use crate::{ symbol_resolver::{StaticValue, SymbolResolver}, toplevel::{TopLevelContext, TopLevelDef}, typecheck::{ type_inferencer::{CodeLocation, PrimitiveStore}, typedef::{CallId, FuncArg, Type, TypeEnum, Unifier}, }, }; use crossbeam::channel::{unbounded, Receiver, Sender}; use inkwell::{ basic_block::BasicBlock, builder::Builder, context::Context, module::Module, passes::{PassManager, PassManagerBuilder}, types::{BasicType, BasicTypeEnum}, values::{BasicValueEnum, FunctionValue, PhiValue, PointerValue}, AddressSpace, OptimizationLevel, }; use itertools::Itertools; use nac3parser::ast::{Stmt, StrRef}; use parking_lot::{Condvar, Mutex}; use std::collections::{HashMap, HashSet}; use std::sync::{ atomic::{AtomicBool, Ordering}, Arc, }; use std::thread; pub mod concrete_type; pub mod expr; mod generator; pub mod irrt; pub mod stmt; #[cfg(test)] mod test; use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore}; pub use generator::{CodeGenerator, DefaultCodeGenerator}; #[derive(Default)] pub struct StaticValueStore { pub lookup: HashMap, usize>, pub store: Vec>>, } pub type VarValue<'ctx> = (PointerValue<'ctx>, Option>, i64); pub struct CodeGenContext<'ctx, 'a> { pub ctx: &'ctx Context, pub builder: Builder<'ctx>, pub module: Module<'ctx>, pub top_level: &'a TopLevelContext, pub unifier: Unifier, pub resolver: Arc, pub static_value_store: Arc>, pub var_assignment: HashMap>, pub type_cache: HashMap>, pub primitives: PrimitiveStore, pub calls: Arc>, pub registry: &'a WorkerRegistry, // const string cache pub const_strings: HashMap>, // stores the alloca for variables pub init_bb: BasicBlock<'ctx>, // the first one is the test_bb, and the second one is bb after the loop pub loop_target: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>, // unwind target bb pub unwind_target: Option>, // return target bb, just emit ret if no such target pub return_target: Option>, pub return_buffer: Option>, // outer catch clauses pub outer_catch_clauses: Option<(Vec>>, BasicBlock<'ctx>, PhiValue<'ctx>)>, } impl<'ctx, 'a> CodeGenContext<'ctx, 'a> { pub fn is_terminated(&self) -> bool { self.builder.get_insert_block().unwrap().get_terminator().is_some() } } type Fp = Box; pub struct WithCall { fp: Fp, } impl WithCall { pub fn new(fp: Fp) -> WithCall { WithCall { fp } } pub fn run<'ctx>(&self, m: &Module<'ctx>) { (self.fp)(m) } } pub struct WorkerRegistry { sender: Arc>>, receiver: Arc>>, panicked: AtomicBool, task_count: Mutex, thread_count: usize, wait_condvar: Condvar, top_level_ctx: Arc, static_value_store: Arc>, } impl WorkerRegistry { pub fn create_workers( generators: Vec>, top_level_ctx: Arc, f: Arc, ) -> (Arc, Vec>) { let (sender, receiver) = unbounded(); let task_count = Mutex::new(0); let wait_condvar = Condvar::new(); // init: 0 to be empty let mut static_value_store: StaticValueStore = Default::default(); static_value_store.lookup.insert(Default::default(), 0); static_value_store.store.push(Default::default()); let registry = Arc::new(WorkerRegistry { sender: Arc::new(sender), receiver: Arc::new(receiver), thread_count: generators.len(), panicked: AtomicBool::new(false), static_value_store: Arc::new(Mutex::new(static_value_store)), task_count, wait_condvar, top_level_ctx, }); let mut handles = Vec::new(); for mut generator in generators.into_iter() { let registry = registry.clone(); let registry2 = registry.clone(); let f = f.clone(); let handle = thread::spawn(move || { registry.worker_thread(generator.as_mut(), f); }); let handle = thread::spawn(move || { if let Err(e) = handle.join() { if let Some(e) = e.downcast_ref::<&'static str>() { eprintln!("Got an error: {}", e); } else { eprintln!("Got an unknown error: {:?}", e); } registry2.panicked.store(true, Ordering::SeqCst); registry2.wait_condvar.notify_all(); } }); handles.push(handle); } (registry, handles) } pub fn wait_tasks_complete(&self, handles: Vec>) { { let mut count = self.task_count.lock(); while *count != 0 { if self.panicked.load(Ordering::SeqCst) { break; } self.wait_condvar.wait(&mut count); } } for _ in 0..self.thread_count { self.sender.send(None).unwrap(); } { let mut count = self.task_count.lock(); while *count != self.thread_count { if self.panicked.load(Ordering::SeqCst) { break; } self.wait_condvar.wait(&mut count); } } for handle in handles { handle.join().unwrap(); } if self.panicked.load(Ordering::SeqCst) { panic!