use std::borrow::BorrowMut; use std::{collections::HashMap, collections::HashSet, sync::Arc}; use super::typecheck::type_inferencer::PrimitiveStore; use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier}; use crate::symbol_resolver::SymbolResolver; use crate::typecheck::typedef::{FunSignature, FuncArg}; use itertools::chain; use parking_lot::{Mutex, RwLock}; use rustpython_parser::ast::{self, Stmt}; #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)] pub struct DefinitionId(pub usize); pub enum TopLevelDef { Class { // object ID used for TypeEnum object_id: DefinitionId, // type variables bounded to the class. type_vars: Vec, // class fields fields: Vec<(String, Type)>, // class methods, pointing to the corresponding function definition. methods: Vec<(String, Type, DefinitionId)>, // ancestor classes, including itself. ancestors: Vec, // symbol resolver of the module defined the class, none if it is built-in type resolver: Option>>, }, Function { // prefix for symbol, should be unique globally, and not ending with numbers name: String, // function signature. signature: Type, /// Function instance to symbol mapping /// Key: string representation of type variable values, sorted by variable ID in ascending /// order, including type variables associated with the class. /// Value: function symbol name. instance_to_symbol: HashMap, /// Function instances to annotated AST mapping /// Key: string representation of type variable values, sorted by variable ID in ascending /// order, including type variables associated with the class. Excluding rigid type /// variables. /// Value: AST annotated with types together with a unification table index. Could contain /// rigid type variables that would be substituted when the function is instantiated. instance_to_stmt: HashMap>, usize)>, // symbol resolver of the module defined the class resolver: Option>>, }, Initializer { class_id: DefinitionId, }, } impl TopLevelDef { fn get_function_type(&self) -> Result { if let Self::Function { signature, .. } = self { Ok(*signature) } else { Err("only expect function def here".into()) } } } pub struct TopLevelContext { pub definitions: Arc>>>, pub unifiers: Arc>>, } pub struct TopLevelComposer { // list of top level definitions, same as top level context pub definition_list: Arc>>>, // list of top level ast, the index is same as the field `definition_list` and `ty_list` pub ast_list: RwLock>>>, // start as a primitive unifier, will add more top_level defs inside pub unifier: RwLock, // primitive store pub primitives: PrimitiveStore, // mangled class method name to def_id pub class_method_to_def_id: RwLock>, // record the def id of the classes whoses fields and methods are to be analyzed pub to_be_analyzed_class: RwLock>, } impl TopLevelComposer { pub fn to_top_level_context(&self) -> TopLevelContext { TopLevelContext { definitions: self.definition_list.clone(), // FIXME: all the big unifier or? unifiers: Default::default(), } } fn name_mangling(mut class_name: String, method_name: &str) -> String { class_name.push_str(method_name); class_name } pub fn make_primitives() -> (PrimitiveStore, Unifier) { let mut unifier = Unifier::new(); let int32 = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(0), fields: HashMap::new().into(), params: HashMap::new().into(), }); let int64 = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(1), fields: HashMap::new().into(), params: HashMap::new().into(), }); let float = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(2), fields: HashMap::new().into(), params: HashMap::new().into(), }); let bool = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(3), fields: HashMap::new().into(), params: HashMap::new().into(), }); let none = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(4), fields: HashMap::new().into(), params: HashMap::new().into(), }); let primitives = PrimitiveStore { int32, int64, float, bool, none }; crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier); (primitives, unifier) } /// return a composer and things to make a "primitive" symbol resolver, so that the symbol /// resolver can