forked from M-Labs/nac3
Merge remote-tracking branch 'origin/hm-inference_anto' into hm-inference
This commit is contained in:
commit
0af4e95914
|
@ -1,6 +1,6 @@
|
|||
use crate::location::Location;
|
||||
use crate::typecheck::typedef::Type;
|
||||
use crate::top_level::DefinitionId;
|
||||
use crate::typecheck::typedef::Type;
|
||||
use rustpython_parser::ast::Expr;
|
||||
|
||||
#[derive(Clone, PartialEq)]
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
use std::borrow::Borrow;
|
||||
use std::{collections::HashMap, sync::Arc};
|
||||
|
||||
use super::typecheck::type_inferencer::PrimitiveStore;
|
||||
|
@ -22,6 +23,8 @@ pub enum TopLevelDef {
|
|||
methods: Vec<(String, Type, DefinitionId)>,
|
||||
// ancestor classes, including itself.
|
||||
ancestors: Vec<DefinitionId>,
|
||||
// symbol resolver of the module defined the class, none if it is built-in type
|
||||
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
||||
},
|
||||
Function {
|
||||
// prefix for symbol, should be unique globally, and not ending with numbers
|
||||
|
@ -40,6 +43,8 @@ pub enum TopLevelDef {
|
|||
/// Value: AST annotated with types together with a unification table index. Could contain
|
||||
/// rigid type variables that would be substituted when the function is instantiated.
|
||||
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
|
||||
// symbol resolver of the module defined the class
|
||||
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
||||
},
|
||||
Initializer {
|
||||
class_id: DefinitionId,
|
||||
|
@ -52,22 +57,28 @@ pub struct TopLevelContext {
|
|||
pub conetexts: Arc<RwLock<Vec<Mutex<Context>>>>,
|
||||
}
|
||||
|
||||
pub struct TopLevelDefInfo<'a> {
|
||||
pub fn name_mangling(mut class_name: String, method_name: &str) -> String {
|
||||
// need to further extend to more name mangling like instantiations of typevar
|
||||
class_name.push_str(method_name);
|
||||
class_name
|
||||
}
|
||||
|
||||
pub struct TopLevelDefInfo {
|
||||
// like adding some info on top of the TopLevelDef for later parsing the class bases, method,
|
||||
// and function sigatures
|
||||
def: TopLevelDef, // the definition entry
|
||||
ty: Type, // the entry in the top_level unifier
|
||||
ast: Option<ast::Stmt<()>>, // the ast submitted by applications
|
||||
resolver: Option<&'a dyn SymbolResolver>, // the resolver
|
||||
ast: Option<ast::Stmt<()>>, // the ast submitted by applications, primitives and class methods will have None value here
|
||||
// resolver: Option<&'a dyn SymbolResolver> // the resolver
|
||||
}
|
||||
|
||||
pub struct TopLevelComposer<'a> {
|
||||
pub definition_list: Vec<TopLevelDefInfo<'a>>,
|
||||
pub struct TopLevelComposer {
|
||||
pub definition_list: Vec<TopLevelDefInfo>,
|
||||
pub primitives: PrimitiveStore,
|
||||
pub unifier: Unifier,
|
||||
}
|
||||
|
||||
impl<'a> TopLevelComposer<'a> {
|
||||
impl TopLevelComposer {
|
||||
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
|
||||
let mut unifier = Unifier::new();
|
||||
let int32 = unifier.add_ty(TypeEnum::TObj {
|
||||
|
@ -102,101 +113,145 @@ impl<'a> TopLevelComposer<'a> {
|
|||
|
||||
pub fn new() -> Self {
|
||||
let primitives = Self::make_primitives();
|
||||
let definition_list: Vec<TopLevelDefInfo<'a>> = vec![
|
||||
let definition_list: Vec<TopLevelDefInfo> = vec![
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(0),
|
||||
def: Self::make_top_level_class_def(0, None),
|
||||
ast: None,
|
||||
resolver: None,
|
||||
ty: primitives.0.int32,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(1),
|
||||
def: Self::make_top_level_class_def(1, None),
|
||||
ast: None,
|
||||
resolver: None,
|
||||
ty: primitives.0.int64,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(2),
|
||||
def: Self::make_top_level_class_def(2, None),
|
||||
ast: None,
