use std::rc::Rc; use indexmap::IndexMap; use nac3parser::ast::{fold::Fold, ExprKind, Ident}; use super::*; use crate::{ codegen::{expr::get_subst_key, stmt::exn_constructor}, symbol_resolver::SymbolValue, typecheck::{ type_inferencer::{FunctionData, IdentifierInfo, Inferencer}, typedef::{TypeVar, VarMap}, }, }; pub struct ComposerConfig { pub kernel_ann: Option<&'static str>, pub kernel_invariant_ann: &'static str, } impl Default for ComposerConfig { fn default() -> Self { ComposerConfig { kernel_ann: None, kernel_invariant_ann: "Invariant" } } } pub type DefAst = (Arc>, Option>); pub struct TopLevelComposer { // list of top level definitions, same as top level context pub definition_ast_list: Vec, // start as a primitive unifier, will add more top_level defs inside pub unifier: Unifier, // primitive store pub primitives_ty: PrimitiveStore, // keyword list to prevent same user-defined name pub keyword_list: HashSet, // to prevent duplicate definition pub defined_names: HashSet, // get the class def id of a class method pub method_class: HashMap, // number of built-in function and classes in the definition list, later skip pub builtin_num: usize, pub core_config: ComposerConfig, /// The size of a native word on the target platform. pub size_t: u32, } /// The specification for a builtin function, consisting of the function name, the function /// signature, and a [code generation callback][`GenCall`]. pub type BuiltinFuncSpec = (StrRef, FunSignature, Arc); /// A function that creates a [`BuiltinFuncSpec`] using the provided [`PrimitiveStore`] and /// [`Unifier`]. pub type BuiltinFuncCreator = dyn Fn(&PrimitiveStore, &mut Unifier) -> BuiltinFuncSpec; impl TopLevelComposer { /// return a composer and things to make a "primitive" symbol resolver, so that the symbol /// resolver can later figure out primitive tye definitions when passed a primitive type name /// /// `lateinit_builtins` are specifically for the ARTIQ module. Since the [`Unifier`] instance /// used to create builtin functions do not persist until method compilation, any types /// created (e.g. [`TypeEnum::TVar`]) also do not persist. Those functions should be instead put /// in `lateinit_builtins`, where they will be instantiated with the [`Unifier`] instance used /// for method compilation. #[must_use] pub fn new( builtins: Vec, lateinit_builtins: Vec>, core_config: ComposerConfig, size_t: u32, ) -> (Self, HashMap, HashMap) { let (primitives_ty, mut unifier) = Self::make_primitives(size_t); let mut definition_ast_list = builtins::get_builtins(&mut unifier, &primitives_ty); let mut keyword_list: HashSet = HashSet::from_iter(vec![ "Generic".into(), "virtual".into(), "list".into(), "tuple".into(), "int32".into(), "int64".into(), "uint32".into(), "uint64".into(), "float".into(), "bool".into(), "none".into(), "None".into(), "range".into(), "str".into(), "self".into(), "Kernel".into(), "KernelInvariant".into(), "Some".into(), "Option".into(), ]); let defined_names = HashSet::default(); let method_class = HashMap::default(); let mut builtin_id = HashMap::default(); let mut builtin_ty = HashMap::default(); let builtin_name_list = definition_ast_list .iter() .map(|def_ast| match *def_ast.0.read() { TopLevelDef::Class { name, .. } | TopLevelDef::Module { name, .. } => { name.to_string() } TopLevelDef::Function { simple_name, .. } | TopLevelDef::Variable { simple_name, .. } => simple_name.to_string(), }) .collect_vec(); for (id, name) in builtin_name_list.iter().enumerate() { let name = (**name).into(); let def = definition_ast_list[id].0.read(); if let TopLevelDef::Function { name: func_name, simple_name, signature, .. } = &*def { assert_eq!( name, *simple_name, "Simple name of builtin function should match builtin name list" ); // Do not add member functions into the list of builtin IDs; // Here we assume that all builtin top-level functions have the same name and simple // name, and all member functions have something prefixed to its name if *func_name != simple_name.to_string() { continue; } builtin_ty.insert(name, *signature); builtin_id.insert(name, DefinitionId(id)); } else if let TopLevelDef::Class { name, constructor, object_id, .. } = &*def { assert_eq!( id, object_id.0, "Object id of class '{name}' should match its index in builtin name list" ); if let Some(constructor) = constructor { builtin_ty.insert(*name, *constructor); } builtin_id.insert(*name, DefinitionId(id)); } } // Materialize lateinit_builtins, now that the unifier is ready let lateinit_builtins = lateinit_builtins .into_iter() .map(|builtin| builtin(&primitives_ty, &mut unifier)) .collect_vec(); for (name, sig, codegen_callback) in builtins.into_iter().chain(lateinit_builtins) { let fun_sig = unifier.add_ty(TypeEnum::TFunc(sig)); builtin_ty.insert(name, fun_sig); builtin_id.insert(name, DefinitionId(definition_ast_list.len())); definition_ast_list.push(( Arc::new(RwLock::new(TopLevelDef::Function { name: name.into(), simple_name: name, signature: fun_sig, instance_to_stmt: HashMap::default(), instance_to_symbol: HashMap::default(), var_id: Vec::default(), resolver: None, codegen_callback: Some(codegen_callback), loc: None, })), None, )); keyword_list.insert(name); } ( TopLevelComposer { builtin_num: definition_ast_list.len(), definition_ast_list, primitives_ty, unifier, keyword_list, defined_names, method_class, core_config, size_t, }, builtin_id, builtin_ty, ) } #[must_use] pub fn make_top_level_context(&self) -> TopLevelContext { TopLevelContext { definitions: RwLock::new( self.definition_ast_list.iter().map(|(x, ..)| x.clone()).collect_vec(), ) .into(), // NOTE: only one for now unifiers: Arc::new(RwLock::new(vec![( self.unifier.get_shared_unifier(), self.primitives_ty, )])), personality_symbol: Some("__nac3_personality".into()), } } #[must_use] pub fn extract_def_list(&self) -> Vec>> { self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec() } /// register top level modules pub fn register_top_level_module( &mut self, module_name: &str, name_to_pyid: &Rc>, resolver: Arc, location: Option, ) -> Result { let mut methods: HashMap = HashMap::new(); let mut attributes: Vec<(StrRef, DefinitionId)> = Vec::new(); for (name, _) in name_to_pyid.iter() { if let Ok(def_id) = resolver.get_identifier_def(*name) { // Avoid repeated attribute instances resulting from multiple imports of same module if self.defined_names.contains(&format!("{module_name}.