forked from M-Labs/nac3
1854 lines
78 KiB
Rust
1854 lines
78 KiB
Rust
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
|
|
|
use crate::{
|
|
codegen::{
|
|
classes::{ListValue, RangeValue},
|
|
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
|
gen_in_range_check,
|
|
get_llvm_type,
|
|
get_llvm_abi_type,
|
|
irrt::*,
|
|
stmt::{gen_raise, gen_var},
|
|
CodeGenContext, CodeGenTask,
|
|
},
|
|
symbol_resolver::{SymbolValue, ValueEnum},
|
|
toplevel::{DefinitionId, TopLevelDef},
|
|
typecheck::{
|
|
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
|
|
magic_methods::{binop_name, binop_assign_name},
|
|
},
|
|
};
|
|
use inkwell::{
|
|
AddressSpace,
|
|
attributes::{Attribute, AttributeLoc},
|
|
IntPredicate,
|
|
types::{AnyType, BasicType, BasicTypeEnum},
|
|
values::{BasicValueEnum, FunctionValue, IntValue, PointerValue}
|
|
};
|
|
use itertools::{chain, izip, Itertools};
|
|
use nac3parser::ast::{
|
|
self, Boolop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
|
|
};
|
|
|
|
use super::{CodeGenerator, need_sret};
|
|
|
|
pub fn get_subst_key(
|
|
unifier: &mut Unifier,
|
|
obj: Option<Type>,
|
|
fun_vars: &HashMap<u32, Type>,
|
|
filter: Option<&Vec<u32>>,
|
|
) -> String {
|
|
let mut vars = obj
|
|
.map(|ty| {
|
|
let TypeEnum::TObj { params, .. } = &*unifier.get_ty(ty) else {
|
|
unreachable!()
|
|
};
|
|
params.clone()
|
|
})
|
|
.unwrap_or_default();
|
|
vars.extend(fun_vars.iter());
|
|
let sorted = vars.keys().filter(|id| filter.map_or(true, |v| v.contains(id))).sorted();
|
|
sorted
|
|
.map(|id| {
|
|
unifier.internal_stringify(
|
|
vars[id],
|
|
&mut |id| id.to_string(),
|
|
&mut |id| id.to_string(),
|
|
&mut None,
|
|
)
|
|
})
|
|
.join(", ")
|
|
}
|
|
|
|
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
|
/// Builds a sequence of `getelementptr` and `load` instructions which stores the value of a
|
|
/// struct field into an LLVM value.
|
|
pub fn build_gep_and_load(
|
|
&mut self,
|
|
ptr: PointerValue<'ctx>,
|
|
index: &[IntValue<'ctx>],
|
|
name: Option<&str>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let gep = unsafe { self.builder.build_gep(ptr, index, "") };
|
|
self.builder.build_load(gep, name.unwrap_or_default())
|
|
}
|
|
|
|
fn get_subst_key(
|
|
&mut self,
|
|
obj: Option<Type>,
|
|
fun: &FunSignature,
|
|
filter: Option<&Vec<u32>>,
|
|
) -> String {
|
|
get_subst_key(&mut self.unifier, obj, &fun.vars, filter)
|
|
}
|
|
|
|
pub fn get_attr_index(&mut self, ty: Type, attr: StrRef) -> usize {
|
|
let obj_id = match &*self.unifier.get_ty(ty) {
|
|
TypeEnum::TObj { obj_id, .. } => *obj_id,
|
|
// we cannot have other types, virtual type should be handled by function calls
|
|
_ => unreachable!(),
|
|
};
|
|
let def = &self.top_level.definitions.read()[obj_id.0];
|
|
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
|
|
fields.iter().find_position(|x| x.0 == attr).unwrap().0
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
index
|
|
}
|
|
|
|
pub fn gen_symbol_val(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
val: &SymbolValue,
|
|
ty: Type,
|
|
) -> BasicValueEnum<'ctx> {
|
|
match val {
|
|
SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::U32(v) => self.ctx.i32_type().const_int(*v as u64, false).into(),
|
|
SymbolValue::U64(v) => self.ctx.i64_type().const_int(*v, false).into(),
|
|
SymbolValue::Bool(v) => self.ctx.i8_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
|
|
SymbolValue::Str(v) => {
|
|
let str_ptr =
|
|
self.builder.build_global_string_ptr(v, "const").as_pointer_value().into();
|
|
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
|
|
let ty = self.get_llvm_type(generator, self.primitives.str).into_struct_type();
|
|
ty.const_named_struct(&[str_ptr, size.into()]).into()
|
|
}
|
|
SymbolValue::Tuple(ls) => {
|
|
let vals = ls.iter().map(|v| self.gen_symbol_val(generator, v, ty)).collect_vec();
|
|
let fields = vals.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let ty = self.ctx.struct_type(&fields, false);
|
|
let ptr = gen_var(self, ty.into(), Some("tuple")).unwrap();
|
|
let zero = self.ctx.i32_type().const_zero();
|
|
unsafe {
|
|
for (i, val) in vals.into_iter().enumerate() {
|
|
let p = self.builder.build_in_bounds_gep(
|
|
ptr,
|
|
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
|
|
"elemptr",
|
|
);
|
|
self.builder.build_store(p, val);
|
|
}
|
|
}
|
|
self.builder.build_load(ptr, "tup_val")
|
|
}
|
|
SymbolValue::OptionSome(v) => {
|
|
let ty = match self.unifier.get_ty_immutable(ty).as_ref() {
|
|
TypeEnum::TObj { obj_id, params, .. }
|
|
if *obj_id == self.primitives.option.get_obj_id(&self.unifier) =>
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
}
|
|
_ => unreachable!("must be option type"),
|
|
};
|
|
let val = self.gen_symbol_val(generator, v, ty);
|
|
let ptr = generator.gen_var_alloc(self, val.get_type(), Some("default_opt_some")).unwrap();
|
|
self.builder.build_store(ptr, val);
|
|
ptr.into()
|
|
}
|
|
SymbolValue::OptionNone => {
|
|
let ty = match self.unifier.get_ty_immutable(ty).as_ref() {
|
|
TypeEnum::TObj { obj_id, params, .. }
|
|
if *obj_id == self.primitives.option.get_obj_id(&self.unifier) =>
|
|
{
|
|
*params.iter().next().unwrap().1
|
|
}
|
|
_ => unreachable!("must be option type"),
|
|
};
|
|
let actual_ptr_type =
|
|
self.get_llvm_type(generator, ty).ptr_type(AddressSpace::default());
|
|
actual_ptr_type.const_null().into()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// See [`get_llvm_type`].
|
|
pub fn get_llvm_type(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
ty: Type,
|
|
) -> BasicTypeEnum<'ctx> {
|
|
get_llvm_type(
|
|
self.ctx,
|
|
&self.module,
|
|
generator,
|
|
&mut self.unifier,
|
|
self.top_level,
|
|
&mut self.type_cache,
|
|
&self.primitives,
|
|
ty,
|
|
)
|
|
}
|
|
|
|
/// See [`get_llvm_abi_type`].
|
|
pub fn get_llvm_abi_type(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
ty: Type,
|
|
) -> BasicTypeEnum<'ctx> {
|
|
get_llvm_abi_type(
|
|
self.ctx,
|
|
&self.module,
|
|
generator,
|
|
&mut self.unifier,
|
|
self.top_level,
|
|
&mut self.type_cache,
|
|
&self.primitives,
|
|
ty,
|
|
)
|
|
}
|
|
|
|
/// Generates an LLVM variable for a [constant value][value] with a given [type][ty].
|
|
pub fn gen_const(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
value: &Constant,
|
|
ty: Type,
|
|
) -> Option<BasicValueEnum<'ctx>> {
|
|
match value {
|
|
Constant::Bool(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.bool));
|
|
let ty = self.ctx.i8_type();
|
|
Some(ty.const_int(u64::from(*v), false).into())
|
|
}
|
|
Constant::Int(val) => {
|
|
let ty = if self.unifier.unioned(ty, self.primitives.int32)
|
|
|| self.unifier.unioned(ty, self.primitives.uint32)
|
|
{
|
|
self.ctx.i32_type()
|
|
} else if self.unifier.unioned(ty, self.primitives.int64)
|
|
|| self.unifier.unioned(ty, self.primitives.uint64)
|
|
{
|
|
self.ctx.i64_type()
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
Some(ty.const_int(*val as u64, false).into())
|
|
}
|
|
Constant::Float(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.float));
|
|
let ty = self.ctx.f64_type();
|
|
Some(ty.const_float(*v).into())
|
|
}
|
|
Constant::Tuple(v) => {
|
|
let ty = self.unifier.get_ty(ty);
|
|
let types =
|
|
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
|
|
let values = zip(types, v.iter())
|
|
.map_while(|(ty, v)| self.gen_const(generator, v, ty))
|
|
.collect_vec();
|
|
|
|
if values.len() == v.len() {
|
|
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let ty = self.ctx.struct_type(&types, false);
|
|
Some(ty.const_named_struct(&values).into())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
Constant::Str(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.str));
|
|
if let Some(v) = self.const_strings.get(v) {
|
|
Some(*v)
|
|
} else {
|
|
let str_ptr =
|
|
self.builder.build_global_string_ptr(v, "const").as_pointer_value().into();
|
|
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
|
|
let ty = self.get_llvm_type(generator, self.primitives.str);
|
|
let val =
|
|
ty.into_struct_type().const_named_struct(&[str_ptr, size.into()]).into();
|
|
self.const_strings.insert(v.to_string(), val);
|
|
Some(val)
|
|
}
|
|
}
|
|
Constant::Ellipsis => {
|
|
let msg = self.gen_string(generator, "NotImplementedError");
|
|
|
|
self.raise_exn(
|
|
generator,
|
|
"0:NotImplementedError",
|
|
msg,
|
|
[None, None, None],
|
|
self.current_loc,
|
|
);
|
|
|
|
None
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Generates a binary operation `op` between two integral operands `lhs` and `rhs`.
