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Precise PID controller for quantum applications

Abstract. Realization of the world’s first Bose-Einstein Condensate in 1995 has opened
a door for conducting research in the field of quantum physics on the atomic or even
sub-atomic scales. Since then, a number of scientific laboratories around the world
have started performing quantum physics experiments. Running this kind of experi-
ment, however, requires advanced hardware and software to control its various aspects
such as driving laser sources used to trap atoms or ions. In this thesis, a design of a
PID (proportional-integral-derivative) controller for such applications is described. It
aims to be compatible with the ARTIQ (Advanced Real-Time Infrastructure for Quantum
physics) control system and Sinara hardware, both of which are open-source projects.
The developed PID controller provides an input and output voltage range of £10 V. Its
measured bandwidth and latency are no worse than 1 kHz and 1 ms, respectively.

Keywords: PID controller, ARTIQ, Sinara, frequency lock loop, real-time control system



Precyzyjny kontroler PID do zastosowan kwantowych

Streszczenie. Zaobserwowanie w 1995 r. po raz pierwszy kondensatu Bosego-Einsteina
umozliwito przeprowadzanie badan z dziedziny fizyki kwantowej w skali subatomowe;.
Od tego momentu, wiele laboratoriéw naukowych na calym §wiecie rozpoczeto realizacje
eksperymentéw kwantowych. Jednakze przeprowadzanie tego typu badan wymaga uzycia
zZaawansowanego sprzetu i oprogramowania, ktére umozliwiatyby sprawowanie kon-
troli nad roznymi aspektami eksperymentéw. Za przyktad moze postuzy¢ kontrolowanie
laseréw, ktére sa uzywane do o$wietlania chmury atoméw i jonéw w celu ztapania ich w
pulapki magnetyczno—optyczne. W niniejszej pracy opisany zostat proces realizacji regula-
tora PID (proporcjonalno-catkujaco-rézniczkujacego, ang. proportional-integral-derivative)
stworzonego miedzy innymi do wspomnianych wyzej zastosowan. Zostat zaprojektowany
z zatozeniem kompatybilnosci z systemem ARTIQ (Advanced Real-Time Infrastructure
for Quantum physics, pol. Zaawansowana Infrastruktura Czasu Rzeczywistego dla Fizyki
Kwantowej) i sprzetem z rodziny Sinara. Zrealizowany regulator PID zapewnia poprawna
prace i regulacje przy zakresie napiec wejsciowych i wyjSciowych +10 V. Zmierzone pasmo
i latencja sg nie gorsze niz, odpowiednio, 1 kHz i 1 ms. Petla synchronizacji czestotliwos-
ciowej

Stowa kluczowe: regulator PID, ARTIQ), Sinara, petla synchronizacji czestotliwo$ciowe;j,

system sterujacy czasu rzeczywistego
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1. Introduction

The introduction of the quantum theory in the early 20th century and its extensive
confirmation within the next few decades have been a major step towards understanding
the principles of the quantum world and, what is probably even more exciting, the Uni-
verse itself. When a gaseous Bose-Einstein Condensate (BEC) was realized in 1995 for the
first time [1], a door to study particle’s world not only theoretically, but also experimentally,
was opened as wide as never before. After over 70 years of research, Einstein’s prediction
regarding condensation of atoms has been finally confirmed. The team led by Eric Cornell
and Carl Wiemann at the JILA laboratory in Boulder, Colorado, having achieved world first
gaseous condensate in a gas of rubidium-87, laid the foundation for the field of cold atoms
and a new branch of atomic physics. Since then, over 50 research groups across the globe
have made BECs [2] and until 2009 a BEC has been achieved for 12 atomic species [3].

Bose-Einstein Condensate may be in principle described as a state of matter in which a
large number of identical particles occupy a single [3]. This means that when a BEC occurs,
multiple atoms behave as a single entity which allows scientists to study the complicated
world of quantum physics by observing and conducting research on a ‘superatom’, instead
of extremely small single atoms [4]. Being able to explore the behaviour of systems
at atomic and subatomic length scales is essential to make significant discoveries and
advancements in modern science and technology. Even though the filed of cold atom
research is still in its early years of development, studies conducted on BEC have already
made an impact on today’s industry and science. In particular, Bose-Einstein Condensates
are used in quantum experiments aiming to achieve the next generation of improved
atomic clocks with better accuracy, based on optical transitions instead of microwaves
ones [5]. Furthermore, due to BEC being a coherent wave, an atomic laser may be produced
soon and used, e.g. in the process of nanolithography or applied to any application that
requires well-controlled beams of atoms [6]. Atomic interferometry based on BEC has
also proved itself a versatile tool for measuring inertial forces or physical constants [5].
Even though these applications are already extremely useful, Bose-Einstein Condensate
may be applied in the field that has gained the exceptional popularity throughout the last
few years, and which is believed to be a breakthrough in the field of computational power:
quantum information. On one hand, following Richard Feynman’s suggestion that neither
the world nor quantum mechanical effect should be simulated by a classical computer
because they are not classical [7], a quantum simulation is developed [8]. On the other
hand, BEC is used as a platform for processing qubits with the aim to build a quantum
computer [5].

It is clear that even though the first Bose-Einstein Condensate was realized 25 years
ago, there is a lot yet to be discovered in the field of quantum mechanics Thanks to
achievements of previous generations of scientists, the world is on the verge of the 'Second

Quantum Revolution' The timing is perfect, as science is facing the challenge of the end
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1. Introduction

of Moore’s law, while the world is in desperate need for constant advancement in terms of
processing power [9].

1.1. Magneto-optical trap

At the foundation of achieving Bose-Einstein Condensate lays ion or neutral atom
cooling and trapping. Although trapping may be performed using for example Ioffe-
-Pritchard trap or Paul trap (the latter of which works for charged particles [10]), usually
the magneto—optical trap (MOT) is used, because of its simplicity of construction and its
depth [11]. The concept seems to be straightforward, as William D. Phillips and Harold J.
Metcalf once stated [12]:

’Atoms are slowed and cooled by radiation pressure from laser light and then
trapped in a bottle whose "walls" are magnetic fields. Cooled atoms are ideal for

exploring basic questions of physics’

However, the idea of temperature in the sentence above might be misleading and should
be taken into careful consideration. Thermodynamics connects temperature to a state’s
parameter of a closed system in thermal equilibrium and its potential to exchange heat,
which is not applicable to laser cooling, because atoms constantly absorb and scatter light.
Additionally, light cannot be treated as heat. In this case, temperature is recognized as an
atom sample’s average kinetic energy, which is reduced by laser light [13]. Therefore, in
principle, the first step to achieve cold atoms is to slow down atomic beams. It can be done
with the use of momentum transfer that happens when an atom absorbs a photon. Each
act of absorption reduces atom’s velocity by h—n],f (single photon’s velocity) [14]. Due to the
Doppler effect, the photon’s frequency is up-shifted when atoms are propagating towards
the laser source. Therefore, to ensure that photons are absorbed only by those atoms, the
laser frequency is tuned slightly below the atomic resonant frequency. In order to achieve
cooling across all dimensions, it is necessary to illuminate gas of atoms with three pairs
of circularly polarized orthogonal laser beams of the proper frequency. Furthermore, to
successfully trap atoms, application of a magnetic field is necessary. Laser beams are
responsible not only for slowing down atoms, but also, thanks to radiation pressure that
converges on the centre of the gas chamber, for creating a force that traps atoms inside.
Applying a magnetic field of quadruple distribution acts as a control on this force [11].
Having achieved enough densities after cooling and trapping, certain atoms undergo a
transition — one sought after by physicists for decades Bose-Einstein Condensation.
Cooling down and trapping atoms is a process that needs applying a particular fre-
quency of laser beams that is slightly detuned from the atomic resonant frequency. If
a laser beam of longer or shorter wavelength was used, fewer atoms would be trapped
and achieving BEC would become even more problematic. Therefore, a precise reference

laser source is used, with which other lasers are synchronised. To ensure that each laser
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1. Introduction

beam that illuminates a gas of atoms is of the desired wavelength, a frequency locking

mechanism is needed.

1.2. Frequency locking

When clouds of atoms are to be cooled down and trapped, a need for a control
system that adjusts laser source frequency to the set value arises. Fortunately, even
though cooling lasers need to be set to precise values, for many applications phase coher-
ence is not required [15], and simple frequency offset lock is sufficient. Since frequency
offset locking is based on a feedback loop, commonly used control systems are based
on proportional—integral-derivative (PID) controller. One of the common controlling
schemes is to modulate laser light directly with electric current. On the upside, it is simple
and robust. On the downside, its non-linearity and heating limits the practical band-
width [16], while laser output wavelength drifts with modulating current. However, when
higher bandwidth and stability is needed, acousto-optic modulation (AOM) is commonly

used. A simplified frequency offset locking scheme, used for example in [17], is shown in

figure 1.1.
Reference Laser Source
*::
Fast Photodiode Phase Frequency
Slave Laser Source with amplifier RF Mixer LP Filter Detector
P '
*" [_E @ : N\ PFD SERVO
BS 50:50

Figure 1.1: Simplified frequency offset locking scheme

Since optical frequencies are usually too high to measure them directly, scaling down
is required. It can be done by combining beams from a reference laser source and the
controlled one. Achieved optical beat note is then mixed with stable frequency from
radio frequency (RF) local oscillator (LO), and their difference is fed into phase-frequency
detector (PFD). Based on PFD output, servo, which is a workhorse of the control system,
drives the controlled laser appropriately.
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1. Introduction

1.2.1. Servo

Thanks to its flexibility, ease of implementation and robustness, the PID controller
is among the most popular regulators used in electronics. A generic PID controller’s
application, with its particular parts specified, is shown in figure 1.2.

The PID regulator’s mathematical model is well-developed and described in numerous
papers. Despite its many advantages, one has to bear in mind that a feedback loop control-
ling scheme has drawbacks as well. Probably the most noticeable one is its susceptibility
to becoming unstable when not designed properly [18]. This property requires a designer
to carefully study plant’s impulse response and adjust the controller gains (proportional,
integral and derivative) in order to avoid positive feedback, which may result in uncon-
trolled behaviour or even the system being damaged. The controller’s output signal can
be described with the following equation [19]:

: de(t)
u(t):er(t)+Kife(T)dT+Kd ar (1.1)
0

where u is a control variable (CV), e is the error signal and equals to r — y, with r being the
setpoint (SP) — value to which y is desired to converge — and y being the process variable

(PV) measured from the plant’s response to the control signal.

Measurement

Figure 1.2: A generic closed feedback control loop

The control signal consists of three terms: proportional, integral and derivative. As Hes-

heng Wang shows in [20], each of them is responsible for a different closed—-feedback-loop-system

behaviour:

* proportional gain (K,) makes controller’s output proportionally big to error signal,
however, does not eliminate steady-state error and easily makes the controller prone
to becoming unstable;

¢ integral action (K;) allows to eliminate steady-state error, but is likely to cause
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1. Introduction

overshooting — it accumulates past values of error signal and based on them acts
proportionally to Kj;

e derivative action (K ) counteracts overshooting and improves the system’s stability.

