forked from M-Labs/nac3
Compare commits
40 Commits
ndstrides-
...
master
Author | SHA1 | Date | |
---|---|---|---|
5839badadd | |||
56c845aac4 | |||
65a12d9ab3 | |||
9c6685fa8f | |||
2bb788e4bb | |||
42a2f243b5 | |||
3ce2eddcdc | |||
51bf126a32 | |||
1a197c67f6 | |||
581b2f7bb2 | |||
746329ec5d | |||
e60e8e837f | |||
9fdbe9695d | |||
8065e73598 | |||
192290889b | |||
1407553a2f | |||
c7697606e1 | |||
88d0ccbf69 | |||
a43b59539c | |||
fe06b2806f | |||
7f6c9a25ac | |||
6c8382219f | |||
9274a7b96b | |||
d1c0fe2900 | |||
f2c047ba57 | |||
5e2e77a500 | |||
f3cc4702b9 | |||
3e92c491f5 | |||
7f629f1579 | |||
5640a793e2 | |||
abbaa506ad | |||
f3dc02d646 | |||
ea217eaea1 | |||
5a34551905 | |||
6098b1b853 | |||
668ccb1c95 | |||
a3c624d69d | |||
bd06155f34 | |||
9c33c4209c | |||
122983f11c |
@ -8,17 +8,17 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: nac3-cargo-fmt
|
- id: nac3-cargo-fmt
|
||||||
name: nac3 cargo format
|
name: nac3 cargo format
|
||||||
entry: cargo
|
entry: nix
|
||||||
language: system
|
language: system
|
||||||
types: [file, rust]
|
types: [file, rust]
|
||||||
pass_filenames: false
|
pass_filenames: false
|
||||||
description: Runs cargo fmt on the codebase.
|
description: Runs cargo fmt on the codebase.
|
||||||
args: [fmt]
|
args: [develop, -c, cargo, fmt, --all]
|
||||||
- id: nac3-cargo-clippy
|
- id: nac3-cargo-clippy
|
||||||
name: nac3 cargo clippy
|
name: nac3 cargo clippy
|
||||||
entry: cargo
|
entry: nix
|
||||||
language: system
|
language: system
|
||||||
types: [file, rust]
|
types: [file, rust]
|
||||||
pass_filenames: false
|
pass_filenames: false
|
||||||
description: Runs cargo clippy on the codebase.
|
description: Runs cargo clippy on the codebase.
|
||||||
args: [clippy, --tests]
|
args: [develop, -c, cargo, clippy, --tests]
|
||||||
|
333
Cargo.lock
generated
333
Cargo.lock
generated
@ -75,33 +75,33 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "ascii-canvas"
|
name = "ascii-canvas"
|
||||||
version = "3.0.0"
|
version = "4.0.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "8824ecca2e851cec16968d54a01dd372ef8f95b244fb84b84e70128be347c3c6"
|
checksum = "ef1e3e699d84ab1b0911a1010c5c106aa34ae89aeac103be5ce0c3859db1e891"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"term",
|
"term",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "autocfg"
|
name = "autocfg"
|
||||||
version = "1.3.0"
|
version = "1.4.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
|
checksum = "ace50bade8e6234aa140d9a2f552bbee1db4d353f69b8217bc503490fc1a9f26"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "bit-set"
|
name = "bit-set"
|
||||||
version = "0.5.3"
|
version = "0.8.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "0700ddab506f33b20a03b13996eccd309a48e5ff77d0d95926aa0210fb4e95f1"
|
checksum = "08807e080ed7f9d5433fa9b275196cfc35414f66a0c79d864dc51a0d825231a3"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"bit-vec",
|
"bit-vec",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "bit-vec"
|
name = "bit-vec"
|
||||||
version = "0.6.3"
|
version = "0.8.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "349f9b6a179ed607305526ca489b34ad0a41aed5f7980fa90eb03160b69598fb"
|
checksum = "5e764a1d40d510daf35e07be9eb06e75770908c27d411ee6c92109c9840eaaf7"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "bitflags"
|
name = "bitflags"
|
||||||
@ -109,6 +109,15 @@ version = "2.6.0"
|
|||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "b048fb63fd8b5923fc5aa7b340d8e156aec7ec02f0c78fa8a6ddc2613f6f71de"
|
checksum = "b048fb63fd8b5923fc5aa7b340d8e156aec7ec02f0c78fa8a6ddc2613f6f71de"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "block-buffer"
|
||||||
|
version = "0.10.4"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "3078c7629b62d3f0439517fa394996acacc5cbc91c5a20d8c658e77abd503a71"
|
||||||
|
dependencies = [
|
||||||
|
"generic-array",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "byteorder"
|
name = "byteorder"
|
||||||
version = "1.5.0"
|
version = "1.5.0"
|
||||||
@ -117,9 +126,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "cc"
|
name = "cc"
|
||||||
version = "1.1.15"
|
version = "1.1.24"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "57b6a275aa2903740dc87da01c62040406b8812552e97129a63ea8850a17c6e6"
|
checksum = "812acba72f0a070b003d3697490d2b55b837230ae7c6c6497f05cc2ddbb8d938"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"shlex",
|
"shlex",
|
||||||
]
|
]
|
||||||
@ -132,9 +141,9 @@ checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "clap"
|
name = "clap"
|
||||||
version = "4.5.16"
|
version = "4.5.19"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "ed6719fffa43d0d87e5fd8caeab59be1554fb028cd30edc88fc4369b17971019"
|
checksum = "7be5744db7978a28d9df86a214130d106a89ce49644cbc4e3f0c22c3fba30615"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"clap_builder",
|
"clap_builder",
|
||||||
"clap_derive",
|
"clap_derive",
|
||||||
@ -142,9 +151,9 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "clap_builder"
|
name = "clap_builder"
|
||||||
version = "4.5.15"
|
version = "4.5.19"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "216aec2b177652e3846684cbfe25c9964d18ec45234f0f5da5157b207ed1aab6"
|
checksum = "a5fbc17d3ef8278f55b282b2a2e75ae6f6c7d4bb70ed3d0382375104bfafdb4b"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"anstream",
|
"anstream",
|
||||||
"anstyle",
|
"anstyle",
|
||||||
@ -154,14 +163,14 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "clap_derive"
|
name = "clap_derive"
|
||||||
version = "4.5.13"
|
version = "4.5.18"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0"
|
checksum = "4ac6a0c7b1a9e9a5186361f67dfa1b88213572f427fb9ab038efb2bd8c582dab"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"heck 0.5.0",
