris.write(|w| w.tu().bit(true));
// Instruct the DMA to poll the transmit descriptor list
emac0.txpolld.write(|w| w.tpd().bits(0));
});
// Calculate next DMA descriptor offset
let mut tx_next_desc = EMAC_DATA.tx_cur_desc + ETH_DESC_U32_SIZE;
if tx_next_desc >= (ETH_TX_BUFFER_COUNT * ETH_DESC_U32_SIZE) {
tx_next_desc = 0;
}
EMAC_DATA.tx_cur_desc = tx_next_desc;
EMAC_DATA.tx_counter += 1; // Increment RX statistics
}
}
}