|
|
pub fn gen_int_ops(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
op: &Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
signed: bool
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) else {
|
|
unreachable!()
|
|
};
|
|
let float = self.ctx.f64_type();
|
|
match (op, signed) {
|
|
(Operator::Add, _) => self.builder.build_int_add(lhs, rhs, "add").into(),
|
|
(Operator::Sub, _) => self.builder.build_int_sub(lhs, rhs, "sub").into(),
|
|
(Operator::Mult, _) => self.builder.build_int_mul(lhs, rhs, "mul").into(),
|
|
(Operator::Div, true) => {
|
|
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
|
|
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
|
|
self.builder.build_float_div(left, right, "fdiv").into()
|
|
}
|
|
(Operator::Div, false) => {
|
|
let left = self.builder.build_unsigned_int_to_float(lhs, float, "i2f");
|
|
let right = self.builder.build_unsigned_int_to_float(rhs, float, "i2f");
|
|
self.builder.build_float_div(left, right, "fdiv").into()
|
|
}
|
|
(Operator::Mod, true) => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
|
|
(Operator::Mod, false) => self.builder.build_int_unsigned_rem(lhs, rhs, "mod").into(),
|
|
(Operator::BitOr, _) => self.builder.build_or(lhs, rhs, "or").into(),
|
|
(Operator::BitXor, _) => self.builder.build_xor(lhs, rhs, "xor").into(),
|
|
(Operator::BitAnd, _) => self.builder.build_and(lhs, rhs, "and").into(),
|
|
|
|
// Sign-ness of bitshift operators are always determined by the left operand
|
|
(Operator::LShift | Operator::RShift, signed) => {
|
|
// RHS operand is always 32 bits
|
|
assert_eq!(rhs.get_type().get_bit_width(), 32);
|
|
|
|
let common_type = lhs.get_type();
|
|
let rhs = if common_type.get_bit_width() > 32 {
|
|
if signed {
|
|
self.builder.build_int_s_extend(rhs, common_type, "")
|
|
} else {
|
|
self.builder.build_int_z_extend(rhs, common_type, "")
|
|
}
|
|
} else {
|
|
rhs
|
|
};
|
|
|
|
let rhs_gez = self.builder.build_int_compare(IntPredicate::SGE, rhs, common_type.const_zero(), "");
|
|
self.make_assert(
|
|
generator,
|
|
rhs_gez,
|
|
"ValueError",
|
|
"negative shift count",
|
|
[None, None, None],
|
|
self.current_loc
|
|
);
|
|
|
|
match *op {
|
|
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
|
|
Operator::RShift => self.builder.build_right_shift(lhs, rhs, signed, "rshift").into(),
|
|
_ => unreachable!()
|
|
}
|
|
}
|
|
|
|
(Operator::FloorDiv, true) => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
|
|
(Operator::FloorDiv, false) => self.builder.build_int_unsigned_div(lhs, rhs, "floordiv").into(),
|
|
(Operator::Pow, s) => integer_power(generator, self, lhs, rhs, s).into(),
|
|
// special implementation?
|
|
(Operator::MatMult, _) => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Generates a binary operation `op` between two floating-point operands `lhs` and `rhs`.
|
|
pub fn gen_float_ops(
|
|
&mut self,
|
|
op: &Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) = (lhs, rhs) else {
|
|
unreachable!()
|
|
};
|
|
let float = self.ctx.f64_type();
|
|
match op {
|
|
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
|
|
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
|
|
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
|
|
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
|
|
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
|
|
Operator::FloorDiv => {
|
|
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
|
|
let floor_intrinsic =
|
|
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
|
|
let fn_type = float.fn_type(&[float.into()], false);
|
|
self.module.add_function("llvm.floor.f64", fn_type, None)
|
|
});
|
|
self.builder
|
|
.build_call(floor_intrinsic, &[div.into()], "floor")
|
|
.try_as_basic_value()
|
|
.left()
|
|
.unwrap()
|
|
}
|
|
Operator::Pow => {
|
|
let pow_intrinsic = self.module.get_function("llvm.pow.f64").unwrap_or_else(|| {
|
|
let fn_type = float.fn_type(&[float.into(), float.into()], false);
|
|
self.module.add_function("llvm.pow.f64", fn_type, None)
|
|
});
|
|
self.builder
|
|
.build_call(pow_intrinsic, &[lhs.into(), rhs.into()], "f_pow")
|
|
.try_as_basic_value()
|
|
.unwrap_left()
|
|
}
|
|
// special implementation?
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
pub fn build_call_or_invoke(
|
|
&mut self,
|
|
fun: FunctionValue<'ctx>,
|
|
params: &[BasicValueEnum<'ctx>],
|
|
call_name: &str,
|
|
) -> Option<BasicValueEnum<'ctx>> {
|
|
let mut loc_params: Vec<BasicValueEnum<'ctx>> = Vec::new();
|
|
let mut return_slot = None;
|
|
|
|
let loc = self.debug_info.0.create_debug_location(
|
|
self.ctx,
|
|
self.current_loc.row as u32,
|
|
self.current_loc.column as u32,
|
|
self.debug_info.2,
|
|
None,
|
|
);
|
|
self.builder.set_current_debug_location(loc);
|
|
|
|
if fun.count_params() > 0 {
|
|
let sret_id = Attribute::get_named_enum_kind_id("sret");
|
|
let byref_id = Attribute::get_named_enum_kind_id("byref");
|
|
let byval_id = Attribute::get_named_enum_kind_id("byval");
|
|
|
|
let offset = if fun.get_enum_attribute(AttributeLoc::Param(0), sret_id).is_some() {
|
|
return_slot = Some(self.builder.build_alloca(fun.get_type().get_param_types()[0]
|
|
.into_pointer_type().get_element_type().into_struct_type(), call_name));
|
|
loc_params.push((*return_slot.as_ref().unwrap()).into());
|
|
1
|
|
} else {
|
|
0
|
|
};
|
|
for (i, param) in params.iter().enumerate() {
|
|
let loc = AttributeLoc::Param((i + offset) as u32);
|
|
if fun.get_enum_attribute(loc, byref_id).is_some() || fun.get_enum_attribute(loc, byval_id).is_some() {
|
|
// lazy update
|
|
if loc_params.is_empty() {
|
|
loc_params.extend(params[0..i+offset].iter().copied());
|
|
}
|
|
let slot = gen_var(self, param.get_type(), Some(call_name)).unwrap();
|
|
loc_params.push(slot.into());
|
|
self.builder.build_store(slot, *param);
|
|
} else if !loc_params.is_empty() {
|
|
loc_params.push(*param);
|
|
}
|
|
}
|
|
}
|
|
let params = if loc_params.is_empty() { params } else { &loc_params };
|
|
let params = fun
|
|
.get_type()
|
|
.get_param_types()
|
|
.into_iter()
|
|
.zip(params.iter())
|
|
.map(|(ty, val)| match (ty, val.get_type()) {
|
|
(BasicTypeEnum::PointerType(arg_ty), BasicTypeEnum::PointerType(val_ty))
|
|
if {
|
|
ty != val.get_type()
|
|
&& arg_ty.get_element_type().is_struct_type()
|
|
&& val_ty.get_element_type().is_struct_type()
|
|
} =>
|
|
{
|
|
self.builder.build_bitcast(*val, arg_ty, "call_arg_cast")
|
|
}
|
|
_ => *val,
|
|
})
|
|
.collect_vec();
|
|
let result = if let Some(target) = self.unwind_target {
|
|
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let then_block = self.ctx.append_basic_block(current, &format!("after.{call_name}"));
|
|
let result = self
|
|
.builder
|
|
.build_invoke(fun, ¶ms, then_block, target, call_name)
|
|
.try_as_basic_value()
|
|
.left();
|
|
self.builder.position_at_end(then_block);
|
|
result
|
|
} else {
|
|
let param: Vec<_> = params.iter().map(|v| (*v).into()).collect();
|
|
self.builder.build_call(fun, ¶m, call_name).try_as_basic_value().left()
|
|
};
|
|
if let Some(slot) = return_slot {
|
|
Some(self.builder.build_load(slot, call_name))
|
|
} else {
|
|
result
|
|
}
|
|
}
|
|
|
|
/// Helper function for generating a LLVM variable storing a [String].