|
||||
resolver: None,
|
||||
ty: primitives.0.float,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(3),
|
||||
def: Self::make_top_level_class_def(3, None),
|
||||
ast: None,
|
||||
resolver: None,
|
||||
ty: primitives.0.bool,
|
||||
},
|
||||
TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(4),
|
||||
def: Self::make_top_level_class_def(4, None),
|
||||
ast: None,
|
||||
resolver: None,
|
||||
ty: primitives.0.none,
|
||||
},
|
||||
]; // the entries for primitive types
|
||||
TopLevelComposer { definition_list, primitives: primitives.0, unifier: primitives.1 }
|
||||
}
|
||||
|
||||
pub fn make_top_level_class_def(index: usize) -> TopLevelDef {
|
||||
/// already include the definition_id of itself inside the ancestors vector
|
||||
pub fn make_top_level_class_def(
|
||||
index: usize,
|
||||
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
||||
) -> TopLevelDef {
|
||||
TopLevelDef::Class {
|
||||
object_id: DefinitionId(index),
|
||||
type_vars: Default::default(),
|
||||
fields: Default::default(),
|
||||
methods: Default::default(),
|
||||
ancestors: Default::default(),
|
||||
ancestors: vec![DefinitionId(index)],
|
||||
resolver,
|
||||
}
|
||||
}
|
||||
pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef {
|
||||
|
||||
pub fn make_top_level_function_def(
|
||||
name: String,
|
||||
ty: Type,
|
||||
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
||||
) -> TopLevelDef {
|
||||
TopLevelDef::Function {
|
||||
name,
|
||||
signature: ty,
|
||||
instance_to_symbol: Default::default(),
|
||||
instance_to_stmt: Default::default(),
|
||||
resolver,
|
||||
}
|
||||
}
|
||||
|
||||
// like to make and return a "primitive" symbol resolver? so that the symbol resolver can later
|
||||
// figure out primitive type definitions when passed a primitive type name
|
||||
// like to make and return a "primitive" symbol resolver? so that the symbol resolver
|
||||
// can later figure out primitive type definitions when passed a primitive type name
|
||||
pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> {
|
||||
vec![
|
||||
("int32".into(), DefinitionId(0), self.primitives.int32),
|
||||
("int64".into(), DefinitionId(0), self.primitives.int32),
|
||||
("float".into(), DefinitionId(0), self.primitives.int32),
|
||||
("bool".into(), DefinitionId(0), self.primitives.int32),
|
||||
("none".into(), DefinitionId(0), self.primitives.int32),
|
||||
("int64".into(), DefinitionId(1), self.primitives.int64),
|
||||
("float".into(), DefinitionId(2), self.primitives.float),
|
||||
("bool".into(), DefinitionId(3), self.primitives.bool),
|
||||
("none".into(), DefinitionId(4), self.primitives.none),
|
||||
]
|
||||
}
|
||||
|
||||
pub fn register_top_level(
|
||||
&mut self,
|
||||
ast: ast::Stmt<()>,
|
||||
resolver: &'a dyn SymbolResolver,
|
||||
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
|
||||
) -> Result<Vec<(String, DefinitionId, Type)>, String> {
|
||||
match &ast.node {
|
||||
ast::StmtKind::ClassDef { name, body, .. } => {
|
||||
let class_name = name.to_string();
|
||||
let def_id = self.definition_list.len();
|
||||
let class_def_id = self.definition_list.len();
|
||||
|
||||
// add the class to the unifier
|
||||
let ty = self.unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id: DefinitionId(def_id),
|
||||
obj_id: DefinitionId(class_def_id),
|
||||
fields: Default::default(),
|
||||
params: Default::default(),
|
||||
});
|
||||
|
||||
let mut ret_vector: Vec<(String, DefinitionId, Type)> =
|
||||
vec![(class_name.clone(), DefinitionId(class_def_id), ty)];
|
||||
// parse class def body and register class methods into the def list
|
||||
// NOTE: module's symbol resolver would not know the name of the class methods,
|
||||
// thus cannot return their definition_id? so we have to manage it ourselves?