later figure out primitive type definitions when passed a primitive type name pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) { let primitives = Self::make_primitives(); let top_level_def_list = vec![ RwLock::new(Self::make_top_level_class_def(0, None)), RwLock::new(Self::make_top_level_class_def(1, None)), RwLock::new(Self::make_top_level_class_def(2, None)), RwLock::new(Self::make_top_level_class_def(3, None)), RwLock::new(Self::make_top_level_class_def(4, None)), ]; let ast_list: Vec>> = vec![None, None, None, None, None]; let composer = TopLevelComposer { definition_list: RwLock::new(top_level_def_list).into(), ast_list: RwLock::new(ast_list), primitives: primitives.0, unifier: primitives.1.into(), class_method_to_def_id: Default::default(), to_be_analyzed_class: Default::default(), }; ( vec![ ("int32".into(), DefinitionId(0), composer.primitives.int32), ("int64".into(), DefinitionId(1), composer.primitives.int64), ("float".into(), DefinitionId(2), composer.primitives.float), ("bool".into(), DefinitionId(3), composer.primitives.bool), ("none".into(), DefinitionId(4), composer.primitives.none), ], composer, ) } /// already include the definition_id of itself inside the ancestors vector /// when first regitering, the type_vars, fields, methods, ancestors are invalid pub fn make_top_level_class_def( index: usize, resolver: Option>>, ) -> TopLevelDef { TopLevelDef::Class { object_id: DefinitionId(index), type_vars: Default::default(), fields: Default::default(), methods: Default::default(), ancestors: vec![DefinitionId(index)], resolver, } } /// when first registering, the type is a invalid value pub fn make_top_level_function_def( name: String, ty: Type, resolver: Option>>, ) -> TopLevelDef { TopLevelDef::Function { name, signature: ty, instance_to_symbol: Default::default(), instance_to_stmt: Default::default(), resolver, } } /// step 0, register, just remeber the names of top level classes/function pub fn register_top_level( &mut self, ast: ast::Stmt<()>, resolver: Option>>, ) -> Result<(String, DefinitionId), String> { let (mut def_list, mut ast_list) = (self.definition_list.write(), self.ast_list.write()); assert_eq!(def_list.len(), ast_list.len()); match &ast.node { ast::StmtKind::ClassDef { name, body, .. } => { let class_name = name.to_string(); let class_def_id = def_list.len(); // add the class to the definition lists def_list .push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into()); // since later when registering class method, ast will still be used, // here push None temporarly, later will move the ast inside ast_list.push(None); // parse class def body and register class methods into the def list. // module's symbol resolver would not know the name of the class methods, // thus cannot return their definition_id? so we have to manage it ourselves // by using `class_method_to_def_id` for b in body { if let ast::StmtKind::FunctionDef { name, .. } = &b.node { let fun_name = Self::name_mangling(class_name.clone(), name); let def_id = def_list.len(); // add to the definition list def_list.push( Self::make_top_level_function_def( fun_name.clone(), self.unifier.write().add_ty(TypeEnum::TFunc( FunSignature { args: Default::default(), ret: self.primitives.none.into(), vars: Default::default(), } .into(), )), resolver.clone(), ) .into(), ); // the ast of class method is in the class, push None in to the list here ast_list.push(None); // class method, do not let the symbol manager manage it, use our own map self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id)); } } // move the ast to the entry of the class in the ast_list ast_list[class_def_id] = Some(ast); // put the constructor into the def_list def_list .push(TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }.into()); ast_list.push(None); // class, put its def_id into the to be analyzed set let mut to_be_analyzed = self.to_be_analyzed_class.write(); to_be_analyzed.push(DefinitionId(class_def_id)); Ok((class_name, DefinitionId(class_def_id))) } ast::StmtKind::FunctionDef { name, .. } => { let fun_name = name.to_string(); // add to the definition list