forked from M-Labs/nac3
312 lines
13 KiB
Rust
312 lines
13 KiB
Rust
use std::{collections::HashMap, sync::Arc};
|
|
|
|
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
use super::typecheck::typedef::{SharedUnifier, Type, Unifier, TypeEnum};
|
|
use crate::symbol_resolver::SymbolResolver;
|
|
use inkwell::{
|
|
basic_block::BasicBlock, builder::Builder, context::Context, module::Module,
|
|
types::BasicTypeEnum, values::PointerValue,
|
|
};
|
|
use parking_lot::RwLock;
|
|
use rustpython_parser::ast::Stmt;
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
|
|
pub struct DefinitionId(pub usize);
|
|
|
|
pub enum TopLevelDef {
|
|
Class {
|
|
// object ID used for TypeEnum
|
|
object_id: DefinitionId,
|
|
// type variables bounded to the class.
|
|
type_vars: Vec<Type>,
|
|
// class fields
|
|
fields: Vec<(String, Type)>,
|
|
// class methods, pointing to the corresponding function definition.
|
|
methods: Vec<(String, Type, DefinitionId)>,
|
|
// ancestor classes, including itself.
|
|
ancestors: Vec<DefinitionId>,
|
|
},
|
|
Function {
|
|
// prefix for symbol, should be unique globally, and not ending with numbers
|
|
name: String,
|
|
// function signature.
|
|
signature: Type,
|
|
/// Function instance to symbol mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class.
|
|
/// Value: function symbol name.
|
|
instance_to_symbol: HashMap<String, String>,
|
|
/// Function instances to annotated AST mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class. Excluding rigid type
|
|
/// variables.
|
|
/// Value: AST annotated with types together with a unification table index. Could contain
|
|
/// rigid type variables that would be substituted when the function is instantiated.
|
|
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
|
|
},
|
|
Initializer {
|
|
class_id: Option<DefinitionId>,
|
|
}
|
|
}
|
|
|
|
pub struct CodeGenTask {
|
|
pub subst: HashMap<usize, Type>,
|
|
pub symbol_name: String,
|
|
pub body: Stmt<Option<Type>>,
|
|
pub unifier: SharedUnifier,
|
|
}
|
|
|
|
pub struct TopLevelContext {
|
|
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
|
pub unifiers: Arc<RwLock<Vec<SharedUnifier>>>,
|
|
}
|
|
|
|
pub struct CodeGenContext<'ctx> {
|
|
pub ctx: &'ctx Context,
|
|
pub builder: Builder<'ctx>,
|
|
pub module: Module<'ctx>,
|
|
pub top_level: &'ctx TopLevelContext,
|
|
pub unifier: Unifier,
|
|
pub resolver: Box<dyn SymbolResolver>,
|
|
pub var_assignment: HashMap<String, PointerValue<'ctx>>,
|
|
pub type_cache: HashMap<Type, BasicTypeEnum<'ctx>>,
|
|
pub primitives: PrimitiveStore,
|
|
// stores the alloca for variables
|
|
pub init_bb: BasicBlock<'ctx>,
|
|
// where continue and break should go to respectively
|
|
// the first one is the test_bb, and the second one is bb after the loop
|
|
pub loop_bb: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>,
|
|
}
|
|
|
|
|
|
|
|
use rustpython_parser::ast;
|
|
pub struct TopLevelDefInfo<'a> { // like adding some info on top of the TopLevelDef for later parsing the class bases, method, and function sigatures
|
|
def: TopLevelDef, // the definition entry
|
|
ty: Type, // the entry in the top_level unifier
|
|
ast: Option<ast::Stmt<()>>, // the ast submitted by applications
|
|
resolver: Option<&'a dyn SymbolResolver> // the resolver
|
|
}
|
|
pub struct TopLevelComposer<'a> {
|
|
pub definition_list: Vec<TopLevelDefInfo<'a>>,
|
|
pub primitives: PrimitiveStore,
|
|
pub unifier: Unifier,
|
|
}
|
|
|
|
impl<'a> TopLevelComposer<'a> {
|
|
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
|
|
let mut unifier = Unifier::new();
|
|
let int32 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(0), // 0 should be fine
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let int64 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(1), // 0 should be fine
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let float = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(2), // 0 should be fine
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let bool = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(3), // 0 should be fine
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let none = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(4), // 0 should be fine
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new(),
|
|
});
|
|
let primitives = PrimitiveStore { int32, int64, float, bool, none };
|
|
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
|
|
(primitives, unifier)
|
|
}
|
|
pub fn new() -> Self {
|
|
let primitives = Self::make_primitives();
|
|
let definition_list: Vec<TopLevelDefInfo<'a>> = vec![
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(0),
|
|
ast: None,
|
|
resolver: None,
|
|
ty: primitives.0.int32 // just arbitary picked one...
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(1),
|
|
ast: None,
|
|
resolver: None,
|
|
ty: primitives.0.int64 // just arbitary picked one...
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(2),
|
|
ast: None,
|
|
resolver: None,
|
|
ty: primitives.0.float // just arbitary picked one...
