PyThermostat: Add main function to plot.py

This commit is contained in:
atse 2024-11-18 11:47:11 +08:00
parent 4beeec6021
commit 0ff0dbc3ec

View File

@ -5,127 +5,133 @@ import matplotlib.animation as animation
from threading import Thread, Lock
from pythermostat.client import Client
TIME_WINDOW = 300.0
tec = Client()
target_temperature = tec.get_pid()[0]['target']
print("Channel 0 target temperature: {:.3f}".format(target_temperature))
def main():
TIME_WINDOW = 300.0
class Series:
def __init__(self, conv=lambda x: x):
self.conv = conv
self.x_data = []
self.y_data = []
tec = Client()
target_temperature = tec.get_pid()[0]['target']
print("Channel 0 target temperature: {:.3f}".format(target_temperature))
def append(self, x, y):
self.x_data.append(x)
self.y_data.append(self.conv(y))
class Series:
def __init__(self, conv=lambda x: x):
self.conv = conv
self.x_data = []
self.y_data = []
def clip(self, min_x):
drop = 0
while drop < len(self.x_data) and self.x_data[drop] < min_x:
drop += 1
self.x_data = self.x_data[drop:]
self.y_data = self.y_data[drop:]
def append(self, x, y):
self.x_data.append(x)
self.y_data.append(self.conv(y))
series = {
# 'adc': Series(),
# 'sens': Series(lambda x: x * 0.0001),
'temperature': Series(),
# 'i_set': Series(),
'pid_output': Series(),
# 'vref': Series(),
# 'dac_value': Series(),
# 'dac_feedback': Series(),
# 'i_tec': Series(),
'tec_i': Series(),
'tec_u_meas': Series(),
# 'interval': Series(),
}
series_lock = Lock()
def clip(self, min_x):
drop = 0
while drop < len(self.x_data) and self.x_data[drop] < min_x:
drop += 1
self.x_data = self.x_data[drop:]
self.y_data = self.y_data[drop:]
quit = False
series = {
# 'adc': Series(),
# 'sens': Series(lambda x: x * 0.0001),
'temperature': Series(),
# 'i_set': Series(),
'pid_output': Series(),
# 'vref': Series(),
# 'dac_value': Series(),
# 'dac_feedback': Series(),
# 'i_tec': Series(),
'tec_i': Series(),
'tec_u_meas': Series(),
# 'interval': Series(),
}
series_lock = Lock()
quit = False
def recv_data(tec):
global last_packet_time
while True:
data = tec.get_report()
ch0 = data[0]
series_lock.acquire()
try:
for k, s in series.items():
if k in ch0:
v = ch0[k]
if type(v) is float:
s.append(ch0['time'], v)
finally:
series_lock.release()
if quit:
break
time.sleep(0.05)
thread = Thread(target=recv_data, args=(tec,))
thread.start()
fig, ax = plt.subplots()
for k, s in series.items():
s.plot, = ax.plot([], [], label=k)
legend = ax.legend()
def animate(i):
min_x, max_x, min_y, max_y = None, None, None, None
def recv_data(tec):
global last_packet_time
while True:
data = tec.get_report()
ch0 = data[0]
series_lock.acquire()
try:
for k, s in series.items():
if k in ch0:
v = ch0[k]
if type(v) is float:
s.append(ch0['time'], v)
s.plot.set_data(s.x_data, s.y_data)
if len(s.y_data) > 0:
s.plot.set_label("{}: {:.3f}".format(k, s.y_data[-1]))
if len(s.x_data) > 0:
min_x_ = min(s.x_data)
if min_x is None:
min_x = min_x_
else:
min_x = min(min_x, min_x_)
max_x_ = max(s.x_data)
if max_x is None:
max_x = max_x_
else:
max_x = max(max_x, max_x_)
if len(s.y_data) > 0:
min_y_ = min(s.y_data)
if min_y is None:
min_y = min_y_
else:
min_y = min(min_y, min_y_)
max_y_ = max(s.y_data)
if max_y is None:
max_y = max_y_
else:
max_y = max(max_y, max_y_)
if min_x and max_x - TIME_WINDOW > min_x:
for s in series.values():
s.clip(max_x - TIME_WINDOW)
finally:
series_lock.release()
if quit:
break
time.sleep(0.05)
if min_x != max_x:
ax.set_xlim(min_x, max_x)
if min_y != max_y:
margin_y = 0.01 * (max_y - min_y)
ax.set_ylim(min_y - margin_y, max_y + margin_y)
thread = Thread(target=recv_data, args=(tec,))
thread.start()
nonlocal legend
legend.remove()
legend = ax.legend()
fig, ax = plt.subplots()
ani = animation.FuncAnimation(
fig, animate, interval=1, blit=False, save_count=50)
for k, s in series.items():
s.plot, = ax.plot([], [], label=k)
legend = ax.legend()
plt.show()
quit = True
thread.join()
def animate(i):
min_x, max_x, min_y, max_y = None, None, None, None
series_lock.acquire()
try:
for k, s in series.items():
s.plot.set_data(s.x_data, s.y_data)
if len(s.y_data) > 0:
s.plot.set_label("{}: {:.3f}".format(k, s.y_data[-1]))
if len(s.x_data) > 0:
min_x_ = min(s.x_data)
if min_x is None:
min_x = min_x_
else:
min_x = min(min_x, min_x_)
max_x_ = max(s.x_data)
if max_x is None:
max_x = max_x_
else:
max_x = max(max_x, max_x_)
if len(s.y_data) > 0:
min_y_ = min(s.y_data)
if min_y is None:
min_y = min_y_
else:
min_y = min(min_y, min_y_)
max_y_ = max(s.y_data)
if max_y is None:
max_y = max_y_
else:
max_y = max(max_y, max_y_)
if min_x and max_x - TIME_WINDOW > min_x:
for s in series.values():
s.clip(max_x - TIME_WINDOW)
finally:
series_lock.release()
if min_x != max_x:
ax.set_xlim(min_x, max_x)
if min_y != max_y:
margin_y = 0.01 * (max_y - min_y)
ax.set_ylim(min_y - margin_y, max_y + margin_y)
global legend
legend.remove()
legend = ax.legend()
ani = animation.FuncAnimation(
fig, animate, interval=1, blit=False, save_count=50)
plt.show()
quit = True
thread.join()
if __name__ == "__main__":
main()