def_list.push( Self::make_top_level_function_def(name.into(), self.primitives.none, resolver) .into(), ); ast_list.push(Some(ast)); // return Ok((fun_name, DefinitionId(def_list.len() - 1))) } _ => Err("only registrations of top level classes/functions are supprted".into()), } } /// step 1, analyze the type vars associated with top level class fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> { let mut def_list = self.definition_list.write(); let ast_list = self.ast_list.read(); let mut unifier = self.unifier.write(); for (class_def, class_ast) in def_list .iter_mut() .zip(ast_list.iter()) .collect::, &Option>)>>() { // only deal with class def here let (class_bases, class_def_type_vars, class_resolver) = { if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.get_mut() { if let Some(ast::Located { node: ast::StmtKind::ClassDef { bases, .. }, .. }) = class_ast { (bases, type_vars, resolver) } else { unreachable!("must be both class") } } else { continue; } }; let mut is_generic = false; for b in class_bases { match &b.node { // analyze typevars bounded to the class, // only support things like `class A(Generic[T, V])`, // things like `class A(Generic[T, V, ImportedModule.T])` is not supported // i.e. only simple names are allowed in the subscript // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params ast::ExprKind::Subscript { value, slice, .. } if { // can only be `Generic[...]` and this can only appear once if let ast::ExprKind::Name { id, .. } = &value.node { if id == "Generic" { if !is_generic { is_generic = true; true } else { return Err( "Only single Generic[...] can be in bases".into() ); } } else { false } } else { false } } => { // if `class A(Generic[T, V, G])` if let ast::ExprKind::Tuple { elts, .. } = &slice.node { // parse the type vars let type_vars = elts .iter() .map(|e| { class_resolver.as_ref().unwrap().lock().parse_type_annotation( &self.to_top_level_context(), unifier.borrow_mut(), &self.primitives, e, ) }) .collect::, _>>()?; // check if all are unique type vars let mut occured_type_var_id: HashSet = HashSet::new(); let all_unique_type_var = type_vars.iter().all(|x| { let ty = unifier.get_ty(*x); if let TypeEnum::TVar { id, .. } = ty.as_ref() { occured_type_var_id.insert(*id) } else { false } }); if !all_unique_type_var { return Err("expect unique type variables".into()); } // add to TopLevelDef class_def_type_vars.extend(type_vars); // `class A(Generic[T])` } else { let ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation( &self.to_top_level_context(), unifier.borrow_mut(), &self.primitives, &slice, )?; // check if it is type var let is_type_var = matches!(unifier.get_ty(ty).as_ref(), &TypeEnum::TVar { .. }); if !is_type_var { return Err("expect type variable here".into()); } // add to TopLevelDef class_def_type_vars.push(ty); } } // if others, do nothing in this function _ => continue, } } } Ok(()) } /// step 2, base classes. Need to separate step1 and step2 for this reason: /// `class B(Generic[T, V]); /// class A(B[int, bool])` /// if the type var associated with class `B` has not been handled properly, /// the parse of type annotation of `B[int, bool]` will fail fn analyze_top_level_class_bases(&mut self) -> Result<(), String> { let mut def_list = self.definition_list.write(); let ast_list = self.ast_list.read(); let mut unifier = self.unifier.write(); for (class_def, class_ast) in def_list .iter_mut() .zip(ast_list.iter()) .collect::, &Option>)>>() { let (class_bases, class_ancestors, class_resolver) = { if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.get_mut() { if let Some(ast::Located { node: ast::StmtKind::ClassDef { bases, .. }, .. }) = class_ast { (bases, ancestors, resolver) } else { unreachable!("must be both class") } } else { continue; } }; for b in class_bases { // type vars have already been handled, so skip on `Generic[...]