|
|
pub fn gen_string<S: Into<String>>(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
s: S,
|
|
) -> BasicValueEnum<'ctx> {
|
|
self.gen_const(generator, &Constant::Str(s.into()), self.primitives.str).unwrap()
|
|
}
|
|
|
|
pub fn raise_exn(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
name: &str,
|
|
msg: BasicValueEnum<'ctx>,
|
|
params: [Option<IntValue<'ctx>>; 3],
|
|
loc: Location,
|
|
) {
|
|
let zelf = if let Some(exception_val) = self.exception_val {
|
|
exception_val
|
|
} else {
|
|
let ty = self.get_llvm_type(generator, self.primitives.exception).into_pointer_type();
|
|
let zelf_ty: BasicTypeEnum = ty.get_element_type().into_struct_type().into();
|
|
let zelf = generator.gen_var_alloc(self, zelf_ty, Some("exn")).unwrap();
|
|
*self.exception_val.insert(zelf)
|
|
};
|
|
let int32 = self.ctx.i32_type();
|
|
let zero = int32.const_zero();
|
|
unsafe {
|
|
let id_ptr = self.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id");
|
|
let id = self.resolver.get_string_id(name);
|
|
self.builder.build_store(id_ptr, int32.const_int(id as u64, false));
|
|
let ptr = self.builder.build_in_bounds_gep(
|
|
zelf,
|
|
&[zero, int32.const_int(5, false)],
|
|
"exn.msg",
|
|
);
|
|
self.builder.build_store(ptr, msg);
|
|
let i64_zero = self.ctx.i64_type().const_zero();
|
|
for (i, attr_ind) in [6, 7, 8].iter().enumerate() {
|
|
let ptr = self.builder.build_in_bounds_gep(
|
|
zelf,
|
|
&[zero, int32.const_int(*attr_ind, false)],
|
|
"exn.param",
|
|
);
|
|
let val = params[i].map_or(i64_zero, |v| {
|
|
self.builder.build_int_s_extend(v, self.ctx.i64_type(), "sext")
|
|
});
|
|
self.builder.build_store(ptr, val);
|
|
}
|
|
}
|
|
gen_raise(generator, self, Some(&zelf.into()), loc);
|
|
}
|
|
|
|
pub fn make_assert(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
cond: IntValue<'ctx>,
|
|
err_name: &str,
|
|
err_msg: &str,
|
|
params: [Option<IntValue<'ctx>>; 3],
|
|
loc: Location,
|
|
) {
|
|
let err_msg = self.gen_string(generator, err_msg);
|
|
self.make_assert_impl(generator, cond, err_name, err_msg, params, loc);
|
|
}
|
|
|
|
pub fn make_assert_impl(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
cond: IntValue<'ctx>,
|
|
err_name: &str,
|
|
err_msg: BasicValueEnum<'ctx>,
|
|
params: [Option<IntValue<'ctx>>; 3],
|
|
loc: Location,
|
|
) {
|
|
let i1 = self.ctx.bool_type();
|
|
let i1_true = i1.const_all_ones();
|
|
let expect_fun = self.module.get_function("llvm.expect.i1").unwrap_or_else(|| {
|
|
self.module.add_function(
|
|
"llvm.expect.i1",
|
|
i1.fn_type(&[i1.into(), i1.into()], false),
|
|
None,
|
|
)
|
|
});
|
|
// we assume that the condition is most probably true, so the normal path is the most
|
|
// probable path
|
|
// even if this assumption is violated, it does not matter as exception unwinding is
|
|
// slow anyway...
|
|
let cond = self
|
|
.builder
|
|
.build_call(expect_fun, &[cond.into(), i1_true.into()], "expect")
|
|
.try_as_basic_value()
|
|
.left()
|
|
.unwrap()
|
|
.into_int_value();
|
|
let current_fun = self.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let then_block = self.ctx.append_basic_block(current_fun, "succ");
|
|
let exn_block = self.ctx.append_basic_block(current_fun, "fail");
|
|
self.builder.build_conditional_branch(cond, then_block, exn_block);
|
|
self.builder.position_at_end(exn_block);
|
|
self.raise_exn(generator, err_name, err_msg, params, loc);
|
|
self.builder.position_at_end(then_block);
|
|
}
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_constructor`].
|
|
pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
signature: &FunSignature,
|
|
def: &TopLevelDef,
|
|
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
|
) -> Result<BasicValueEnum<'ctx>, String> {
|
|
let TopLevelDef::Class { methods, .. } = def else {
|
|
unreachable!()
|
|
};
|
|
|
|
// TODO: what about other fields that require alloca?
|
|
let fun_id = methods.iter().find(|method| method.0 == "__init__".into()).map(|method| method.2);
|
|
let ty = ctx.get_llvm_type(generator, signature.ret).into_pointer_type();
|
|
let zelf_ty: BasicTypeEnum = ty.get_element_type().try_into().unwrap();
|
|
let zelf: BasicValueEnum<'ctx> = ctx.builder.build_alloca(zelf_ty, "alloca").into();
|
|
// call `__init__` if there is one
|
|
if let Some(fun_id) = fun_id {
|
|
let mut sign = signature.clone();
|
|
sign.ret = ctx.primitives.none;
|
|
generator.gen_call(
|
|
ctx,
|
|
Some((signature.ret, zelf.into())),
|
|
(&sign, fun_id),
|
|
params,
|
|
)?;
|
|
}
|
|
Ok(zelf)
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_func_instance`].
|
|
pub fn gen_func_instance<'ctx>(
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, &mut TopLevelDef, String),
|
|
id: usize,
|
|
) -> Result<String, String> {
|
|
let (
|
|
sign,
|
|
TopLevelDef::Function {
|
|
name, instance_to_symbol, instance_to_stmt, var_id, resolver, ..
|
|
},
|
|
key,
|
|
) = fun else { unreachable!() };
|
|
|
|
if let Some(sym) = instance_to_symbol.get(&key) {
|
|
return Ok(sym.clone());
|
|
}
|
|
let symbol = format!("{}.{}", name, instance_to_symbol.len());
|
|
instance_to_symbol.insert(key, symbol.clone());
|
|
let mut filter = var_id.clone();
|
|
if let Some((obj_ty, _)) = &obj {
|
|
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty(*obj_ty) {
|
|
filter.extend(params.keys());
|
|
}
|
|
}
|
|
let key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), sign, Some(&filter));
|
|
let instance = instance_to_stmt.get(&key).unwrap();
|
|
|
|
let mut store = ConcreteTypeStore::new();
|
|
let mut cache = HashMap::new();
|
|
|
|
let subst = sign
|
|
.vars
|
|
.iter()
|
|
.map(|(id, ty)| {
|
|
(
|
|
*instance.subst.get(id).unwrap(),
|
|
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, *ty, &mut cache),
|
|
)
|
|
})
|
|
.collect();
|
|
|
|
let mut signature =
|
|
store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
|
|
|
|
if let Some(obj) = &obj {
|
|
let zelf =
|
|
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
|
|
let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else {
|
|
unreachable!()
|
|
};
|
|
|
|
args.insert(
|
|
0,
|
|
ConcreteFuncArg { name: "self".into(), ty: zelf, default_value: None },
|
|
);
|
|
}
|
|
let signature = store.add_cty(signature);
|
|
|
|
ctx.registry.add_task(CodeGenTask {
|
|
symbol_name: symbol.clone(),
|
|
body: instance.body.clone(),
|
|
resolver: resolver.as_ref().unwrap().clone(),
|
|
calls: instance.calls.clone(),
|
|
subst,
|
|
signature,
|
|
store,
|
|
unifier_index: instance.unifier_id,
|
|
id,
|
|
});
|
|
Ok(symbol)
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_call`].
|
|
pub fn gen_call<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
obj: Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
|
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
|
let definition = ctx.top_level.definitions.read().get(fun.1 .0).cloned().unwrap();
|
|
let id;
|
|
let key;
|
|
let param_vals;
|
|
let is_extern;
|
|
|
|
let symbol = {
|
|
// make sure this lock guard is dropped at the end of this scope...
|
|
let def = definition.read();
|
|
match &*def {
|
|
TopLevelDef::Function {
|
|
instance_to_symbol,
|
|
instance_to_stmt,
|
|
codegen_callback,
|
|
..