("tasks panicked"); } } pub fn add_task(&self, task: CodeGenTask) { *self.task_count.lock() += 1; self.sender.send(Some(task)).unwrap(); } fn worker_thread(&self, generator: &mut G, f: Arc) { let context = Context::create(); let mut builder = context.create_builder(); let module = context.create_module(generator.get_name()); let pass_builder = PassManagerBuilder::create(); pass_builder.set_optimization_level(OptimizationLevel::Default); let passes = PassManager::create(&module); pass_builder.populate_function_pass_manager(&passes); let mut errors = HashSet::new(); while let Some(task) = self.receiver.recv().unwrap() { let tmp_module = context.create_module("tmp"); match gen_func(&context, generator, self, builder, tmp_module, task) { Ok(result) => { builder = result.0; passes.run_on(&result.2); module.link_in_module(result.1).unwrap(); } Err((old_builder, e)) => { builder = old_builder; errors.insert(e); } } *self.task_count.lock() -= 1; self.wait_condvar.notify_all(); } if !errors.is_empty() { panic!("Codegen error: {}", errors.into_iter().sorted().join("\n----------\n")); } let result = module.verify(); if let Err(err) = result { println!("{}", module.print_to_string().to_str().unwrap()); println!("{}", err); panic!() } f.run(&module); let mut lock = self.task_count.lock(); *lock += 1; self.wait_condvar.notify_all(); } } pub struct CodeGenTask { pub subst: Vec<(Type, ConcreteType)>, pub store: ConcreteTypeStore, pub symbol_name: String, pub signature: ConcreteType, pub body: Arc>>>, pub calls: Arc>, pub unifier_index: usize, pub resolver: Arc, pub id: usize, } fn get_llvm_type<'ctx>( ctx: &'ctx Context, generator: &mut dyn CodeGenerator, unifier: &mut Unifier, top_level: &TopLevelContext, type_cache: &mut HashMap>, ty: Type, ) -> BasicTypeEnum<'ctx> { use TypeEnum::*; // we assume the type cache should already contain primitive types, // and they should be passed by value instead of passing as pointer. type_cache.get(&unifier.get_representative(ty)).cloned().unwrap_or_else(|| { let ty_enum = unifier.get_ty(ty); let result = match &*ty_enum { TObj { obj_id, fields, .. } => { // check to avoid treating primitives as classes if obj_id.0 <= 7 { unreachable!(); } // a struct with fields in the order of declaration let top_level_defs = top_level.definitions.read(); let definition = top_level_defs.get(obj_id.0).unwrap(); let ty = if let TopLevelDef::Class { name, fields: fields_list, .. } = &*definition.read() { let struct_type = ctx.opaque_struct_type(&name.to_string()); let fields = fields_list .iter() .map(|f| { get_llvm_type( ctx, generator, unifier, top_level, type_cache, fields[&f.0].0, ) }) .collect_vec(); struct_type.set_body(&fields, false); struct_type.ptr_type(AddressSpace::Generic).into() } else { unreachable!() }; ty } TTuple { ty } => { // a struct with fields in the order present in the tuple let fields = ty .iter() .map(|ty| get_llvm_type(ctx, generator, unifier, top_level, type_cache, *ty)) .collect_vec(); ctx.struct_type(&fields, false).into() } TList { ty } => { // a struct with an integer and a pointer to an array let element_type = get_llvm_type(ctx, generator, unifier, top_level, type_cache, *ty); let fields = [ element_type.ptr_type(AddressSpace::Generic).into(), generator.get_size_type(ctx).into(), ]; ctx.struct_type(&fields, false).ptr_type(AddressSpace::Generic).into() } TVirtual { .. } => unimplemented!(), _ => unreachable!("{}", ty_enum.get_type_name()), }; type_cache.insert(unifier.get_representative(ty), result); result }) } pub fn gen_func<'ctx, G: CodeGenerator>( context: &'ctx Context, generator: &mut G, registry: &WorkerRegistry, builder: Builder<'ctx>, module: Module<'ctx>, task: CodeGenTask, ) -> Result<(Builder<'ctx>, Module<'ctx>, FunctionValue<'ctx>), (Builder<'ctx>, String)> { let top_level_ctx = registry.top_level_ctx.clone(); let static_value_store = registry.static_value_store.clone(); let (mut unifier, primitives) = { let (unifier, primitives) = &top_level_ctx.unifiers.read()[task.unifier_index]; (Unifier::from_shared_unifier(unifier), *primitives) }; let mut cache = HashMap::new(); for (a, b) in task.subst.iter() { // this should be unification between variables and concrete types // and should not cause any problem... let b = task.store.to_unifier_type(&mut unifier, &primitives, *b, &mut cache); unifier .unify(*a, b) .or_else(|err| { if matches!