nac3/nac3core/src/top_level.rs

312 lines
13 KiB
Rust

use std::{collections::HashMap, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{SharedUnifier, Type, Unifier, TypeEnum};
use crate::symbol_resolver::SymbolResolver;
use inkwell::{
basic_block::BasicBlock, builder::Builder, context::Context, module::Module,
types::BasicTypeEnum, values::PointerValue,
};
use parking_lot::RwLock;
use rustpython_parser::ast::Stmt;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct DefinitionId(pub usize);
pub enum TopLevelDef {
Class {
// object ID used for TypeEnum
object_id: DefinitionId,
// type variables bounded to the class.
type_vars: Vec<Type>,
// class fields
fields: Vec<(String, Type)>,
// class methods, pointing to the corresponding function definition.
methods: Vec<(String, Type, DefinitionId)>,
// ancestor classes, including itself.
ancestors: Vec<DefinitionId>,
},
Function {
// prefix for symbol, should be unique globally, and not ending with numbers
name: String,
// function signature.
signature: Type,
/// Function instance to symbol mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// Value: function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// Value: AST annotated with types together with a unification table index. Could contain
/// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
},
Initializer {
class_id: Option<DefinitionId>,
}
}
pub struct CodeGenTask {
pub subst: HashMap<usize, Type>,
pub symbol_name: String,
pub body: Stmt<Option<Type>>,
pub unifier: SharedUnifier,
}
pub struct TopLevelContext {
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
pub unifiers: Arc<RwLock<Vec<SharedUnifier>>>,
}
pub struct CodeGenContext<'ctx> {
pub ctx: &'ctx Context,
pub builder: Builder<'ctx>,
pub module: Module<'ctx>,
pub top_level: &'ctx TopLevelContext,
pub unifier: Unifier,
pub resolver: Box<dyn SymbolResolver>,
pub var_assignment: HashMap<String, PointerValue<'ctx>>,
pub type_cache: HashMap<Type, BasicTypeEnum<'ctx>>,
pub primitives: PrimitiveStore,
// stores the alloca for variables
pub init_bb: BasicBlock<'ctx>,
// where continue and break should go to respectively
// the first one is the test_bb, and the second one is bb after the loop
pub loop_bb: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>,
}
use rustpython_parser::ast;
pub struct TopLevelDefInfo<'a> { // like adding some info on top of the TopLevelDef for later parsing the class bases, method, and function sigatures
def: TopLevelDef, // the definition entry
ty: Type, // the entry in the top_level unifier
ast: Option<ast::Stmt<()>>, // the ast submitted by applications
resolver: Option<&'a dyn SymbolResolver> // the resolver
}
pub struct TopLevelComposer<'a> {
pub definition_list: Vec<TopLevelDefInfo<'a>>,
pub primitives: PrimitiveStore,
pub unifier: Unifier,
}
impl<'a> TopLevelComposer<'a> {
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0), // 0 should be fine
fields: HashMap::new().into(),
params: HashMap::new(),
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1), // 0 should be fine
fields: HashMap::new().into(),
params: HashMap::new(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2), // 0 should be fine
fields: HashMap::new().into(),
params: HashMap::new(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3), // 0 should be fine
fields: HashMap::new().into(),
params: HashMap::new(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(4), // 0 should be fine
fields: HashMap::new().into(),
params: HashMap::new(),
});
let primitives = PrimitiveStore { int32, int64, float, bool, none };
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
(primitives, unifier)
}
pub fn new() -> Self {
let primitives = Self::make_primitives();
let definition_list: Vec<TopLevelDefInfo<'a>> = vec![
TopLevelDefInfo {
def: Self::make_top_level_class_def(0),
ast: None,
resolver: None,
ty: primitives.0.int32 // just arbitary picked one...
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(1),
ast: None,
resolver: None,
ty: primitives.0.int64 // just arbitary picked one...
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(2),
ast: None,
resolver: None,
ty: primitives.0.float // just arbitary picked one...
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(3),
ast: None,
resolver: None,
ty: primitives.0.bool // just arbitary picked one...