According to Murray and Astrém [19], most PID controllers’ implementation lacks a

derivative part. Therefore, they point out, term PI controller is more appropriate in that

case. Murray and Astrém, however, argue that term PID controller may be used as well, as

a more general one for this class of regulators. The same convention is followed in this

thesis.

1.2.1.1. Implementation of PID controller in FPGA

With coming of the digital era, cheap integrated circuits and high-speed controllers
have become available on an unprecedented scale. It was only a matter of time when the
industry started using digital control systems (for example field—programmable gate array
(FPGA) based). What makes digital control so appealing is mostly its efficiency and ease of
implementation.

System analysis and design may be a daunting task when done in the continuous—time
domain only, especially when it includes some sort of digital control. To ease that task,
system’s behaviour is often represented in various domains — each of them aims to
provide information about the system’s nature or characteristics and is used for different
applications and purposes.

While every system exists in the time domain, it is often convenient to consider its
response in the complex frequency domain (S—-plane) [21]. The mathematical tool that
allows to transit a signal from continuous-time to continuous—frequency domain is the
Laplace transform, which is defined as

Lif()}=F(s) :fo f(ne  tdt, (1.2)

where s is a complex frequency variable.

When it comes to discrete-time signals, the ones used in digital systems, the Z-transform
is of great importance — it is a counterpart of the Laplace transform for continuous-time
signal that transits a signal to Z-plane, instead of S—plane. The Z—-transform of sequence

x[n] is defined as

Zix[nl} = X(2) = ) x[n]z™", (1.3)
n=0

where z is a complex continuous variable [22].

Both transforms are presented in unilateral versions, which means that they become
non-zero at either £ = 0 or n = 0, and this convention is commonly used in digital signal
processing literature — since the system does not recognize values of a signal before the
time ¢ =0.
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1. Introduction

Every control system action is based on the modification of the signal’s wave shape,
and therefore, can be considered and described as a digital filter. A system response can
be either infinite, which happens when the filter’s output is computed by using current
and previous input samples and previous output sample, or finite, when its response is
dependent only on input samples. This means that the finite impulse response (FIR) filter
is a special case of the infinite impulse response (IIR) filter [23]. Filters, in general, are
often described with the following difference equation:

N N
ylnl=) bixln—il-)_ a;yln-il. (1.4)
i=0 i=1

As aresult of performing the Z—transform on equation 1.4, the filter’s transfer function in
the discrete zero—pole domain, which is defined as a ratio of the Z—transform of the output
signal to the Z-transform of the input signal, is obtained:

_ Y (2) _ bo + blz'l + sz_z + ...+ bNZ_N
X(z) ap+azl+az?2+..+anz N

H(z2) (1.5)

As mentioned in the previous section, the PID controller is a closed feedback loop
system; therefore its output depends linearly on both input and output values. This
property allows one to treat a PID controller as an infinite impulse response filter and its

transfer function may be described in continuous—frequency domain as [19]:
1
H(s) = Ky + K;— + Kys. (1.6)
s

To improve timing and processing performance, many FPGA manufacturers in their
design include modules, that are dedicated specifically to performing calculations on
binary vectors in digital signal processing (DSP). As an example of a such DSP block, Xilinx
DSP48E2 may be used [24]. Implementation of a digital filter in FPGA is a task DSP modules
have been designed for, and are included in FPGA integrated circuits. Thus a common
way of implementing digital PID regulators in FPGAs involves usage of those DSP blocks.
However, PID controller coefficients used in continuous—time domain equations have to
be converted to the domain in which the digital control circuit exists for the control system
to do its job. A general way to calculate the digital biquad filter coefficients is transforming
the controller’s transfer function from S—-plane to Z-plane representation, which can be
achieved using e.g. bilinear transformation, and comparing the result with equation 1.5.

In order to perform the bilinear transformation, one has to substitute s in equation 1.6
1-z71
1+z7!
the substitution, the PID controller’s transfer function in a canonical form is obtained:

. 2

[21], where T is a sampling period. Having transformed equation 1.6 after

(Kp+ 8L 4+ 28y 4 (KT~ Ky T) 27" + (=K, + KL 4 2Ky =2
1-2z72

H(z) = (1.7)
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1. Introduction

To find PI controller’s transfer function, all coefficients from derivative term have to be

removed: or or
(Kp + 550 + (=K, + 52!

1-z71

Comparing equations 1.7 and 1.8 with IIR filter transfer function (equation 1.5) allows

H(z) = (1.8)

the extraction of coefficients that make the IIR filter play the role of either a PID or PI
controller. Calculated filter coefficients are presented in table 1.

Table 1: Dependency of IIR filter’s coefficients on PID conroller’s coefficients

IIR coefficient PID PI
bo K, + % + @ Ky + %
by K;T-K;T _Kp‘l‘%
b, -Kp+ % + % 0
ao 1 1
a 0 1
az -1 0

1.3. Existing control systems

The vast variety of tasks and the increasing number of applications in which Bose-Einstein
Condensate is used requires enormous sets of often incompatible hardware (often from
different electronic eras). Since almost no quantum information experiment is the same,
connecting, controlling and integrating various equipment becomes challenging. More-
over, quantum gas experiments usually consist of not only creating BEC but also con-
trolling other external equipment and basing the system’s feedback on the outcome of
certain algorithms. The new wave of quantum experiments in microgravity or even in
space [25]-[27], poses a challenging demand for miniaturization of control systems.

Issues mentioned above are not the only ones that a modern control system for quan-
tum information experiments has to overcome. In order to obtain good control of the
experiment’s flow, the system should be as close to real-time as possible.

A few full-stack solutions exist and are under development, like IBM Q, Google or
D-Wave. However, their main concern is to build a quantum computer and run quantum
algorithms aiming to solve real-world problems, and are not to run custom physical

quantum experiments.
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1. Introduction

There are few off the shelf solutions for controlling quantum experiments. As stated in
(28], systems available until recently suffered either from poor timing control in exchange
for ease of use, or from difficulties in programming in favour of tight timing thanks to
implementation on programmable chips. Vlad Negnevitsky in [29] states that the majority
of research groups performing atom or ion trapping construct their own custom-built
control system out of a combination of commercially available components.

There are, however, a few solutions used in quantum information experiments, i.e.
National Instruments PXI Systems and LabVIEW [30], NQontrol based on ADwin digital
control platform [31], Zurich Instruments Quantum Computing Control System [32] or
ARTIQ software with Sinara hardware [33]. Each is described briefly below.

1.3.1. PXI Systems and LabVIEW

National Instruments offer a system for high performance measurement and pro-
cessing applications with a wide range of modular input and output (I/0) instruments
(more than 600) [34]. It provides two different synchronization schemes: time-based and
signal-based, and the NI-TClk delivers modular synchronization of up to a few hundred
ps [35]. In the platform that incorporates the Peripheral Component Interconnect Express
(PClIe) bus into the PXI system, the achievable latency is of hundreds nanoseconds order
of magnitude [36]. The system is not flawless, though. The fastest modules are meant to
be used only sequentially and performing concurrent tasks is not allowed. Surprisingly,
the main disadvantage of the system is probably the software. Although LabVIEW is a
well-known programming environment, being proprietary software makes it impossible

to review even old source codes without purchasing a paid license.

1.3.2. NQontrol

The problem with proprietary software does not occur when NQontrol is used. It
is a control system developed specifically to provide loop control of hardware, that is
obtainable with the use of a software package written in Python. It is capable of handling
up to 8 control loops running simultaneously at the sample rate of 200 kHz. The achievable
control bandwidth, however, is limited to several kHz due to phase delay [31]. NQontrol
is limited only to control loops and cannot be used as an off the shelf solution to control
various quantum information experiments because of its inability to perform tasks other
than just the control loop itself.

1.3.3. Quantum Computing Control System

Zurich Instruments offers precise, ready to use equipment for performing quantum
physics experiments. The Quantum Computing Control System (QCCS) consists of four
components, three of which are shown in figure 1.3 and listed below:

e HDAWG Arbitrary Waveform Generator, with bandwidth up to the 750 MHz [37];

e UHFQA Quantum Analyzer;
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1. Introduction

e PQSC Programmable Quantum System Controller — allows to synchronize the whole
setup [38].

Figure 1.3: QCCS modules; image taken from [32]

QCCS’s fourth component is the LabOne control software. One of its key features is that it
is fully compatible with the other three devices. Furthermore, it supports many of popular
programming languages used by physicists, including i.a. Python, C or MATLAB [39]. On
the downside, QCCS is a fully proprietary system. Therefore scalability and modifying
possibilities that could provide better system’s adjustment to laboratory equipment and
specific quantum experiment are limited.

1.3.4. ARTIQ and Sinara

ARTIQ

ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) is a software created
with the aim to provide real-time control over the quantum physics experiments. Although
it was firstly developed in collaboration with National Institute of Standards and Technol-
ogy (NIST), it is supported by a growing number of researchers and scientific institutions
across the globe [33] thanks to being an open—source project. ARTIQ is based on Python
and tries to join the expressivity of an interpreted language with timing performance of
custom FPGA design. Thanks to its time—critical part being compiled (called kernel) and
executed on FPGA (called core device), it is able to achieve nanosecond resolution and
sub-microsecond latency [40]. A non-time-—critical task may be easily interfaced with
Python remote procedure call (RPC) from a host computer. ARTIQ uses hybrid architecture
with a central processing unit (CPU) implemented in FPGA logic [29]. Due to its goal of
fulfilling modern physics laboratories’ demands for a versatile quantum information con-
trol system, ARTIQ provides a graphical user interface (GUI) and supports i.a. controlling
digital inputs and outputs (DIO), RF generation hardware, digital-to—analog (DAC) and
analog-to—digital (ADC) converters [41].

In order to control hardware for quantum physics experiments with a high-level pro-
gramming language, low-level drivers are needed. In ARTIQ, these are created using Migen
— a Python-based tool that aims to ease very large-scale integration (VLSI) system design
and introduces synchronous and combinatorial orientated programming. It allows to
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design gateware with Python and takes advantage of various notions available in high-level
programming languages, such as object-orientated programming etc. [42].

Sinara

Sinara is a product family that has been designed for ARTIQ-based quantum exper-
iments. Thanks to being constructed under the CERN Open Hardware License (CERN
OHL), scalabilty can be achieved and laboratories may adapt the hardware to their needs,
as long as they publicly announce their changes and designs.