|
"heck 0.5.0",
|
||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -188,6 +197,15 @@ dependencies = [
|
|||||||
"windows-sys 0.52.0",
|
"windows-sys 0.52.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "cpufeatures"
|
||||||
|
version = "0.2.14"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "608697df725056feaccfa42cffdaeeec3fccc4ffc38358ecd19b243e716a78e0"
|
||||||
|
dependencies = [
|
||||||
|
"libc",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "crossbeam"
|
name = "crossbeam"
|
||||||
version = "0.8.4"
|
version = "0.8.4"
|
||||||
@ -245,30 +263,23 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||||||
checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80"
|
checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "crunchy"
|
name = "crypto-common"
|
||||||
version = "0.2.2"
|
version = "0.1.6"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"
|
checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "dirs-next"
|
|
||||||
version = "2.0.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "b98cf8ebf19c3d1b223e151f99a4f9f0690dca41414773390fc824184ac833e1"
|
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"cfg-if",
|
"generic-array",
|
||||||
"dirs-sys-next",
|
"typenum",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "dirs-sys-next"
|
name = "digest"
|
||||||
version = "0.1.2"
|
version = "0.10.7"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "4ebda144c4fe02d1f7ea1a7d9641b6fc6b580adcfa024ae48797ecdeb6825b4d"
|
checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"libc",
|
"block-buffer",
|
||||||
"redox_users",
|
"crypto-common",
|
||||||
"winapi",
|
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -329,6 +340,16 @@ dependencies = [
|
|||||||
"byteorder",
|
"byteorder",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "generic-array"
|
||||||
|
version = "0.14.7"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
|
||||||
|
dependencies = [
|
||||||
|
"typenum",
|
||||||
|
"version_check",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "getopts"
|
name = "getopts"
|
||||||
version = "0.2.21"
|
version = "0.2.21"
|
||||||
@ -364,6 +385,12 @@ dependencies = [
|
|||||||
"ahash",
|
"ahash",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "hashbrown"
|
||||||
|
version = "0.15.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "1e087f84d4f86bf4b218b927129862374b72199ae7d8657835f1e89000eea4fb"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "heck"
|
name = "heck"
|
||||||
version = "0.4.1"
|
version = "0.4.1"
|
||||||
@ -376,6 +403,15 @@ version = "0.5.0"
|
|||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
|
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "home"
|
||||||
|
version = "0.5.9"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "e3d1354bf6b7235cb4a0576c2619fd4ed18183f689b12b006a0ee7329eeff9a5"
|
||||||
|
dependencies = [
|
||||||
|
"windows-sys 0.52.0",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "indexmap"
|
name = "indexmap"
|
||||||
version = "1.9.3"
|
version = "1.9.3"
|
||||||
@ -388,12 +424,12 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "indexmap"
|
name = "indexmap"
|
||||||
version = "2.4.0"
|
version = "2.6.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "93ead53efc7ea8ed3cfb0c79fc8023fbb782a5432b52830b6518941cebe6505c"
|
checksum = "707907fe3c25f5424cce2cb7e1cbcafee6bdbe735ca90ef77c29e84591e5b9da"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"equivalent",
|
"equivalent",
|
||||||
"hashbrown 0.14.5",
|
"hashbrown 0.15.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -404,9 +440,9 @@ checksum = "b248f5224d1d606005e02c97f5aa4e88eeb230488bcc03bc9ca4d7991399f2b5"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "inkwell"
|
name = "inkwell"
|
||||||
version = "0.4.0"
|
version = "0.5.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "b597a7b2cdf279aeef6d7149071e35e4bc87c2cf05a5b7f2d731300bffe587ea"
|
checksum = "40fb405537710d51f6bdbc8471365ddd4cd6d3a3c3ad6e0c8291691031ba94b2"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"either",
|
"either",
|
||||||
"inkwell_internals",
|
"inkwell_internals",
|
||||||
@ -418,13 +454,13 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "inkwell_internals"
|
name = "inkwell_internals"
|
||||||
version = "0.9.0"
|
version = "0.10.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2"
|
checksum = "9dd28cfd4cfba665d47d31c08a6ba637eed16770abca2eccbbc3ca831fef1e44"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -447,15 +483,6 @@ version = "1.70.1"
|
|||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
|
checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "itertools"
|
|
||||||
version = "0.11.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "b1c173a5686ce8bfa551b3563d0c2170bf24ca44da99c7ca4bfdab5418c3fe57"
|
|
||||||
dependencies = [
|
|
||||||
"either",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "itertools"
|
name = "itertools"
|
||||||
version = "0.13.0"
|
version = "0.13.0"
|
||||||
@ -472,34 +499,44 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||||||
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"
|
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "lalrpop"
|
name = "keccak"
|
||||||
version = "0.20.2"
|
version = "0.1.5"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "55cb077ad656299f160924eb2912aa147d7339ea7d69e1b5517326fdcec3c1ca"
|
checksum = "ecc2af9a1119c51f12a14607e783cb977bde58bc069ff0c3da1095e635d70654"
|
||||||
|
dependencies = [
|
||||||
|
"cpufeatures",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "lalrpop"
|
||||||
|