{name}")) { match &*self.definition_ast_list[def_id.0].0.read() { TopLevelDef::Class { .. } | TopLevelDef::Function { .. } => { methods.insert(*name, def_id); } _ => attributes.push((*name, def_id)), } } }; } let module_def = TopLevelDef::Module { name: module_name.to_string().into(), module_id: DefinitionId(self.definition_ast_list.len()), methods, attributes, resolver: Some(resolver), loc: location, }; self.definition_ast_list.push((Arc::new(RwLock::new(module_def)), None)); Ok(DefinitionId(self.definition_ast_list.len() - 1)) } /// register, just remember the names of top level classes/function /// and check duplicate class/method/function definition pub fn register_top_level( &mut self, ast: Stmt<()>, resolver: Option>, mod_path: &str, allow_no_constructor: bool, ) -> Result<(StrRef, DefinitionId, Option), String> { type MethodInfo = ( // the simple method name without class name StrRef, // in this top level def, method name is prefixed with the class name Arc>, DefinitionId, Type, Stmt<()>, ); let defined_names = &mut self.defined_names; match &ast.node { ast::StmtKind::ClassDef { name: class_name, bases, body, .. } => { if self.keyword_list.contains(class_name) { return Err(format!( "cannot use keyword `{}` as a class name (at {})", class_name, ast.location )); } let fully_qualified_class_name = if mod_path.is_empty() { *class_name } else { format!("{}.{}", &mod_path, class_name).into() }; if !defined_names.insert(fully_qualified_class_name.into()) { return Err(format!( "duplicate definition of class `{}` (at {})", class_name, ast.location )); } let class_name = *class_name; let class_def_id = self.definition_ast_list.len(); // since later when registering class method, ast will still be used, // here push None temporarily, later will move the ast inside let constructor_ty = self.unifier.get_dummy_var().ty; let mut class_def_ast = ( Arc::new(RwLock::new(Self::make_top_level_class_def( DefinitionId(class_def_id), resolver.clone(), fully_qualified_class_name, Some(constructor_ty), Some(ast.location) ))), None, ); // parse class def body and register class methods into the def list. // module's symbol resolver would not know the name of the class methods, // thus cannot return their definition_id let mut class_method_name_def_ids: Vec = Vec::new(); // we do not push anything to the def list, so we keep track of the index // and then push in the correct order after the for loop let mut class_method_index_offset = 0; let init_id = "__init__".into(); let exception_id = "Exception".into(); // TODO: Fix this hack. We will generate constructor for classes that inherit // from Exception class (directly or indirectly), but this code cannot handle // subclass of other exception classes. let mut contains_constructor = bases .iter().any(|base| matches!(base.node, ast::ExprKind::Name { id, .. } if id == exception_id)); for b in body { if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node { if method_name == &init_id { contains_constructor = true; } if self.keyword_list.contains(method_name) { return Err(format!( "cannot use keyword `{}` as a method name (at {})", method_name, b.location )); } let global_class_method_name = Self::make_class_method_name( fully_qualified_class_name.into(), &method_name.to_string(), ); if !defined_names.insert(global_class_method_name.clone()) { return Err(format!( "class method `{}` defined twice (at {})", global_class_method_name, b.location )); } let method_def_id = self.definition_ast_list.len() + { // plus 1 here since we already have the class def class_method_index_offset += 1; class_method_index_offset }; // dummy method define here let dummy_method_type = self.unifier.get_dummy_var().ty; class_method_name_def_ids.push(( *method_name, RwLock::new(Self::make_top_level_function_def( global_class_method_name, *method_name, // later unify with parsed type dummy_method_type, resolver.clone(), Some(b.location), )) .into(), DefinitionId(method_def_id), dummy_method_type, b.clone(), )); } } // move the ast to the entry of the class in the ast_list class_def_ast.1 = Some(ast); // get the methods into the top level class_def for (name, _, id, ty, ..) in &class_method_name_def_ids { let mut class_def = class_def_ast.0.write(); let TopLevelDef::Class { methods, .. } = &mut *class_def else { unreachable!() }; methods.push((*name, *ty, *id)); self.method_class.insert(*id, DefinitionId(class_def_id)); } // now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order self.definition_ast_list.push(class_def_ast); for (_, def, _, _, ast) in class_method_name_def_ids { self.definition_ast_list.push((def, Some(ast))); } let result_ty = if allow_no_constructor || contains_constructor { Some(constructor_ty) } else { None }; Ok((class_name, DefinitionId(class_def_id), result_ty)) } ast::StmtKind::FunctionDef { name, .. } => { let global_fun_name = if mod_path.is_empty() { name.to_string() } else { format!("{mod_path}.{name}") }; if !defined_names.insert(global_fun_name.clone()) { return Err(format!( "top level function `{}` defined twice (at {})", global_fun_name, ast.location )); } let fun_name = *name; let ty_to_be_unified = self.unifier.get_dummy_var().ty; // add to the definition list self.definition_ast_list.push(( RwLock::new(Self::make_top_level_function_def( global_fun_name, *name, // dummy here, unify with correct type later ty_to_be_unified, resolver, Some(ast.location) )) .into(), Some(ast), )); // return Ok(( fun_name, DefinitionId(self.definition_ast_list.len() - 1), Some(ty_to_be_unified), )) } ast::StmtKind::Assign { .. } => { // Assignment statements can assign to (and therefore create) more than one // variable, but this function only allows returning one set of symbol information. // We want to avoid changing this to return a `Vec` of symbol info, as this would // require `iter().next().unwrap()` on every variable created from a non-Assign // statement. // // Make callers use `register_top_level_var` instead, as it provides more // fine-grained control over which symbols to register, while also simplifying the // usage of this function. panic!("Registration of top-level Assign statements must use TopLevelComposer::register_top_level_var (at {})", ast.location); } ast::StmtKind::AnnAssign { target, annotation, .. } => { let ExprKind::Name { id: name, .. } = target.node else { return Err(format!( "global variable declaration must be an identifier (at {})", target.location )); }; self.register_top_level_var( name, Some(annotation.as_ref().clone()), resolver, mod_path, target.location, ) } _ => Err(format!