use r0::zero_bss; use core::ptr::write_volatile; use libregister::{ VolatileCell, RegisterR, RegisterW, RegisterRW, }; use libcortex_a9::{asm, regs::*, cache, mmu}; use libboard_zynq::{slcr, mpcore}; extern "C" { static mut __bss_start: u32; static mut __bss_end: u32; static mut __stack0_start: u32; static mut __stack1_start: u32; fn main_core0(); fn main_core1(); } static mut CORE1_ENABLED: VolatileCell = VolatileCell::new(false); #[link_section = ".text.boot"] #[no_mangle] #[naked] pub unsafe extern "C" fn Reset() -> ! { match MPIDR.read().cpu_id() { 0 => { SP.write(&mut __stack0_start as *mut _ as u32); boot_core0(); } 1 => { while !CORE1_ENABLED.get() { asm::wfe(); } SP.write(&mut __stack1_start as *mut _ as u32); boot_core1(); } _ => unreachable!(), } } #[naked] #[inline(never)] unsafe fn boot_core0() -> ! { l1_cache_init(); let mpcore = mpcore::RegisterBlock::new(); mpcore.scu_invalidate.invalidate_all_cores(); zero_bss(&mut __bss_start, &mut __bss_end); let mmu_table = mmu::L1Table::get() .setup_flat_layout(); mmu::with_mmu(mmu_table, || { mpcore.scu_control.start(); ACTLR.enable_smp(); // TODO: Barriers reqd when core1 is not yet starting? asm::dmb(); asm::dsb(); main_core0(); panic!("return from main"); }); } #[naked] #[inline(never)] unsafe fn boot_core1() -> ! { l1_cache_init(); let mpcore = mpcore::RegisterBlock::new(); mpcore.scu_invalidate.invalidate_core1(); let mmu_table = mmu::L1Table::get(); mmu::with_mmu(mmu_table, || { ACTLR.enable_smp(); // TODO: Barriers reqd when core1 is not yet starting? asm::dmb(); asm::dsb(); main_core1(); panic!("return from main_core1"); }); } fn l1_cache_init() { use libcortex_a9::cache::*; // Invalidate TLBs tlbiall(); // Invalidate I-Cache iciallu(); // Invalidate Branch Predictor Array bpiall(); // Invalidate D-Cache // // NOTE: It is both faster and correct to only invalidate instead // of also flush the cache (as was done before with // `dccisw()`) and it is correct to perform this operation // for all of the L1 data cache rather than a (previously // unspecified) combination of one cache set and one cache // way. dciall(); } pub struct Core1 { } impl Core1 { /// Reset and start core1 pub fn start(sdram: bool) -> Self { // reset and stop (safe to repeat) slcr::RegisterBlock::unlocked(|slcr| { slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(true)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(true)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false)); }); if sdram { // Cores always start from OCM no matter what you do. // Make up a vector table there that just jumps to SDRAM. for i in 0..8 { unsafe { // this is the ARM instruction "b +0x00100000" write_volatile((i*4) as *mut u32, 0xea03fffe); } } } unsafe { CORE1_ENABLED.set(true); } // Ensure values have been written to cache asm::dmb(); // Flush cache-line cache::dccmvac(unsafe { &CORE1_ENABLED } as *const _ as usize); if sdram { cache::dccmvac(0); } // wake up core1 slcr::RegisterBlock::unlocked(|slcr| { slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(false)); }); Core1 {} } pub fn disable(&self) { unsafe { CORE1_ENABLED.set(false); cache::dccmvac(&CORE1_ENABLED as *const _ as usize); asm::dsb(); } self.restart(); } pub fn restart(&self) { slcr::RegisterBlock::unlocked(|slcr| { slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(true)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(true)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(false)); }); } }