(&*unifier.get_ty(*a), TypeEnum::TRigidVar { .. }) { unifier.replace_rigid_var(*a, b); Ok(()) } else { Err(err) } }) .unwrap() } // rebuild primitive store with unique representatives let primitives = PrimitiveStore { int32: unifier.get_representative(primitives.int32), int64: unifier.get_representative(primitives.int64), float: unifier.get_representative(primitives.float), bool: unifier.get_representative(primitives.bool), none: unifier.get_representative(primitives.none), range: unifier.get_representative(primitives.range), str: unifier.get_representative(primitives.str), exception: unifier.get_representative(primitives.exception), }; let mut type_cache: HashMap<_, _> = [ (primitives.int32, context.i32_type().into()), (primitives.int64, context.i64_type().into()), (primitives.float, context.f64_type().into()), (primitives.bool, context.bool_type().into()), (primitives.str, { let str_type = context.opaque_struct_type("str"); let fields = [ context.i8_type().ptr_type(AddressSpace::Generic).into(), generator.get_size_type(context).into(), ]; str_type.set_body(&fields, false); str_type.into() }), (primitives.range, context.i32_type().array_type(3).ptr_type(AddressSpace::Generic).into()), ] .iter() .cloned() .collect(); type_cache.insert(primitives.exception, { let exception = context.opaque_struct_type("Exception"); let int32 = context.i32_type().into(); let int64 = context.i64_type().into(); let str_ty = *type_cache.get(&primitives.str).unwrap(); let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64]; exception.set_body(&fields, false); exception.ptr_type(AddressSpace::Generic).into() }); let (args, ret) = if let ConcreteTypeEnum::TFunc { args, ret, .. } = task.store.get(task.signature) { ( args.iter() .map(|arg| FuncArg { name: arg.name, ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache), default_value: arg.default_value.clone(), }) .collect_vec(), task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache), ) } else { unreachable!() }; let params = args .iter() .map(|arg| { get_llvm_type( context, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, arg.ty, ) .into() }) .collect_vec(); let fn_type = if unifier.unioned(ret, primitives.none) { context.void_type().fn_type(¶ms, false) } else { get_llvm_type( context, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, ret, ) .fn_type(¶ms, false) }; let symbol = &task.symbol_name; let fn_val = module.get_function(symbol).unwrap_or_else(|| module.add_function(symbol, fn_type, None)); if let Some(personality) = &top_level_ctx.personality_symbol { let personality = module.get_function(personality).unwrap_or_else(|| { let ty = context.i32_type().fn_type(&[], true); module.add_function(personality, ty, None) }); fn_val.set_personality_function(personality); } let init_bb = context.append_basic_block(fn_val, "init"); builder.position_at_end(init_bb); let body_bb = context.append_basic_block(fn_val, "body"); let mut var_assignment = HashMap::new(); for (n, arg) in args.iter().enumerate() { let param = fn_val.get_nth_param(n as u32).unwrap(); let alloca = builder.build_alloca( get_llvm_type( context, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, arg.ty, ), &arg.name.to_string(), ); builder.build_store(alloca, param); var_assignment.insert(arg.name, (alloca, None, 0)); } let return_buffer = fn_type.get_return_type().map(|v| builder.build_alloca(v, "$ret")); let static_values = { let store = registry.static_value_store.lock(); store.store[task.id].clone() }; for (k, v) in static_values.into_iter() { let (_, static_val, _) = var_assignment.get_mut(&args[k].name).unwrap(); *static_val = Some(v); } builder.build_unconditional_branch(body_bb); builder.position_at_end(body_bb); let mut code_gen_context = CodeGenContext { ctx: context, resolver: task.resolver, top_level: top_level_ctx.as_ref(), calls: task.calls, loop_target: None, return_target: None, return_buffer, unwind_target: None, outer_catch_clauses: None, const_strings: Default::default(), registry, var_assignment, type_cache, primitives, init_bb, builder, module, unifier, static_value_store, }; let mut err = None; for stmt in task.body.iter() { if let Err(e) = generator.gen_stmt(&mut code_gen_context, stmt) { err = Some(e); break; } if code_gen_context.is_terminated() { break; } } // after static analysis, only void functions can have no return at the end. if !code_gen_context.is_terminated() { code_gen_context.builder.build_return(None); } let CodeGenContext { builder, module, .. } = code_gen_context; if let Some(e) = err { return Err((builder, e)); } Ok((builder, module, fn_val)) }