( "registrations of constructs other than top level classes/functions/variables are not supported (at {})", ast.location )), } } /// Registers a top-level variable with the given `name` into the composer. /// /// `annotation` - The type annotation of the top-level variable, or [`None`] if no type /// annotation is provided. /// `location` - The location of the top-level variable. pub fn register_top_level_var( &mut self, name: Ident, annotation: Option, resolver: Option>, mod_path: &str, location: Location, ) -> Result<(StrRef, DefinitionId, Option), String> { if self.keyword_list.contains(&name) { return Err(format!("cannot use keyword `{name}` as a class name (at {location})")); } let global_var_name = if mod_path.is_empty() { name.to_string() } else { format!("{mod_path}.{name}") }; if !self.defined_names.insert(global_var_name.clone()) { return Err(format!( "global variable `{global_var_name}` defined twice (at {location})" )); } let ty_to_be_unified = self.unifier.get_dummy_var().ty; self.definition_ast_list.push(( RwLock::new(Self::make_top_level_variable_def( global_var_name, name, // dummy here, unify with correct type later, ty_to_be_unified, annotation, resolver, Some(location), )) .into(), None, )); Ok((name, DefinitionId(self.definition_ast_list.len() - 1), Some(ty_to_be_unified))) } /// Analyze the AST and modify the corresponding `TopLevelDef` pub fn start_analysis(&mut self, inference: bool) -> Result<(), HashSet> { self.analyze_top_level_class_definition()?; self.analyze_top_level_class_fields_methods()?; self.analyze_top_level_function()?; self.analyze_top_level_variables()?; if inference { self.analyze_function_instance()?; } Ok(()) } /// step 1, analyze the top level class definitions /// /// Checks for class type variables and ancestors adding them to the `TopLevelDef` list fn analyze_top_level_class_definition(&mut self) -> Result<(), HashSet> { let def_list = &self.definition_ast_list; let unifier = self.unifier.borrow_mut(); let primitives_store = &self.primitives_ty; let mut errors = HashSet::new(); // Initially only copy the definitions of buitin classes and functions // class definitions are added in the same order as they appear in the program let mut temp_def_list: Vec>> = def_list.iter().take(self.builtin_num).map(|f| f.0.clone()).collect_vec(); // Check for class generic variables and ancestors for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) { if class_ast.is_some() && matches!(&*class_def.read(), TopLevelDef::Class { .. }) { // Add class type variables and direct parents to the `TopLevelDef` if let Err(e) = Self::analyze_class_bases( class_def, class_ast, &temp_def_list, unifier, primitives_store, ) { errors.extend(e); } // Add class ancestors Self::analyze_class_ancestors(class_def, &temp_def_list); // special case classes that inherit from Exception let TopLevelDef::Class { ancestors: class_ancestors, .. } = &*class_def.read() else { unreachable!() }; if class_ancestors .iter() .any(|ann| matches!(ann, TypeAnnotation::CustomClass { id, .. } if id.0 == 7)) { // if inherited from Exception, the body should be a pass let ast::StmtKind::ClassDef { body, .. } = &class_ast.as_ref().unwrap().node else { unreachable!() }; for stmt in body { if matches!( stmt.node, ast::StmtKind::FunctionDef { .. } | ast::StmtKind::AnnAssign { .. } ) { errors.extend(Err(HashSet::from(["Classes inherited from exception should have no custom fields/methods"]))); } } } } temp_def_list.push(class_def.clone()); } // deal with ancestors of Exception object let TopLevelDef::Class { name, ancestors, object_id, .. } = &mut *def_list[7].0.write() else { unreachable!() }; assert_eq!(*name, "Exception".into()); ancestors.push(make_self_type_annotation(&[], *object_id)); if !errors.is_empty() { return Err(errors); } Ok(()) } /// step 2, class fields and methods fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), HashSet> { // Allow resolving definition IDs in error messages if self.unifier.top_level.is_none() { let ctx = Arc::new(self.make_top_level_context()); self.unifier.top_level = Some(ctx); } let def_list = &self.definition_ast_list; let temp_def_list = self.extract_def_list(); let unifier = self.unifier.borrow_mut(); let primitives_store = &self.primitives_ty; let mut errors: HashSet = HashSet::new(); let mut type_var_to_concrete_def: HashMap = HashMap::new(); for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) { if class_ast.is_some() && matches!(&*class_def.read(), TopLevelDef::Class { .. }) { if let Err(e) = Self::analyze_single_class_methods_fields( class_def, &class_ast.as_ref().unwrap().node, &temp_def_list, unifier, primitives_store, &mut type_var_to_concrete_def, (&self.keyword_list, &self.core_config), ) { errors.extend(e); } // The errors need to be reported before copying methods from parent to child classes if !errors.is_empty() { return Err(errors); } // The lock on `class_def` must be released once the ancestors are updated { let mut class_def = class_def.write(); let TopLevelDef::Class { ancestors, .. } = &*class_def else { unreachable!() }; // Methods/fields needs to be processed only if class inherits from another class if ancestors.len() > 1 { if let Err(e) = Self::analyze_single_class_ancestors( &mut class_def, &temp_def_list, unifier, primitives_store, &mut type_var_to_concrete_def, ) { errors.extend(e); }; } } let mut subst_list = Some(Vec::new()); // unification of previously assigned typevar let mut unification_helper = |ty, def| -> Result<(), HashSet> { let target_ty = get_type_from_type_annotation_kinds( &temp_def_list, unifier, primitives_store, &def, &mut subst_list, )?; unifier .unify(ty, target_ty) .map_err(|e| HashSet::from([e.to_display(unifier).to_string()]))?; Ok(()) }; for (ty, def) in &type_var_to_concrete_def { if let Err(e) = unification_helper(*ty, def.clone()) { errors.extend(e); } } for ty in subst_list.unwrap() { let TypeEnum::TObj { obj_id, params, fields } = &*unifier.get_ty(ty) else { unreachable!() }; let mut new_fields = HashMap::new(); let mut need_subst = false; for (name, (ty, mutable)) in fields { let substituted = unifier.subst(*ty, params); need_subst |= substituted.is_some(); new_fields.insert(*name, (substituted.unwrap_or(*ty), *mutable)); } if need_subst { let new_ty = unifier.add_ty(TypeEnum::TObj { obj_id: *obj_id, params: params.clone(), fields: new_fields, }); if let Err(e) = unifier.unify(ty, new_ty) { errors.insert(e.to_display(unifier).to_string()); } } } } } for (def, _) in def_list.iter().skip(self.builtin_num) { match &*def.read() { TopLevelDef::Class { resolver: Some(resolver), .. } | TopLevelDef::Function { resolver: Some(resolver), .. } => { if let Err(e) = resolver.handle_deferred_eval(unifier, &temp_def_list, primitives_store) { errors.insert(e); } } _ => {} } } if !errors.is_empty() { return Err(errors); } Ok(()) } /// step 3, after class methods are done, top level functions have nothing unknown fn analyze_top_level_function(&mut self) -> Result<(), HashSet> { let def_list = &self.definition_ast_list; let keyword_list = &self.keyword_list; let temp_def_list = self.extract_def_list(); let unifier = self.unifier.borrow_mut(); let primitives_store = &self.primitives_ty; let mut analyze = |function_def: &Arc>, function_ast: &Option| { let mut function_def = function_def.write(); let function_def = &mut *function_def; let Some(function_ast) = function_ast.as_ref() else { // if let TopLevelDef::Function { name, .. } = `` return Ok(()); }; let TopLevelDef::Function { signature: dummy_ty, resolver, var_id, .. } = function_def else { // not top level function def, skip return Ok(()); }; if matches!