version = "0.22.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "06093b57658c723a21da679530e061a8c25340fa5a6f98e313b542268c7e2a1f"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"ascii-canvas",
|
"ascii-canvas",
|
||||||
"bit-set",
|
"bit-set",
|
||||||
"ena",
|
"ena",
|
||||||
"itertools 0.11.0",
|
"itertools",
|
||||||
"lalrpop-util",
|
"lalrpop-util",
|
||||||
"petgraph",
|
"petgraph",
|
||||||
"pico-args",
|
"pico-args",
|
||||||
"regex",
|
"regex",
|
||||||
"regex-syntax",
|
"regex-syntax",
|
||||||
|
"sha3",
|
||||||
"string_cache",
|
"string_cache",
|
||||||
"term",
|
"term",
|
||||||
"tiny-keccak",
|
|
||||||
"unicode-xid",
|
"unicode-xid",
|
||||||
"walkdir",
|
"walkdir",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "lalrpop-util"
|
name = "lalrpop-util"
|
||||||
version = "0.20.2"
|
version = "0.22.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "507460a910eb7b32ee961886ff48539633b788a36b65692b95f225b844c82553"
|
checksum = "feee752d43abd0f4807a921958ab4131f692a44d4d599733d4419c5d586176ce"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"regex-automata",
|
"regex-automata",
|
||||||
|
"rustversion",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -510,9 +547,9 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "libc"
|
name = "libc"
|
||||||
version = "0.2.158"
|
version = "0.2.159"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "d8adc4bb1803a324070e64a98ae98f38934d91957a99cfb3a43dcbc01bc56439"
|
checksum = "561d97a539a36e26a9a5fad1ea11a3039a67714694aaa379433e580854bc3dc5"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "libloading"
|
name = "libloading"
|
||||||
@ -524,16 +561,6 @@ dependencies = [
|
|||||||
"windows-targets",
|
"windows-targets",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "libredox"
|
|
||||||
version = "0.1.3"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "c0ff37bd590ca25063e35af745c343cb7a0271906fb7b37e4813e8f79f00268d"
|
|
||||||
dependencies = [
|
|
||||||
"bitflags",
|
|
||||||
"libc",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "linked-hash-map"
|
name = "linked-hash-map"
|
||||||
version = "0.5.6"
|
version = "0.5.6"
|
||||||
@ -594,11 +621,9 @@ dependencies = [
|
|||||||
name = "nac3artiq"
|
name = "nac3artiq"
|
||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"inkwell",
|
"itertools",
|
||||||
"itertools 0.13.0",
|
|
||||||
"nac3core",
|
"nac3core",
|
||||||
"nac3ld",
|
"nac3ld",
|
||||||
"nac3parser",
|
|
||||||
"parking_lot",
|
"parking_lot",
|
||||||
"pyo3",
|
"pyo3",
|
||||||
"tempfile",
|
"tempfile",
|
||||||
@ -619,11 +644,11 @@ name = "nac3core"
|
|||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"crossbeam",
|
"crossbeam",
|
||||||
"indexmap 2.4.0",
|
"indexmap 2.6.0",
|
||||||
"indoc",
|
"indoc",
|
||||||
"inkwell",
|
"inkwell",
|
||||||
"insta",
|
"insta",
|
||||||
"itertools 0.13.0",
|
"itertools",
|
||||||
"nac3parser",
|
"nac3parser",
|
||||||
"parking_lot",
|
"parking_lot",
|
||||||
"rayon",
|
"rayon",
|
||||||
@ -661,9 +686,7 @@ name = "nac3standalone"
|
|||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"clap",
|
"clap",
|
||||||
"inkwell",
|
|
||||||
"nac3core",
|
"nac3core",
|
||||||
"nac3parser",
|
|
||||||
"parking_lot",
|
"parking_lot",
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -675,9 +698,12 @@ checksum = "650eef8c711430f1a879fdd01d4745a7deea475becfb90269c06775983bbf086"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "once_cell"
|
name = "once_cell"
|
||||||
version = "1.19.0"
|
version = "1.20.1"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"
|
checksum = "82881c4be219ab5faaf2ad5e5e5ecdff8c66bd7402ca3160975c93b24961afd1"
|
||||||
|
dependencies = [
|
||||||
|
"portable-atomic",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "parking_lot"
|
name = "parking_lot"
|
||||||
@ -709,7 +735,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||||||
checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db"
|
checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"fixedbitset",
|
"fixedbitset",
|
||||||
"indexmap 2.4.0",
|
"indexmap 2.6.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -752,7 +778,7 @@ dependencies = [
|
|||||||
"phf_shared 0.11.2",
|
"phf_shared 0.11.2",
|
||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -781,9 +807,9 @@ checksum = "5be167a7af36ee22fe3115051bc51f6e6c7054c9348e28deb4f49bd6f705a315"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "portable-atomic"
|
name = "portable-atomic"
|
||||||
version = "1.7.0"
|
version = "1.9.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265"
|
checksum = "cc9c68a3f6da06753e9335d63e27f6b9754dd1920d941135b7ea8224f141adb2"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "ppv-lite86"
|
name = "ppv-lite86"
|
||||||
@ -856,7 +882,7 @@ dependencies = [
|
|||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"pyo3-macros-backend",
|
"pyo3-macros-backend",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -869,7 +895,7 @@ dependencies = [
|
|||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"pyo3-build-config",
|
"pyo3-build-config",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -933,29 +959,18 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "redox_syscall"
|
name = "redox_syscall"
|
||||||
version = "0.5.3"
|
version = "0.5.7"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "2a908a6e00f1fdd0dfd9c0eb08ce85126f6d8bbda50017e74bc4a4b7d4a926a4"
|
checksum = "9b6dfecf2c74bce2466cabf93f6664d6998a69eb21e39f4207930065b27b771f"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"bitflags",
|
"bitflags",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "redox_users"
|
|
||||||
version = "0.4.6"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "ba009ff324d1fc1b900bd1fdb31564febe58a8ccc8a6fdbb93b543d33b13ca43"