Figure 1.4: Example of Sinara family devices’ setup in a crate; image taken from [43]

The family consists of a core device (at first it was KC705 board, but now usually either
Kasli board with Xilinx Artix-7 FPGA [44] or Metlino board with Xilinx Kintex UltraScale
KU040 FPGA is used), that controls slave devices using ARTIQ’s distributed real-time
input/output (DRTIO) protocol, and a number of extension modules of choice [43]. A
large amount of hardware design was done at the Warsaw University of Technology at the
Institute of Electronic Systems. A list of available extension modules (i.a. DAC board, ADC
board or direct digital synthesizer (DDS) board) can be found on the Sinara’s main wiki
page: [43]. The motivation behind the Sinara project was to produce open-source devices
that would allow physics research groups from across the globe to reproduce and reuse
hardware needed to perform quantum information experiments. Furthermore, it is meant
to reduce the amount of duplicated designs and work in different physics labs, because, as
mentioned in [29], many research groups conducting quantum information experiments

develop their own control system optimized for their specific use case.
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1.3.5. Summary

A brief summary of existing control systems presented above is shown in table 2.
Even though NI control system provides a great number of modules with wide range
of application and one of the best timing resolution and latency in its class, the ARTIQ
software and the Sinara hardware family are chosen by the group that supports this thesis
project. The necessity to use the LabVIEW software and the PXI being the proprietary
hardware were too big disadvantages to choose this system. Latency and resolution offered
by the ARTIQ and the Sinara are of the similar order of magnitude as those in NI system,
therefore the timing cost of using an open-source system in this case is almost negligible.

Table 2: Summary of existing control systems features

NI PXI and ARTIQ and
LabVIEW NQontrol QECS Sinara
Open-source no yes no yes
Multi-purpose yes no yes yes
Modular yes N/A yes yes
Amount of 3 + LabOne 18 and
over 600 1 . .
modules software increasing
10-100
Resolution picoseconds for N/A N/A nanosecond

some modules

hundreds of <100 sub-
Latency N/A .
nanoseconds nanoseconds -microsecond
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2. Thesis genesis, goal and technical assumptions

2.1. Genesis

This thesis project has been developed in collaboration with Optical Metrology Group
(QOM) of Humboldt University of Berlin (HUB), where several pieces of research regarding
quantum physics (i.a. creating rubidium Bose-Einstein Condensate) and atoms’ behaviour
in the state of microgravity are currently being conducted (for example: [45], [46]). Their
needs to reduce weight, dimensions and to be able to control quantum experiments with
one simple interface were met by ARTIQ and Sinara hardware. Even though modular
nature of the Sinara project allowed to design and run quantum physics experiments of
various kind with a wide range of laboratory equipment, there was no easily interfaced,
ready-to-use servo to modulate connected laser sources directly (with electric current),
which was imposed by laboratory equipment.

A simplified diagram of the process the QOM needed to control and connections

between its particular components is shown in figure 2.1.

control variable error signal

&
reference laser
source

A

% prescaler RF mixer  LP filter
h 4
‘ ; N
controlled laser fIN . PFD
source Z§ ZE .“
BS fast photodiode .
with amplifier setpoint

Figure 2.1: Block schematics of the controlled process

Optical frequency signal emitted by controlled laser source was mixed with optical
frequency signal from a stabilized on an atomic rubidium transition reference laser source
in order to obtain the difference of the two (both of them were of the hundreds of THz
order of magnitude). The frequency difference (GHz order of magnitude) — a beat note
— was then detected by a fast photodiode and immediately converted to a voltage signal.
The resulting frequency was scaled down and mixed with the radio frequency (RF) from
a local oscillator — a process setpoint. During this project the Urukul module (which is
guaranteed to be able to output frequency correctly up to 400 MHz [47]) played this role.

As aresult, further frequency scaling down and an error signal were achieved, and after
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2. Thesis genesis, goal and technical assumptions

the filtration with low—pass filter signal reached phase—frequency detector. PFD’s output
voltage was dependent on the lock type the system operated in — when the frequency
lock was in use, the signal oscillated between —1 and 1 volt, whereas when the loop was
phase—coherent it took the form of a ramp signal. From the controller’s point of view, the

PFD’s output signal can be treated as an error signal.

2.2. Goal and assumptions

The need described above defined the goal of this thesis project, which was to design
a PID controller that would be useful in QOM’s quantum experiments and would be
accessible through a PC connected to the Sinara hardware. The phase coherence had not
been required from the control loop, therefore designed regulator was needed only to be
able to lock to the desired reference frequency.

The fundamental rule that had to be abided by was for the controller to be run on
the Sinara core and be built with the ARTIQ software and its auxiliary tools (for example
Migen). What is more, implementation of an anti-windup protection in the integral part
of the controller in order to allow it to react instantly on the change of the input signal,
even when the controller output signal remained at the rail for a longer period of time,
was compulsory. Implementation of the derivative part was not required. The laser source
should be modulated directly (this can be achieved by applying varying voltage to the laser
driver module) and the controller output should be able to set the control variable voltage
within a range of at least +£1 V. The input voltages to the controller should be supported in
arange of at least +1 V as well. Furthermore, the regulator’s bandwidth, often defined as a
cut-off frequency where the closed-loop gain reaches the point of 3 dB difference from
the reference value [48], was required to be of at least hundreds of Hz order of magnitude.
Last but not least, the controller average latency should be not worse than 1 ms (with

accuracy of the half its sampling period).
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3. Conception

3.1. Hardware setup

Hardware used in this thesis project to attain goals presented in section 2.2 consisted
of:

e the Kasli board, which is the FPGA-based controller;

e the Sampler board, which includes 8—channel, 16-bit ADC;

e the Zotino board, that includes 32—channel, 16-bit DAC?;

e PC that provides user with the controlling interface to the whole Sinara hardware
via Kasli’s Ethernet or USB-JTAG (Universal Serial Bus — Joint Test Access Group)
connection.

The Kasli board was the only controller from the Sinara family that was available in
the laboratory at the time. Therefore, its usage was necessary to meet the requirement of
using the Sinara hardware and ARTIQ with its auxiliary tools. Although the whole ARTIQ
environment allows to port programs and solutions to new boards, doing so was outside
of this thesis scope.

Sampler is equipped with 8 integrated circuits that perform analog-to—digital conver-
sion with 16-bit resolution [49]. Moreover, thanks to the programmable-gain instrumen-
tation amplifiers that are mounted on the board, its input voltage ranges from +10 mV up
to +£10 V [49]. As the Sinara project page states [49], the board’s sample rate reaches up to
1.5 MHz when the device is in a fast mode.

To meet the requirement set for the laser source to be modulated directly, the Zotino
board was chosen. Itis a digital-to—analog converting module that allows setting its output
to the voltages in range of +10 V [50] and provides a designer with the analogue bandwidth
of 75 kHz and the update rate of 1 MSPS (Mega—Samples Per Second).

To access and communicate with the designed control system and the Kasli board, a
PC was connected to the Kasli controller via either Ethernet (to interface the hardware
with ARTIQ software) or USB-JTAG cable (to access the FPGA directly.)

The Sinara modules’ connections to themselves and to the controlled process are
shown in figure 3.1. The PFD’s output voltage (the error signal) was sampled by the
Sampler board and forwarded to the Kasli controller. That is where the PID algorithm
was implemented and all the control over both connected modules was done. Based on
the error signal’s values and coefficients implemented by the user, the Kasli controller
performed calculations and sent their results to the DAC on the Zotino board. As a result,

the control variable that drove the laser source was set to the appropriate voltage value.

See Appendix 1.1 for details on the Sampler board and its schematics.
2See Appendix 1.2 for details on the Zotino board and its schematics.
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PC

connection via Ethernet

or USB-JTAG
Zotino | Kasli . Sampler
DAC - PID - ADC
A
control variable error signal
&
reference laser
source
v prescaler RF mixer LP filter
i ) : N —
controlled laser fIN . PFD
source "‘
BS fast photodiode .
with amplifier setpoint

Figure 3.1: Block schematic of the system used in the thesis project and their connections

3.2. Stages of the implementation

In the controller’s construction four main parts may be distinguished:

e initialization of both Sampler and Zotino;

e communicating with the Zotino board and setting desired values on its output;
e communicating with Sampler and accessing sampled values;

¢ actual control and integration of the other three parts.

3.3. Two approaches

Two different approaches of servo implementation were tested during the work on this
thesis project: implementing PID controller with ARTIQ (software implementation with
the time—critical part being compiled and run on the FPGA) and with Migen (bare-metal
implementation, which means that the whole program had to be compiled and then

flashed into the FPGA's memory).

3.3.1. ARTIQ implementation

Sinara hardware is created with the goal to be compatible with ARTIQ control system;
therefore drivers that allow controlling the number of boards, including Zotino and Sam-
pler, had been already well-developed and incorporated into ARTIQ at the time of the
implementation. Thanks to the above and to the fact that ARTIQ is a subset of a high-level
programming language — Python — employment of each stage and designing the whole
script was easy to obtain, took little time and required almost no prior knowledge of the

protocols used by integrated circuits mounted on module boards. There are, however,
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drawbacks to this solution — ARTIQ does not support concurrency, only parallelism (this
means, that two different events can occur at the same time, e.g. two independent DIO can
be set to take place at the same time, but nothing else can be processed until the parallel
block’s longest action has already ended). Therefore, implementing a closed feedback
loop controller with ARTIQ, prevents a user from further usage of the control system,
and thus from using all the Sinara family boards, alongside the regulator. What is more,
implementation in the software does not allow to fully exploit hardware’s possibilities
and significantly limits the controller’s available bandwidth, especially when it comes to

driving more DAC channels than one at the time.

3.3.2. Bare-metal implementation

The standard approach to bare-metal implementation in an FPGA would be to choose
either Verilog or VHDL as a hardware description language. Although it is possible to
incorporate Verilog code into the ARTIQ control system or to implement it directly in Kasli
FPGA’s logic, Migen was chosen for this task to meet the requirements described in section
2 and to keep better compatibility with the whole control environment. It is supposed
to be easier and more powerful than both of hardware description languages mentioned
above.

Due to the fact, that this approach lacks direct access from the ARTIQ level and is
implemented in FPGA logic, it overcomes the available bandwidth limit imposed by the
software controlling Sinara modules, but in result, no control over the regulator’s behaviour
is possible with ARTIQ. Having introduced synchronous and combinatorial blocks in
Migen, it’s creators made it support both sequential and parallel programming, following
the scheme present in modern FPGA programming paradigms. Available bandwidth,
therefore, is mainly dependent on the hardware constraints and on the implementation
itself. However, the bare-metal approach’s biggest flaw is that it has to be flashed into the
FPGA memory (either volatile or non-volatile), which means that it cannot be used in
parallel to the ARTIQ software. As a result the user cannot exploit full potential of ARTIQ
and Sinara to conduct experiments.

Moreover, contrary to the ARTIQ implementation, the bare-metal approach requires
the designer to carefully scrutinize data sheets of integrated circuits mounted on boards,
in order to get familiar with protocols they use to communicate with the master device —
the software drivers are accessible only from the ARTIQ level.
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4. Controller development

4.1. ARTIQ implemetation

ARTIQ implementation was performed in two ways: one with the immediate conver-
sion of sampled values from machine units to volts, and one with only adjustment of
sampled values to the binary representation required by DAC integrated circuit instead.
The structure of both implementations is almost identical and the differences are limited
only to use of different functions to obtain or to produce value either in volts or machine
units.