|
|
} => {
|
|
if let Some(callback) = codegen_callback {
|
|
return callback.run(ctx, obj, fun, params, generator);
|
|
}
|
|
is_extern = instance_to_stmt.is_empty();
|
|
let old_key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), fun.0, None);
|
|
let mut keys = fun.0.args.clone();
|
|
let mut mapping = HashMap::new();
|
|
for (key, value) in params {
|
|
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
|
|
}
|
|
// default value handling
|
|
for k in keys {
|
|
if mapping.get(&k.name).is_some() {
|
|
continue;
|
|
}
|
|
mapping.insert(
|
|
k.name,
|
|
ctx.gen_symbol_val(generator, &k.default_value.unwrap(), k.ty).into(),
|
|
);
|
|
}
|
|
// reorder the parameters
|
|
let mut real_params =
|
|
fun.0.args.iter().map(|arg| (mapping.remove(&arg.name).unwrap(), arg.ty)).collect_vec();
|
|
if let Some(obj) = &obj {
|
|
real_params.insert(0, (obj.1.clone(), obj.0));
|
|
}
|
|
let static_params = real_params
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(i, (v, _))| {
|
|
if let ValueEnum::Static(s) = v {
|
|
Some((i, s.clone()))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect_vec();
|
|
id = {
|
|
let ids = static_params
|
|
.iter()
|
|
.map(|(i, v)| (*i, v.get_unique_identifier()))
|
|
.collect_vec();
|
|
let mut store = ctx.static_value_store.lock();
|
|
if let Some(index) = store.lookup.get(&ids) {
|
|
*index
|
|
} else {
|
|
let length = store.store.len();
|
|
store.lookup.insert(ids, length);
|
|
store.store.push(static_params.into_iter().collect());
|
|
length
|
|
}
|
|
};
|
|
// special case: extern functions
|
|
key = if instance_to_stmt.is_empty() {
|
|
String::new()
|
|
} else {
|
|
format!("{id}:{old_key}")
|
|
};
|
|
param_vals = real_params
|
|
.into_iter()
|
|
.map(|(p, t)| p.to_basic_value_enum(ctx, generator, t))
|
|
.collect::<Result<Vec<_>, String>>()?;
|
|
instance_to_symbol.get(&key).cloned().ok_or_else(String::new)
|
|
}
|
|
TopLevelDef::Class { .. } => {
|
|
return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?))
|
|
}
|
|
}
|
|
}
|
|
.or_else(|_: String| {
|
|
generator.gen_func_instance(ctx, obj.clone(), (fun.0, &mut *definition.write(), key), id)
|
|
})?;
|
|
let fun_val = ctx.module.get_function(&symbol).unwrap_or_else(|| {
|
|
let mut args = fun.0.args.clone();
|
|
if let Some(obj) = &obj {
|
|
args.insert(0, FuncArg { name: "self".into(), ty: obj.0, default_value: None });
|
|
}
|
|
let ret_type = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
|
|
None
|
|
} else {
|
|
Some(ctx.get_llvm_abi_type(generator, fun.0.ret))
|
|
};
|
|
let has_sret = ret_type.map_or(false, |ret_type| need_sret(ret_type));
|
|
let mut byrefs = Vec::new();
|
|
let mut params = args.iter().enumerate()
|
|
.map(|(i, arg)| match ctx.get_llvm_abi_type(generator, arg.ty) {
|
|
BasicTypeEnum::StructType(ty) if is_extern => {
|
|
byrefs.push((i, ty));
|
|
ty.ptr_type(AddressSpace::default()).into()
|
|
},
|
|
x => x
|
|
}.into())
|
|
.collect_vec();
|
|
if has_sret {
|
|
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
|
|
}
|
|
let fun_ty = match ret_type {
|
|
Some(ret_type) if !has_sret => ret_type.fn_type(¶ms, false),
|
|
_ => ctx.ctx.void_type().fn_type(¶ms, false)
|
|
};
|
|
let fun_val = ctx.module.add_function(&symbol, fun_ty, None);
|
|
let offset = if has_sret {
|
|
fun_val.add_attribute(AttributeLoc::Param(0),
|
|
ctx.ctx.create_type_attribute(Attribute::get_named_enum_kind_id("sret"), ret_type.unwrap().as_any_type_enum()));
|
|
1
|
|
} else {
|
|
0
|
|
};
|
|
|
|
// The attribute ID used to mark arguments of a structure type.
|
|
// Structure-Typed parameters of extern functions must **not** be marked as `byval`, as
|
|
// `byval` explicitly specifies that the argument is to be passed on the stack, which breaks
|
|
// on most ABIs where the first several arguments are expected to be passed in registers.
|
|
let passing_attr_id = Attribute::get_named_enum_kind_id(
|
|
if is_extern { "byref" } else { "byval" }
|
|
);
|
|
for (i, ty) in byrefs {
|
|
fun_val.add_attribute(
|
|
AttributeLoc::Param((i as u32) + offset),
|
|
ctx.ctx.create_type_attribute(passing_attr_id, ty.as_any_type_enum())
|
|
);
|
|
}
|
|
fun_val
|
|
});
|
|
|
|
// Convert boolean parameter values into i1
|
|
let param_vals = fun_val.get_params().iter().zip(param_vals)
|
|
.map(|(p, v)| {
|
|
if p.is_int_value() && v.is_int_value() {
|
|
let expected_ty = p.into_int_value().get_type();
|
|
let param_val = v.into_int_value();
|
|
|
|
if expected_ty.get_bit_width() == 1 && param_val.get_type().get_bit_width() != 1 {
|
|
generator.bool_to_i1(ctx, param_val)
|
|
} else {
|
|
param_val
|
|
}.into()
|
|
} else {
|
|
v
|
|
}
|
|
})
|
|
.collect_vec();
|
|
|
|
Ok(ctx.build_call_or_invoke(fun_val, ¶m_vals, "call"))
|
|
}
|
|
|
|
/// Generates three LLVM variables representing the start, stop, and step values of a [range] class
|
|
/// respectively.
|
|
pub fn destructure_range<'ctx>(
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
range: RangeValue<'ctx>,
|
|
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
|
|
let start = range.load_start(ctx, None);
|
|
let end = range.load_end(ctx, None);
|
|
let step = range.load_step(ctx, None);
|
|
(start, end, step)
|
|
}
|
|
|
|
/// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting
|
|
/// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified.
|
|
///
|
|
/// Returns an instance of [`PointerValue`] pointing to the List structure. The List structure is
|
|
/// defined as `type { ty*, size_t }` in LLVM, where the first element stores the pointer to the
|
|
/// data, and the second element stores the size of the List.
|
|
pub fn allocate_list<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
ty: BasicTypeEnum<'ctx>,
|
|
length: IntValue<'ctx>,
|
|
name: Option<&str>,
|
|
) -> ListValue<'ctx> {
|
|
let size_t = generator.get_size_type(ctx.ctx);
|
|
// List structure; type { ty*, size_t }
|
|
let arr_ty = ctx.ctx
|
|
.struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false);
|
|
|
|
let arr_str_ptr = ctx.builder.build_alloca(
|
|
arr_ty, format!("{}.addr", name.unwrap_or("list")).as_str()
|
|
);
|
|
let list = ListValue::from_ptr_val(arr_str_ptr, size_t, Some("list"));
|
|
|
|
let length = ctx.builder.build_int_z_extend(
|
|
length,
|
|
size_t,
|
|
""
|
|
);
|
|
list.store_size(ctx, generator, length);
|
|
list.create_data(ctx, ty, None);
|
|
|
|
list
|
|
}
|
|
|
|
/// Generates LLVM IR for a [list comprehension expression][expr].
|
|
pub fn gen_comprehension<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
expr: &Expr<Option<Type>>,
|
|
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
|
let ExprKind::ListComp { elt, generators } = &expr.node else {
|
|
unreachable!()
|
|
};
|
|
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
|
|
let init_bb = ctx.ctx.append_basic_block(current, "listcomp.init");
|
|
let test_bb = ctx.ctx.append_basic_block(current, "listcomp.test");
|
|
let body_bb = ctx.ctx.append_basic_block(current, "listcomp.body");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "listcomp.cont");
|
|
|
|
ctx.builder.build_unconditional_branch(init_bb);
|
|
|
|
ctx.builder.position_at_end(init_bb);
|
|
|
|
let Comprehension { target, iter, ifs, .. } = &generators[0];
|
|
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
|
|
v.to_basic_value_enum(ctx, generator, iter.custom.unwrap())?
|
|
} else {
|
|
for bb in [test_bb, body_bb, cont_bb] {
|
|
ctx.builder.position_at_end(bb);
|
|
ctx.builder.build_unreachable();
|
|
}
|
|
|
|
return Ok(None)
|
|
};
|
|
let int32 = ctx.ctx.i32_type();
|
|
let size_t = generator.get_size_type(ctx.ctx);
|
|
let zero_size_t = size_t.const_zero();
|
|
let zero_32 = int32.const_zero();
|
|
|
|
let index = generator.gen_var_alloc(ctx, size_t.into(), Some("index.addr"))?;
|
|
ctx.builder.build_store(index, zero_size_t);
|
|
|
|
let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap());
|
|
let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
|
|
let list;
|
|
let list_content;
|
|
|
|
if is_range {
|
|
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
|
let (start, stop, step) = destructure_range(ctx, iter_val);
|
|
let diff = ctx.builder.build_int_sub(stop, start, "diff");
|
|
// add 1 to the length as the value is rounded to zero
|
|
// the length may be 1 more than the actual length if the division is exact, but the
|
|
// length is a upper bound only anyway so it does not matter.