(unifier.get_ty(*dummy_ty).as_ref(), TypeEnum::TFunc(_)) { // already have a function type, is class method, skip return Ok(()); } let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node else { unreachable!("must be both function"); }; let resolver = resolver.as_ref(); let resolver = resolver.unwrap(); let resolver = &**resolver; let mut function_var_map = VarMap::new(); let vararg = args .vararg .as_ref() .map(|vararg| -> Result<_, HashSet> { let vararg = vararg.as_ref(); let annotation = vararg .node .annotation .as_ref() .ok_or_else(|| { HashSet::from([format!( "function parameter `{}` needs type annotation at {}", vararg.node.arg, vararg.location )]) })? .as_ref(); let type_annotation = parse_ast_to_type_annotation_kinds( resolver, temp_def_list.as_slice(), unifier, primitives_store, annotation, // NOTE: since only class need this, for function // it should be fine to be empty map HashMap::new(), )?; let type_vars_within = get_type_var_contained_in_type_annotation(&type_annotation) .into_iter() .map(|x| -> Result> { let TypeAnnotation::TypeVar(ty) = x else { unreachable!("must be type var annotation kind") }; let id = Self::get_var_id(ty, unifier)?; Ok(TypeVar { id, ty }) }) .collect::, _>>()?; for var in type_vars_within { if let Some(prev_ty) = function_var_map.insert(var.id, var.ty) { // if already have the type inserted, make sure they are the same thing assert_eq!(prev_ty, var.ty); } } let ty = get_type_from_type_annotation_kinds( temp_def_list.as_ref(), unifier, primitives_store, &type_annotation, &mut None, )?; Ok(FuncArg { name: vararg.node.arg, ty, default_value: Some(SymbolValue::Tuple(Vec::default())), is_vararg: true, }) }) .transpose()?; let mut arg_types = { // make sure no duplicate parameter let mut defined_parameter_name: HashSet<_> = HashSet::new(); for x in &args.args { if !defined_parameter_name.insert(x.node.arg) || keyword_list.contains(&x.node.arg) { return Err(HashSet::from([format!( "top level function must have unique parameter names \ and names should not be the same as the keywords (at {})", x.location )])); } } let arg_with_default: Vec<(&ast::Located>, Option<&Expr>)> = args .args .iter() .rev() .zip( args.defaults .iter() .rev() .map(|x| -> Option<&Expr> { Some(x) }) .chain(std::iter::repeat(None)), ) .collect_vec(); arg_with_default .iter() .rev() .map(|(x, default)| -> Result> { let annotation = x .node .annotation .as_ref() .ok_or_else(|| { HashSet::from([format!( "function parameter `{}` needs type annotation at {}", x.node.arg, x.location )]) })? .as_ref(); let type_annotation = parse_ast_to_type_annotation_kinds( resolver, temp_def_list.as_slice(), unifier, primitives_store, annotation, // NOTE: since only class need this, for function // it should be fine to be empty map HashMap::new(), )?; let type_vars_within = get_type_var_contained_in_type_annotation(&type_annotation) .into_iter() .map(|x| -> Result> { let TypeAnnotation::TypeVar(ty) = x else { unreachable!("must be type var annotation kind") }; let id = Self::get_var_id(ty, unifier)?; Ok(TypeVar { id, ty }) }) .collect::, _>>()?; for var in type_vars_within { if let Some(prev_ty) = function_var_map.insert(var.id, var.ty) { // if already have the type inserted, make sure they are the same thing assert_eq!(prev_ty, var.ty); } } let ty = get_type_from_type_annotation_kinds( temp_def_list.as_ref(), unifier, primitives_store, &type_annotation, &mut None, )?; Ok(FuncArg { name: x.node.arg, ty, default_value: match default { None => None, Some(default) => Some({ let v = Self::parse_parameter_default_value(default, resolver)?; Self::check_default_param_type( &v, &type_annotation, primitives_store, unifier, ) .map_err(|err| { HashSet::from([format!("{} (at {})", err, x.location)]) })?; v }), }, is_vararg: false, }) }) .collect::, _>>()? }; if let Some(vararg) = vararg { arg_types.push(vararg); }; let arg_types = arg_types; let return_ty = { if let Some(returns) = returns { let return_ty_annotation = { let return_annotation = returns.as_ref(); parse_ast_to_type_annotation_kinds( resolver, &temp_def_list, unifier, primitives_store, return_annotation, // NOTE: since only class need this, for function // it should be fine to be empty map HashMap::new(), )? }; let type_vars_within = get_type_var_contained_in_type_annotation(&return_ty_annotation) .into_iter() .map(|x| -> Result> { let TypeAnnotation::TypeVar(ty) = x else { unreachable!("must be type var here") }; let id = Self::get_var_id(ty, unifier)?; Ok(TypeVar { id, ty }) }) .collect::, _>>()?; for var in type_vars_within { if let Some(prev_ty) = function_var_map.insert(var.id, var.ty) { // if already have the type inserted, make sure they are the same thing assert_eq!(prev_ty, var.ty); } } get_type_from_type_annotation_kinds( &temp_def_list, unifier, primitives_store, &return_ty_annotation, &mut None, )? } else { primitives_store.none } }; var_id.extend_from_slice(function_var_map .iter() .filter_map(|(id, ty)| { if matches!(&*unifier.get_ty(*ty), TypeEnum::TVar { range, .. } if range.is_empty()) { None } else { Some(*id) } }) .collect_vec() .as_slice() ); let function_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: arg_types, ret: return_ty, vars: function_var_map, })); unifier.unify(*dummy_ty, function_ty).map_err(|e| { HashSet::from([e.at(Some(function_ast.location)).to_display(unifier).to_string()]) })?; Ok(()) }; let mut errors = HashSet::new(); for (function_def, function_ast) in def_list.iter().skip(self.builtin_num) { if function_ast.is_none() { continue; } if let Err(e) = analyze(function_def, function_ast) { errors.extend(e); } } if !errors.is_empty() { return Err(errors); } Ok(()) } fn analyze_single_class_methods_fields( class_def: &Arc>, class_ast: &ast::StmtKind<()>, temp_def_list: &[Arc>], unifier: &mut Unifier, primitives: &PrimitiveStore, type_var_to_concrete_def: &mut HashMap, core_info: (&HashSet, &ComposerConfig), ) -> Result<(), HashSet> { let (keyword_list, core_config) = core_info; let mut class_def = class_def.write(); let TopLevelDef::Class { object_id, ancestors, fields, attributes, methods, resolver, type_vars, .. } = &mut *class_def else { unreachable!