Time—critical parts of the code are marked with a @kernel flag. In order for the compiled
function to return a value that may be used outside the compiled part of the code, some
kind of container (i.e. list or variable) for it has to be provided as a function’s argument. In

other case, the value may be returned with the Python refurn statement.

4.1.1. Initialization

Initialization of both Zotino and Sampler boards is done by invoking a function initial-
ize_devs. It clears all real-time input/output first—in, first-out queues (FIFOs) and moves
the time cursor to the current value of hardware clock with a margin. Moreover, it sets
each channel’s gain of programmable-gain instrumentation amplifier (PGIA) to the given
value — input signal’s maximum amplitude that the module is able to sample correctly
depends on that — and initializes the Zotino board. Each operation has to be followed by
a delay by the appropriate amount of time — it sets the core device’s time cursor after the
operation is already done.

4.1.2. Communication with Zotino

Communication with the Zotino board is done by calling a function named write_-
output, which takes as arguments channel ‘number’ and ‘value’: ‘number’ parameter sets
the number of DAC channel the data is written into, and the ‘value’ is the DAC’s output
value in volts. What is more, this function drives the ldac (load data) line low, in order for
the DAC to know that the data sent is valid, and prevents the output value from being out
of Zotino’s operating range.

4.1.3. Communication with Sampler

In order to acquire sampled values of the error signal, a function sample has to be
invoked. Since sampling is a time—critical operation, a Python list object — values — is
passed to the function as an argument. Values is a list of variables in which sampled data
from ADC channels is stored. In case of the implementation with conversion to volts,
variables inside the list are floating—point numbers, whereas in the other case, integers.
The length of the argument passed to sample is imposed by the functions controlling ADC

implementation — to deliver high transmission speeds of sampled data, Quad SPI mode
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to communicate with ADC is used. Therefore, only an even number of samples may be
acquired each time sampling takes place. The channel values are read sequentially.

4.1.4. Integration and control

According to the ARTIQ style of designing experiments, each part of the program is
implemented as a method of the class that inherits from the EnvExperiment module. In
case of this thesis project, the experiment controlling class is named PID_controller.

In order to run an ARTIQ experiment, two essential methods should be implemented
by the user: run, which may interact with the hardware and is the heart of the control flow
of the experiment, and build, which should be used to request for devices. What is more,
there is a prepare method overloaded, which is executed before the start of run function
and which asks the user to enter coefficients for the PID controller.

In addition, there are three independent methods implemented, that are responsible
for proportional multiplication, integral and derivative action, and are named propor-
tional_multiply, integral_part and derivative_part respectively.

4.1.4.1. Proportional part
Method responsible for the proportional part, takes K_p coefficient and sampled value
of signal — error — as arguments, performs multiplication of them and returns the result.

4.1.4.2. Integral part

The integral part requires three arguments: error, the same value as in the proportional
part, integral_in, which is the integrator output from the previous iteration, and coefficient
K_i. What is more, the anti-windup protection is implemented, which prevents the
integrator from adding next values, in case the sum of previous samples has exceeded
the operating values of DAC. Therefore, PID controller is able to react immediately when
the error signal changes and does not have to wait until the sum falls again into the range
of the DAC operating voltages. The method returns two variables: the updated value of
integral_in as the sum of all samples of error and integrated_out, which is the integrator’s

reaction on the current error value.

4.1.4.3. Derivative part

The method responsible for the PID controller’s derivative action requires, similarly
to the integral part, three arguments: error, which is the same value — corresponding to
the error signal — as in the both parts described above, last_error, which equals to the
previous value of error, and the coefficient — K_d. This method returns two variables:
last_error and derivative_out, which is the method’s reaction on the incoming signal.

4.1.4.4. Run method
The actual integration of all PID controller’s components and control of the loop takes

place inside this method. In an infinite loop, ADC channels are sampled using the method

26



4. Controller development

sample, each controller part’s contribution to the output value is calculated either in
parallel. Eventually, all contributing values are summed up and written to the DAC with
the write_output method. Listing 4.1 shows the example of the infinite loop where the

sampling, calculating and writing to Zotino is done.

Listing 4.1: ARTIQ main loop

while True:

self.sample(values)

delay(400+us)

with parallel:
prop_out = self.proportional_multiply (values[6], self.Kp)
integral_in, integrated_out = self.integral_part (values[6], integral_in, self.Ki)
last_error, derivative_out = self.derivative_part (values[6], last_error, self.Kd)

result = prop_out + integrated_out + derivative_out

self.write_output(self. DAC_channel, result)

4.2. Bare-metal implementation

PID controller (actually the PI controller, but, as mentioned in section 1, term PID in
this paper is used, as a more general one to describe this class of controllers) had already
been implemented with Migen, but its usage was limited to only acousto-optic modulation
with the Urukul board used to control external devices. Since it made use of the ADC driver,
it performed control with the module that had been implemented in FPGA’s dedicated
circuit for digital signal processing and was proven to be working correctly, a decision to
base implementation described in this thesis on already existing solution has been made.
Therefore what was needed to be done was the implementation of the DAC driver, careful
and thorough examination of the existing controller’s implementation and adjustment of

the module that is managing, controlling and integrating all parts.

4.2.1. Architecture

Overview of the controller’s architecture implemented with Migen is presented in
figure 4.1. Each of the modules inherits from the Migen’s Module class, which defines
special attributes that are used to describe classes’ logic, in particular, synchronous and
combinatorial statements. The top class is Servo, which integrates all components neces-
sary for the implementation of a control loop, and is in charge of the control over each
device.

Migen, similarly to VHDL or Verilog, interprets signals as single-ended ones, whereas
the Sinara boards require from the Kasli controller usage of the low—voltage differential
signalling (LVDS) standard; therefore conversion of signals that were to be used outside of
the FPGA was needed. Due to the fact, that Migen creators had already developed classes
for that purpose, the conversion could be obtained with little coding, and thus placed in

the same file a component had been described in. However, in order to keep the code
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as transparent as possible, a decision to separate the module’s description and signals’
conversion into independent files was made. Hence, separate ’Pads’ classes for modules
that need to communicate with components outside the Kasli board were created. Also,

they serve the purpose of assigning data lines used by modules to the Eurocard Extension
Module (EEM) connectors’ pins.

Servo
PGIAPads
PGIA
Servo logic
IR DAC
ADC — :: >
DSP SPI
SamplerPads ZotinoPads

Figure 4.1: Block diagram of Servo and its submodules

The bare-metal implementation of PID controller follows the construction scheme
presented in section 3.2. In this solution, contrary to the ARTIQ implementation, particular
functionalities were divided into separate modules, instead of functions. This way, each
module is responsible for one functionality or operation of one class of integrated circuits
only:

e PGIA allows to set each of the Sampler’s programmable—gain instrumentation ampli-

fiers’ gains to the desired value;
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¢ ADC implements control over sampling process;

e DAC with SPI are used to manage data framing and communication with the Zotino
board;

¢ in IIR module the infinite impulse response filter, that plays the role of the PI con-
troller, is implemented;

¢ in each of Pads modules, assignment of data lines and signals’ conversion is done;

e Servo module’s internal logic controls other four modules.

4.2.2. Setting PGIAS’ gains

Application of PGIA for each ADC channel, allows the Sampler to operate on a wide
range of input voltages (from +£10 mV up to +10 V) without loss to the measurement’s
accuracy. Their initialization is performed by setting amplifiers’ pins corresponding to
the desired gain in accordance with table 5. in [51]. On the Sinara’s Sampler board PGIAs
are controlled by shift registers, whose output pins are set by the controller over Serial
Peripheral (SPI) lines. PGIA module’s block diagram is presented in figure 4.2.

ready r——»
initialized —>
start PGIA pads . srclk ——»

pads.rclk —
pads.sdi —>

Figure 4.2: PGIA module’s block diagram with input and output ports

Although shift register’s timing requirements would be satisfied, if Kasli’s internal clock
had been used to feed data into the register, a decision was made to slow output clock by
the factor of two, to ensure that data is recognized by the receiver correctly.

PGIA module communicates with the controller module inside the FPGA using three
pins: start, ready and initialized. Lines labelled as pads are connected to the lines used by
serial peripheral protocol and serve the communication with integrated circuits mounted
on Sampler board. Control over data transmission is done using the finite state machine
(FSM) that has five states: IDLE, SETUP, HOLD, RCLK and END. When the module is in
the IDLE state, it lets the master controller know that it is ready to transmit data by driving
the ready pin high. To begin a data transmission, the start pin has to be driven high by the
master device — a sequence that sets gains is latched and the state is changed to SETUP.
After beginning its operation, FSM alternates its state between SETUP and HOLD, as long
as there are still bits left to be sent; during the HOLD state both pads.srclk (shift register
clock) and pads.rclk (storage register clock) are driven high. If all 16 bits have been already
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transmitted, FSM switches to the RCLK state, which only purpose is to provide one storage
register clock cycle more, in order for the data in the shift register to propagate to their
desired positions. The FSM’s last state is END, during which initialized pin is driven high.

Listing 4.2 shows how the control over the module’s bit shifting with Migen is per-
formed. When the FSM is in the IDLE state, none of the 16 bits has been transmitted and
the bits_left signal keeps that value. Each time the FSM leaves the HOLD state, number of
bits left is decreased and the content of the sr_data signal is shifted by one position.

Listing 4.2: Example of control over the bit shifting

If (fsm.ongoing("IDLE"),
bits_left .eq(params.data_width)

),

If (fsm.before_leaving("HOLD"),
bits_left .eq(bits_left — 1),
sr_data.eq(Cat(sr_data[1:], 0))

)s

Gain setting sequence is passed to the PGIA module as a constructor’s argument and
equals to the concatenation of eight 2-bits—wide vectors — each value sets the gain of one

of the PGIAs. Those vectors can be of the following values:

e "00" —results in PGIA’s gain of 1;

e "01" —results in PGIA’s gain of 10;

e "10" —results in PGIA’s gain of 100;
e "11" —results in PGIA’s gain of 1000.

One has to bear in mind that with the increasing of the PGIA’s gain, Sampler’s input voltage

range decreases proportionally.

4.2.3. Infinite Impulse Response filter

IIR module is the heart of the control system — it describes, as stated in its name, the
infinite impulse response filter. The majority of work regarding the implementation of
this module has been already done at the time of doing this thesis project. However, a few
modifications were needed for the filter to perform its task, when applied to this project.