|
|
let length = ctx.builder.build_int_signed_div(diff, step, "div");
|
|
let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1");
|
|
// in case length is non-positive
|
|
let is_valid =
|
|
ctx.builder.build_int_compare(IntPredicate::SGT, length, zero_32, "check");
|
|
|
|
let list_alloc_size = ctx.builder.build_select(
|
|
is_valid,
|
|
ctx.builder.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len"),
|
|
zero_size_t,
|
|
"listcomp.alloc_size"
|
|
);
|
|
list = allocate_list(
|
|
generator,
|
|
ctx,
|
|
elem_ty,
|
|
list_alloc_size.into_int_value(),
|
|
Some("listcomp.addr")
|
|
);
|
|
list_content = list.get_data().get_ptr(ctx);
|
|
|
|
let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap();
|
|
ctx.builder.build_store(i, ctx.builder.build_int_sub(start, step, "start_init"));
|
|
|
|
ctx.builder.build_conditional_branch(
|
|
gen_in_range_check(ctx, start, stop, step),
|
|
test_bb,
|
|
cont_bb,
|
|
);
|
|
|
|
ctx.builder.position_at_end(test_bb);
|
|
// add and test
|
|
let tmp = ctx.builder.build_int_add(
|
|
ctx.builder.build_load(i, "i").into_int_value(),
|
|
step,
|
|
"start_loop",
|
|
);
|
|
ctx.builder.build_store(i, tmp);
|
|
ctx.builder.build_conditional_branch(
|
|
gen_in_range_check(ctx, tmp, stop, step),
|
|
body_bb,
|
|
cont_bb,
|
|
);
|
|
|
|
ctx.builder.position_at_end(body_bb);
|
|
} else {
|
|
let length = ctx
|
|
.build_gep_and_load(
|
|
iter_val.into_pointer_value(),
|
|
&[zero_size_t, int32.const_int(1, false)],
|
|
Some("length"),
|
|
)
|
|
.into_int_value();
|
|
list = allocate_list(generator, ctx, elem_ty, length, Some("listcomp"));
|
|
list_content = list.get_data().get_ptr(ctx);
|
|
let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?;
|
|
// counter = -1
|
|
ctx.builder.build_store(counter, size_t.const_int(u64::MAX, true));
|
|
ctx.builder.build_unconditional_branch(test_bb);
|
|
|
|
ctx.builder.position_at_end(test_bb);
|
|
let tmp = ctx.builder.build_load(counter, "i").into_int_value();
|
|
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc");
|
|
ctx.builder.build_store(counter, tmp);
|
|
let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp");
|
|
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb);
|
|
|
|
ctx.builder.position_at_end(body_bb);
|
|
let arr_ptr = ctx
|
|
.build_gep_and_load(iter_val.into_pointer_value(), &[zero_size_t, zero_32], Some("arr.addr"))
|
|
.into_pointer_value();
|
|
let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val"));
|
|
generator.gen_assign(ctx, target, val.into())?;
|
|
}
|
|
|
|
// Emits the content of `cont_bb`
|
|
let emit_cont_bb = |ctx: &CodeGenContext<'ctx, '_>, generator: &dyn CodeGenerator, list: ListValue<'ctx>| {
|
|
ctx.builder.position_at_end(cont_bb);
|
|
list.store_size(ctx, generator, ctx.builder.build_load(index, "index").into_int_value());
|
|
};
|
|
|
|
for cond in ifs {
|
|
let result = if let Some(v) = generator.gen_expr(ctx, cond)? {
|
|
v.to_basic_value_enum(ctx, generator, cond.custom.unwrap())?.into_int_value()
|
|
} else {
|
|
// Bail if the predicate is an ellipsis - Emit cont_bb contents in case the
|
|
// no element matches the predicate
|
|
emit_cont_bb(ctx, generator, list);
|
|
|
|
return Ok(None)
|
|
};
|
|
let result = generator.bool_to_i1(ctx, result);
|
|
let succ = ctx.ctx.append_basic_block(current, "then");
|
|
ctx.builder.build_conditional_branch(result, succ, test_bb);
|
|
|
|
ctx.builder.position_at_end(succ);
|
|
}
|
|
|
|
let Some(elem) = generator.gen_expr(ctx, elt)? else {
|
|
// Similarly, bail if the generator expression is an ellipsis, but keep cont_bb contents
|
|
emit_cont_bb(ctx, generator, list);
|
|
|
|
return Ok(None)
|
|
};
|
|
let i = ctx.builder.build_load(index, "i").into_int_value();
|
|
let elem_ptr = unsafe { ctx.builder.build_gep(list_content, &[i], "elem_ptr") };
|
|
let val = elem.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?;
|
|
ctx.builder.build_store(elem_ptr, val);
|
|
ctx.builder
|
|
.build_store(index, ctx.builder.build_int_add(i, size_t.const_int(1, false), "inc"));
|
|
ctx.builder.build_unconditional_branch(test_bb);
|
|
|
|
emit_cont_bb(ctx, generator, list);
|
|
|
|
Ok(Some(list.get_ptr().into()))
|
|
}
|
|
|
|
/// Generates LLVM IR for a [binary operator expression][expr].
|
|
///
|
|
/// * `left` - The left-hand side of the binary operator.
|
|
/// * `op` - The operator applied on the operands.
|
|
/// * `right` - The right-hand side of the binary operator.
|
|
/// * `loc` - The location of the full expression.
|
|
/// * `is_aug_assign` - Whether the binary operator expression is also an assignment operator.
|
|
pub fn gen_binop_expr<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
left: &Expr<Option<Type>>,
|
|
op: &Operator,
|
|
right: &Expr<Option<Type>>,
|
|
loc: Location,
|
|
is_aug_assign: bool,
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
let ty1 = ctx.unifier.get_representative(left.custom.unwrap());
|
|
let ty2 = ctx.unifier.get_representative(right.custom.unwrap());
|
|
let left_val = if let Some(v) = generator.gen_expr(ctx, left)? {
|
|
v.to_basic_value_enum(ctx, generator, left.custom.unwrap())?
|
|
} else {
|
|
return Ok(None)
|
|
};
|
|
let right_val = if let Some(v) = generator.gen_expr(ctx, right)? {
|
|
v.to_basic_value_enum(ctx, generator, right.custom.unwrap())?
|
|
} else {
|
|
return Ok(None)
|
|
};
|
|
|
|
// we can directly compare the types, because we've got their representatives
|
|
// which would be unchanged until further unification, which we would never do
|
|
// when doing code generation for function instances
|
|
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
|
|
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, true).into()))
|
|
} else if ty1 == ty2 && [ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty1) {
|
|
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, false).into()))
|
|
} else if [Operator::LShift, Operator::RShift].contains(op) {
|
|
let signed = [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1);
|
|
Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, signed).into()))
|
|
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
|
|
Ok(Some(ctx.gen_float_ops(op, left_val, right_val).into()))
|
|
} else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 {
|
|
// Pow is the only operator that would pass typecheck between float and int
|
|
assert_eq!(*op, Operator::Pow);
|
|
let i32_t = ctx.ctx.i32_type();
|
|
let pow_intr = ctx.module.get_function("llvm.powi.f64.i32").unwrap_or_else(|| {
|
|
let f64_t = ctx.ctx.f64_type();
|
|
let ty = f64_t.fn_type(&[f64_t.into(), i32_t.into()], false);
|
|
ctx.module.add_function("llvm.powi.f64.i32", ty, None)
|
|
});
|
|
let res = ctx.builder
|
|
.build_call(pow_intr, &[left_val.into(), right_val.into()], "f_pow_i")
|
|
.try_as_basic_value()
|
|
.unwrap_left();
|
|
Ok(Some(res.into()))
|
|
} else {
|
|
let left_ty_enum = ctx.unifier.get_ty_immutable(left.custom.unwrap());
|
|
let TypeEnum::TObj { fields, obj_id, .. } = left_ty_enum.as_ref() else {
|
|
unreachable!("must be tobj")
|
|
};
|
|
let (op_name, id) = {
|
|
let (binop_name, binop_assign_name) = (
|
|
binop_name(op).into(),
|
|
binop_assign_name(op).into()
|
|
);
|
|
// if is aug_assign, try aug_assign operator first
|
|
if is_aug_assign && fields.contains_key(&binop_assign_name) {
|
|
(binop_assign_name, *obj_id)
|
|
} else {
|
|
(binop_name, *obj_id)
|
|
}
|
|
};
|
|
|
|
let signature = match ctx.calls.get(&loc.into()) {
|
|
Some(call) => ctx.unifier.get_call_signature(*call).unwrap(),
|
|
None => {
|
|
let left_enum_ty = ctx.unifier.get_ty_immutable(left.custom.unwrap());
|
|
let TypeEnum::TObj { fields, .. } = left_enum_ty.as_ref() else {
|
|
unreachable!("must be tobj")
|
|
};
|
|
|
|
let fn_ty = fields.get(&op_name).unwrap().0;
|
|
let fn_ty_enum = ctx.unifier.get_ty_immutable(fn_ty);
|
|
let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else {
|
|
unreachable!()
|
|
};
|
|
|
|
sig.clone()
|
|
},
|
|
};
|
|
let fun_id = {
|
|
let defs = ctx.top_level.definitions.read();
|
|
let obj_def = defs.get(id.0).unwrap().read();
|
|
let TopLevelDef::Class { methods, .. } = &*obj_def else {
|
|
unreachable!()
|
|
};
|
|
|
|
methods.iter().find(|method| method.0 == op_name).unwrap().2
|
|
};
|
|
generator
|
|
.gen_call(
|
|
ctx,
|
|
Some((left.custom.unwrap(), left_val.into())),
|
|
(&signature, fun_id),
|
|
vec![(None, right_val.into())],
|
|
).map(|f| f.map(Into::into))
|
|
}
|
|
}
|
|
|
|
/// See [`CodeGenerator::gen_expr`].