|
|
||||||
dependencies = [
|
|
||||||
"getrandom",
|
|
||||||
"libredox",
|
|
||||||
"thiserror",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "regex"
|
name = "regex"
|
||||||
version = "1.10.6"
|
version = "1.11.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619"
|
checksum = "38200e5ee88914975b69f657f0801b6f6dccafd44fd9326302a4aaeecfacb1d8"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"aho-corasick",
|
"aho-corasick",
|
||||||
"memchr",
|
"memchr",
|
||||||
@ -965,9 +980,9 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "regex-automata"
|
name = "regex-automata"
|
||||||
version = "0.4.7"
|
version = "0.4.8"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "38caf58cc5ef2fed281f89292ef23f6365465ed9a41b7a7754eb4e26496c92df"
|
checksum = "368758f23274712b504848e9d5a6f010445cc8b87a7cdb4d7cbee666c1288da3"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"aho-corasick",
|
"aho-corasick",
|
||||||
"memchr",
|
"memchr",
|
||||||
@ -976,9 +991,9 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "regex-syntax"
|
name = "regex-syntax"
|
||||||
version = "0.8.4"
|
version = "0.8.5"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "7a66a03ae7c801facd77a29370b4faec201768915ac14a721ba36f20bc9c209b"
|
checksum = "2b15c43186be67a4fd63bee50d0303afffcef381492ebe2c5d87f324e1b8815c"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "runkernel"
|
name = "runkernel"
|
||||||
@ -989,9 +1004,9 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "rustix"
|
name = "rustix"
|
||||||
version = "0.38.35"
|
version = "0.38.37"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "a85d50532239da68e9addb745ba38ff4612a242c1c7ceea689c4bc7c2f43c36f"
|
checksum = "8acb788b847c24f28525660c4d7758620a7210875711f79e7f663cc152726811"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"bitflags",
|
"bitflags",
|
||||||
"errno",
|
"errno",
|
||||||
@ -1035,29 +1050,29 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "serde"
|
name = "serde"
|
||||||
version = "1.0.209"
|
version = "1.0.210"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "99fce0ffe7310761ca6bf9faf5115afbc19688edd00171d81b1bb1b116c63e09"
|
checksum = "c8e3592472072e6e22e0a54d5904d9febf8508f65fb8552499a1abc7d1078c3a"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"serde_derive",
|
"serde_derive",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "serde_derive"
|
name = "serde_derive"
|
||||||
version = "1.0.209"
|
version = "1.0.210"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "a5831b979fd7b5439637af1752d535ff49f4860c0f341d1baeb6faf0f4242170"
|
checksum = "243902eda00fad750862fc144cea25caca5e20d615af0a81bee94ca738f1df1f"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "serde_json"
|
name = "serde_json"
|
||||||
version = "1.0.127"
|
version = "1.0.128"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "8043c06d9f82bd7271361ed64f415fe5e12a77fdb52e573e7f06a516dea329ad"
|
checksum = "6ff5456707a1de34e7e37f2a6fd3d3f808c318259cbd01ab6377795054b483d8"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"itoa",
|
"itoa",
|
||||||
"memchr",
|
"memchr",
|
||||||
@ -1077,6 +1092,16 @@ dependencies = [
|
|||||||
"yaml-rust",
|
"yaml-rust",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "sha3"
|
||||||
|
version = "0.10.8"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "75872d278a8f37ef87fa0ddbda7802605cb18344497949862c0d4dcb291eba60"
|
||||||
|
dependencies = [
|
||||||
|
"digest",
|
||||||
|
"keccak",
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "shlex"
|
name = "shlex"
|
||||||
version = "1.3.0"
|
version = "1.3.0"
|
||||||
@ -1147,7 +1172,7 @@ dependencies = [
|
|||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
"rustversion",
|
"rustversion",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -1163,9 +1188,9 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "syn"
|
name = "syn"
|
||||||
version = "2.0.76"
|
version = "2.0.79"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "578e081a14e0cefc3279b0472138c513f37b41a08d5a3cca9b6e4e8ceb6cd525"
|
checksum = "89132cd0bf050864e1d38dc3bbc07a0eb8e7530af26344d3d2bbbef83499f590"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
@ -1180,9 +1205,9 @@ checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1"
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "tempfile"
|
name = "tempfile"
|
||||||
version = "3.12.0"
|
version = "3.13.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "04cbcdd0c794ebb0d4cf35e88edd2f7d2c4c3e9a5a6dab322839b321c6a87a64"
|
checksum = "f0f2c9fc62d0beef6951ccffd757e241266a2c833136efbe35af6cd2567dca5b"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"cfg-if",
|
"cfg-if",
|
||||||
"fastrand",
|
"fastrand",
|
||||||
@ -1193,13 +1218,12 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "term"
|
name = "term"
|
||||||
version = "0.7.0"
|
version = "1.0.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "c59df8ac95d96ff9bede18eb7300b0fda5e5d8d90960e76f8e14ae765eedbf1f"
|
checksum = "4df4175de05129f31b80458c6df371a15e7fc3fd367272e6bf938e5c351c7ea0"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"dirs-next",
|
"home",
|
||||||
"rustversion",
|
"windows-sys 0.52.0",
|
||||||
"winapi",
|
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
@ -1217,32 +1241,29 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "thiserror"
|
name = "thiserror"
|
||||||
version = "1.0.63"
|
version = "1.0.64"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724"
|
checksum = "d50af8abc119fb8bb6dbabcfa89656f46f84aa0ac7688088608076ad2b459a84"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"thiserror-impl",
|
"thiserror-impl",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "thiserror-impl"
|
name = "thiserror-impl"