The module implementation’s thorough examination has shown that IIR uses two
random-access memory (RAM) blocks. One is used for storing filter’s coefficients and
the second one, for current and previous input and output values. However, the existing
solution lacked the tool, that would allow to write into the module’s memory IIR filter’s
coefficients directly from the controller module in Migen. Values that are kept inside the
coefficient memory are the following:

e FTWO0 and FTW1 — two parts of the frequency tuning word;
e POW — phase offset word;
e OFFSET — value added to the sampled word in order to reduce Sampler’s offset

error;
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¢ CFG — information about target ADC channel that is connected to the particular
DAC channel;
e B1, BO and A1 —IIR filter’s coefficients.
The coefficient’s memory layout for one Servo’s channel is shown in figure 4.3 — the
pattern is repeated for every DAC channel used by the PI controller. Since two different

«—36-bit-wide—,

FTW1 B1

POW CFG
OFFSET| A1

FTWO BO

Figure 4.3: Module’s coefficient memory layout

values occupy the same memory address, it was essential for the access to one value not
to overwrite the second one. Therefore, masks, addresses and information, whether the
accessed coefficient is located in the higher or lower half of the address field, are calculated
inside the Servo module, and then passed as arguments to the IIR’s constructor. Coeffi-
cient’s writing process begins with accessing memory’s particular address and checking
the value that is already stored there. Then, the word’s half width is substituted with the
coefficient’s value and written back to the corresponding address’s memory field. The
scheme is repeated until there are not any coefficients left to be written into the memory.
Each coefficient needs at least the duration of the three clock cycles to complete the
task. When all the words are already inside the memory, IIR module signalizes it to the
Servo, by driving pin done_writing high. The whole operation is performed in parallel to
initialization of the PGIAs and the Zotino board, and is necessary to be completed before
servo begins controlling operation.

The module was created with the purpose of driving Urukul integrated circuit (IC) that
accepts amplitude scale factor (ASF) which is 14 bits wide. Since the DAC IC mounted
on the Zotino board is a 16-bit one, what was needed to be done here, was to ensure that
output data delivered to the DAC module was 2 bits wider than ASE The filter’s output
value changes accordingly to the output vector’s widening, since its construction allows
the data to be even 25 bits wide. Widening of the vector was achieved by enabling the
filter to output signed values and by changing the number of bits, by which data was
shifted on its way out. The structure of the IIR filter, after changes described above being

applied, is presented in figure 4.4. Clipping, to either maximum or minimum value the
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two’s complement representation, plays the role of anti-windup protection and, what is

more, prevents the output signal from overflowing.

48 37 25 16

@ >>11 CLIP >>9 —F

SO —

Figure 4.4: Structure of the IIR filter described inside the IIR module

The filter’s output signal for each channel (profile) is 64 bits wide and consists of ASE
POW, FTW1 and FTWO0 values— from the most significant to the least significant bits.

4.2.4. Control over digital to analog converter

The control over the digital to analog conversion takes place on two levels of abstrac-
tion. To the higher layer belongs the DAC module, which extracts information about the
target voltage, frames it with additional data and sends it to the lower—level controller —
SPI module. It, on the other hand, provides the PID regulator with transmission over data
lines adjusted to the Zotino’s IC requirements.

4.2.4.1. SPI module

SPI module is responsible for low-level communication with an integrated circuit that
performs digital to analog conversion (IC used on Zotino board is AD5372BCPZ [52] from
Analog Devices). Although the protocol used by the IC is described as a Serial Peripheral
Interface (hence the module’s name SPI) protocol, there are a few additional signal lines
used. However, it is the controller of the higher level — DAC module — that makes use of
those extra lines and from the SPI module’s perspective, it may be considered as a standard
SPI protocol. SPI module block schematic is shown in figure 4.5.

The module’s input ports consist of spi_start and dataSPI bus; width of the latter is
parameterized and equal to the data_width field of params tuple, that is passed as an
argument to the module’s constructor.

The module’s output ports fall into two categories: the ones that are used to com-
municate with other components inside the FPGA, and the ones used to drive data lines
connected to external devices. To the former category belongs spi_ready, which indicates
that the module is ready to accept new data and send them to the IC, whereas to the latter
belong ports labelled as pads. During ongoing data transmission, serial clock signal —
which is required to be slower than 50 MHz [52] — is sent to slave device over pads.sclk

line. When data transmission is over, pads.sclk line is kept low. Data received over dataSPI
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—>»  spi_start spi_ready ———»

SPI

pads.sclk |——
dataSPI pads.sdi [—

pads.syncr ——»

Figure 4.5: SPI component’s block diagram with input and output ports

line is latched and stored as a vector, and when start event is issued, vector’s content is
serialized and sent over pads.sdiline, most significant bit first. Pads.syncr line is used to
frame the data sequence — when driven low, pads.sdi and values are valid and should be
checked by the DAC on pads.sclk’s every falling edge. After every 24th bit sent, pads.syncr
has to be driven high for at least 20 ns, for the transmission to be accepted. Otherwise,
data would be recognized as corrupted and transmission would not be accomplished.

The SPI's control over the transmission is implemented using a finite state machine
that has three states: IDLE, SETUP and HOLD.

When in the IDLE state, the SPI module drives both pads.syncr and spi_ready pins
constantly high. Whenever spi_start pin is issued, data from dataSPI is latched into the
shift register and the FSM’s state is changed to SETUP. Moreover, the counter responsible
for the clock_enable signal is launched. Its highest value is parameterized and equal to the
params.clk_width field. Each FSM state is entered on the rising edge of the FPGA’s clock,
but only if clock_enable condition is satisfied. It allows manipulating state’s duration and
the frequency of the clock sent to the IC. In addition, during the IDLE state, bits signal,
which is another counter that provides with information of how many bits are still to be
sent, keeps the value of data_width-1. During the SETUP state, pads.syncr is driven low
and the module enables the output clock. When the clock_enable signal is active, FSM
changes state to HOLD. Each time FSM enters the HOLD state, the number of bits inside
the shift register is checked, and if there are no bits left to be transmitted, the module
switches back to the IDLE state. Otherwise, the SPI module shifts data inside the shift
register by one position, decreases the bits counter by one and then, having launched
clock_enable counter, it switches back to SETUP state. Disabling the pads.sclk output takes
place in that state as well. This means that data on pads.sdi line is currently valid, because
IC collects data on each falling edge of the clock line. Because the DAC requires at least 10
ns of a delay between the 24th bit’s falling edge and the pads.syncr rising edge for data not
to be corrupted, going back to IDLE state is possible only when clock_enable is asserted.

When using the SPI module, one has to bear in mind that pads.syncr line has to be
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driven high for at least 20 ns. Therefore, the spi_start cannot be constantly tied high,
because the FSM would leave the IDLE state too soon and the IC would not recognize
data correctly. The control over that timing is not done inside this module — it is the DAC
module that takes care of it.

Listing 4.3 shows how to define the FSM in Migen and how the signals in the SPI
module’s IDLE state are driven. Each finite state machine has to be assigned as one of the
object’s submodules. In the first combinatorial statement the clock_enable signal is added
to the FSM, so this condition is checked in each state automatically.

Listing 4.3: Example of definition and one state of FSM

self.submodules.fsm = fsm = CEInserter() (FSM("TDLE"))
self.comb += fsm.ce.eq(clk_cnt_done)
self.comb += pads.sdi.eq(sr_data[—1])
fsm.act("IDLE",
self.spi_ready.eq(1),
pads.syncr.eq(1),
If (self.spi_start,
NextState("SETUP"),
data_load.eq(1),
cnt_load.eq(1)

4.2.4.2. DAC module

DAC module performs three, equally significant, tasks: it derives information about
the voltage to be set from profile signal, wraps it in additional information regarding target
channels, and controls the SPI component. What is more, it coverts derived information
about the output voltage from the two’s complementary to the binary representation. If
it was not for this action, voltages on the Zotino’s output pins would not be set correctly.
DAC'’s block diagram with input and output ports is shown in the figure 4.6.

DAC

—» dac_start dac_ready ——>
—> dac_init dac_initialized ———

2 profile —»  spi_start spi_ready —>
SPI pads sclk >
t:> dataSPI pads.sdi >
pads.syncr >
pads |dac —>

Figure 4.6: Block diagram of DAC module
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Dac_start and dac_init ports are used by the master controller — in this case Servo
module — either to begin the DAC’s operation and data transmission to the Zotino board
or to perform initialization of the DAC’s IC. As soon as the controller drives the dac_init
signal high and the device has not yet been initialized, the SPI module sends a data
sequence that calibrates the DAC’s OFS0 register and sets dac_initialized high to let the
controller know that initialization is not needed any more. DAC begins its operation when
dac_start pin is driven high, and after transmission to all used channels has ended, it
drives dac_ready pin high. DAC component adds to the SPI output ports pads.ldac signal
— it has to be driven high only during initialization and is permanently tied low afterwards.

Similarly to the SPI module, DAC driver is implemented using FSM. What is more,
it only has three states as well: IDLE, INIT and DATA. When in IDLE state, dac_ready
pin is constantly asserted and module’s next state depends on dac_start and dac_init
pins. To ensure that SPI module’s pads.syncr pin is driven high long enough for the DAC
to recognize framing, timing control is implemented using a counter. It counts down
the clock cycles needed for a valid transmission — the number of bits to send times
params.clk_width times 2, plus 4 clock cycles. The additional four cycles are required for
the SPI to remain in IDLE state and drive pads.syncr line. When the dac_start is set, the
counter is launched and the FSM'’s sate is changed to DATA. During ongoing IDLE state,
data from the profile bus is latched in a shift register, information about target channels is
added to it, and the word counter, that indicates how many words remain inside the shift
register, is set to the number of used channels. When in DATA, every time the number of
the clock cycles needed for one SPI transmission has elapsed, the number of words in the
shift register is checked. If there are still words to be sent, the counter is launched and the
words inside the shift register are shifted by the width of a single word. If all the data has
been sent and the shift register is empty, FSM switches back to the IDLE state. Every time
cycle counter is launched, the DAC module sets spi_start pin on the next clock’s rising
edge for the duration of one clock cycle.

Shifting data received from the IIR module, however, is needed. The ADC IC delivers
data in two's complement 16-bit-wide representation. Even though the DSP block used by
FPGA handles two’s complementary operations smoothly, DAC IC requires data to be in
the binary representation. Thus, adding half of the range achievable on signal’s width was
done — thanks to overflow occurring when adding to the signed values, a shifted values
are obtained.