("here must be toplevel class def"); }; let ast::StmtKind::ClassDef { name, bases, body, .. } = &class_ast else { unreachable!("here must be class def ast") }; let ( class_id, _class_name, _class_bases_ast, class_body_ast, _class_ancestor_def, class_fields_def, class_attributes_def, class_methods_def, class_type_vars_def, class_resolver, ) = ( *object_id, *name, bases, body, ancestors, fields, attributes, methods, type_vars, resolver, ); let class_resolver = class_resolver.as_ref().unwrap(); let class_resolver = class_resolver.as_ref(); let mut defined_fields: HashSet<_> = HashSet::new(); for b in class_body_ast { match &b.node { ast::StmtKind::FunctionDef { args, returns, name, .. } => { let (method_dummy_ty, method_id) = Self::get_class_method_def_info(class_methods_def, *name)?; let mut method_var_map = VarMap::new(); let arg_types: Vec = { // Function arguments must have: // 1) `self` as first argument (we currently do not support staticmethods) // 2) unique names // 3) names different than keywords match args.args.first() { Some(id) if id.node.arg == "self".into() => {}, _ => return Err(HashSet::from([format!( "{name} method must have a `self` parameter (at {})", b.location )])), } let mut defined_parameter_name: HashSet<_> = HashSet::new(); for arg in args.args.iter().skip(1) { if !defined_parameter_name.insert(arg.node.arg) { return Err(HashSet::from([format!("class method must have a unique parameter names (at {})", b.location)])); } if keyword_list.contains(&arg.node.arg) { return Err(HashSet::from([format!("parameter names should not be the same as the keywords (at {})", b.location)])); } } // `self` must not be provided type annotation or default value if args.args.len() == args.defaults.len() { return Err(HashSet::from([format!("`self` cannot have a default value (at {})", b.location)])); } if args.args[0].node.annotation.is_some() { return Err(HashSet::from([format!("`self` cannot have a type annotation (at {})", b.location)])); } let mut result = Vec::new(); let no_defaults = args.args.len() - args.defaults.len() - 1; for (idx, x) in args.args.iter().skip(1).enumerate() { let type_ann = { let Some(annotation_expr) = x.node.annotation.as_ref() else {return Err(HashSet::from([format!("type annotation needed for `{}` (at {})", x.node.arg, x.location)]));}; parse_ast_to_type_annotation_kinds( class_resolver, temp_def_list, unifier, primitives, annotation_expr, vec![(class_id, class_type_vars_def.clone())] .into_iter() .collect::>(), )? }; // find type vars within this method parameter type annotation let type_vars_within = get_type_var_contained_in_type_annotation(&type_ann); // handle the class type var and the method type var for type_var_within in type_vars_within { let TypeAnnotation::TypeVar(ty) = type_var_within else { unreachable!("must be type var annotation") }; let id = Self::get_var_id(ty, unifier)?; if let Some(prev_ty) = method_var_map.insert(id, ty) { // if already in the list, make sure they are the same? assert_eq!(prev_ty, ty); } } // finish handling type vars let dummy_func_arg = FuncArg { name: x.node.arg, ty: unifier.get_dummy_var().ty, default_value: if idx < no_defaults { None } else { let default_idx = idx - no_defaults; Some({ let v = Self::parse_parameter_default_value(&args.defaults[default_idx], class_resolver)?; Self::check_default_param_type(&v, &type_ann, primitives, unifier).map_err(|err| HashSet::from([format!("{} (at {})", err, x.location)]))?; v }) }, is_vararg: false, }; // push the dummy type and the type annotation // into the list for later unification type_var_to_concrete_def .insert(dummy_func_arg.ty, type_ann.clone()); result.push(dummy_func_arg); } result }; let ret_type = { if let Some(result) = returns { let result = result.as_ref(); let annotation = parse_ast_to_type_annotation_kinds( class_resolver, temp_def_list, unifier, primitives, result, vec![(class_id, class_type_vars_def.clone())] .into_iter() .collect::>(), )?; // find type vars within this return type annotation let type_vars_within = get_type_var_contained_in_type_annotation(&annotation); // handle the class type var and the method type var for type_var_within in type_vars_within { let TypeAnnotation::TypeVar(ty) = type_var_within else { unreachable!("must be type var annotation"); }; let id = Self::get_var_id(ty, unifier)?; if let Some(prev_ty) = method_var_map.insert(id, ty) { // if already in the list, make sure they are the same? assert_eq!(prev_ty, ty); } } let dummy_return_type = unifier.get_dummy_var().ty; type_var_to_concrete_def.insert(dummy_return_type, annotation.clone()); dummy_return_type } else { // if do not have return annotation, return none // for uniform handling, still use type annotation let dummy_return_type = unifier.get_dummy_var().ty; type_var_to_concrete_def.insert( dummy_return_type, TypeAnnotation::Primitive(primitives.none), ); dummy_return_type } }; let TopLevelDef::Function { var_id, .. } = &mut *temp_def_list.get(method_id.0).unwrap().write() else { unreachable!() }; var_id.extend_from_slice(method_var_map .iter() .filter_map(|(id, ty)| { if matches!(&*unifier.get_ty(*ty), TypeEnum::TVar { range, .. } if range.is_empty()) { None } else { Some(*id) } }) .collect_vec() .as_slice() ); let method_type = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: arg_types, ret: ret_type, vars: method_var_map, })); // unify now since function type is not in type annotation define // which should be fine since type within method_type will be subst later unifier .unify(method_dummy_ty, method_type) .map_err(|e| HashSet::from([e.to_display(unifier).to_string()]))?; } ast::StmtKind::AnnAssign { target, annotation, value, .. } => { if let ExprKind::Name { id: attr, .. } = &target.node { if defined_fields.insert(attr.to_string()) { let dummy_field_type = unifier.get_dummy_var().ty; let annotation = match value { None => { // handle Kernel[T], KernelInvariant[T] let (annotation, mutable) = match &annotation.node { ExprKind::Subscript { value, slice, .. } if matches!( &value.node, ast::ExprKind::Name { id, .. } if id == &core_config.kernel_invariant_ann.into() ) => { (slice, false) } ExprKind::Subscript { value, slice, .. } if matches!