|
||||
// or do we return the class method list of (method_name, def_id, type) to
|
||||
// application to be used to build symbol resolver? <- current implementation
|
||||
// FIXME: better do not return and let symbol resolver to manage the mangled name
|
||||
for b in body {
|
||||
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
|
||||
let fun_name = name_mangling(class_name.clone(), name);
|
||||
let def_id = self.definition_list.len();
|
||||
// add to unifier
|
||||
let ty = self.unifier.add_ty(TypeEnum::TFunc(
|
||||
crate::typecheck::typedef::FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none,
|
||||
vars: Default::default(),
|
||||
},
|
||||
));
|
||||
// add to the definition list
|
||||
self.definition_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(def_id),
|
||||
resolver: Some(resolver),
|
||||
def: Self::make_top_level_function_def(fun_name.clone(), ty, None), // FIXME:
|
||||
ty,
|
||||
ast: None, // since it is inside the class def body statments
|
||||
});
|
||||
ret_vector.push((fun_name, DefinitionId(def_id), ty));
|
||||
|
||||
// if it is the contructor, special handling is needed. In the above
|
||||
// handling, we still add __init__ function to the class method
|
||||
if name == "__init__" {
|
||||
self.definition_list.push(TopLevelDefInfo {
|
||||
def: TopLevelDef::Initializer {
|
||||
class_id: DefinitionId(class_def_id),
|
||||
},
|
||||
ty: self.primitives.none, // arbitary picked one
|
||||
ast: None, // it is inside the class def body statments
|
||||
})
|
||||
// FIXME: should we return this to the symbol resolver?, should be yes
|
||||
}
|
||||
} else {
|
||||
} // else do nothing
|
||||
}
|
||||
// add to the definition list
|
||||
self.definition_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_class_def(class_def_id, resolver),
|
||||
ast: Some(ast),
|
||||
ty,
|
||||
});
|
||||
|
||||
// TODO: parse class def body and register class methods into the def list?
|
||||
// FIXME: module's symbol resolver would not know the name of the class methods,
|
||||
// thus cannot return their definition_id? so we have to manage it ourselves? or
|
||||
// do we return the class method list of (method_name, def_id, type) to application
|
||||
// to be used to build symbol resolver? <- current implementation
|
||||
|
||||
Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def
|
||||
Ok(ret_vector)
|
||||
}
|
||||
|
||||
ast::StmtKind::FunctionDef { name, .. } => {
|
||||
|
@ -206,16 +261,16 @@ impl<'a> TopLevelComposer<'a> {
|
|||
let ty =
|
||||
self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none, // NOTE: this needs to be changed later
|
||||
ret: self.primitives.none,
|
||||
vars: Default::default(),
|
||||
}));
|
||||
// add to the definition list
|
||||
self.definition_list.push(TopLevelDefInfo {
|
||||
def: Self::make_top_level_function_def(
|
||||
name.into(),
|
||||
self.primitives.none, // NOTE: this needs to be changed later
|
||||
self.primitives.none,
|
||||
resolver,
|
||||
),
|
||||
resolver: Some(resolver),
|
||||
ast: Some(ast),
|
||||
ty,
|
||||
});
|
||||
|
@ -230,53 +285,143 @@ impl<'a> TopLevelComposer<'a> {
|
|||
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one
|
||||
pub fn analyze_top_level(&mut self) -> Result<(), String> {
|
||||
for mut d in &mut self.definition_list {
|
||||
if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) {
|
||||
if let Some(ast) = &d.ast {
|
||||
match &ast.node {
|
||||
ast::StmtKind::ClassDef {
|
||||
name,
|
||||
bases,
|
||||
body,
|
||||
..