4.2.5. Pin assignment and signals conversion

Each pads module’s constructor takes two values as arguments: eem and platform.
The former one indicates the name of the board used by the module and the number of
EEM connector the board is connected to; the latter one marks the target platform on
which the program is to be executed. Passing them as arguments allows for the design to

be portable across different hardware setups and controller boards. Each of the platforms
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supported by Migen has a request method, that takes the name of the requested I/0 tuple
as an argument and allows to gain access to its peripheral signals and pins used by the
FPGA. To illustrate how the board’s connectors and pins assignment are structured in

Migen, Zotino’s connector tuple is shown in listing 4.4

Listing 4.4: Example of Zotino’s I/O tuple structure

("zotino{}_spi_p".format(eem), 0,
Subsignal("clk", Pins(_eem_pin(eem, 0, "p"))),
Subsignal("mosi", Pins(_eem_pin(eem, 1, "p"))),
Subsignal("miso", Pins(_eem_pin(eem, 2, "p"))),
Subsignal("cs_n", Pins(_eem_pin(eem, 3, "p"))),
I0Standard(iostandard),

)s

("zotino{}_spi_n".format(eem), 0,
Subsignal("clk", Pins(_eem_pin(eem, 0, "'n"))),
Subsignal("mosi", Pins(_eem_pin(eem, 1, "n"))),

no.n

Subsignal("miso", Pins(_eem_pin(eem, 2, "n"))),

non

Subsignal("cs_n", Pins(_eem_pin(eem, 3, "'n"))),
I0Standard(iostandard),
)

I/0 tuple consists of the peripheral’s name, identity number, set of Subsignals and IOStan-
dard. Identity number allows to distinguish different instances of the same peripheral
— for example, different light-emitting diodes (LEDs). Thanks to the Subsignal helper
class, resources that use FPGA’s pins may be arranged in an easy to read way. What is
more Subsignal’s constructor structure is identical to I/O tuple, with the identity number
omitted. It allows to gain access to the FPGA'’s specific pin to by using signals name. Finally,
IOStandard indicates the logic standard used by FPGA to drive those pins. A method of
requesting access to peripheral’s pins is presented in listing 4.5.

Listing 4.5: Example of the request method usage

spip = platform.request("{}_spi_p".format(eem))
spin = platform.request("{}_spi_n".format(eem))
Idacn = platform.request("{}_ldac_n".format(eem))
busy = platform.request("{}_busy".format(eem))
clrn = platform.request("{}_clr_n".format(eem))

As shown in listing 4.5, there are two I/0O tuple instances of the close resemblance. This
is because each of the tuples corresponds to the polarity of the FPGA pins they drive. Thus,
there are four SPI lines connected to negative—polarity pins and four lines connected to
positive—polarity pins.

After pins are requested and accessed, a conversion from single-ended signals to
differential signalling is done. As mentioned in section 4.2.1, Migen creators developed
classes that aim to perform that task easily: Differentiallnput, DifferentialOutput and
DDROutput. Each of their constructor’s argument list consists of single-ended signal and
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two pins that are to be driven by the signal. Access to these pins by their name has to be
gained prior to the conversion with the request method.

Exemplary usage of conversion classes is shown in listing 4.6.

Listing 4.6: Conversion of single-ended signals to differential signalling

self.specials += [
DifferentialOutput(self.ldac, ldacn.p, ldacn.n),
DifferentialOutput(self.sdi, spip.mosi, spin.mosi),
DifferentialOutput(self.sclk, spip.clk, spin.clk),
Differential Output(self.syncr, spip.cs_n, spin.cs_n),
DifferentialOutput(self.clr, clrn.p, clrn.n),

Differentiallnput(busy.p, busy.n, self.busy),

4.2.6. Servo module

The module that integrates all of the parts described above and is in charge of launch-
ing its every submodule is the Servo module. It has two pins to communicate with a
potential controller of higher level: start, which, when driven high, begins Servo single
iteration — reading the ADC channels’ values, processing them and then setting DAC
outputs accordingly, and done, which signals that Servo’s iteration has been completed.

The overall control of the data flow and four submodules, that communicate with
external Sinara boards, and connection of ADC, IIR and DAC channels to each other is
done by Servo’s logic. What was needed to be taken into consideration when having
planned assignments, was the fact, that the order of the channels had been reversed on
the Sampler board. To restrain latency introduced by the Servo’s components, sampling
of the ADC channels begins a precise amount of time before the processing and sending
data to DAC finishes. It allows the ADC to convey samples just in time the [IR and DAC
modules are ready for the next transmission.

The data flow and behaviour of components are defined inside Servo’s synchronous
and combinatorial statements: events that trigger components are combinatorial, whereas
asserting components’ readiness and the current state is done synchronously. Therefore,
components’ states are checked every time a rising edge of the Kasli’s internal clock
happens and action that results from those states occurs on the next rising slope. To
illustrate the difference between combinatorial and synchronous assignments, a simple
assignment of two variables was done — their timing dependencies are presented in figure
4.7 (both signals’ values are assigned when the condition signal is asserted).

The components’ states are stored inside the three-bits—wide Signal named active —
each bit corresponds to the current status of each device: third bit to DAC module, second
to the IIR module and the first bit to the ADC module. Whenever a component finishes

its task, Servo changes active bit in accordance with the action performed, provided the
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sys_clk=1 S O O e

condition=0 |

a_sync[3:8] =0 & i
b _comb[3:0] =0 o B

Figure 4.7: Example of synchronous and combinatorial assignments

Servo iteration has been issued. Each device is dependent on particular conditions that

have to be satisfied in order for it to operate:

e ADC begins sampling and data transfer to the Kasli, only if both Sampler’s PGIAs and
DAC are already initialized, the Servo iteration has been issued, filter coefficients
have been already written to the IIR’s memory and the amount of time for the IIR
and DAC modules to finish their current operation is sufficient;

¢ [IR module begins operation only if ADC is ready (it either has already sampled
signals or it did not start any action at all) and when the ADC start event has been
issued;

¢ DAC module starts transmission to the Zotino board only if IIR start event has been
issued and the IIR module either is currently in shifting phase or has already finished

operation.

Because initialization of DAC and PGIAs as well as writing the filter coefficients into
the IIR module’s memory is mandatory before the control loop starts, it is the first thing
the Servo module does when launched.

In addition to the logic described above, a function coeff _to_mu, that allow to convert
PID coefficients from the form used in equation 1.1 to the digital IIR filter coefficients
from equation 1.5, was implemented. The number of channels used by the PID controller
determines how many times the coeff_to_mu function is invoked. After invoking the
function, its results are passed as arguments to the IIR module’s constructor, where it is
written into the coefficient memory.

To ensure that all values and signals are settled after the FPGA’s initialization, the
beginning of the Servo’s operation has to be delayed. Therefore, a counter that counts
down the clock cycles from the specified in the Servo module amount. When it reaches
zero, the start_done line is asserted which is necessary for any other action, such as

initializing PGIAs or writing coefficients to the IIR module’s memory.
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After the design process was finished, tests and measurements were conducted to
find out whether the implemented PID controller works properly. To ensure that each
of the controller’s terms — proportional, integral (and in case of ARTIQ implementation,
derivative as well) — functions as planned, they were tested separately, at first. If their
assessment result was positive, they were combined to form the whole PI controller, which
was then examined.

Since PID controller tuning is outside of this thesis scope, each of the coefficients, that
were used during tests of individual controller’s terms, was chosen arbitrarily — just to
illustrate that the regulator works as designed and demonstrate its features. However,
to conduct tests of the controller as a whole, a method proposed by Karl Johan Astrém
in [53] to calculate the controller’s coefficients was followed. It is a modified version
of an open-loop Ziegler-—Nichols tuning method [54] with a few adjustments for use
with digital implementations, in which delay introduced by sampling period has to be
taken into account. Even though the Ziegler-Nichols method provides only moderately
good tuning [53], it allows to calculate regulator’s coefficients easily by taking only a few
measurements. The PID coefficients used during the controller’s testing can be found in
table 3.

Table 3: PID controller’s coefficients used during device testing

ARTIQ

With conversion Without conversion

Bare-metal Test type

Kp 2 2 2 s
K 0 5
! o
Kp 0 0 — [a¥
Kp 0 0 0 s
K; 2 2 2000 &
7
Kp 0 0 — —
Kp 0 0 =
o
K; 0 0 =
Kp 5 5 — A
Kp 0.0048 0.0072 0.1007
K; 1.8415 4.3617 839.19 ~
Kp — — —
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5.1. Testing procedure

In order to conduct each term’s unit test, the devices used during this thesis project
— the Kasli controller, the Zotino and the Sampler boards — and measuring equipment
were set up as shown in figures 5.1 and 5.2. It is essential to emphasize that each test and
measurement was performed with the control loop being open and the oscilloscope being
connected as a plant. The stimulus signal from the function generator played the role of
the process setpoint. However, since the loop was open and the error could not decrease
due to the controller’s action, the error signal was equal to the setpoint. Therefore, these

two terms are used interchangeably from now on.

Ethernet or USB-
JTAG cable

POWER
SUPPLY

QSPI over

EEM SPI over EEM

SAMPLER ZOTINO

N PID controller

Tt d e s s s s e s s s e s s s s s s e e e e e e .-

Test probe

BNC cable

BNC cable

Oscilloscope

"L

A

Function
generator

Figure 5.1: Block schematic of the test setup

To ensure that the setpoint was within the regulator’s bandwidth and to prevent the
controller from saturating, sample rate for each controller’s implementation was estimated.
As a result, the signal fed to the Sampler board was set to the frequency of 100 Hz and
the amplitude (peak-to—peak) of 2 volts. The function generator, connected to the tested
hardware with a BNC cable, was set to produce sinusoidal wave (tests of the proportional
term), square wave (tests of the integral and the derivative actions) and a step change
(to calculate controller’s coefficients using the method suggested by Karl Johan Astrém).
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The oscilloscope and the test probe were used to observe the regulator’s response to the
stimulus signal and to take measurements.

Ethernet cable USB-JTAG cable Zotino board

Power supply
cable

Kasli controller Test probe

BNC cable Sampler board EEM cables BNC cable

Figure 5.2: Photograph of the test setup

Having established that all the terms worked as designed, the examination proceeded
to the phase of testing the PI controller as a whole. The test setup was identical to the one
presented in figures 5.1 and 5.2. However, during this phase, the regulator responses to
setpoint’s rapid changes were studied, instead of its waveform’s shape.

To examine the controller’s response to a sudden change of the setpoint, a voltage step
change was applied to the Sampler’s input. In the similar way the controller’s response to
the voltage spike on its input was studied. Because controller tuning has a great impact on
the system’s response, to avoid its influence the latency measurements were performed
with the integral term set to 0. Moreover, control system’s bandwidth heavily depends on
the controller coefficients as well. Thus measuring the implemented regulator’s frequency
response with precise instruments such as a vector network analyzer would not be a
sensible thing to do. Instead, the controller’s bandwidth was estimated from its multiple
responses to the step change.

In each of the figures presented below, the first trace shows the setpoint waveform,
whereas the second trace presents the control variable at the output of the Zotino board.
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5.2. Tests of the ARTIQ-based implementations

ARTIQ-based implementations sample rates were estimated using the ARTIQ core’s
real-time input/output (RTIO) counter which counts the FPGA’s clock cycles. It allowed
retrieving absolute timestamps of the events associated with the beginning and the end
of the control cycle and computing their difference, which was the sample rate. Having

applied the sampling theorem [55], the system’s bandwidth was obtained and estimated.
5.2.1. Implementation with immediate conversion to volts

Proportional term

As shown in figure 5.3, the control variable’s amplitude is almost twice as big as the error
signal’s. This indicates that the proportional term works properly, as the ratio of output
and input signals stays in accordance with the gain coefficient specified in table 3. What
is worth noticing, is the fact that even though the wave’s frequency is relatively low —
only 100 Hz — the phase shift introduced by the controller to the controlled signal is not
negligible and visible with the bare eye..