( &value.node, ast::ExprKind::Name { id, .. } if core_config.kernel_ann.map_or(false, |c| id == &c.into()) ) => { (slice, true) } _ if core_config.kernel_ann.is_none() => (annotation, true), _ => continue, // ignore fields annotated otherwise }; class_fields_def.push((*attr, dummy_field_type, mutable)); annotation } // Supporting Class Attributes Some(boxed_expr) => { // Class attributes are set as immutable regardless let (annotation, _) = match &annotation.node { ExprKind::Subscript { slice, .. } => (slice, false), _ if core_config.kernel_ann.is_none() => (annotation, false), _ => continue, }; match &**boxed_expr { ast::Located {location: _, custom: (), node: ExprKind::Constant { value: v, kind: _ }} => { // Restricting the types allowed to be defined as class attributes match v { ast::Constant::Bool(_) | ast::Constant::Str(_) | ast::Constant::Int(_) | ast::Constant::Float(_) => {} _ => { return Err(HashSet::from([ format!( "unsupported statement in class definition body (at {})", b.location ), ])) } } class_attributes_def.push((*attr, dummy_field_type, v.clone())); } _ => { return Err(HashSet::from([ format!( "unsupported statement in class definition body (at {})", b.location ), ])) } } annotation } }; let parsed_annotation = parse_ast_to_type_annotation_kinds( class_resolver, temp_def_list, unifier, primitives, annotation.as_ref(), vec![(class_id, class_type_vars_def.clone())] .into_iter() .collect::>(), )?; // find type vars within this return type annotation let type_vars_within = get_type_var_contained_in_type_annotation(&parsed_annotation); // handle the class type var and the method type var for type_var_within in type_vars_within { let TypeAnnotation::TypeVar(t) = type_var_within else { unreachable!("must be type var annotation") }; if !class_type_vars_def.contains(&t){ return Err(HashSet::from([ format!( "class fields can only use type \ vars over which the class is generic (at {})", annotation.location ), ])) } } type_var_to_concrete_def.insert(dummy_field_type, parsed_annotation); } else { return Err(HashSet::from([ format!( "same class fields `{}` defined twice (at {})", attr, target.location ), ])) } } else { return Err(HashSet::from([ format!( "unsupported statement type in class definition body (at {})", target.location ), ])) } } ast::StmtKind::Assign { .. } // we don't class attributes | ast::StmtKind::Expr { value: _, .. } // typically a docstring; ignoring all expressions matches CPython behavior | ast::StmtKind::Pass { .. } => {} _ => { return Err(HashSet::from([ format!( "unsupported statement type in class definition body (at {})", b.location ), ])) } } } Ok(()) } fn analyze_single_class_ancestors( class_def: &mut TopLevelDef, temp_def_list: &[Arc>], unifier: &mut Unifier, _primitives: &PrimitiveStore, type_var_to_concrete_def: &mut HashMap, ) -> Result<(), HashSet> { let TopLevelDef::Class { object_id, ancestors, fields, attributes, methods, resolver, type_vars, .. } = class_def else { unreachable!("here must be class def ast") }; let ( _class_id, class_ancestor_def, class_fields_def, class_attribute_def, class_methods_def, _class_type_vars_def, _class_resolver, ) = (*object_id, ancestors, fields, attributes, methods, type_vars, resolver); // since when this function is called, the ancestors of the direct parent // are supposed to be already handled, so we only need to deal with the direct parent let base = class_ancestor_def.get(1).unwrap(); let TypeAnnotation::CustomClass { id, params: _ } = base else { unreachable!("must be class type annotation") }; let base = temp_def_list.get(id.0).unwrap(); let base = base.read(); let TopLevelDef::Class { methods, fields, attributes, .. } = &*base else { unreachable!("must be top level class def") }; // handle methods override // since we need to maintain the order, create a new list let mut new_child_methods: IndexMap = methods.iter().map(|m| (m.0, (m.1, m.2))).collect(); for (class_method_name, class_method_ty, class_method_defid) in &*class_methods_def { if let Some((ty, _)) = new_child_methods .insert(*class_method_name, (*class_method_ty, *class_method_defid)) { let ok = class_method_name == &"__init__".into() || Self::check_overload_function_type( *class_method_ty, ty, unifier, type_var_to_concrete_def, ); if !ok { return Err(HashSet::from([format!( "method {class_method_name} has same name as ancestors' method, but incompatible type"), ])); } } } class_methods_def.clear(); class_methods_def .extend(new_child_methods.iter().map(|f| (*f.0, f.1 .0, f.1 .1)).collect_vec()); // handle class fields let mut new_child_fields: IndexMap = fields.iter().map(|f| (f.0, (f.1, f.2))).collect(); let mut new_child_attributes: IndexMap = attributes.iter().map(|f| (f.0, (f.1, f.2.clone()))).collect(); // Overriding class fields and attributes is currently not supported for (name, ty, mutable) in &*class_fields_def { if new_child_fields.insert(*name, (*ty, *mutable)).is_some() || new_child_attributes.contains_key(name) { return Err(HashSet::from([format!( "field `{name}` has already declared in the ancestor classes" )])); } } for (name, ty, val) in &*class_attribute_def { if new_child_attributes.insert(*name, (*ty, val.clone())).is_some() || new_child_fields.contains_key(name) { return Err(HashSet::from([format!( "attribute `{name}` has already declared in the ancestor classes" )])); } } class_fields_def.clear(); class_fields_def .extend(new_child_fields.iter().map(|f| (*f.0, f.1 .0, f.1 .1)).collect_vec()); class_attribute_def.clear(); class_attribute_def.extend( new_child_attributes.iter().map(|f| (*f.0, f.1 .0, f.1 .1.clone())).collect_vec(), ); Ok(()) } /// step 5, analyze and call type inferencer to fill the `instance_to_stmt` of /// [`TopLevelDef::Function`] fn analyze_function_instance(&mut self) -> Result<(), HashSet> { // first get the class constructor type correct for the following type check in function body // also do class field instantiation check let init_str_id = "__init__".into(); let mut definition_extension = Vec::new(); let mut constructors = Vec::new(); let def_list = self.extract_def_list(); let primitives_ty = &self.primitives_ty; let definition_ast_list = &self.definition_ast_list; let unifier = &mut self.unifier; // first, fix function typevar ids // they may be changed with our use of placeholders for (def, _) in definition_ast_list.iter().skip(self.builtin_num) { if let TopLevelDef::Function { signature, var_id, .. } = &mut *def.write() { if let TypeEnum::TFunc(FunSignature { args, ret, vars }) = unifier.get_ty(*signature).as_ref() { let new_var_ids = vars .values() .map(|v| match &*unifier.get_ty(*v) { TypeEnum::TVar { id, .. } => *id, _ => unreachable!