use std::convert::TryInto; use crate::symbol_resolver::SymbolValue; use crate::typecheck::typedef::{Mapping, VarMap}; use nac3parser::ast::{Constant, Location}; use super::*; /// Structure storing [`DefinitionId`] for primitive types. #[derive(Clone, Copy)] pub struct PrimitiveDefinitionIds { pub int32: DefinitionId, pub int64: DefinitionId, pub uint32: DefinitionId, pub uint64: DefinitionId, pub float: DefinitionId, pub bool: DefinitionId, pub none: DefinitionId, pub range: DefinitionId, pub str: DefinitionId, pub exception: DefinitionId, pub option: DefinitionId, pub ndarray: DefinitionId, } impl PrimitiveDefinitionIds { /// Returns all [`DefinitionId`] of primitives as a [`Vec`]. /// /// There are no guarantees on ordering of the IDs. #[must_use] fn as_vec(&self) -> Vec { vec![ self.int32, self.int64, self.uint32, self.uint64, self.float, self.bool, self.none, self.range, self.str, self.exception, self.option, self.ndarray, ] } /// Returns the primitive with the largest [`DefinitionId`]. #[must_use] pub fn max_id(&self) -> DefinitionId { self.as_vec().into_iter().max().unwrap() } } /// The [definition IDs][DefinitionId] for primitive types. pub const PRIMITIVE_DEF_IDS: PrimitiveDefinitionIds = PrimitiveDefinitionIds { int32: DefinitionId(0), int64: DefinitionId(1), uint32: DefinitionId(8), uint64: DefinitionId(9), float: DefinitionId(2), bool: DefinitionId(3), none: DefinitionId(4), range: DefinitionId(5), str: DefinitionId(6), exception: DefinitionId(7), option: DefinitionId(10), ndarray: DefinitionId(14), }; impl TopLevelDef { pub fn to_string(&self, unifier: &mut Unifier) -> String { match self { TopLevelDef::Class { name, ancestors, fields, methods, type_vars, .. } => { let fields_str = fields .iter() .map(|(n, ty, _)| (n.to_string(), unifier.stringify(*ty))) .collect_vec(); let methods_str = methods .iter() .map(|(n, ty, id)| (n.to_string(), unifier.stringify(*ty), *id)) .collect_vec(); format!( "Class {{\nname: {:?},\nancestors: {:?},\nfields: {:?},\nmethods: {:?},\ntype_vars: {:?}\n}}", name, ancestors.iter().map(|ancestor| ancestor.stringify(unifier)).collect_vec(), fields_str.iter().map(|(a, _)| a).collect_vec(), methods_str.iter().map(|(a, b, _)| (a, b)).collect_vec(), type_vars.iter().map(|id| unifier.stringify(*id)).collect_vec(), ) } TopLevelDef::Function { name, signature, var_id, .. } => format!( "Function {{\nname: {:?},\nsig: {:?},\nvar_id: {:?}\n}}", name, unifier.stringify(*signature), { // preserve the order for debug output and test let mut r = var_id.clone(); r.sort_unstable(); r } ), } } } impl TopLevelComposer { #[must_use] pub fn make_primitives(size_t: u32) -> (PrimitiveStore, Unifier) { let mut unifier = Unifier::new(); let int32 = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.int32, fields: HashMap::new(), params: VarMap::new(), }); let int64 = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.int64, fields: HashMap::new(), params: VarMap::new(), }); let float = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.float, fields: HashMap::new(), params: VarMap::new(), }); let bool = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.bool, fields: HashMap::new(), params: VarMap::new(), }); let none = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.none, fields: HashMap::new(), params: VarMap::new(), }); let range = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.range, fields: HashMap::new(), params: VarMap::new(), }); let str = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.str, fields: HashMap::new(), params: VarMap::new(), }); let exception = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.exception, fields: vec![ ("__name__".into(), (int32, true)), ("__file__".into(), (str, true)), ("__line__".into(), (int32, true)), ("__col__".into(), (int32, true)), ("__func__".into(), (str, true)), ("__message__".into(), (str, true)), ("__param0__".into(), (int64, true)), ("__param1__".into(), (int64, true)), ("__param2__".into(), (int64, true)), ] .into_iter() .collect::>(), params: VarMap::new(), }); let uint32 = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.uint32, fields: HashMap::new(), params: VarMap::new(), }); let uint64 = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.uint64, fields: HashMap::new(), params: VarMap::new(), }); let option_type_var = unifier.get_fresh_var(Some("option_type_var".into()), None); let is_some_type_fun_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![], ret: bool, vars: VarMap::from([(option_type_var.1, option_type_var.0)]), })); let unwrap_fun_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![], ret: option_type_var.0, vars: VarMap::from([(option_type_var.1, option_type_var.0)]), })); let option = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.option, fields: vec![ ("is_some".into(), (is_some_type_fun_ty, true)), ("is_none".into(), (is_some_type_fun_ty, true)), ("unwrap".into(), (unwrap_fun_ty, true)), ] .into_iter() .collect::>(), params: VarMap::from([(option_type_var.1, option_type_var.0)]), }); let size_t_ty = match size_t { 32 => uint32, 64 => uint64, _ => unreachable!(), }; let ndarray_dtype_tvar = unifier.get_fresh_var(Some("ndarray_dtype".into()), None); let ndarray_ndims_tvar = unifier.get_fresh_const_generic_var(size_t_ty, Some("ndarray_ndims".into()), None); let ndarray_copy_fun_ret_ty = unifier.get_fresh_var(None, None); let ndarray_copy_fun_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![], ret: ndarray_copy_fun_ret_ty.0, vars: VarMap::from([ (ndarray_dtype_tvar.1, ndarray_dtype_tvar.0), (ndarray_ndims_tvar.1, ndarray_ndims_tvar.0), ]), })); let ndarray_fill_fun_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![ FuncArg { name: "value".into(), ty: ndarray_dtype_tvar.0, default_value: None, }, ], ret: none, vars: VarMap::from([ (ndarray_dtype_tvar.1, ndarray_dtype_tvar.0), (ndarray_ndims_tvar.1, ndarray_ndims_tvar.0), ]), })); let ndarray = unifier.add_ty(TypeEnum::TObj { obj_id: PRIMITIVE_DEF_IDS.ndarray, fields: Mapping::from([ ("copy".into(), (ndarray_copy_fun_ty, true)), ("fill".into(), (ndarray_fill_fun_ty, true)), ]), params: VarMap::from([ (ndarray_dtype_tvar.1, ndarray_dtype_tvar.0), (ndarray_ndims_tvar.1, ndarray_ndims_tvar.0), ]), }); unifier.unify(ndarray_copy_fun_ret_ty.0, ndarray).unwrap(); let primitives = PrimitiveStore { int32, int64, uint32, uint64, float, bool, none, range, str, exception, option, ndarray, size_t, }; unifier.put_primitive_store(&primitives); crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier); (primitives, unifier) } /// already include the `definition_id` of itself inside the ancestors vector /// when first registering, the `type_vars`, fields, methods, ancestors are invalid #[must_use] pub fn make_top_level_class_def( obj_id: DefinitionId, resolver: Option>, name: StrRef, constructor: Option, loc: Option, ) -> TopLevelDef { TopLevelDef::Class { name, object_id: obj_id, type_vars: Vec::default(), fields: Vec::default(), methods: Vec::default(), ancestors: Vec::default(), constructor, resolver, loc, } } /// when first registering, the type is a invalid value #[must_use] pub fn make_top_level_function_def( name: String, simple_name: StrRef, ty: Type, resolver: Option>, loc: Option, ) -> TopLevelDef { TopLevelDef::Function { name, simple_name, signature: ty, var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver, codegen_callback: None, loc, } } #[must_use] pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String { class_name.push('.'); class_name.push_str(method_name); class_name } pub fn get_class_method_def_info( class_methods_def: &[(StrRef, Type, DefinitionId)], method_name: StrRef, ) -> Result<(Type, DefinitionId), HashSet> { for (name, ty, def_id) in class_methods_def { if name == &method_name { return Ok((*ty, *def_id)); } } Err(HashSet::from([format!("no method {method_name} in the current class")])) } /// get all base class def id of a class, excluding itself. \ /// this function should called only after the direct parent is set /// and before all the ancestors are set /// and when we allow single inheritance \ /// the order of the returned list is from the child to the deepest ancestor pub fn get_all_ancestors_helper( child: &TypeAnnotation, temp_def_list: &[Arc>], ) -> Result, HashSet> { let mut result: Vec = Vec::new(); let mut parent = Self::get_parent(child, temp_def_list); while let Some(p) = parent { parent = Self::get_parent(&p, temp_def_list); let p_id = if let TypeAnnotation::CustomClass { id, .. } = &p { *id } else { unreachable!("must be class kind annotation") }; // check cycle let no_cycle = result.iter().all(|x| { let TypeAnnotation::CustomClass { id, .. } = x else { unreachable!