Tek Stop

(@ soomv 2 ][4.00ms J[ZSOMS/_S ] [ W3 zo.uva
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Figure 5.3: Setpoint and control variable — test of the proportional term

Integral term

Since integral part of the PID regulator eliminates steady-state error by adding error
signal’s values from the past to the current sample, it may cause the CV to drift with
time due to the additional offset introduced by either the Sampler or the Kasli controller.
Therefore, to see the full CV’s waveform on the oscilloscope screen, the coupling was set
to AC (alternating current) when the regulator’s integral term was term was undergoing
testing.
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In figure 5.4 the CV waveform is shown. It takes the form of a ramp signal, which is
the expected result of adding previous sampled values to each other. The flat parts of the
output waveform are the effect of anti-windup protection. If it had not been implemented,
the controller would not stop integrating and would try to set its output voltage to the
value that is beyond the hardware limits. Only two examples of this effect are indicated
with arrows in figure 5.4 to keep the its clarity.

H 5ms | 5 gosis rrrrrrooos D 00 T -0
™

[[=v

Warnp=2.0

1" 2% 8

Wamp=20.2

Effects of anti-windup
protection

Figure 5.4: Setpoint and control variable — test of the integral term

Derivative term

The controller’s derivative action is shown in figure 5.5. Similarly to its mathematical
model, it is a measure of how fast the function values change in a response to the function’s
arguments. Thus it forms a spike every time the setpoint is rapidly changed and stays at
the steady-state position in case no SP’s change occurred within the last sampling period.
Similarly to figure 5.3, the influence of the sampling period can be observed — the voltage
spikes lag a certain amount of time behind the setpoint’s change. However, it does not

prevent the controller’s derivative term from setting control variable properly.
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Figure 5.5: Setpoint and control variable — test of the derivative term

PI controller

Figures 5.6, 5.7 and 5.8 present the PI controller responses to the impulse (100 us
duration) and the step stimulation and measurements of the average latency, respectively.
What the testing revealed was that the regulator did not recognized the impulse and did
not respond to it at all. It is most likely the result of the controller’s bandwidth being too
small.
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Figure 5.6: The controller impulse response
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Figure 5.7: The controller step response

However, as shown in figure 5.7, a step change caused the PI controller’s reaction. Hav-
ing detected the voltage step, the regulator started integration. After it reached the point
of maximum voltage output, further integration was stopped thanks to the anti-windup

protection.
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Figure 5.8: The controller average latency

The controller overall latency consists of not only the delay introduced by sampling,
processing data and communication with the DAC, but also of the delay caused by the
different moments of sampling the error signal. To include the latter’s influence, the
latency was measured from the moment when the setpoint changed to the average point
of time when the regulator responded. What is more, the deviation of the signal from
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this point of time is equal to the controller’s sampling period. Having obtained this
parameter allowed calculating the regulator’s bandwidth. As a result, the average latency of
approximately 600 us was measured and the bandwidth of around 1.2 kHz was calculated.

5.2.2. Implementation without conversion to volts

Giving up the conversion from machine units to volts allowed to spare some time
when it comes to the controllers sampling period. However, the results of each term’s
measurements are similar to those obtained during testing the implementation with the
immediate conversion to volts, and therefore are not extensively discussed. As presented
in figures 5.9-5.11 every part of the controller performs its tasks properly. What is worth
mentioning is that thanks to the improved bandwidth, the controller’s dead time — the
amount of time that has to elapse before the controller responds to the setpoint’s change
— decreased. Moreover, phase shift decreased as well. It is easily seen in figure 5.9, though.

The measurements of the controller’s step response resulted in calculating the con-
troller’s bandwidth: approximately 2.4 kHz, and its average latency: around 340 us. In-
creased bandwidth and decreased latency can be observed in figure 5.11 as well — the

spikes caused by the derivative term are thinner and closer to the setpoint changes.

Tek stop

(@ s00mv 2 j[4.00ms ][ZSOMSIS ] - 10.0m\l}

value Mean Min Max std Dev } 10M points
27 Jan 2020
17:47:48

?Amplitude 2.000v 2,022 2.000 2.040 9.162m
Figure 5.9: Setpoint and control variable — test of the proportional term

Although the regulator’s bandwidth increased, the change that was not big enough
for the PI controller to respond to the generated impulse signal and its impulse respone
matches the one presented in figure 5.6. The PI controller, similarly to the one from the
previous subsection, reacted on the step change of the input signal. Here as well, the
anti-windup protection worked and the regulator reacted almost instantly in spite of being

at rail for some time. It is illustrated by the waveform in figure 5.12.
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Figure 5.10: Setpoint and control variable — test of the integral term
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Figure 5.12: The controller step response
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Figure 5.13: The controller average latency
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5.3. Tests of the bare-metal implementation

Estimating the bare-metal implementation’s bandwidth required other approach than
the previous two. Control over the PI regulator from the ARTIQ level was not possible and
integration with the ARTIQ core’s RTIO had not been implemented either. Therefore, a
time of one servo cycle, which was calculated during the Servo module implementation
(see section 4.2.6) was used.

To compile and run the implementation, main and eem? files were created. These
files served the purpose of the Servo module declaration and gaining access to the EEM
connectors associated with Zotino and Sampler. Listing 5.1 shows how the FPGA’s clock
buffer was accessed and assigned to the module’s clock signal. It presents how to build
the design as well. The code used for the bare-metal implementation testing is placed in
Appendix 2.1 and Appendix 2.2.

Listing 5.1: Example of clock signal assignment and build command

clk125 = plat.request("clk125_gtp")
m.specials += [
Instance("IBUFDS_GTE2",i_I = clk125.p, i_IB = clk125.n, o_O = clk_signal),
Instance("BUFG", i_I = clk_signal, o_O = servo.cd_sys.clk)
]
plat.build(servo, run=True, build_dir = "building/pid/{}ch/pgia{:0>4x}/Kp_{}_Ki_{}".format(
channels_no, pgia_init_val, Kps[0], Kis[0]), build_name = "top")

Proportional term

The improvement of controller’s action can be realized immediately — the waveform
generated by the proportional term is shown in figure 5.14. In this case, the controller
did not introduced any significant phase shift, while being fed with the error signal of the
frequency of 100 Hz. What is more, the amplification of the input signal by the factor of 2

was preserved.

Integral term

The integral action’s test result was positive, as well. As shown in figure 5.15, its response
to the square—shaped error signal was, however, much smoother than the responses of
the previous two implementations. It was achieved thanks to the controller’s much higher
sample rate.
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Figure 5.14: Setpoint and control variable — test of the proportional term
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Figure 5.15: Setpoint and control variable — test of the integral term

PI controller

Contrary to the both ARTIQ-based implementations, the bare-metal one successfully

detects the short impulse and generates a response based on that input. This, however,

may be of ambivalent significance. On one hand, it demonstrates that the bare-metal
implementation has the higher bandwidth than the ARTIQ-based ones. On the other hand
it may be sensitive to undesirable external disturbances. Application of filters on the input

50



5. Tests and measurements

of the PID controller should solve this problem when it occurs. The controller’s response
to the impulse is presented in figure 5.16, while its response to the step change in figure
5.17. What is of the extreme importance is the fact, that the controller reacts to the error

signal’s change almost immediately.
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Figure 5.16: The controller impulse response
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Figure 5.17: The controller step response

As a result of the measurements shown in figure 5.18, the controller’s bandwidth of
approximately 15.6 kHz and its average latency of around 31 us were calculated. It is more
than tenfold improvement in terms of the latency in comparison with the best of two

ARTIQ implementations, and about fivefold in terms of the available bandwidth.
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Figure 5.18: The controller average latency

5.4. Tests and measurements summary

Tests conducted on different PID controller implementations have shown that they
are able to provide at least the proportional-intergral type of control. The most important
parameters of each regulator, such as its bandwidth or latency, were measured and are
presented in table 4. What was realized is that the best control should be provided by
the PI regulator implemented as a bare-metal controller — its measured results were
significantly better than the other two’s. Since all the implementations are using the same
hardware and the same connections, this difference is a result of the ARTIQ software
working above the Kasli controller — it does not allow to fully exploit advantages of ADC
and DAC integrated circuits at the moment.

Table 4: Comparison of implementations’ parameters

ARTIQ
Bare-metal
With conversion Without conversion
Bandwidth ~1.2 kHz ~2.4 kHz ~15.6 kHz
Sampling period ~400 1 s =200 us =32 us
Latency =600 us =340 us =31 us
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6. Conclusion and thesis summary

During this thesis project a new PID controller was developed. The first two stages
involved a pure software implementation of the regulator. This way of implementing
the proportional-integral-derivative controller’s functionality, in both cases resulted in
regulator’s small bandwidth. The second approach involved developing a PID controller,
as well, but rather directly in FPGA’s logic than in software. Its outcome should be seen
as a successful end of a project, since the controller’s bandwidth is of 15 kHz order of
magnitude. This implementation, however, could have been even more promising, if
some other DAC integrated circuit had been installed on the Zotino board. As stated in
IC data sheet [52], it needs more than 30 us to settle its output before new data may be
processed, which makes it the main limiting factor to the regulator’s bandwidth.

What has to be taken into account is, however, the fact that the achieved bandwidth
does not guarantee the closed-loop control to operate at such high sample rates. The phase
shift, which was clearly visible with the bare eye in both ARTIQ-based implementations,
would probalby limit the system’s bandwidth.

From the three implementations, the last one — the bare-metal implementation
— has been shown to offer the best performance for a control loop. What is more, its
only disadvantage in comparison to the previous to, is the lack of the derivative part,
which, however, had not been required by the technical assumptions and is an acceptable
trade—off for the higher bandwidth and much smaller average latency.

All of the requirements set in section 2 has been fulfilled: the PID controller is run on
the Sinara hardware and has been developed using either ARTIQ or Migen; anti-windup
protection has been implemented and proved to perform its task properly in every im-
plementation. The process is driven directly with voltage using the Zotino board, which
allows setting the control variable in the range of +10 V. The error signal is sampled by
the Sampler board, which is capable of accepting data in the voltage range of +10 V as
well. Achieved bandwidth and latency are better than required — even in the worst case
scenario.

The devices used during this thesis projet can be put inside the rack for user’s conve-

nience, as shown in figure 6.1.

6.1. Further work

Although the controller is proved to be working and can be used to control laser sources
already, the most effective implementation’s application can cause some troubles for many
inexperienced users because its usage requires the knowledge on how to flash binaries
into the FPGA's memory. What is more, the usage of the implemented PID controller
prevents the user from performing anything else on Sinara core. Therefore, the next step

of development should be to incorporate the bare-metal implementation into the ARTIQ.
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Sampler
board

Kasli Zotino
controller board

Figure 6.1: Photograph of the hardware setup used in thesis project

It would allow using all of the hardware available, with the PID control loop running in
background. The development could go even further and the bare-metal implementation
could be adjusted to perform control loop on eight channels independently with little
effort.

