use core::{ marker::PhantomData, ops::{Deref, DerefMut}, }; use log::{error, info, warn}; use libregister::*; use super::slcr; use super::clocks::Clocks; pub mod phy; use phy::{Phy, PhyAccess}; mod regs; pub mod rx; pub mod tx; /// Size of all the buffers pub const MTU: usize = 1536; /// Maximum MDC clock const MAX_MDC: u32 = 2_500_000; const TX_10: u32 = 10_000_000; const TX_100: u32 = 25_000_000; /// Clock for GbE const TX_1000: u32 = 125_000_000; #[derive(Clone)] #[repr(C, align(0x20))] pub struct Buffer(pub [u8; MTU]); impl Buffer { pub fn new() -> Self { Buffer([0; MTU]) } } impl Deref for Buffer { type Target = [u8]; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for Buffer { fn deref_mut(&mut self) -> &mut ::Target { &mut self.0 } } /// Gigabit Ethernet Peripheral pub trait Gem { fn setup_clock(tx_clock: u32); fn regs() -> &'static mut regs::RegisterBlock; } /// first Gigabit Ethernet peripheral pub struct Gem0; impl Gem for Gem0 { fn setup_clock(tx_clock: u32) { let (divisor0, divisor1) = calculate_tx_divisors(tx_clock); slcr::RegisterBlock::unlocked(|slcr| { slcr.gem0_clk_ctrl.write( // 0x0050_0801: 8, 5: 100 Mb/s // ...: 8, 1: 1000 Mb/s slcr::GemClkCtrl::zeroed() .clkact(true) .srcsel(slcr::PllSource::IoPll) .divisor(divisor0 as u8) .divisor1(divisor1 as u8) ); // Enable gem0 recv clock slcr.gem0_rclk_ctrl.write( // 0x0000_0801 slcr::RclkCtrl::zeroed() .clkact(true) ); }); } fn regs() -> &'static mut regs::RegisterBlock { regs::RegisterBlock::gem0() } } /// second Gigabit Ethernet peripheal pub struct Gem1; impl Gem for Gem1 { fn setup_clock(tx_clock: u32) { let (divisor0, divisor1) = calculate_tx_divisors(tx_clock); slcr::RegisterBlock::unlocked(|slcr| { slcr.gem1_clk_ctrl.write( slcr::GemClkCtrl::zeroed() .clkact(true) .srcsel(slcr::PllSource::IoPll) .divisor(divisor0 as u8) .divisor1(divisor1 as u8) ); // Enable gem1 recv clock slcr.gem1_rclk_ctrl.write( // 0x0000_0801 slcr::RclkCtrl::zeroed() .clkact(true) ); }); } fn regs() -> &'static mut regs::RegisterBlock { regs::RegisterBlock::gem1() } } fn calculate_tx_divisors(tx_clock: u32) -> (u8, u8) { let io_pll = Clocks::get().io; let target = (tx_clock - 1 + io_pll) / tx_clock; let mut best = None; let mut best_error = 0; for divisor0 in 1..63 { for divisor1 in 1..63 { let current = (divisor0 as u32) * (divisor1 as u32); let error = if current > target { current - target } else { target - current }; if best.is_none() || best_error > error { best = Some((divisor0, divisor1)); best_error = error; } } } let result = best.unwrap(); info!("Eth TX clock for {}: {} / {} / {} = {}", tx_clock, io_pll, result.0, result.1, io_pll / result.0 as u32 / result.1 as u32 ); result } pub struct Eth { rx: RX, tx: TX, inner: EthInner, phy: Phy, } impl Eth { pub fn default(macaddr: [u8; 6]) -> Self { slcr::RegisterBlock::unlocked(|slcr| { // Manual example: 0x0000_1280 // MDIO slcr.mio_pin_53.write( slcr::MioPin53::zeroed() .l3_sel(0b100) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // MDC slcr.mio_pin_52.write( slcr::MioPin52::zeroed() .l3_sel(0b100) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Manual example: 0x0000_3902 // TX_CLK slcr.mio_pin_16.write( slcr::MioPin16::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TX_CTRL slcr.mio_pin_21.write( slcr::MioPin21::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD3 slcr.mio_pin_20.write( slcr::MioPin20::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD2 slcr.mio_pin_19.write( slcr::MioPin19::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD1 slcr.mio_pin_18.write( slcr::MioPin18::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD0 slcr.mio_pin_17.write( slcr::MioPin17::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // Manual example: 0x0000_1903 // RX_CLK slcr.mio_pin_22.write( slcr::MioPin22::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RX_CTRL slcr.mio_pin_27.write( slcr::MioPin27::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD3 