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(4),
ast: None,
resolver: None,
ty: primitives.0.none // just arbitary picked one...
},
]; // the entries for primitive types
TopLevelComposer {
definition_list,
primitives: primitives.0,
unifier: primitives.1
}
}
pub fn make_top_level_class_def(index: usize) -> TopLevelDef {
TopLevelDef::Class {
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: Default::default(),
}
}
pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef {
TopLevelDef::Function {
name,
signature: ty,
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default()
}
}
// like to make and return a "primitive" symbol resolver? so that the symbol resolver can later figure out primitive type definitions when passed a primitive type name
pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> {
vec![
("int32".into(), DefinitionId(0), self.primitives.int32),
("int64".into(), DefinitionId(0), self.primitives.int32),
("float".into(), DefinitionId(0), self.primitives.int32),
("bool".into(), DefinitionId(0), self.primitives.int32),
("none".into(), DefinitionId(0), self.primitives.int32),
]
}
pub fn register_top_level(&mut self, ast: ast::Stmt<()>, resolver: &'a dyn SymbolResolver) -> Result<Vec<(String, DefinitionId, Type)>, String> {
match &ast.node {
ast::StmtKind::ClassDef {name, body, ..} => {
let class_name = name.to_string();
let def_id = self.definition_list.len();
// add the class to the unifier
let ty = self.unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(def_id),
fields: Default::default(),
params: Default::default()
});
// add to the definition list
self.definition_list.push(
TopLevelDefInfo {
def: Self::make_top_level_class_def(def_id),
resolver: Some(resolver),
ast: Some(ast),
ty,
}
);
// TODO: parse class def body and register class methods into the def list?
// FIXME: module's symbol resolver would not know the name of the class methods, thus cannot return their definition_id? so we have to manage it ourselves?
// or do we return the class method list of (method_name, def_id, type) to application to be used to build symbol resolver? <- current implementation
Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def
},
ast::StmtKind::FunctionDef {name, ..} => {
let fun_name = name.to_string();
let def_id = self.definition_list.len();
// add to the unifier
let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
args: Default::default(),
ret: self.primitives.none, // NOTE: this needs to be changed later
vars: Default::default()
}));
// add to the definition list
self.definition_list.push(
TopLevelDefInfo {
def: Self::make_top_level_function_def(
name.into(),
self.primitives.none // NOTE: this needs to be changed later
),
resolver: Some(resolver),
ast: Some(ast),
ty,
}
);
Ok(vec![(fun_name, DefinitionId(def_id), ty)])
},
_ => Err("only registrations of top level classes/functions are supprted".into())
}
}
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one
pub fn analyze_top_level(&mut self) -> Result<(), String> {
for mut d in &mut self.definition_list {
if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) {
match &ast.node {
ast::StmtKind::ClassDef {
name,
bases,
body,
..
} => {
// ancestors and typevars associate with the class are analyzed by looking into the `bases` ast node
for b in bases {
match &b.node {
ast::ExprKind::Name {id, ..} => { // base class, name directly available inside the module, can use this module's symbol resolver
let def_id = resolver.get_identifier_def(id);
unimplemented!()
},
ast::ExprKind::Attribute {value, attr, ..} => { // things can be like `class A(BaseModule.Base)`, here we have to get the symbol resolver of the module `BaseModule`?
unimplemented!() // need to change symbol resolver in order to get the symbol resolver of the imported module
},
ast::ExprKind::Subscript {value, slice, ..} => { // typevars bounded to the class, things like `class A(Generic[T, V])`
if let ast::ExprKind::Name {id, ..} = &value.node {
if id == "Generic" {
// TODO: get typevars
unimplemented!()
} else {
return Err("unknown type var".into())
}
}
},
_ => return Err("not supported".into())
}
}
// class method and field are analyzed by looking into the class body ast node
for stmt in body {
unimplemented!()
}
},
ast::StmtKind::FunctionDef {
name,
args,
body,
returns,
..
} => {
unimplemented!()
}
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
}
}
};
Ok(())
}
}