|
||||
} => {
|
||||
// get the mutable reference of the entry in the definition list, get the `TopLevelDef`
|
||||
let (_,
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
type_vars,
|
||||
// resolver,
|
||||
) = if let TopLevelDef::Class {
|
||||
object_id,
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
type_vars,
|
||||
resolver
|
||||
} = &mut d.def {
|
||||
(object_id, ancestors, fields, methods, type_vars) // FIXME: this unwrap is not safe
|
||||
} else { unreachable!() };
|
||||
|
||||
// try to get mutable reference of the entry in the unification table, get the `TypeEnum`
|
||||
let (params,
|
||||
fields
|
||||
) = if let TypeEnum::TObj {
|
||||
params, // FIXME: this params is immutable, even if this is mutable, what should the key be, get the original typevar's var_id?
|
||||
fields,
|
||||
..
|
||||
} = self.unifier.get_ty(d.ty).borrow() {
|
||||
(params, fields)
|
||||
} else { unreachable!() };
|
||||
|
||||
// ancestors and typevars associate with the class are analyzed by looking
|
||||
// into the `bases` ast node
|
||||
for b in bases {
|
||||
match &b.node {
|
||||
// base class, name directly available inside the module, can use
|
||||
// this module's symbol resolver
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
let def_id = resolver.get_identifier_def(id);
|
||||
unimplemented!()
|
||||
},
|
||||
// things can be like `class A(BaseModule.Base)`, here we have to
|
||||
// get the symbol resolver of the module `BaseModule`?
|
||||
ast::ExprKind::Attribute {value, attr, ..} => {
|
||||
// need to change symbol resolver in order to get the symbol
|
||||
// resolver of the imported module
|
||||
unimplemented!()
|
||||
},
|
||||
// typevars bounded to the class, things like
|
||||
// `class A(Generic[T, V])`
|
||||
ast::ExprKind::Subscript {value, slice, ..} => {
|
||||
// typevars bounded to the class, things like `class A(Generic[T, V, ImportedModule.T])`
|
||||
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
||||
ast::ExprKind::Subscript {value, slice, ..} if {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
if id == "Generic" {
|
||||
// TODO: get typevars
|
||||
id == "Generic"
|
||||
} else { false }
|
||||
} => {
|
||||
match &slice.node {
|
||||
// `class Foo(Generic[T, V, P, ImportedModule.T]):`
|
||||
ast::ExprKind::Tuple {elts, ..} => {
|
||||
for e in elts {
|
||||
// TODO: I'd better parse the node to get the Type of the type vars(can have things like: A.B.C.typevar?)
|
||||
match &e.node {
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
// the def_list
|
||||
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME:
|
||||
|
||||
// the TypeEnum of the class
|
||||
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
|
||||
unimplemented!()
|
||||
} else {
|
||||
return Err("unknown type var".into())
|
||||
},
|
||||
|
||||
_ => unimplemented!()
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
// `class Foo(Generic[T]):`
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
// the def_list
|
||||
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME:
|
||||
|
||||
// the TypeEnum of the class
|
||||
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
|
||||
unimplemented!()
|
||||
},
|
||||
|
||||
// `class Foo(Generic[ImportedModule.T])`
|
||||
ast::ExprKind::Attribute {value, attr, ..} => {
|
||||
// TODO:
|
||||
unimplemented!()
|
||||
},
|
||||
|
||||
_ => return Err("not supported".into()) // NOTE: it is really all the supported cases?
|
||||
};
|
||||
},
|
||||
|
||||
// base class, name directly available inside the
|
||||
// module, can use this module's symbol resolver
|
||||
ast::ExprKind::Name {id, ..} => {
|
||||
// let def_id = resolver.get_identifier_def(id); FIXME:
|
||||
// the definition list
|
||||
// ancestors.push(def_id);
|
||||
},
|
||||
|
||||
// base class, things can be like `class A(BaseModule.Base)`, here we have to get the
|
||||
// symbol resolver of the module `BaseModule`?