slcr.mio_pin_26.write( slcr::MioPin26::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD2 slcr.mio_pin_25.write( slcr::MioPin25::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD1 slcr.mio_pin_24.write( slcr::MioPin24::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD0 slcr.mio_pin_23.write( slcr::MioPin23::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // VREF internal generator slcr.gpiob_ctrl.write( slcr::GpiobCtrl::zeroed() .vref_en(true) ); }); Self::gem0(macaddr) } pub fn gem0(macaddr: [u8; 6]) -> Self { Self::new(macaddr) } } impl Eth { pub fn gem1(macaddr: [u8; 6]) -> Self { Self::new(macaddr) } } impl Eth { fn new(macaddr: [u8; 6]) -> Self { GEM::setup_clock(TX_1000); let mut inner = EthInner { gem: PhantomData, link: None, }; inner.init(); inner.configure(macaddr); let phy = Phy::find(&mut inner).expect("phy"); phy.reset(&mut inner); phy.restart_autoneg(&mut inner); Eth { rx: (), tx: (), inner, phy, } } } impl Eth { pub fn start_rx(self, rx_size: usize) -> Eth { let new_self = Eth { rx: rx::DescList::new(rx_size), tx: self.tx, inner: self.inner, phy: self.phy, }; let list_addr = new_self.rx.list_addr(); assert!(list_addr & 0b11 == 0); GEM::regs().rx_qbar.write( regs::RxQbar::zeroed() .rx_q_baseaddr(list_addr >> 2) ); GEM::regs().net_ctrl.modify(|_, w| w.rx_en(true) ); new_self } pub fn start_tx(self, tx_size: usize) -> Eth { let new_self = Eth { rx: self.rx, tx: tx::DescList::new(tx_size), inner: self.inner, phy: self.phy, }; let list_addr = &new_self.tx.list_addr(); assert!(list_addr & 0b11 == 0); GEM::regs().tx_qbar.write( regs::TxQbar::zeroed() .tx_q_baseaddr(list_addr >> 2) ); GEM::regs().net_ctrl.modify(|_, w| w.tx_en(true) ); new_self } } impl Eth { pub fn recv_next<'s: 'p, 'p>(&'s mut self) -> Result>, rx::Error> { let status = GEM::regs().rx_status.read(); if status.hresp_not_ok() { // Clear GEM::regs().rx_status.write( regs::RxStatus::zeroed() .hresp_not_ok(true) ); return Err(rx::Error::HrespNotOk); } if status.rx_overrun() { // Clear GEM::regs().rx_status.write( regs::RxStatus::zeroed() .rx_overrun(true) ); return Err(rx::Error::RxOverrun); } if status.buffer_not_avail() { // Clear GEM::regs().rx_status.write( regs::RxStatus::zeroed() .buffer_not_avail(true) ); return Err(rx::Error::BufferNotAvail); } if status.frame_recd() { let result = self.rx.recv_next(); match result { Ok(None) => { // No packet, clear status bit GEM::regs().rx_status.write( regs::RxStatus::zeroed() .frame_recd(true) ); } _ => {} } result } else { self.inner.check_link_change(&self.phy); Ok(None) } } } impl Eth { pub fn send<'s: 'p, 'p>(&'s mut self, length: usize) -> Option> { self.tx.send(GEM::regs(), length) } } impl<'a, GEM: Gem> smoltcp::phy::Device<'a> for &mut Eth { type RxToken = rx::PktRef<'a>; type TxToken = tx::Token<'a>; fn capabilities(&self) -> smoltcp::phy::DeviceCapabilities { use smoltcp::phy::{DeviceCapabilities, ChecksumCapabilities, Checksum}; let mut checksum_caps = ChecksumCapabilities::default(); checksum_caps.ipv4 = Checksum::Both; checksum_caps.tcp = Checksum::Both; checksum_caps.udp = Checksum::Both; let mut caps = DeviceCapabilities::default(); caps.max_transmission_unit = MTU; caps.max_burst_size = Some(self.rx.len().min(self.tx.len())); caps.checksum = checksum_caps; caps } fn receive(&'a mut self) -> Option<(Self::RxToken, Self::TxToken)> { match self.rx.recv_next() { Ok(Some(pktref)) => { let tx_token = tx::Token { regs: GEM::regs(), desc_list: &mut self.tx, }; Some((pktref, tx_token)) } Ok(None) => { self.inner.check_link_change(&self.phy); None } Err(e) => { error!("eth recv error: {:?