(), }) .collect_vec(); if new_var_ids != *var_id { let new_signature = FunSignature { args: args.clone(), ret: *ret, vars: new_var_ids .iter() .zip(vars.values()) .map(|(id, v)| (*id, *v)) .collect(), }; unifier .unification_table .set_value(*signature, Rc::new(TypeEnum::TFunc(new_signature))); *var_id = new_var_ids; } } } } let mut analyze = |i, def: &Arc>, ast: &Option| { let class_def = def.read(); if let TopLevelDef::Class { constructor, ancestors, methods, fields, type_vars, name: class_name, object_id, resolver: _, .. } = &*class_def { let self_type = get_type_from_type_annotation_kinds( &def_list, unifier, primitives_ty, &make_self_type_annotation(type_vars, *object_id), &mut None, )?; if ancestors .iter() .any(|ann| matches!(ann, TypeAnnotation::CustomClass { id, .. } if id.0 == 7)) { // create constructor for these classes let string = primitives_ty.str; let int64 = primitives_ty.int64; let signature = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![ FuncArg { name: "msg".into(), ty: string, default_value: Some(SymbolValue::Str(String::new())), is_vararg: false, }, FuncArg { name: "param0".into(), ty: int64, default_value: Some(SymbolValue::I64(0)), is_vararg: false, }, FuncArg { name: "param1".into(), ty: int64, default_value: Some(SymbolValue::I64(0)), is_vararg: false, }, FuncArg { name: "param2".into(), ty: int64, default_value: Some(SymbolValue::I64(0)), is_vararg: false, }, ], ret: self_type, vars: VarMap::default(), })); let cons_fun = TopLevelDef::Function { name: format!("{}.{}", class_name, "__init__"), simple_name: init_str_id, signature, var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new(exn_constructor)))), loc: None, }; constructors.push((i, signature, definition_extension.len())); definition_extension.push((Arc::new(RwLock::new(cons_fun)), None)); unifier.unify(constructor.unwrap(), signature).map_err(|e| { HashSet::from([e .at(Some(ast.as_ref().unwrap().location)) .to_display(unifier) .to_string()]) })?; return Ok(()); } let mut init_id: Option = None; // get the class constructor type correct let (contor_args, contor_type_vars) = { let mut constructor_args: Vec = Vec::new(); let mut type_vars = VarMap::new(); for (name, func_sig, id) in methods { if *name == init_str_id { init_id = Some(*id); let func_ty_enum = unifier.get_ty(*func_sig); let TypeEnum::TFunc(FunSignature { args, vars, .. }) = func_ty_enum.as_ref() else { unreachable!("must be typeenum::tfunc") }; constructor_args.extend_from_slice(args); type_vars.extend(vars); } } (constructor_args, type_vars) }; let contor_type = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: contor_args, ret: self_type, vars: contor_type_vars, })); unifier.unify(constructor.unwrap(), contor_type).map_err(|e| { HashSet::from([e .at(Some(ast.as_ref().unwrap().location)) .to_display(unifier) .to_string()]) })?; // class field instantiation check if let (Some(init_id), false) = (init_id, fields.is_empty()) { let init_ast = definition_ast_list.get(init_id.0).unwrap().1.as_ref().unwrap(); if let ast::StmtKind::FunctionDef { name, body, .. } = &init_ast.node { if *name != init_str_id { unreachable!("must be init function here") } let all_inited = Self::get_all_assigned_field( object_id.0, definition_ast_list, body.as_slice(), )?; for (f, _, _) in fields { if !all_inited.contains(f) { return Err(HashSet::from([ format!( "fields `{}` of class `{}` not fully initialized in the initializer (at {})", f, class_name, body[0].location, ), ])); } } } } } Ok(()) }; let mut errors = HashSet::new(); for (i, (def, ast)) in definition_ast_list.iter().enumerate().skip(self.builtin_num) { if ast.is_none() { continue; } if let Err(e) = analyze(i, def, ast) { errors.extend(e); } } if !errors.is_empty() { return Err(errors); } for (i, signature, id) in constructors { let TopLevelDef::Class { methods, .. } = &mut *self.definition_ast_list[i].0.write() else { unreachable!() }; methods.push(( init_str_id, signature, DefinitionId(self.definition_ast_list.len() + id), )); } self.definition_ast_list.extend_from_slice(&definition_extension); let ctx = Arc::new(self.make_top_level_context()); // type inference inside function body let def_list = self.extract_def_list(); let primitives_ty = &self.primitives_ty; let definition_ast_list = &self.definition_ast_list; let unifier = &mut self.unifier; let method_class = &mut self.method_class; let mut analyze_2 = |id, def: &Arc>, ast: &Option| { if ast.is_none() { return Ok(()); } let (name, simple_name, signature, resolver) = { let function_def = def.read(); let TopLevelDef::Function { name, simple_name, signature, resolver, .. } = &*function_def else { return Ok(()); }; (name.clone(), *simple_name, *signature, resolver.clone()) }; let signature_ty_enum = unifier.get_ty(signature); let TypeEnum::TFunc(FunSignature { args, ret, vars, .. }) = signature_ty_enum.as_ref() else { unreachable!("must be typeenum::tfunc") }; let mut vars = vars.clone(); // None if is not class method let uninst_self_type = { if let Some(class_id) = method_class.get(&DefinitionId(id)) { let class_def = definition_ast_list.get(class_id.0).unwrap(); let class_def = class_def.0.read(); let TopLevelDef::Class { type_vars, .. } = &*class_def else { unreachable!("must be class def") }; let ty_ann = make_self_type_annotation(type_vars, *class_id); let self_ty = get_type_from_type_annotation_kinds( &def_list, unifier, primitives_ty, &ty_ann, &mut None, )?; vars.extend(type_vars.iter().map(|ty| { let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else { unreachable!() }; (*id, *ty) })); Some((self_ty, type_vars.clone())) } else { None } }; // carefully handle those with bounds, without bounds and no typevars // if class methods, `vars` also contains all class typevars here let (type_var_subst_comb, no_range_vars) = { let mut no_ranges: Vec = Vec::new(); let var_combs = vars .values() .map(|ty| { unifier.get_instantiations(*ty).unwrap_or_else(|| { let TypeEnum::TVar { name, loc, is_const_generic: false, .. } = &*unifier.get_ty(*ty) else { unreachable!() }; let rigid = unifier.get_fresh_rigid_var(*name, *loc).ty; no_ranges.push(rigid); vec![rigid] }) }) .multi_cartesian_product() .collect_vec(); let mut result: Vec = Vec::default(); for comb in var_combs { result.push(vars.keys().copied().zip(comb).collect()); } // NOTE: if is empty, means no type var, append a empty subst, ok to do this? if result.is_empty() { result.push(VarMap::new()); } (result, no_ranges) }; for subst in type_var_subst_comb { // for each instance let inst_ret = unifier.subst(*ret, &subst).unwrap_or(*ret); let inst_args = { args.iter() .map(|a| FuncArg { name: a.name, ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty), default_value: a.default_value.clone(), is_vararg: false, }) .collect_vec() }; let self_type = { uninst_self_type.clone().map(|(self_type, type_vars)| { let subst_for_self = { let class_ty_var_ids = type_vars .iter() .map(|x| { if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) { *id } else { unreachable!