|
||||
ast::ExprKind::Attribute {value, attr, ..} => {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
// if let Some(base_module_resolver) = resolver.get_module_resolver(id) {
|
||||
// let def_id = base_module_resolver.get_identifier_def(attr);
|
||||
// // the definition list
|
||||
// ancestors.push(def_id);
|
||||
// } else { return Err("unkown imported module".into()) } FIXME:
|
||||
} else { return Err("unkown imported module".into()) }
|
||||
},
|
||||
|
||||
// `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables
|
||||
ast::ExprKind::Subscript {value, slice, ..} => {
|
||||
unimplemented!()
|
||||
},
|
||||
_ => return Err("not supported".into())
|
||||
}
|
||||
}
|
||||
|
||||
// class method and field are analyzed by looking into the class body ast node
|
||||
// class method and field are analyzed by
|
||||
// looking into the class body ast node
|
||||
for stmt in body {
|
||||
unimplemented!()
|
||||
if let ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
..
|
||||
} = &stmt.node {
|
||||
|
||||
} else { }
|
||||
// do nothing. we do not care about things like this?
|
||||
// class A:
|
||||
// a = 3
|
||||
// b = [2, 3]
|
||||
|
||||
|
||||
}
|
||||
},
|
||||
|
||||
// top level function definition
|
||||
ast::StmtKind::FunctionDef {
|
||||
name,
|
||||
args,
|
||||
|
@ -294,3 +439,38 @@ impl<'a> TopLevelComposer<'a> {
|
|||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub fn parse_type_var<T>(
|
||||
input: &ast::Expr<T>,
|
||||
resolver: &dyn SymbolResolver,
|
||||
) -> Result<Type, String> {
|
||||
match &input.node {
|
||||
ast::ExprKind::Name { id, .. } => resolver
|
||||
.get_symbol_type(id)
|
||||
.ok_or_else(|| "unknown type variable identifer".to_string()),
|
||||
|
||||
ast::ExprKind::Attribute { value, attr, .. } => {
|
||||
if let ast::ExprKind::Name { id, .. } = &value.node {
|
||||
let next_resolver = resolver
|
||||
.get_module_resolver(id)
|
||||
.ok_or_else(|| "unknown imported module".to_string())?;
|
||||
next_resolver
|
||||
.get_symbol_type(attr)
|
||||
.ok_or_else(|| "unknown type variable identifer".to_string())
|
||||
} else {
|
||||
unimplemented!()
|
||||
// recursively resolve attr thing, FIXME: new problem: how do we handle this?
|
||||
// # A.py
|
||||
// class A:
|
||||
// T = TypeVar('T', int, bool)
|
||||
// pass
|
||||
// # B.py
|
||||
// import A
|
||||
// class B(Generic[A.A.T]):
|
||||
// pass
|
||||
}
|
||||
}
|
||||
|
||||
_ => Err("not supported".into()),
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,8 +1,11 @@
|
|||
use crate::typecheck::{
|
||||
type_inferencer::*,
|
||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
|
||||
};
|
||||
use rustpython_parser::ast;
|
||||
use rustpython_parser::ast::{Cmpop, Operator, Unaryop};
|
||||
use std::borrow::Borrow;
|
||||
use std::collections::HashMap;
|
||||
use rustpython_parser::ast::{Cmpop, Operator, Unaryop};
|
||||
use crate::typecheck::{type_inferencer::*, typedef::{FunSignature, FuncArg, TypeEnum, Unifier, Type}};
|
||||
use rustpython_parser::ast;
|
||||
|
||||
pub fn binop_name(op: &Operator) -> &'static str {
|
||||
match op {
|
||||
|
@ -61,12 +64,17 @@ pub fn comparison_name(op: &Cmpop) -> Option<&'static str> {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn impl_binop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type, ops: &[ast::Operator]) {