|
|
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
expr: &Expr<Option<Type>>,
|
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
|
ctx.current_loc = expr.location;
|
|
let int32 = ctx.ctx.i32_type();
|
|
let usize = generator.get_size_type(ctx.ctx);
|
|
let zero = int32.const_int(0, false);
|
|
|
|
let loc = ctx.debug_info.0.create_debug_location(
|
|
ctx.ctx,
|
|
ctx.current_loc.row as u32,
|
|
ctx.current_loc.column as u32,
|
|
ctx.debug_info.2,
|
|
None,
|
|
);
|
|
ctx.builder.set_current_debug_location(loc);
|
|
|
|
Ok(Some(match &expr.node {
|
|
ExprKind::Constant { value, .. } => {
|
|
let ty = expr.custom.unwrap();
|
|
let Some(const_val) = ctx.gen_const(generator, value, ty) else {
|
|
return Ok(None)
|
|
};
|
|
const_val.into()
|
|
}
|
|
ExprKind::Name { id, .. } if id == &"none".into() => {
|
|
match (
|
|
ctx.unifier.get_ty(expr.custom.unwrap()).as_ref(),
|
|
ctx.unifier.get_ty(ctx.primitives.option).as_ref(),
|
|
) {
|
|
(
|
|
TypeEnum::TObj { obj_id, params, .. },
|
|
TypeEnum::TObj { obj_id: opt_id, .. },
|
|
) if *obj_id == *opt_id => ctx
|
|
.get_llvm_type(generator, *params.iter().next().unwrap().1)
|
|
.ptr_type(AddressSpace::default())
|
|
.const_null()
|
|
.into(),
|
|
_ => unreachable!("must be option type"),
|
|
}
|
|
}
|
|
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
|
|
Some((ptr, None, _)) => ctx.builder.build_load(*ptr, id.to_string().as_str()).into(),
|
|
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
|
|
None => {
|
|
let resolver = ctx.resolver.clone();
|
|
resolver.get_symbol_value(*id, ctx).unwrap()
|
|
}
|
|
},
|
|
ExprKind::List { elts, .. } => {
|
|
// this shall be optimized later for constant primitive lists...
|
|
// we should use memcpy for that instead of generating thousands of stores
|
|
let elements = elts
|
|
.iter()
|
|
.map(|x| generator.gen_expr(ctx, x))
|
|
.take_while(|v| !matches!(v, Ok(None)))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
let elements = elements.into_iter().zip(elts)
|
|
.map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap()))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
if elements.len() < elts.len() {
|
|
return Ok(None)
|
|
}
|
|
|
|
let ty = if elements.is_empty() {
|
|
let TypeEnum::TList { ty } = &*ctx.unifier.get_ty(expr.custom.unwrap()) else {
|
|
unreachable!()
|
|
};
|
|
|
|
ctx.get_llvm_type(generator, *ty)
|
|
} else {
|
|
elements[0].get_type()
|
|
};
|
|
let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false);
|
|
let arr_str_ptr = allocate_list(generator, ctx, ty, length, Some("list"));
|
|
let arr_ptr = arr_str_ptr.get_data();
|
|
for (i, v) in elements.iter().enumerate() {
|
|
let elem_ptr = arr_ptr
|
|
.ptr_offset(ctx, generator, usize.const_int(i as u64, false), Some("elem_ptr"));
|
|
ctx.builder.build_store(elem_ptr, *v);
|
|
}
|
|
arr_str_ptr.get_ptr().into()
|
|
}
|
|
ExprKind::Tuple { elts, .. } => {
|
|
let elements_val = elts
|
|
.iter()
|
|
.map(|x| generator.gen_expr(ctx, x))
|
|
.take_while(|v| !matches!(v, Ok(None)))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
let element_val = elements_val.into_iter().zip(elts)
|
|
.map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap()))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
if element_val.len() < elts.len() {
|
|
return Ok(None)
|
|
}
|
|
|
|
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let tuple_ty = ctx.ctx.struct_type(&element_ty, false);
|
|
let tuple_ptr = ctx.builder.build_alloca(tuple_ty, "tuple");
|
|
for (i, v) in element_val.into_iter().enumerate() {
|
|
unsafe {
|
|
let ptr = ctx.builder.build_in_bounds_gep(
|
|
tuple_ptr,
|
|
&[zero, int32.const_int(i as u64, false)],
|
|
"ptr",
|
|
);
|
|
ctx.builder.build_store(ptr, v);
|
|
}
|
|
}
|
|
ctx.builder.build_load(tuple_ptr, "tup_val").into()
|
|
}
|
|
ExprKind::Attribute { value, attr, .. } => {
|
|
// note that we would handle class methods directly in calls
|
|
match generator.gen_expr(ctx, value)? {
|
|
Some(ValueEnum::Static(v)) => v.get_field(*attr, ctx).map_or_else(|| {
|
|
let v = v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?;
|
|
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
|
|
Ok(ValueEnum::Dynamic(ctx.build_gep_and_load(
|
|
v.into_pointer_value(),
|
|
&[zero, int32.const_int(index as u64, false)],
|
|
None,
|
|
))) as Result<_, String>
|
|
}, Ok)?,
|
|
Some(ValueEnum::Dynamic(v)) => {
|
|
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
|
|
ValueEnum::Dynamic(ctx.build_gep_and_load(
|
|
v.into_pointer_value(),
|
|
&[zero, int32.const_int(index as u64, false)],
|
|
None,
|
|
))
|
|
}
|
|
None => return Ok(None),
|
|
}
|
|
}
|
|
ExprKind::BoolOp { op, values } => {
|
|
// requires conditional branches for short-circuiting...
|
|
let left = if let Some(v) = generator.gen_expr(ctx, &values[0])? {
|
|
v.to_basic_value_enum(ctx, generator, values[0].custom.unwrap())?.into_int_value()
|
|
} else {
|
|
return Ok(None)
|
|
};
|
|
let left = generator.bool_to_i1(ctx, left);
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let a_bb = ctx.ctx.append_basic_block(current, "a");
|
|
let b_bb = ctx.ctx.append_basic_block(current, "b");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
|
ctx.builder.build_conditional_branch(left, a_bb, b_bb);
|
|
let (a, b) = match op {
|
|
Boolop::Or => {
|
|
ctx.builder.position_at_end(a_bb);
|
|
let a = ctx.ctx.i8_type().const_int(1, false);
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
|
|
ctx.builder.position_at_end(b_bb);
|
|
let b = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
|
|
let b = v.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?.into_int_value();
|
|
let b = generator.bool_to_i8(ctx, b);
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
|
|
Some(b)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
(Some(a), b)
|
|
}
|
|
Boolop::And => {
|
|
ctx.builder.position_at_end(a_bb);
|
|
let a = if let Some(v) = generator.gen_expr(ctx, &values[1])? {
|
|
let a = v.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?.into_int_value();
|
|
let a = generator.bool_to_i8(ctx, a);
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
|
|
Some(a)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
ctx.builder.position_at_end(b_bb);
|
|
let b = ctx.ctx.i8_type().const_zero();
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
|
|
(a, Some(b))
|
|
}
|
|
};
|
|
|
|
ctx.builder.position_at_end(cont_bb);
|
|
match (a, b) {
|
|
(Some(a), Some(b)) => {
|
|
let phi = ctx.builder.build_phi(ctx.ctx.i8_type(), "");
|
|
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
|
|
phi.as_basic_value().into()
|
|
}
|
|
(Some(a), None) => a.into(),
|
|
(None, Some(b)) => b.into(),
|
|
(None, None) => unreachable!(),
|
|
}
|
|
}
|
|
ExprKind::BinOp { op, left, right } => {
|
|
return gen_binop_expr(generator, ctx, left, op, right, expr.location, false);
|
|
}
|
|
ExprKind::UnaryOp { op, operand } => {
|
|
let ty = ctx.unifier.get_representative(operand.custom.unwrap());
|
|
let val = if let Some(v) = generator.gen_expr(ctx, operand)? {
|
|
v.to_basic_value_enum(ctx, generator, operand.custom.unwrap())?