}", e); None } } } fn transmit(&'a mut self) -> Option { Some(tx::Token { regs: GEM::regs(), desc_list: &mut self.tx, }) } } struct EthInner { gem: PhantomData, link: Option, } impl EthInner { fn init(&mut self) { // Clear the Network Control register. GEM::regs().net_ctrl.write(regs::NetCtrl::zeroed()); GEM::regs().net_ctrl.write(regs::NetCtrl::zeroed().clear_stat_regs(true)); // Clear the Status registers. GEM::regs().rx_status.write( regs::RxStatus::zeroed() .buffer_not_avail(true) .frame_recd(true) .rx_overrun(true) .hresp_not_ok(true) ); GEM::regs().tx_status.write( regs::TxStatus::zeroed() .used_bit_read(true) .collision(true) .retry_limit_exceeded(true) .tx_go(true) .tx_corr_ahb_err(true) .tx_complete(true) .tx_under_run(true) .late_collision(true) // not in the manual: .hresp_not_ok(true) ); // Disable all interrupts. GEM::regs().intr_dis.write( regs::IntrDis::zeroed() .mgmt_done(true) .rx_complete(true) .rx_used_read(true) .tx_used_read(true) .tx_underrun(true) .retry_ex_late_collisn(true) .tx_corrupt_ahb_err(true) .tx_complete(true) .link_chng(true) .rx_overrun(true) .hresp_not_ok(true) .pause_nonzeroq(true) .pause_zero(true) .pause_tx(true) .ex_intr(true) .autoneg_complete(true) .partner_pg_rx(true) .delay_req_rx(true) .sync_rx(true) .delay_req_tx(true) .sync_tx(true) .pdelay_req_rx(true) .pdelay_resp_rx(true) .pdelay_req_tx(true) .pdelay_resp_tx(true) .tsu_sec_incr(true) ); // Clear the buffer queues. GEM::regs().rx_qbar.write( regs::RxQbar::zeroed() ); GEM::regs().tx_qbar.write( regs::TxQbar::zeroed() ); } fn configure(&mut self, macaddr: [u8; 6]) { let clocks = Clocks::get(); let mdc_clk_div = (clocks.cpu_1x() / MAX_MDC) + 1; GEM::regs().net_cfg.write( regs::NetCfg::zeroed() .full_duplex(true) .gige_en(true) .speed(true) .no_broadcast(false) .multi_hash_en(true) // Promiscuous mode (TODO?) .copy_all(true) // Remove 4-byte Frame CheckSum .fcs_remove(true) // RX checksum offload .rx_chksum_offld_en(true) // One of the slower speeds .mdc_clk_div((mdc_clk_div >> 4).min(0b111) as u8) ); let macaddr_msbs = (u16::from(macaddr[0]) << 8) | u16::from(macaddr[1]); let macaddr_lsbs = (u32::from(macaddr[2]) << 24) | (u32::from(macaddr[3]) << 16) | (u32::from(macaddr[4]) << 8) | u32::from(macaddr[5]); GEM::regs().spec_addr1_top.write( regs::SpecAddrTop::zeroed() .addr_msbs(macaddr_msbs) ); GEM::regs().spec_addr1_bot.write( regs::SpecAddrBot::zeroed() .addr_lsbs(macaddr_lsbs) ); GEM::regs().dma_cfg.write( regs::DmaCfg::zeroed() // 1536 bytes .ahb_mem_rx_buf_size((MTU >> 6) as u8) // 8 KB .rx_pktbuf_memsz_sel(0x3) // 4 KB .tx_pktbuf_memsz_sel(true) // TX checksum offload .csum_gen_offload_en(true) // Little-endian .ahb_endian_swp_mgmt_en(false) // INCR16 AHB burst .ahb_fixed_burst_len(0x10) ); GEM::regs().net_ctrl.write( regs::NetCtrl::zeroed() .mgmt_port_en(true) ); } fn wait_phy_idle(&self) { while !GEM::regs().net_status.read().phy_mgmt_idle() {} } fn check_link_change(&mut self, phy: &Phy) { // As the PHY access takes some time, exit early if there was // already a link. TODO: check once per second. if self.link.is_some() { return } let link = phy.get_link(self); // Check link state transition if self.link != link { match &link { Some(link) => { info!("eth: got {:?}", link); use phy::{LinkDuplex::Full, LinkSpeed::*}; let txclock = match link.speed { S10 => TX_10, S100 => TX_100, S1000 => TX_1000, }; GEM::setup_clock(txclock); GEM::regs().net_cfg.modify(|_, w| w .full_duplex(link.duplex == Full) .gige_en(link.speed == S1000) .speed(link.speed != S10) ); } None => { warn!("eth: link lost"); phy.modify_control(self, |control| control.set_autoneg_enable(true) .set_restart_autoneg(true) ); } } self.link = link; } } } impl PhyAccess for EthInner { fn read_phy(&mut self, addr: u8, reg: u8) -> u16 { self.wait_phy_idle(); GEM::regs().phy_maint.write( regs::PhyMaint::zeroed() .clause_22(true) .operation(regs::PhyOperation::Read) .phy_addr(addr) .reg_addr(reg) .must_10(0b10) ); self.wait_phy_idle(); GEM::regs().phy_maint.read().data() } fn write_phy(&mut self, addr: u8, reg: u8, data: u16) { self.wait_phy_idle(); GEM::regs().phy_maint.write( regs::PhyMaint::zeroed() .clause_22(true) .operation(regs::PhyOperation::Write) .phy_addr(addr) .reg_addr(reg) .must_10(0b10) .data(data) ); self.wait_phy_idle(); } }