|
||||
pub fn impl_binop(
|
||||
unifier: &mut Unifier,
|
||||
_store: &PrimitiveStore,
|
||||
ty: Type,
|
||||
other_ty: &[Type],
|
||||
ret_ty: Type,
|
||||
ops: &[ast::Operator],
|
||||
) {
|
||||
if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
|
||||
for op in ops {
|
||||
fields.borrow_mut().insert(
|
||||
binop_name(op).into(),
|
||||
{
|
||||
fields.borrow_mut().insert(binop_name(op).into(), {
|
||||
let other = if other_ty.len() == 1 {
|
||||
other_ty[0]
|
||||
} else {
|
||||
|
@ -75,18 +83,11 @@ pub fn impl_binop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, othe
|
|||
unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||
ret: ret_ty,
|
||||
vars: HashMap::new(),
|
||||
args: vec![FuncArg {
|
||||
ty: other,
|
||||
default_value: None,
|
||||
name: "other".into()
|
||||
}]
|
||||
args: vec![FuncArg { ty: other, default_value: None, name: "other".into() }],
|
||||
}))
|
||||
}
|
||||
);
|
||||
});
|
||||
|
||||
fields.borrow_mut().insert(
|
||||
binop_assign_name(op).into(),
|
||||
{
|
||||
fields.borrow_mut().insert(binop_assign_name(op).into(), {
|
||||
let other = if other_ty.len() == 1 {
|
||||
other_ty[0]
|
||||
} else {
|
||||
|
@ -95,19 +96,22 @@ pub fn impl_binop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, othe
|
|||
unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||
ret: ret_ty,
|
||||
vars: HashMap::new(),
|
||||
args: vec![FuncArg {
|
||||
ty: other,
|
||||
default_value: None,
|
||||
name: "other".into()
|
||||
}]
|
||||
args: vec![FuncArg { ty: other, default_value: None, name: "other".into() }],
|
||||
}))
|
||||
});
|
||||
}
|
||||
);
|
||||
} else {
|
||||
unreachable!("")
|
||||
}
|
||||
} else { unreachable!("") }
|
||||
}
|
||||
|
||||
pub fn impl_unaryop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Type, ops: &[ast::Unaryop]) {
|
||||
pub fn impl_unaryop(
|
||||
unifier: &mut Unifier,
|
||||
_store: &PrimitiveStore,
|
||||
ty: Type,
|
||||
ret_ty: Type,
|
||||
ops: &[ast::Unaryop],
|
||||
) {
|
||||
if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
|
||||
for op in ops {
|
||||
fields.borrow_mut().insert(
|
||||
|
@ -115,14 +119,22 @@ pub fn impl_unaryop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, re
|
|||
unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||
ret: ret_ty,
|
||||
vars: HashMap::new(),
|
||||
args: vec![]
|
||||
}))
|
||||
args: vec![],
|
||||
})),
|
||||
);
|
||||
}
|
||||
} else { unreachable!() }
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn impl_cmpop(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type, ops: &[ast::Cmpop]) {
|
||||
pub fn impl_cmpop(
|
||||
unifier: &mut Unifier,
|
||||
store: &PrimitiveStore,
|
||||
ty: Type,
|
||||
other_ty: Type,
|
||||
ops: &[ast::Cmpop],
|
||||
) {
|
||||
if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
|
||||
for op in ops {
|
||||
fields.borrow_mut().insert(
|
||||
|
@ -130,118 +142,121 @@ pub fn impl_cmpop(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other
|
|||
unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||
ret: store.bool,
|
||||
vars: HashMap::new(),
|
||||
args: vec![FuncArg {
|
||||
ty: other_ty,
|
||||
default_value: None,
|