("must be class kind annotation") }; id.0 != p_id.0 }); if no_cycle { result.push(p); } else { return Err(HashSet::from(["cyclic inheritance detected".into()])); } } Ok(result) } /// should only be called when finding all ancestors, so panic when wrong fn get_parent( child: &TypeAnnotation, temp_def_list: &[Arc>], ) -> Option { let child_id = if let TypeAnnotation::CustomClass { id, .. } = child { *id } else { unreachable!("should be class type annotation") }; let child_def = temp_def_list.get(child_id.0).unwrap(); let child_def = child_def.read(); let TopLevelDef::Class { ancestors, .. } = &*child_def else { unreachable!("child must be top level class def") }; if ancestors.is_empty() { None } else { Some(ancestors[0].clone()) } } /// get the `var_id` of a given `TVar` type pub fn get_var_id(var_ty: Type, unifier: &mut Unifier) -> Result> { if let TypeEnum::TVar { id, .. } = unifier.get_ty(var_ty).as_ref() { Ok(*id) } else { Err(HashSet::from([ "not type var".to_string(), ])) } } pub fn check_overload_function_type( this: Type, other: Type, unifier: &mut Unifier, type_var_to_concrete_def: &HashMap, ) -> bool { let this = unifier.get_ty(this); let this = this.as_ref(); let other = unifier.get_ty(other); let other = other.as_ref(); let ( TypeEnum::TFunc(FunSignature { args: this_args, ret: this_ret, .. }), TypeEnum::TFunc(FunSignature { args: other_args, ret: other_ret, .. }), ) = (this, other) else { unreachable!("this function must be called with function type") }; // check args let args_ok = this_args .iter() .map(|FuncArg { name, ty, .. }| (name, type_var_to_concrete_def.get(ty).unwrap())) .zip(other_args.iter().map(|FuncArg { name, ty, .. }| { (name, type_var_to_concrete_def.get(ty).unwrap()) })) .all(|(this, other)| { if this.0 == &"self".into() && this.0 == other.0 { true } else { this.0 == other.0 && check_overload_type_annotation_compatible(this.1, other.1, unifier) } }); // check rets let ret_ok = check_overload_type_annotation_compatible( type_var_to_concrete_def.get(this_ret).unwrap(), type_var_to_concrete_def.get(other_ret).unwrap(), unifier, ); // return args_ok && ret_ok } pub fn check_overload_field_type( this: Type, other: Type, unifier: &mut Unifier, type_var_to_concrete_def: &HashMap, ) -> bool { check_overload_type_annotation_compatible( type_var_to_concrete_def.get(&this).unwrap(), type_var_to_concrete_def.get(&other).unwrap(), unifier, ) } pub fn get_all_assigned_field(stmts: &[Stmt<()>]) -> Result, HashSet> { let mut result = HashSet::new(); for s in stmts { match &s.node { ast::StmtKind::AnnAssign { target, .. } if { if let ast::ExprKind::Attribute { value, .. } = &target.node { if let ast::ExprKind::Name { id, .. } = &value.node { id == &"self".into() } else { false } } else { false } } => { return Err(HashSet::from([ format!( "redundant type annotation for class fields at {}", s.location ), ])) } ast::StmtKind::Assign { targets, .. } => { for t in targets { if let ast::ExprKind::Attribute { value, attr, .. } = &t.node { if let ast::ExprKind::Name { id, .. } = &value.node { if id == &"self".into() { result.insert(*attr); } } } } } // TODO: do not check for For and While? ast::StmtKind::For { body, orelse, .. } | ast::StmtKind::While { body, orelse, .. } => { result.extend(Self::get_all_assigned_field(body.as_slice())?); result.extend(Self::get_all_assigned_field(orelse.as_slice())?); } ast::StmtKind::If { body, orelse, .. } => { let inited_for_sure = Self::get_all_assigned_field(body.as_slice())? .intersection(&Self::get_all_assigned_field(orelse.as_slice())?) .copied() .collect::>(); result.extend(inited_for_sure); } ast::StmtKind::Try { body, orelse, finalbody, .. } => { let inited_for_sure = Self::get_all_assigned_field(body.as_slice())? .intersection(&Self::get_all_assigned_field(orelse.as_slice())?) .copied() .collect::>(); result.extend(inited_for_sure); result.extend(Self::get_all_assigned_field(finalbody.as_slice())?); } ast::StmtKind::With { body, .. } => { result.extend(Self::get_all_assigned_field(body.as_slice())?); } ast::StmtKind::Pass { .. } | ast::StmtKind::Assert { .. } | ast::StmtKind::Expr { .. } => {} _ => { unimplemented!