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(3),
|
|
ast: None,
|
|
resolver: None,
|
|
ty: primitives.0.bool // just arbitary picked one...
|
|
},
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(4),
|
|
ast: None,
|
|
resolver: None,
|
|
ty: primitives.0.none // just arbitary picked one...
|
|
},
|
|
]; // the entries for primitive types
|
|
TopLevelComposer {
|
|
definition_list,
|
|
primitives: primitives.0,
|
|
unifier: primitives.1
|
|
}
|
|
}
|
|
|
|
pub fn make_top_level_class_def(index: usize) -> TopLevelDef {
|
|
TopLevelDef::Class {
|
|
object_id: DefinitionId(index),
|
|
type_vars: Default::default(),
|
|
fields: Default::default(),
|
|
methods: Default::default(),
|
|
ancestors: Default::default(),
|
|
}
|
|
}
|
|
pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef {
|
|
TopLevelDef::Function {
|
|
name,
|
|
signature: ty,
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default()
|
|
}
|
|
}
|
|
|
|
// like to make and return a "primitive" symbol resolver? so that the symbol resolver can later figure out primitive type definitions when passed a primitive type name
|
|
pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> {
|
|
vec![
|
|
("int32".into(), DefinitionId(0), self.primitives.int32),
|
|
("int64".into(), DefinitionId(0), self.primitives.int32),
|
|
("float".into(), DefinitionId(0), self.primitives.int32),
|
|
("bool".into(), DefinitionId(0), self.primitives.int32),
|
|
("none".into(), DefinitionId(0), self.primitives.int32),
|
|
]
|
|
}
|
|
|
|
pub fn register_top_level(&mut self, ast: ast::Stmt<()>, resolver: &'a dyn SymbolResolver) -> Result<Vec<(String, DefinitionId, Type)>, String> {
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef {name, body, ..} => {
|
|
let class_name = name.to_string();
|
|
let def_id = self.definition_list.len();
|
|
// add the class to the unifier
|
|
let ty = self.unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(def_id),
|
|
fields: Default::default(),
|
|
params: Default::default()
|
|
});
|
|
// add to the definition list
|
|
self.definition_list.push(
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_class_def(def_id),
|
|
resolver: Some(resolver),
|
|
ast: Some(ast),
|
|
ty,
|
|
}
|
|
);
|
|
|
|
// TODO: parse class def body and register class methods into the def list?
|
|
// FIXME: module's symbol resolver would not know the name of the class methods, thus cannot return their definition_id? so we have to manage it ourselves?
|
|
// or do we return the class method list of (method_name, def_id, type) to application to be used to build symbol resolver? <- current implementation
|
|
|
|
Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def
|
|
},
|
|
|
|
ast::StmtKind::FunctionDef {name, ..} => {
|
|
let fun_name = name.to_string();
|
|
let def_id = self.definition_list.len();
|
|
// add to the unifier
|
|
let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
|
|
args: Default::default(),
|
|
ret: self.primitives.none, // NOTE: this needs to be changed later
|
|
vars: Default::default()
|
|
}));
|
|
// add to the definition list
|
|
self.definition_list.push(
|
|
TopLevelDefInfo {
|
|
def: Self::make_top_level_function_def(
|
|
name.into(),
|
|
self.primitives.none // NOTE: this needs to be changed later
|
|
),
|
|
resolver: Some(resolver),
|
|
ast: Some(ast),
|
|
ty,
|
|
}
|
|
);
|
|
|
|
Ok(vec![(fun_name, DefinitionId(def_id), ty)])
|
|
},
|
|
|
|
_ => Err("only registrations of top level classes/functions are supprted".into())
|
|
}
|
|
}
|
|
|
|
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one
|
|
pub fn analyze_top_level(&mut self) -> Result<(), String> {
|
|
for mut d in &mut self.definition_list {
|
|
if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) {
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef {
|
|
name,
|
|
bases,
|
|
body,
|
|
..
|
|
} => {
|
|
// ancestors and typevars associate with the class are analyzed by looking into the `bases` ast node
|
|
for b in bases {
|
|
match &b.node {
|
|
ast::ExprKind::Name {id, ..} => { // base class, name directly available inside the module, can use this module's symbol resolver
|
|
let def_id = resolver.get_identifier_def(id);
|
|
unimplemented!()
|
|
},
|
|
ast::ExprKind::Attribute {value, attr, ..} => { // things can be like `class A(BaseModule.Base)`, here we have to get the symbol resolver of the module `BaseModule`?
|
|
unimplemented!() // need to change symbol resolver in order to get the symbol resolver of the imported module
|
|
},
|
|
ast::ExprKind::Subscript {value, slice, ..} => { // typevars bounded to the class, things like `class A(Generic[T, V])`
|
|
if let ast::ExprKind::Name {id, ..} = &value.node {
|
|
if id == "Generic" {
|
|
// TODO: get typevars
|
|
unimplemented!()
|
|
} else {
|
|
return Err("unknown type var".into())
|
|
}
|
|
}
|
|
},
|
|
_ => return Err("not supported".into())
|
|
}
|
|
}
|
|
|
|
// class method and field are analyzed by looking into the class body ast node
|
|
for stmt in body {
|
|
unimplemented!()
|
|
}
|
|
},
|
|
|
|
ast::StmtKind::FunctionDef {
|
|
name,
|
|
args,
|
|
body,
|
|
returns,
|
|
..
|
|
} => {
|
|
unimplemented!()
|
|
}
|
|
|
|
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
|
|
}
|
|
}
|
|
};
|
|
Ok(())
|
|
}
|
|
} |