In figure 6.2 the hardware setup used at Humboldt University of Berlin for performing
quantum physics experiments is presented. The connections are made with a laser source
to drive it with the control loop and with the PFD to sample the error signal. With the

dashed line the Sinara hardware family is marked.
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Appendix 1. Details on the used boards

Appendix 1.1. Details on Sampler

According to the Sampler project page [49], the board itself ‘is an 8-channel, 16-bit
ADC EEM with an update rate of up to 1.5MSPS (all channels simultaneously). It has
low-noise differential front end with a digitally programmable gain, providing full-scale
input ranges between +-10mV (G=1000) and +-10V (G=1).

What is more, the Sampler’s key features are [49]:

‘Current hardware revision: v2.2

Width: 8HP

Channel count: 8

Resolution: 16-bit

Sample rate: up to 1.5 MHz

Sustained aggregate data rate in single-EEM mode (8 channel readout): 700 kHz

Sustained per-channel data rate in dual-EEM mode (SU-Servo): 1 MHz

Note that the bandwidth specifications on this page are for the hardware only; ARTIQ

kernel and RTIO overhead often make the effective sample rate lower.

Bandwidth: 200kHz -6dB bandwidth for G=1, 10, 100, 90kHz for G=1000

Input ranges: +-10V (G=1), +-1V (G=10), +-100mV (G=100), +-10mV (G=1000)

DC input impedance:

— Termination off: 100k from input signal and ground connections to PCB ground

— Termination on: signal 500hm terminated to PCB ground, input ground shorted
to PCB ground

ADC: LTC2320-16

PGIA: AD8253

EEM connectors: power and digital communication supplied by one or two EEM

connectors.’

Furthermore, the Sampler can operate in one of the two modes: as a standard SPI

device, or in a fast mode via a source-synchronous LVDS interface [49]. According

to the Sampler wiki page, the Sampler’s channels can be read out at 1.5 MHz via the

source-synchronous interface.
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Appendix 1.  Details on the used boards

Appendix 1.2. Details on Zotino

Following the Zotino project page [50], it ‘is a 32-channel, 16-bit DAC EEM with an

update rate of IMSPS (divided between the channels). It was designed for low noise and

good stability’.

The Zotino’s key features are:

‘Current hardware revision: Rev 1.1

Width: 4HP

Channel count: 32

Resolution: 16-bit

Update rate: 1MSPS, which may be divided arbitrarily between the channels
Analogue bandwidth: 3rd-order Butterworth response with 75kHz cut-off; ?V/s
slew-rate

Output voltage: £10V

Output impedance: 4700hm in parallel with 2.2nF

DAC: AD5372BCPZ

EEM connectors: power and digital communication supplied by a single EEM con-
nector.

Power consumption: 3W without load, 8.7W with max load on all channels’.
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Appendix 2. Code used for tests and measurements

Listing Appendix 2.1: Code used for declaration of Servo module and all of its parameters

from migen import *

from migen.build.platforms.sinara import kasli

from artiq.gateware.szservo import servo

from artiq.gateware.szservo.pads import ZotinoPads, SamplerPads, pgiaPads
from .eem2 import *

# number of channels used for control

channels_no =2

Kps =10.1007 for i in range(channels_no)]

Kis = [839.19 for i in range(channels_no)]

plat = kasli.Platform(hw_rev="v1.1")

# numbers of EEM extentions to which particular boards are connected

sampler_conn =3

sampler_aux =2

zotino_conn =4

# getting EEM extentions’ and theirs subsignals’ names

adc_io = Sampler.io(sampler_conn, sampler_aux)

dac_io = Zotino.io(zotino_conn)

# mapping EEM extensions’ signals to physical pins

plat.add_extension(adc_io)

plat.add_extension(dac_io)

# extracting name used by other functions

adc_eem = adc_io[sampler_aux][0].split("_")[0]

pgia_eem = adc_io[2][0].split("_")[0]

dac_eem = dac_io[zotino_conn][0].split("_")[0]

# creating pads wrapper

adc_pads = SamplerPads(plat, adc_eem)

pgia_pads = pgiaPads(plat, pgia_eem)

dac_pads = ZotinoPads(plat, dac_eem)

# creating params used by each of the modules used by Servo

adc_p = servo.ADCParams(width=16, channels=channels_no, lanes=int(channels_no/2),
t_cnvh=4, t_conv=57 — 4, t_rtt=4 + 4)

iir_p = servo.lTRWidths(state=25, coeff=18, adc=16, asf=16, word=16,
accu=48, shift=11, channel=3, profile=1)

dac_p = servo.DACParams(data_width = 24, clk_width = 2,
channels=adc_p.channels)

pgia_p = servo.PGIAParams(data_width = 16, clk_width = 2)

# initial values of PGIAs’ gains — for every amplifier there are two bits of information; all of them

# are concatenated into 16—bits—wide vector

pgia_init_val = 0x0000

# creating an instance of a Servo class

m = servo.Servo(adc_pads, pgia_pads, dac_pads, adc_p, pgia_p, iir_p, dac_p,

pgia_init_val, Kps, Kis)
m.submodules += adc_pads, pgia_pads, dac_pads
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m.comb +=m.start.eq(1) # PID controller’s start pin driven constantly high

clk_signal = Signal()

clk125 = plat.request("clk125_gtp")

m.specials += [
Instance("IBUFDS_GTE2",i_I = clk125.p, i_IB = clk125.n, 0_O = clk_signal),
Instance("BUFG", i_I = clk_signal, o_O = m.cd_sys.clk)

]

plat.build(m, run=True, build_dir = "building/pid/{}ch/pgia{:0>4x}/Kp_{} _Ki_{}".format(
channels_no, pgia_init_val, Kps[0], Kis[0]), build_name = "top")

Listing Appendix 2.2: Code used for gaining access to corrseponding FPGA’s peripheral
signals and pins

from migen import *

from migen.build.generic_platform import *

from migen.genlib.io import DifferentialOutput

from artiq.gateware.szservo import pads as servo_pads
from artiq.gateware.szservo import servo

def _eem_signal(i):
n="d{}".format(i)
if i ==0:

n+=" cc
return n

def _eem_pin(eem, i, pol):
return "eemf{}:{}_{}".format(eem, _eem_signal(i), pol)

class _EEM:
@classmethod
def add_extension (cls, target, eem, *args, *+kwargs):
name =cls.__name__
target.platform.add_extension(cls.io(eem, *args, *xkwargs))
print("{} (EEM){})_starting_at_RTIO_channel_{}"
.fromat(name, eem, len(target.rtio_channels)))

class Sampler(_EEM):
@staticmethod
def io(eem, eem_aux, iostandard = "LVDS_25"):
ios = [

("sampler{}_adc_spi_p".format(eem), 0,
Subsignal("clk", Pins(_eem_pin(eem, 0, "p"))),
Subsignal("miso", Pins(_eem_pin(eem, 1, "p"))),
IOStandard(iostandard),

),

("sampler{}_adc_spi_n".format(eem), 0,

n_n

Subsignal("clk", Pins(_eem_pin(eem, 0, "n"))),

Subsignal("miso", Pins(_eem_pin(eem, 1, "n"))),
IOStandard(iostandard),
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),

("sampler{}_pgia_spi_p".format(eem), 0,
Subsignal("clk", Pins(_eem_pin(eem, 4, "p"))),
Subsignal("mosi", Pins(_eem_pin(eem, 5, "p"))),
Subsignal("miso"”, Pins(_eem_pin(eem, 6, "p"))),
Subsignal("cs_n", Pins(_eem_pin(eem, 7, "p"))),
IOStandard(iostandard),

),

("sampler{}_pgia_spi_n".format(eem), 0,
Subsignal("clk", Pins(_eem_pin(eem, 4, "'n"))),
Subsignal("mosi", Pins(_eem_pin(eem, 5, "'n"))),
Subsignal("miso"”, Pins(_eem_pin(eem, 6, 'n"))),
Subsignal("cs_n", Pins(_eem_pin(eem, 7, "'n"))),
I0Standard(iostandard),

),

I +1

("sampler{} {}".format(eem, sig), 0,

Subsignal("p", Pins(_eem_ping(j, i, "p"))),
Subsignal("n", Pins(_eem_pin(j, i, "'n"))),
IO0Standard(iostandard)

) for i, j, sig in [

(2, eem, "sdr"),
(3, eem, "cnv")

]
if eem_aux is not None:
ios +=[
("sampler{}_adc_data_p".format(eem), 0,

non

Subsignal("clkout", Pins(_eem_pin(eem_aux, 0, "p"))),
Subsignal("sdoa", Pins(_eem_pin(eem_aux, 1, "p"))),
Subsignal("sdob", Pins(_eem_pin(eem_aux, 2, 'p"))),
Subsignal("sdoc", Pins(_eem_pin(eem_aux, 3, "p"))),
Subsignal("sdod", Pins(_eem_pin(eem_aux, 4, 'p"))),
Misc("DIFF_TERM=TRUE"),

I0Standard(iostandard),

),

("sampler{}_adc_data_n".format(eem), 0,
Subsignal("clkout", Pins(_eem_pin(eem_aux, 0, 'n"))),
Subsignal("sdoa", Pins(_eem_pin(eem_aux, 1, "'n"))),
Subsignal("sdob", Pins(_eem_pin(eem_aux, 2, "n"))),
Subsignal("sdoc", Pins(_eem_pin(eem_aux, 3, "'n"))),
Subsignal("sdod", Pins(_eem_pin(eem_aux, 4, 'n"))),
Misc("DIFF_TERM=TRUE"),

IOStandard(iostandard),

)

]

return ios

class Zotino(_EEM):
@staticmethod
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def io(eem, iostandard="1LVDS_25"):
return [

("zotino{}_spi_p".format(eem), 0,
Subsignal("clk", Pins(_eem_pin(eem, 0, "p"))),
Subsignal("mosi", Pins(_eem_pin(eem, 1, "p"))),
Subsignal("miso", Pins(_eem_pin(eem, 2, "p"))),
Subsignal("cs_n", Pins(_eem_pin(eem, 3, "p"))),
IOStandard(iostandard),

),

("zotino{}_spi_n".format(eem), 0,

n_n

Subsignal("clk", Pins(_eem_pin(eem, 0, "n"))),
Subsignal("mosi", Pins(_eem_pin(eem, 1, "n"))),
Subsignal("miso", Pins(_eem_pin(eem, 2, "n"))),
Subsignal("cs_n", Pins(_eem_pin(eem, 3, "n"))),
IOStandard(iostandard),
),
I+
("zotino{}_{}".format(eem, sig), 0,
Subsignal("p", Pins(_eem_pin(, i, "p"))),
Subsignal("n", Pins(_eem_pin(j, i, 'n"))),
I0Standard(iostandard)
) for i, j, sigin [
(5, eem, "ldac_n"),
(6, eem, "busy"),
(7, eem, "clr n"),
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