() } } } Ok(result) } pub fn parse_parameter_default_value( default: &ast::Expr, resolver: &(dyn SymbolResolver + Send + Sync), ) -> Result> { parse_parameter_default_value(default, resolver) } pub fn check_default_param_type( val: &SymbolValue, ty: &TypeAnnotation, primitive: &PrimitiveStore, unifier: &mut Unifier, ) -> Result<(), String> { fn is_compatible( found: &TypeAnnotation, expect: &TypeAnnotation, unifier: &mut Unifier, primitive: &PrimitiveStore, ) -> bool { match (found, expect) { (TypeAnnotation::Primitive(f), TypeAnnotation::Primitive(e)) => { unifier.unioned(*f, *e) } ( TypeAnnotation::CustomClass { id: f_id, params: f_param }, TypeAnnotation::CustomClass { id: e_id, params: e_param }, ) => { *f_id == *e_id && *f_id == primitive.option.get_obj_id(unifier) && (f_param.is_empty() || (f_param.len() == 1 && e_param.len() == 1 && is_compatible(&f_param[0], &e_param[0], unifier, primitive))) } (TypeAnnotation::Tuple(f), TypeAnnotation::Tuple(e)) => { f.len() == e.len() && f.iter() .zip(e.iter()) .all(|(f, e)| is_compatible(f, e, unifier, primitive)) } _ => false, } } let found = val.get_type_annotation(primitive, unifier); if is_compatible(&found, ty, unifier, primitive) { Ok(()) } else { Err(format!( "incompatible default parameter type, expect {}, found {}", ty.stringify(unifier), found.stringify(unifier), )) } } } pub fn parse_parameter_default_value( default: &ast::Expr, resolver: &(dyn SymbolResolver + Send + Sync), ) -> Result> { fn handle_constant(val: &Constant, loc: &Location) -> Result> { match val { Constant::Int(v) => { if let Ok(v) = (*v).try_into() { Ok(SymbolValue::I32(v)) } else { Err(HashSet::from([format!("integer value out of range at {loc}")])) } } Constant::Float(v) => Ok(SymbolValue::Double(*v)), Constant::Bool(v) => Ok(SymbolValue::Bool(*v)), Constant::Tuple(tuple) => Ok(SymbolValue::Tuple( tuple.iter().map(|x| handle_constant(x, loc)).collect::, _>>()?, )), Constant::None => Err(HashSet::from([ format!( "`None` is not supported, use `none` for option type instead ({loc})" ), ])), _ => unimplemented!("this constant is not supported at {}", loc), } } match &default.node { ast::ExprKind::Constant { value, .. } => handle_constant(value, &default.location), ast::ExprKind::Call { func, args, .. } if args.len() == 1 => { match &func.node { ast::ExprKind::Name { id, .. } if *id == "int64".into() => match &args[0].node { ast::ExprKind::Constant { value: Constant::Int(v), .. } => { let v: Result = (*v).try_into(); match v { Ok(v) => Ok(SymbolValue::I64(v)), _ => Err(HashSet::from([ format!("default param value out of range at {}", default.location) ])), } } _ => Err(HashSet::from([ format!("only allow constant integer here at {}", default.location), ])) } ast::ExprKind::Name { id, .. } if *id == "uint32".into() => match &args[0].node { ast::ExprKind::Constant { value: Constant::Int(v), .. } => { let v: Result = (*v).try_into(); match v { Ok(v) => Ok(SymbolValue::U32(v)), _ => Err(HashSet::from([ format!("default param value out of range at {}", default.location), ])), } } _ => Err(HashSet::from([ format!("only allow constant integer here at {}", default.location), ])) } ast::ExprKind::Name { id, .. } if *id == "uint64".into() => match &args[0].node { ast::ExprKind::Constant { value: Constant::Int(v), .. } => { let v: Result = (*v).try_into(); match v { Ok(v) => Ok(SymbolValue::U64(v)), _ => Err(HashSet::from([ format!("default param value out of range at {}", default.location), ])), } } _ => Err(HashSet::from([ format!("only allow constant integer here at {}", default.location), ])) } ast::ExprKind::Name { id, .. } if *id == "Some".into() => Ok( SymbolValue::OptionSome( Box::new(parse_parameter_default_value(&args[0], resolver)?) ) ), _ => Err(HashSet::from([ format!("unsupported default parameter at {}", default.location), ])), } } ast::ExprKind::Tuple { elts, .. } => Ok(SymbolValue::Tuple(elts .iter() .map(|x| parse_parameter_default_value(x, resolver)) .collect::, _>>()? )), ast::ExprKind::Name { id, .. } if id == &"none".into() => Ok(SymbolValue::OptionNone), ast::ExprKind::Name { id, .. } => { resolver.get_default_param_value(default).ok_or_else( || HashSet::from([ format!( "`{}` cannot be used as a default parameter at {} \ (not primitive type, option or tuple / not defined?)", id, default.location ), ]) ) } _ => Err(HashSet::from([ format!( "unsupported default parameter (not primitive type, option or tuple) at {}", default.location ), ])) } }