("must be type var here"); } }) .collect::>(); subst .iter() .filter_map(|(ty_var_id, ty_var_target)| { if class_ty_var_ids.contains(ty_var_id) { Some((*ty_var_id, *ty_var_target)) } else { None } }) .collect::() }; unifier.subst(self_type, &subst_for_self).unwrap_or(self_type) }) }; let mut identifiers = { let mut result = HashMap::new(); if self_type.is_some() { result.insert("self".into(), IdentifierInfo::default()); } result.extend(inst_args.iter().map(|x| (x.name, IdentifierInfo::default()))); result }; let mut calls: HashMap = HashMap::new(); let mut inferencer = Inferencer { top_level: ctx.as_ref(), defined_identifiers: identifiers.clone(), function_data: &mut FunctionData { resolver: resolver.as_ref().unwrap().clone(), return_type: if unifier.unioned(inst_ret, primitives_ty.none) { None } else { Some(inst_ret) }, // NOTE: allowed type vars bound_variables: no_range_vars.clone(), }, unifier, variable_mapping: { let mut result: HashMap = HashMap::new(); if let Some(self_ty) = self_type { result.insert("self".into(), self_ty); } result.extend(inst_args.iter().map(|x| (x.name, x.ty))); result }, primitives: primitives_ty, virtual_checks: &mut Vec::new(), calls: &mut calls, in_handler: false, }; let ast::StmtKind::FunctionDef { body, decorator_list, .. } = ast.clone().unwrap().node else { unreachable!("must be function def ast") }; if !decorator_list.is_empty() { if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"extern".into()) { let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write() else { unreachable!() }; instance_to_symbol.insert(String::new(), simple_name.to_string()); continue; } if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"rpc".into()) { let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write() else { unreachable!() }; instance_to_symbol.insert(String::new(), simple_name.to_string()); continue; } if let ExprKind::Call { func, .. } = &decorator_list[0].node { if matches!(&func.node, ExprKind::Name { id, .. } if id == &"rpc".into()) { let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write() else { unreachable!() }; instance_to_symbol.insert(String::new(), simple_name.to_string()); continue; } } } let fun_body = body.into_iter() .map(|b| inferencer.fold_stmt(b)) .collect::, _>>()?; let returned = inferencer.check_block(fun_body.as_slice(), &mut identifiers)?; { // check virtuals let defs = ctx.definitions.read(); for (subtype, base, loc) in &*inferencer.virtual_checks { let base_id = { let base = inferencer.unifier.get_ty(*base); if let TypeEnum::TObj { obj_id, .. } = &*base { *obj_id } else { return Err(HashSet::from([format!( "Base type should be a class (at {loc})" )])); } }; let subtype_id = { let ty = inferencer.unifier.get_ty(*subtype); if let TypeEnum::TObj { obj_id, .. } = &*ty { *obj_id } else { let base_repr = inferencer.unifier.stringify(*base); let subtype_repr = inferencer.unifier.stringify(*subtype); return Err(HashSet::from([format!( "Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"), ])); } }; let subtype_entry = defs[subtype_id.0].read(); let TopLevelDef::Class { ancestors, .. } = &*subtype_entry else { unreachable!() }; let m = ancestors.iter() .find(|kind| matches!(kind, TypeAnnotation::CustomClass { id, .. } if *id == base_id)); if m.is_none() { let base_repr = inferencer.unifier.stringify(*base); let subtype_repr = inferencer.unifier.stringify(*subtype); return Err(HashSet::from([format!( "Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"), ])); } } } if !unifier.unioned(inst_ret, primitives_ty.none) && !returned { let def_ast_list = &definition_ast_list; let ret_str = unifier.internal_stringify( inst_ret, &mut |id| { let TopLevelDef::Class { name, .. } = &*def_ast_list[id].0.read() else { unreachable!("must be class id here") }; name.to_string() }, &mut |id| format!("typevar{id}"), &mut None, ); return Err(HashSet::from([format!( "expected return type of `{}` in function `{}` (at {})", ret_str, name, ast.as_ref().unwrap().location )])); } let TopLevelDef::Function { instance_to_stmt, .. } = &mut *def.write() else { unreachable!() }; instance_to_stmt.insert( get_subst_key( unifier, self_type, &subst, Some(&vars.keys().copied().collect()), ), FunInstance { body: Arc::new(fun_body), unifier_id: 0, calls: Arc::new(calls), subst, }, ); } Ok(()) }; for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.builtin_num) { if ast.is_none() { continue; } if let Err(e) = analyze_2(id, def, ast) { errors.extend(e); } } if !errors.is_empty() { return Err(errors); } Ok(()) } /// Step 4. Analyze and populate the types of global variables. fn analyze_top_level_variables(&mut self) -> Result<(), HashSet> { let def_list = &self.definition_ast_list; let temp_def_list = self.extract_def_list(); let unifier = &mut self.unifier; let primitives_store = &self.primitives_ty; let mut analyze = |variable_def: &Arc>| -> Result<_, HashSet> { let TopLevelDef::Variable { ty: dummy_ty, ty_decl, resolver, loc, .. } = &*variable_def.read() else { // not top level variable def, skip return Ok(()); }; let resolver = &**resolver.as_ref().unwrap(); if let Some(ty_decl) = ty_decl { let ty_decl = match &ty_decl.node { ExprKind::Subscript { value, slice, .. } if matches!( &value.node, ast::ExprKind::Name { id, .. } if self.core_config.kernel_ann.map_or(false, |c| id == &c.into()) ) => { slice } _ if self.core_config.kernel_ann.is_none() => ty_decl, _ => unreachable!("Global variables should be annotated with Kernel[]"), // ignore fields annotated otherwise }; let ty_annotation = parse_ast_to_type_annotation_kinds( resolver, &temp_def_list, unifier, primitives_store, ty_decl, HashMap::new(), )?; let ty_from_ty_annotation = get_type_from_type_annotation_kinds( &temp_def_list, unifier, primitives_store, &ty_annotation, &mut None, )?; unifier.unify(*dummy_ty, ty_from_ty_annotation).map_err(|e| { HashSet::from([e.at(Some(loc.unwrap())).to_display(unifier).to_string()]) })?; } Ok(()) }; let mut errors = HashSet::new(); for (variable_def, _) in def_list.iter().skip(self.builtin_num) { if let Err(e) = analyze(variable_def) { errors.extend(e); } } if !errors.is_empty() { return Err(errors); } Ok(()) } }