|
|
} else {
|
|
return Ok(None)
|
|
};
|
|
if ty == ctx.primitives.bool {
|
|
let val = val.into_int_value();
|
|
match op {
|
|
ast::Unaryop::Invert | ast::Unaryop::Not => {
|
|
ctx.builder.build_not(val, "not").into()
|
|
}
|
|
_ => val.into(),
|
|
}
|
|
} else if [ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty) {
|
|
let val = val.into_int_value();
|
|
match op {
|
|
ast::Unaryop::USub => ctx.builder.build_int_neg(val, "neg").into(),
|
|
ast::Unaryop::Invert => ctx.builder.build_not(val, "not").into(),
|
|
ast::Unaryop::Not => ctx.builder.build_xor(val, val.get_type().const_all_ones(), "not").into(),
|
|
ast::Unaryop::UAdd => val.into(),
|
|
}
|
|
} else if ty == ctx.primitives.float {
|
|
let val = val.into_float_value();
|
|
match op {
|
|
ast::Unaryop::USub => ctx.builder.build_float_neg(val, "neg").into(),
|
|
ast::Unaryop::Not => ctx
|
|
.builder
|
|
.build_float_compare(
|
|
inkwell::FloatPredicate::OEQ,
|
|
val,
|
|
val.get_type().const_zero(),
|
|
"not",
|
|
)
|
|
.into(),
|
|
_ => val.into(),
|
|
}
|
|
} else {
|
|
unimplemented!()
|
|
}
|
|
}
|
|
ExprKind::Compare { left, ops, comparators } => {
|
|
let cmp_val = izip!(chain(once(left.as_ref()), comparators.iter()), comparators.iter(), ops.iter(),)
|
|
.fold(Ok(None), |prev: Result<Option<_>, String>, (lhs, rhs, op)| {
|
|
let ty = ctx.unifier.get_representative(lhs.custom.unwrap());
|
|
let current =
|
|
if [ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64, ctx.primitives.bool]
|
|
.contains(&ty)
|
|
{
|
|
let use_unsigned_ops = [
|
|
ctx.primitives.uint32,
|
|
ctx.primitives.uint64,
|
|
].contains(&ty);
|
|
|
|
let BasicValueEnum::IntValue(lhs) = (match generator.gen_expr(ctx, lhs)? {
|
|
Some(v) => v.to_basic_value_enum(ctx, generator, lhs.custom.unwrap())?,
|
|
None => return Ok(None),
|
|
}) else { unreachable!() };
|
|
|
|
let BasicValueEnum::IntValue(rhs) = (match generator.gen_expr(ctx, rhs)? {
|
|
Some(v) => v.to_basic_value_enum(ctx, generator, rhs.custom.unwrap())?,
|
|
None => return Ok(None),
|
|
}) else { unreachable!() };
|
|
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => IntPredicate::EQ,
|
|
ast::Cmpop::NotEq => IntPredicate::NE,
|
|
_ if ty == ctx.primitives.bool => unreachable!(),
|
|
ast::Cmpop::Lt => if use_unsigned_ops {
|
|
IntPredicate::ULT
|
|
} else {
|
|
IntPredicate::SLT
|
|
},
|
|
ast::Cmpop::LtE => if use_unsigned_ops {
|
|
IntPredicate::ULE
|
|
} else {
|
|
IntPredicate::SLE
|
|
},
|
|
ast::Cmpop::Gt => if use_unsigned_ops {
|
|
IntPredicate::UGT
|
|
} else {
|
|
IntPredicate::SGT
|
|
},
|
|
ast::Cmpop::GtE => if use_unsigned_ops {
|
|
IntPredicate::UGE
|
|
} else {
|
|
IntPredicate::SGE
|
|
},
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
ctx.builder.build_int_compare(op, lhs, rhs, "cmp")
|
|
} else if ty == ctx.primitives.float {
|
|
let BasicValueEnum::FloatValue(lhs) = (match generator.gen_expr(ctx, lhs)? {
|
|
Some(v) => v.to_basic_value_enum(ctx, generator, lhs.custom.unwrap())?,
|
|
None => return Ok(None),
|
|
}) else { unreachable!() };
|
|
|
|
let BasicValueEnum::FloatValue(rhs) = (match generator.gen_expr(ctx, rhs)? {
|
|
Some(v) => v.to_basic_value_enum(ctx, generator, rhs.custom.unwrap())?,
|
|
None => return Ok(None),
|
|
}) else { unreachable!() };
|
|
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
|
|
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
|
|
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
|
|
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
|
|
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
|
|
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.builder.build_float_compare(op, lhs, rhs, "cmp")
|
|
} else {
|
|
unimplemented!()
|
|
};
|
|
Ok(prev?.map(|v| ctx.builder.build_and(v, current, "cmp")).or(Some(current)))
|
|
})?;
|
|
|
|
match cmp_val {
|
|
Some(v) => v.into(),
|
|
None => return Ok(None),
|
|
}
|
|
}
|
|
ExprKind::IfExp { test, body, orelse } => {
|
|
let test = match generator.gen_expr(ctx, test)? {
|
|
Some(v) => v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?.into_int_value(),
|
|
None => return Ok(None),
|
|
};
|
|
let test = generator.bool_to_i1(ctx, test);
|
|
let body_ty = body.custom.unwrap();
|
|
let is_none = ctx.unifier.get_representative(body_ty) == ctx.primitives.none;
|
|
let result = if is_none {
|
|
None
|
|
} else {
|
|
let llvm_ty = ctx.get_llvm_type(generator, body_ty);
|
|
Some(ctx.builder.build_alloca(llvm_ty, "if_exp_result"))
|
|
};
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let then_bb = ctx.ctx.append_basic_block(current, "then");
|
|
let else_bb = ctx.ctx.append_basic_block(current, "else");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
|
ctx.builder.build_conditional_branch(test, then_bb, else_bb);
|
|
|
|
ctx.builder.position_at_end(then_bb);
|
|
let a = generator.gen_expr(ctx, body)?;
|
|
if let Some(a) = a {
|
|
match result {
|
|
None => None,
|
|
Some(v) => {
|
|
let a = a.to_basic_value_enum(ctx, generator, body.custom.unwrap())?;
|
|
Some(ctx.builder.build_store(v, a))
|
|
}
|
|
};
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
}
|
|
|
|
ctx.builder.position_at_end(else_bb);
|
|
let b = generator.gen_expr(ctx, orelse)?;
|
|
if let Some(b) = b {
|
|
match result {
|
|
None => None,
|
|
Some(v) => {
|
|
let b = b.to_basic_value_enum(ctx, generator, orelse.custom.unwrap())?;
|
|
Some(ctx.builder.build_store(v, b))
|
|
}
|
|
};
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
}
|
|
|
|
ctx.builder.position_at_end(cont_bb);
|
|
if let Some(v) = result {
|
|
ctx.builder.build_load(v, "if_exp_val_load").into()
|
|
} else {
|
|
return Ok(None)
|
|
}
|
|
}
|
|
ExprKind::Call { func, args, keywords } => {
|
|
let mut params = args
|
|
.iter()
|
|
.map(|arg| generator.gen_expr(ctx, arg))
|
|
.take_while(|expr| !matches!(expr, Ok(None)))
|
|
.map(|expr| Ok((None, expr?.unwrap())) as Result<_, String>)
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
if params.len() < args.len() {
|
|
return Ok(None)
|
|
}
|
|
|
|
let kw_iter = keywords.iter().map(|kw| {
|
|
Ok((
|
|
Some(*kw.node.arg.as_ref().unwrap()),
|
|
generator.gen_expr(ctx, &kw.node.value)?.unwrap(),
|
|
)) as Result<_, String>
|
|
});
|
|
let kw_iter = kw_iter.collect::<Result<Vec<_>, _>>()?;
|
|
params.extend(kw_iter);
|
|
let call = ctx.calls.get(&expr.location.into());
|
|
let signature = if let Some(call) = call {
|
|
ctx.unifier.get_call_signature(*call).unwrap()
|
|
} else {
|
|
let ty = func.custom.unwrap();
|
|
let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else {
|
|
unreachable!()
|
|
};
|
|
|
|
sign.clone()
|
|
};
|
|
let func = func.as_ref();
|
|
match &func.node {
|
|
ExprKind::Name { id, .. } => {
|
|
// TODO: handle primitive casts and function pointers
|
|
let fun = ctx
|
|
.resolver
|
|
.get_identifier_def(*id)
|
|
.map_err(|e| format!("{} (at {})", e.iter().next().unwrap(), func.location))?;
|
|
return Ok(generator
|
|
.gen_call(ctx, None, (&signature, fun), params)?