||||
name: "other".into()
|
||||
}]
|
||||
}))
|
||||
args: vec![FuncArg { ty: other_ty, default_value: None, name: "other".into() }],
|
||||
})),
|
||||
);
|
||||
}
|
||||
} else { unreachable!() }
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
/// Add, Sub, Mult, Pow
|
||||
pub fn impl_basic_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) {
|
||||
impl_binop(unifier, store, ty, other_ty, ret_ty, &[
|
||||
ast::Operator::Add,
|
||||
ast::Operator::Sub,
|
||||
ast::Operator::Mult,
|
||||
])
|
||||
pub fn impl_basic_arithmetic(
|
||||
unifier: &mut Unifier,
|
||||
store: &PrimitiveStore,
|
||||
ty: Type,
|
||||
other_ty: &[Type],
|
||||
ret_ty: Type,
|
||||
) {
|
||||
impl_binop(
|
||||
unifier,
|
||||
store,
|
||||
ty,
|
||||
other_ty,
|
||||
ret_ty,
|
||||
&[ast::Operator::Add, ast::Operator::Sub, ast::Operator::Mult],
|
||||
)
|
||||
}
|
||||
|
||||
pub fn impl_pow(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) {
|
||||
impl_binop(unifier, store, ty, other_ty, ret_ty, &[
|
||||
ast::Operator::Pow,
|
||||
])
|
||||
pub fn impl_pow(
|
||||
unifier: &mut Unifier,
|
||||
store: &PrimitiveStore,
|
||||
ty: Type,
|
||||
other_ty: &[Type],
|
||||
ret_ty: Type,
|
||||
) {
|
||||
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Pow])
|
||||
}
|
||||
|
||||
/// BitOr, BitXor, BitAnd
|
||||
pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
|
||||
impl_binop(unifier, store, ty, &[ty], ty, &[
|
||||
ast::Operator::BitAnd,
|
||||
ast::Operator::BitOr,
|
||||
ast::Operator::BitXor,
|
||||
])
|
||||
impl_binop(
|
||||
unifier,
|
||||
store,
|
||||
ty,
|
||||
&[ty],
|
||||
ty,
|
||||
&[ast::Operator::BitAnd, ast::Operator::BitOr, ast::Operator::BitXor],
|
||||
)
|
||||
}
|
||||
|
||||
/// LShift, RShift
|
||||
pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
|
||||
impl_binop(unifier, store, ty, &[ty], ty, &[
|
||||
ast::Operator::LShift,
|
||||
ast::Operator::RShift,
|
||||
])
|
||||
impl_binop(unifier, store, ty, &[ty], ty, &[ast::Operator::LShift, ast::Operator::RShift])
|
||||
}
|
||||
|
||||
/// Div
|
||||
pub fn impl_div(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type]) {
|
||||
impl_binop(unifier, store, ty, other_ty, store.float, &[
|
||||
ast::Operator::Div,
|
||||
])
|
||||
impl_binop(unifier, store, ty, other_ty, store.float, &[ast::Operator::Div])
|
||||
}
|
||||
|
||||
/// FloorDiv
|
||||
pub fn impl_floordiv(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) {
|
||||
impl_binop(unifier, store, ty, other_ty, ret_ty, &[
|
||||
ast::Operator::FloorDiv,
|
||||
])
|
||||
pub fn impl_floordiv(
|
||||
unifier: &mut Unifier,
|
||||
store: &PrimitiveStore,
|
||||
ty: Type,
|
||||
other_ty: &[Type],
|
||||
ret_ty: Type,
|
||||
) {
|
||||
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::FloorDiv])
|
||||
}
|
||||
|
||||
/// Mod
|
||||
pub fn impl_mod(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) {
|
||||
impl_binop(unifier, store, ty, other_ty, ret_ty, &[
|
||||
ast::Operator::Mod,
|
||||
])
|
||||
pub fn impl_mod(
|
||||
unifier: &mut Unifier,
|
||||
store: &PrimitiveStore,
|
||||
ty: Type,
|
||||
other_ty: &[Type],
|
||||
ret_ty: Type,
|
||||
) {
|
||||
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Mod])
|
||||
}
|
||||
|
||||
/// UAdd, USub
|
||||