|
||||||
version = "1.0.63"
|
version = "1.0.64"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261"
|
checksum = "08904e7672f5eb876eaaf87e0ce17857500934f4981c4a0ab2b4aa98baac7fc3"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "tiny-keccak"
|
name = "typenum"
|
||||||
version = "2.0.2"
|
version = "1.17.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "2c9d3793400a45f954c52e73d068316d76b6f4e36977e3fcebb13a2721e80237"
|
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"
|
||||||
dependencies = [
|
|
||||||
"crunchy",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "unic-char-property"
|
name = "unic-char-property"
|
||||||
@ -1298,27 +1319,27 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "unicode-ident"
|
name = "unicode-ident"
|
||||||
version = "1.0.12"
|
version = "1.0.13"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"
|
checksum = "e91b56cd4cadaeb79bbf1a5645f6b4f8dc5bde8834ad5894a8db35fda9efa1fe"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "unicode-width"
|
name = "unicode-width"
|
||||||
version = "0.1.13"
|
version = "0.1.14"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "0336d538f7abc86d282a4189614dfaa90810dfc2c6f6427eaf88e16311dd225d"
|
checksum = "7dd6e30e90baa6f72411720665d41d89b9a3d039dc45b8faea1ddd07f617f6af"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "unicode-xid"
|
name = "unicode-xid"
|
||||||
version = "0.2.5"
|
version = "0.2.6"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "229730647fbc343e3a80e463c1db7f78f3855d3f3739bee0dda773c9a037c90a"
|
checksum = "ebc1c04c71510c7f702b52b7c350734c9ff1295c464a03335b00bb84fc54f853"
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "unicode_names2"
|
name = "unicode_names2"
|
||||||
version = "1.2.2"
|
version = "1.3.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "addeebf294df7922a1164f729fb27ebbbcea99cc32b3bf08afab62757f707677"
|
checksum = "d1673eca9782c84de5f81b82e4109dcfb3611c8ba0d52930ec4a9478f547b2dd"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"phf",
|
"phf",
|
||||||
"unicode_names2_generator",
|
"unicode_names2_generator",
|
||||||
@ -1326,9 +1347,9 @@ dependencies = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "unicode_names2_generator"
|
name = "unicode_names2_generator"
|
||||||
version = "1.2.2"
|
version = "1.3.0"
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "f444b8bba042fe3c1251ffaca35c603f2dc2ccc08d595c65a8c4f76f3e8426c0"
|
checksum = "b91e5b84611016120197efd7dc93ef76774f4e084cd73c9fb3ea4a86c570c56e"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"getopts",
|
"getopts",
|
||||||
"log",
|
"log",
|
||||||
@ -1370,22 +1391,6 @@ version = "0.11.0+wasi-snapshot-preview1"
|
|||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
|
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "winapi"
|
|
||||||
version = "0.3.9"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
|
|
||||||
dependencies = [
|
|
||||||
"winapi-i686-pc-windows-gnu",
|
|
||||||
"winapi-x86_64-pc-windows-gnu",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "winapi-i686-pc-windows-gnu"
|
|
||||||
version = "0.4.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "winapi-util"
|
name = "winapi-util"
|
||||||
version = "0.1.9"
|
version = "0.1.9"
|
||||||
@ -1395,12 +1400,6 @@ dependencies = [
|
|||||||
"windows-sys 0.59.0",
|
"windows-sys 0.59.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "winapi-x86_64-pc-windows-gnu"
|
|
||||||
version = "0.4.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
|
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "windows-sys"
|
name = "windows-sys"
|
||||||
version = "0.52.0"
|
version = "0.52.0"
|
||||||
@ -1510,5 +1509,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
|
|||||||
dependencies = [
|
dependencies = [
|
||||||
"proc-macro2",
|
"proc-macro2",
|
||||||
"quote",
|
"quote",
|
||||||
"syn 2.0.76",
|
"syn 2.0.79",
|
||||||
]
|
]
|
||||||
|
6
flake.lock
generated
6
flake.lock
generated
@ -2,11 +2,11 @@
|
|||||||
"nodes": {
|
"nodes": {
|
||||||
"nixpkgs": {
|
"nixpkgs": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1723637854,
|
"lastModified": 1727348695,
|
||||||
"narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=",
|
"narHash": "sha256-J+PeFKSDV+pHL7ukkfpVzCOO7mBSrrpJ3svwBFABbhI=",
|
||||||
"owner": "NixOS",
|
"owner": "NixOS",
|
||||||
"repo": "nixpkgs",
|
"repo": "nixpkgs",
|
||||||
"rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9",
|
"rev": "1925c603f17fc89f4c8f6bf6f631a802ad85d784",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
|
@ -12,16 +12,10 @@ crate-type = ["cdylib"]
|
|||||||
itertools = "0.13"
|
itertools = "0.13"
|
||||||
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
|
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
|
||||||
parking_lot = "0.12"
|
parking_lot = "0.12"
|
||||||
tempfile = "3.10"
|
tempfile = "3.13"
|
||||||
nac3parser = { path = "../nac3parser" }
|
|
||||||
nac3core = { path = "../nac3core" }
|
nac3core = { path = "../nac3core" }
|
||||||
nac3ld = { path = "../nac3ld" }
|
nac3ld = { path = "../nac3ld" }
|
||||||
|
|
||||||
[dependencies.inkwell]
|
|
||||||
version = "0.4"
|
|
||||||
default-features = false
|
|
||||||
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
init-llvm-profile = []
|
init-llvm-profile = []
|
||||||
no-escape-analysis = ["nac3core/no-escape-analysis"]
|
no-escape-analysis = ["nac3core/no-escape-analysis"]
|
||||||
|
@ -112,10 +112,15 @@ def extern(function):
|
|||||||
register_function(function)
|
register_function(function)
|
||||||
return function
|
return function
|
||||||
|
|
||||||
def rpc(function):
|
|
||||||
"""Decorates a function declaration defined by the core device runtime."""