|
|
.map(Into::into));
|
|
}
|
|
ExprKind::Attribute { value, attr, .. } => {
|
|
let Some(val) = generator.gen_expr(ctx, value)? else {
|
|
return Ok(None)
|
|
};
|
|
|
|
let id = if let TypeEnum::TObj { obj_id, .. } =
|
|
&*ctx.unifier.get_ty(value.custom.unwrap())
|
|
{
|
|
*obj_id
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let fun_id = {
|
|
let defs = ctx.top_level.definitions.read();
|
|
let obj_def = defs.get(id.0).unwrap().read();
|
|
let TopLevelDef::Class { methods, .. } = &*obj_def else {
|
|
unreachable!()
|
|
};
|
|
|
|
methods.iter().find(|method| method.0 == *attr).unwrap().2
|
|
};
|
|
// directly generate code for option.unwrap
|
|
// since it needs to return static value to optimize for kernel invariant
|
|
if attr == &"unwrap".into()
|
|
&& id == ctx.primitives.option.get_obj_id(&ctx.unifier)
|
|
{
|
|
match val {
|
|
ValueEnum::Static(v) => return match v.get_field("_nac3_option".into(), ctx) {
|
|
// if is none, raise exception directly
|
|
None => {
|
|
let err_msg = ctx.gen_string(generator, "");
|
|
let current_fun = ctx
|
|
.builder
|
|
.get_insert_block()
|
|
.unwrap()
|
|
.get_parent()
|
|
.unwrap();
|
|
let unreachable_block = ctx.ctx.append_basic_block(
|
|
current_fun,
|
|
"unwrap_none_unreachable"
|
|
);
|
|
let exn_block = ctx.ctx.append_basic_block(
|
|
current_fun,
|
|
"unwrap_none_exception"
|
|
);
|
|
ctx.builder.build_unconditional_branch(exn_block);
|
|
ctx.builder.position_at_end(exn_block);
|
|
ctx.raise_exn(
|
|
generator,
|
|
"0:UnwrapNoneError",
|
|
err_msg,
|
|
[None, None, None],
|
|
ctx.current_loc
|
|
);
|
|
ctx.builder.position_at_end(unreachable_block);
|
|
let ptr = ctx
|
|
.get_llvm_type(generator, value.custom.unwrap())
|
|
.into_pointer_type()
|
|
.const_null();
|
|
Ok(Some(ctx.builder.build_load(
|
|
ptr,
|
|
"unwrap_none_unreachable_load"
|
|
).into()))
|
|
}
|
|
Some(v) => Ok(Some(v)),
|
|
},
|
|
ValueEnum::Dynamic(BasicValueEnum::PointerValue(ptr)) => {
|
|
let not_null = ctx.builder.build_is_not_null(ptr, "unwrap_not_null");
|
|
ctx.make_assert(
|
|
generator,
|
|
not_null,
|
|
"0:UnwrapNoneError",
|
|
"",
|
|
[None, None, None],
|
|
expr.location,
|
|
);
|
|
return Ok(Some(ctx.builder.build_load(
|
|
ptr,
|
|
"unwrap_some_load"
|
|
).into()))
|
|
}
|
|
ValueEnum::Dynamic(_) => unreachable!("option must be static or ptr")
|
|
}
|
|
}
|
|
|
|
// Reset current_loc back to the location of the call
|
|
ctx.current_loc = expr.location;
|
|
|
|
return Ok(generator
|
|
.gen_call(
|
|
ctx,
|
|
Some((value.custom.unwrap(), val)),
|
|
(&signature, fun_id),
|
|
params,
|
|
)?
|
|
.map(Into::into));
|
|
}
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
ExprKind::Subscript { value, slice, .. } => {
|
|
match &*ctx.unifier.get_ty(value.custom.unwrap()) {
|
|
TypeEnum::TList { ty } => {
|
|
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
|
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?.into_pointer_value()
|
|
} else {
|
|
return Ok(None)
|
|
};
|
|
let v = ListValue::from_ptr_val(v, usize, Some("arr"));
|
|
let ty = ctx.get_llvm_type(generator, *ty);
|
|
if let ExprKind::Slice { lower, upper, step } = &slice.node {
|
|
let one = int32.const_int(1, false);
|
|
let Some((start, end, step)) =
|
|
handle_slice_indices(lower, upper, step, ctx, generator, v)? else {
|
|
return Ok(None)
|
|
};
|
|
let length = calculate_len_for_slice_range(
|
|
generator,
|
|
ctx,
|
|
start,
|
|
ctx.builder
|
|
.build_select(
|
|
ctx.builder.build_int_compare(
|
|
IntPredicate::SLT,
|
|
step,
|
|
zero,
|
|
"is_neg",
|
|
),
|
|
ctx.builder.build_int_sub(end, one, "e_min_one"),
|
|
ctx.builder.build_int_add(end, one, "e_add_one"),
|
|
"final_e",
|
|
)
|
|
.into_int_value(),
|
|
step,
|
|
);
|
|
let res_array_ret = allocate_list(generator, ctx, ty, length, Some("ret"));
|
|
let Some(res_ind) =
|
|
handle_slice_indices(&None, &None, &None, ctx, generator, res_array_ret)? else {
|
|
return Ok(None)
|
|
};
|
|
list_slice_assignment(
|
|
generator,
|
|
ctx,
|
|
ty,
|
|
res_array_ret,
|
|
res_ind,
|
|
v,
|
|
(start, end, step),
|
|
);
|
|
res_array_ret.get_ptr().into()
|
|
} else {
|
|
let len = v.load_size(ctx, Some("len"));
|
|
let raw_index = if let Some(v) = generator.gen_expr(ctx, slice)? {
|
|
v.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value()
|
|
} else {
|
|
return Ok(None)
|
|
};
|
|
let raw_index = ctx.builder.build_int_s_extend(
|
|
raw_index,
|
|
generator.get_size_type(ctx.ctx),
|
|
"sext",
|
|
);
|
|
// handle negative index
|
|
let is_negative = ctx.builder.build_int_compare(
|
|
IntPredicate::SLT,
|
|
raw_index,
|
|
generator.get_size_type(ctx.ctx).const_zero(),
|
|
"is_neg",
|
|
);
|
|
let adjusted = ctx.builder.build_int_add(raw_index, len, "adjusted");
|
|
let index = ctx
|
|
.builder
|
|
.build_select(is_negative, adjusted, raw_index, "index")
|
|
.into_int_value();
|
|
// unsigned less than is enough, because negative index after adjustment is
|
|
// bigger than the length (for unsigned cmp)
|
|
let bound_check = ctx.builder.build_int_compare(
|
|
IntPredicate::ULT,
|
|
index,
|
|
len,
|
|
"inbound",
|
|
);
|
|
ctx.make_assert(
|
|
generator,
|
|
bound_check,
|
|
"0:IndexError",
|
|
"index {0} out of bounds 0:{1}",
|
|
[Some(raw_index), Some(len), None],
|
|
expr.location,
|
|
);
|
|
v.get_data().get(ctx, generator, index, None).into()
|
|
}
|
|
}
|
|
TypeEnum::TNDArray { .. } => {
|
|
return Err(String::from("subscript operator for ndarray not implemented"))
|
|
}
|
|
TypeEnum::TTuple { .. } => {
|
|
let index: u32 =
|
|
if let ExprKind::Constant { value: Constant::Int(v), .. } = &slice.node {
|
|
(*v).try_into().unwrap()
|
|
} else {
|
|
unreachable!("tuple subscript must be const int after type check");
|
|
};
|
|
match generator.gen_expr(ctx, value)? {
|
|
Some(ValueEnum::Dynamic(v)) => {
|
|
let v = v.into_struct_value();
|
|
ctx.builder.build_extract_value(v, index, "tup_elem").unwrap().into()
|
|
}
|
|
Some(ValueEnum::Static(v)) => {
|
|
if let Some(v) = v.get_tuple_element(index) {
|
|
v
|
|
} else {
|
|
let tup = v
|
|
.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
|
.into_struct_value();
|
|
ctx.builder.build_extract_value(tup, index, "tup_elem").unwrap().into()
|
|
}
|
|
}
|
|
None => return Ok(None),
|
|
}
|
|
}
|
|
_ => unreachable!("should not be other subscriptable types after type check"),
|
|
}
|
|
},
|
|
ExprKind::ListComp { .. } => {
|
|
if let Some(v) = gen_comprehension(generator, ctx, expr)? {
|
|
v.into()
|
|
} else {
|
|
return Ok(None)
|
|
}
|
|
}
|
|
_ => unimplemented!(),
|
|
}))
|
|
}
|