pub fn impl_sign(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
|
||||
impl_unaryop(unifier, store, ty, ty, &[
|
||||
ast::Unaryop::UAdd,
|
||||
ast::Unaryop::USub,
|
||||
])
|
||||
impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::UAdd, ast::Unaryop::USub])
|
||||
}
|
||||
|
||||
/// Invert
|
||||
pub fn impl_invert(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
|
||||
impl_unaryop(unifier, store, ty, ty, &[
|
||||
ast::Unaryop::Invert,
|
||||
])
|
||||
impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::Invert])
|
||||
}
|
||||
|
||||
/// Not
|
||||
pub fn impl_not(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
|
||||
impl_unaryop(unifier, store, ty, store.bool, &[
|
||||
ast::Unaryop::Not,
|
||||
])
|
||||
impl_unaryop(unifier, store, ty, store.bool, &[ast::Unaryop::Not])
|
||||
}
|
||||
|
||||
/// Lt, LtE, Gt, GtE
|
||||
pub fn impl_comparison(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type) {
|
||||
impl_cmpop(unifier, store, ty, other_ty, &[
|
||||
ast::Cmpop::Lt,
|
||||
ast::Cmpop::Gt,
|
||||
ast::Cmpop::LtE,
|
||||
ast::Cmpop::GtE,
|
||||
])
|
||||
impl_cmpop(
|
||||
unifier,
|
||||
store,
|
||||
ty,
|
||||
other_ty,
|
||||
&[ast::Cmpop::Lt, ast::Cmpop::Gt, ast::Cmpop::LtE, ast::Cmpop::GtE],
|
||||
)
|
||||
}
|
||||
|
||||
/// Eq, NotEq
|
||||
pub fn impl_eq(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
|
||||
impl_cmpop(unifier, store, ty, ty, &[
|
||||
ast::Cmpop::Eq,
|
||||
ast::Cmpop::NotEq,
|
||||
])
|
||||
impl_cmpop(unifier, store, ty, ty, &[ast::Cmpop::Eq, ast::Cmpop::NotEq])
|
||||
}
|
||||
|
||||
pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifier) {
|
||||
let PrimitiveStore {
|
||||
int32: int32_t,
|
||||
int64: int64_t,
|
||||
float: float_t,
|
||||
bool: bool_t,
|
||||
..
|
||||
} = *store;
|
||||
let PrimitiveStore { int32: int32_t, int64: int64_t, float: float_t, bool: bool_t, .. } =
|
||||
*store;
|
||||
/* int32 ======== */
|
||||
impl_basic_arithmetic(unifier, store, int32_t, &[int32_t], int32_t);
|
||||
impl_pow(unifier, store, int32_t, &[int32_t], int32_t);
|
||||
|
|
|
@ -38,7 +38,7 @@ pub struct PrimitiveStore {
|
|||
}
|
||||
|
||||
pub struct FunctionData {
|
||||
pub resolver: Box<dyn SymbolResolver>,
|
||||
pub resolver: Arc<dyn SymbolResolver>,
|
||||
pub return_type: Option<Type>,
|
||||
pub bound_variables: Vec<Type>,
|
||||
}
|
||||
|
|
|
@ -100,10 +100,10 @@ impl TestEnvironment {
|
|||
let mut identifier_mapping = HashMap::new();
|
||||
identifier_mapping.insert("None".into(), none);
|
||||
|
||||
let resolver = Box::new(Resolver {
|
||||
let resolver = Arc::new(Resolver {
|
||||
identifier_mapping: identifier_mapping.clone(),
|
||||
class_names: Default::default(),
|
||||
}) as Box<dyn SymbolResolver>;
|
||||
}) as Arc<dyn SymbolResolver>;
|
||||
|
||||
TestEnvironment {
|
||||
unifier,
|
||||
|
@ -226,8 +226,8 @@ impl TestEnvironment {
|
|||
.collect();
|
||||
|
||||
let resolver =
|
||||
Box::new(Resolver { identifier_mapping: identifier_mapping.clone(), class_names })
|
||||
as Box<dyn SymbolResolver>;
|
||||
Arc::new(Resolver { identifier_mapping: identifier_mapping.clone(), class_names })
|
||||
as Arc<dyn SymbolResolver>;
|
||||
|
||||
TestEnvironment {
|
||||
unifier,
|
||||
|
|
Loading…
Reference in New Issue