|
def rpc(arg=None, flags={}):
|
||||||
register_function(function)
|
"""Decorates a function or method to be executed on the host interpreter."""
|
||||||
return function
|
if arg is None:
|
||||||
|
def inner_decorator(function):
|
||||||
|
return rpc(function, flags)
|
||||||
|
return inner_decorator
|
||||||
|
register_function(arg)
|
||||||
|
return arg
|
||||||
|
|
||||||
def kernel(function_or_method):
|
def kernel(function_or_method):
|
||||||
"""Decorates a function or method to be executed on the core device."""
|
"""Decorates a function or method to be executed on the core device."""
|
||||||
|
@ -1,41 +1,3 @@
|
|||||||
use nac3core::{
|
|
||||||
codegen::{
|
|
||||||
classes::{ListValue, RangeValue, UntypedArrayLikeAccessor},
|
|
||||||
expr::{destructure_range, gen_call},
|
|
||||||
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
|
|
||||||
model::*,
|
|
||||||
object::{any::AnyObject, ndarray::NDArrayObject},
|
|
||||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
},
|
|
||||||
symbol_resolver::ValueEnum,
|
|
||||||
toplevel::{
|
|
||||||
helper::{extract_ndims, PrimDef},
|
|
||||||
numpy::unpack_ndarray_var_tys,
|
|
||||||
DefinitionId, GenCall,
|
|
||||||
},
|
|
||||||
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
|
|
||||||
};
|
|
||||||
|
|
||||||
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
|
|
||||||
|
|
||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
module::Linkage,
|
|
||||||
types::IntType,
|
|
||||||
values::{BasicValue, BasicValueEnum, PointerValue, StructValue},
|
|
||||||
AddressSpace, IntPredicate, OptimizationLevel,
|
|
||||||
};
|
|
||||||
|
|
||||||
use pyo3::{
|
|
||||||
types::{PyDict, PyList},
|
|
||||||
PyObject, PyResult, Python,
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
|
|
||||||
|
|
||||||
use inkwell::values::IntValue;
|
|
||||||
use itertools::Itertools;
|
|
||||||
use std::{
|
use std::{
|
||||||
collections::{hash_map::DefaultHasher, HashMap},
|
collections::{hash_map::DefaultHasher, HashMap},
|
||||||
hash::{Hash, Hasher},
|
hash::{Hash, Hasher},
|
||||||
@ -44,6 +6,39 @@ use std::{
|
|||||||
sync::Arc,
|
sync::Arc,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
use itertools::Itertools;
|
||||||
|
use pyo3::{
|
||||||
|
types::{PyDict, PyList},
|
||||||
|
PyObject, PyResult, Python,
|
||||||
|
};
|
||||||
|
|
||||||
|
use nac3core::{
|
||||||
|
codegen::{
|
||||||
|
classes::{
|
||||||
|
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
|
||||||
|
NDArrayValue, ProxyType, ProxyValue, RangeValue, UntypedArrayLikeAccessor,
|
||||||
|
},
|
||||||
|
expr::{destructure_range, gen_call},
|
||||||
|
irrt::call_ndarray_calc_size,
|
||||||
|
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
|
||||||
|
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
},
|
||||||
|
inkwell::{
|
||||||
|
context::Context,
|
||||||
|
module::Linkage,
|
||||||
|
types::{BasicType, IntType},
|
||||||
|
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
|
||||||
|
AddressSpace, IntPredicate, OptimizationLevel,
|
||||||
|
},
|
||||||
|
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
|
||||||
|
symbol_resolver::ValueEnum,
|
||||||
|
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
|
||||||
|
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
|
||||||
|
|
||||||
/// The parallelism mode within a block.
|
/// The parallelism mode within a block.