` if let ast::ExprKind::Subscript { value, .. } = &b.node { if let ast::ExprKind::Name { id, .. } = &value.node { if id == "Generic" { continue; } } } // get the def id of the base class let base_ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation( &self.to_top_level_context(), unifier.borrow_mut(), &self.primitives, b, )?; let base_id = if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(base_ty).as_ref() { *obj_id } else { return Err("expect concrete class/type to be base class".into()); }; // write to the class ancestors class_ancestors.push(base_id); } } Ok(()) } /// step 3, class fields and methods fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> { let mut def_list = self.definition_list.write(); let ast_list = self.ast_list.read(); let mut unifier = self.unifier.write(); let class_method_to_def_id = self.class_method_to_def_id.read(); let mut to_be_analyzed_class = self.to_be_analyzed_class.write(); while !to_be_analyzed_class.is_empty() { let class_ind = to_be_analyzed_class.remove(0).0; let (class_name, class_body) = { let class_ast = &ast_list[class_ind]; if let Some(ast::Located { node: ast::StmtKind::ClassDef { name, body, .. }, .. }) = class_ast { (name, body) } else { unreachable!("should be class def ast") } }; let class_methods_parsing_result: Vec<(String, Type, DefinitionId)> = Default::default(); let class_fields_parsing_result: Vec<(String, Type)> = Default::default(); for b in class_body { if let ast::StmtKind::FunctionDef { args: method_args_ast, body: method_body_ast, name: method_name, returns: method_returns_ast, .. } = &b.node { let (class_def, method_def) = { // unwrap should not fail let method_ind = class_method_to_def_id .get(&Self::name_mangling(class_name.into(), method_name)) .unwrap() .0; // split the def_list to two parts to get the // mutable reference to both the method and the class assert_ne!(method_ind, class_ind); let min_ind = (if method_ind > class_ind { class_ind } else { method_ind }) + 1; let (head_slice, tail_slice) = def_list.split_at_mut(min_ind); let (new_method_ind, new_class_ind) = ( if method_ind >= min_ind { method_ind - min_ind } else { method_ind }, if class_ind >= min_ind { class_ind - min_ind } else { class_ind }, ); if new_class_ind == class_ind { (&mut head_slice[new_class_ind], &mut tail_slice[new_method_ind]) } else { (&mut tail_slice[new_class_ind], &mut head_slice[new_method_ind]) } }; let (class_fields, class_methods, class_resolver) = { if let TopLevelDef::Class { resolver, fields, methods, .. } = class_def.get_mut() { (fields, methods, resolver) } else { unreachable!("must be class def here") } }; let arg_tys = method_args_ast .args .iter() .map(|x| -> Result { let annotation = x .node .annotation .as_ref() .ok_or_else(|| { "type annotation for function parameter is needed".to_string() })? .as_ref(); let ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation( &self.to_top_level_context(), unifier.borrow_mut(), &self.primitives, annotation, )?; Ok(ty) }) .collect::, _>>()?; let ret_ty = method_returns_ast .as_ref() .and_then(|x| { Some(class_resolver.as_ref().unwrap().lock().parse_type_annotation( &self.to_top_level_context(), unifier.borrow_mut(), &self.primitives, x.as_ref(), )) }) .unwrap()?; let all_tys_ok = { let ret_ty_iter = vec![ret_ty]; let ret_ty_iter = ret_ty_iter.iter(); let mut all_tys = chain!(arg_tys.iter(), ret_ty_iter); all_tys.all(|x| { let type_enum = unifier.get_ty(*x); match type_enum.as_ref() { TypeEnum::TObj { obj_id, .. } => { !to_be_analyzed_class.contains(obj_id) } TypeEnum::TVirtual { ty } => { if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(*ty).as_ref() { !to_be_analyzed_class.contains(obj_id) } else { unreachable!() } } _ => unreachable!(), } }) }; if all_tys_ok { // TODO: put related value to the `class_methods_parsing_result` unimplemented!() } else { to_be_analyzed_class.push(DefinitionId(class_ind)); // TODO: go to the next WHILE loop unimplemented!() } } else { // what should we do with `class A: a = 3`? continue; } } // TODO: now it should be confirmed that every // methods and fields of the class can be correctly typed, put the results // into the actual def_list and the unifier } Ok(()) } fn analyze_top_level_inheritance(&mut self) -> Result<(), String> { unimplemented!() } fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> { unimplemented!() } }