|
||||||
#[derive(Copy, Clone, Eq, PartialEq)]
|
#[derive(Copy, Clone, Eq, PartialEq)]
|
||||||
enum ParallelMode {
|
enum ParallelMode {
|
||||||
@ -459,42 +454,55 @@ fn format_rpc_arg<'ctx>(
|
|||||||
// NAC3: NDArray = { usize, usize*, T* }
|
// NAC3: NDArray = { usize, usize*, T* }
|
||||||
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
||||||
|
|
||||||
let ndarray = AnyObject { ty: arg_ty, value: arg };
|
let llvm_i1 = ctx.ctx.bool_type();
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
|
||||||
let dtype = ctx.get_llvm_type(generator, ndarray.dtype);
|
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
|
||||||
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||||
|
let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
|
||||||
|
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
|
||||||
|
|
||||||
// `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
|
let llvm_usize_sizeof = ctx
|
||||||
// the reader.
|
.builder
|
||||||
// Turning it into a ContiguousNDArray to get a `data` that is contiguous.
|
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
|
||||||
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype));
|
.unwrap();
|
||||||
|
let llvm_pdata_sizeof = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_truncate_or_bit_cast(
|
||||||
|
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
|
||||||
|
llvm_usize,
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
let sizeof_sizet = Int(SizeT).size_of(generator, ctx.ctx);
|
let dims_buf_sz =
|
||||||
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet);
|
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
||||||
|
|
||||||
let sizeof_pdata = Ptr(Any(dtype)).size_of(generator, ctx.ctx);
|
let buffer_size =
|
||||||
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata);
|
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
|
||||||
|
|
||||||
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims);
|
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
|
||||||
let sizeof_buf = sizeof_buf_shape.add(ctx, sizeof_pdata);
|
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
|
||||||
|
|
||||||
// buf = { data: void*, shape: [size_t; ndims]; }
|
call_memcpy_generic(
|
||||||
let buf = Int(Byte).array_alloca(generator, ctx, sizeof_buf.value);
|
ctx,
|
||||||
let buf_data = buf;
|
buffer.base_ptr(ctx, generator),
|
||||||
let buf_shape = buf_data.offset(ctx, sizeof_pdata.value);
|
llvm_arg.ptr_to_data(ctx),
|
||||||
|
llvm_pdata_sizeof,
|
||||||
|
llvm_i1.const_zero(),
|
||||||
|
);
|
||||||
|
|
||||||
// Write to `buf->data`
|
let pbuffer_dims_begin =
|
||||||
let carray_data = carray.get(generator, ctx, |f| f.data); // has type Ptr<Any>
|
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
||||||
let carray_data = carray_data.pointer_cast(generator, ctx, Int(Byte));
|
call_memcpy_generic(
|
||||||
buf_data.copy_from(generator, ctx, carray_data, sizeof_pdata.value);
|
ctx,
|
||||||
|
pbuffer_dims_begin,
|
||||||
|
llvm_arg.dim_sizes().base_ptr(ctx, generator),
|
||||||
|
dims_buf_sz,
|
||||||
|
llvm_i1.const_zero(),
|
||||||
|
);
|
||||||
|
|
||||||
// Write to `buf->shape`
|
buffer.base_ptr(ctx, generator)
|
||||||
let carray_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
let carray_shape_i8 = carray_shape.pointer_cast(generator, ctx, Int(Byte));
|
|
||||||
buf_shape.copy_from(generator, ctx, carray_shape_i8, sizeof_buf_shape.value);
|
|
||||||
|
|
||||||
buf.value
|
|
||||||
}
|
}
|
||||||
|
|
||||||
_ => {
|
_ => {
|
||||||
@ -504,7 +512,7 @@ fn format_rpc_arg<'ctx>(
|
|||||||
ctx.builder.build_store(arg_slot, arg).unwrap();
|
ctx.builder.build_store(arg_slot, arg).unwrap();
|
||||||
|
|
||||||
ctx.builder
|
ctx.builder
|
||||||
.build_bitcast(arg_slot, llvm_pi8, "rpc.arg")
|
.build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap()
|
.unwrap()
|
||||||
}
|
}
|
||||||
@ -555,10 +563,8 @@ fn format_rpc_ret<'ctx>(
|
|||||||
|
|
||||||
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
|
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
|
||||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
// FIXME: It is possible to rewrite everything more neatly with `Model<'ctx>`, but this is not too important.
|
let llvm_i1 = ctx.ctx.bool_type();
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
|
|
||||||
let num_8 = Int(SizeT).const_int(generator, ctx.ctx, 8, false);
|
|
||||||
|
|
||||||
// Round `val` up to its modulo `power_of_two`
|
// Round `val` up to its modulo `power_of_two`
|
||||||
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
|
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
@ -584,36 +590,60 @@ fn format_rpc_ret<'ctx>(
|
|||||||
.unwrap()
|
.unwrap()
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// Setup types
|
||||||
|
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
|
||||||
|
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||||
|
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
|
||||||
|
|
||||||
// Allocate the resulting ndarray
|
// Allocate the resulting ndarray
|
||||||
// A condition after format_rpc_ret ensures this will not be popped this off.
|
// A condition after format_rpc_ret ensures this will not be popped this off.
|
||||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
|
let ndarray = llvm_ret_ty.new_value(generator, ctx, Some("rpc.result"));
|
||||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
|
||||||
|
|
||||||
// NOTE: Current content of `ndarray`:
|
// Setup ndims
|
||||||
// - * `data` - **NOT YET** allocated.
|
let ndims =
|
||||||
// - * `itemsize` - initialized to be size_of(dtype).
|
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) {
|
||||||
// - * `ndims` - initialized.
|
assert_eq!(values.len(), 1);
|
||||||
// - * `shape` - allocated; has uninitialized values.
|
|
||||||
// - * `strides` - allocated; has uninitialized values.
|
|
||||||
|
|
||||||
let itemsize = ndarray.instance.get(generator, ctx, |f| f.itemsize); // Same as doing a `ctx.get_llvm_type` on `dtype` and get its `size_of()`.
|
u64::try_from(values[0].clone()).unwrap()
|
||||||
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
} else {
|
||||||
|
unreachable!();
|
||||||
|
};
|
||||||
|
// Set `ndarray.ndims`
|
||||||
|
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
|
||||||
|
// Allocate `ndarray.shape` [size_t; ndims]
|
||||||
|
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray.load_ndims(ctx));
|
||||||
|
|
||||||
|
/*
|
||||||
|
ndarray now:
|
||||||
|
- .ndims: initialized
|
||||||
|
- .shape: allocated but uninitialized .shape
|
||||||
|
- .data: uninitialized
|
||||||
|
*/
|
||||||
|
|
||||||
|
let llvm_usize_sizeof = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
|
||||||
|
.unwrap();
|
||||||
|
let llvm_pdata_sizeof = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_truncate_or_bit_cast(
|
||||||
|
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
|
||||||
|
llvm_usize,
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
let llvm_elem_sizeof = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
|
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
|
||||||
// (4 + 4 * ndims) bytes with 8-byte alignment
|
// (4 + 4 * ndims) bytes with 8-byte alignment
|
||||||
let sizeof_size_t = Int(SizeT).size_of(generator, ctx.ctx);
|
let sizeof_dims =
|
||||||
let sizeof_size_t = Int(SizeT).z_extend_or_truncate(generator, ctx, sizeof_size_t); // sizeof(size_t)
|
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
||||||
|
let unaligned_buffer_size =
|
||||||
let sizeof_ptr = Ptr(Int(Byte)).size_of(generator, ctx.ctx);
|
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
|
||||||
let sizeof_ptr = Int(SizeT).z_extend_or_truncate(generator, ctx, sizeof_ptr); // sizeof(uint8_t*)
|
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
|
||||||
|
|
||||||
let sizeof_shape = ndarray.ndims_llvm(generator, ctx.ctx).mul(ctx, sizeof_size_t); // sizeof([size_t; ndims]); same as the # of bytes of `ndarray.shape`.
|
|
||||||
|
|
||||||
// Size of the buffer for the initial `rpc_recv()`.
|
|
||||||
let unaligned_buffer_size = sizeof_ptr.add(ctx, sizeof_shape); // sizeof(uint8_t*) + sizeof([size_t; ndims]).
|
|
||||||
let buffer_size = round_up(ctx, unaligned_buffer_size.value, num_8.value);
|
|
||||||
let buffer_size = unsafe { Int(SizeT).believe_value(buffer_size) };
|
|
||||||
|
|
||||||
let stackptr = call_stacksave(ctx, None);
|
let stackptr = call_stacksave(ctx, None);
|
||||||
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
|
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
|
||||||
@ -621,16 +651,18 @@ fn format_rpc_ret<'ctx>(
|
|||||||
.builder
|
.builder
|
||||||
.build_array_alloca(
|
.build_array_alloca(
|
||||||
llvm_i8_8,
|
llvm_i8_8,
|
||||||
ctx.builder.build_int_unsigned_div(buffer_size.value, num_8.value, "").unwrap(),
|
ctx.builder
|
||||||
|
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "")
|
||||||
|
.unwrap(),
|
||||||
"rpc.buffer",
|
"rpc.buffer",
|
||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
let buffer = ctx
|
let buffer = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_bitcast(buffer, llvm_pi8, "")
|
.build_bit_cast(buffer, llvm_pi8, "")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
let buffer = unsafe { Ptr(Int(Byte)).believe_value(buffer) };
|
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
|
||||||
|
|
||||||
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
|
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
|
||||||
//
|
//
|
||||||
@ -638,20 +670,24 @@ fn format_rpc_ret<'ctx>(
|
|||||||
let ndarray_nbytes = ctx
|
let ndarray_nbytes = ctx
|
||||||
.build_call_or_invoke(
|
.build_call_or_invoke(
|
||||||
rpc_recv,
|
rpc_recv,
|
||||||
&[buffer.value.into()], // Reads [usize; ndims]
|
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims].
|
||||||
"rpc.size.next",
|
"rpc.size.next",
|
||||||
)
|
)
|
||||||
.map(BasicValueEnum::into_int_value)
|
.map(BasicValueEnum::into_int_value)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
let ndarray_nbytes = unsafe { Int(SizeT).believe_value(ndarray_nbytes) };
|
|
||||||
|
|
||||||
// debug_assert(ndarray_nbytes > 0)
|
// debug_assert(ndarray_nbytes > 0)
|
||||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||||
let cmp = ndarray_nbytes.compare(ctx, IntPredicate::UGT, num_0);
|
|
||||||
|
|
||||||
ctx.make_assert(
|
ctx.make_assert(
|
||||||
generator,
|
generator,
|
||||||
cmp.value,
|
ctx.builder
|
||||||
|
.build_int_compare(
|
||||||
|
IntPredicate::UGT,
|
||||||
|
ndarray_nbytes,
|
||||||
|
ndarray_nbytes.get_type().const_zero(),
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.unwrap(),
|
||||||
"0:AssertionError",
|
"0:AssertionError",
|
||||||
"Unexpected RPC termination for ndarray - Expected data buffer next",
|
"Unexpected RPC termination for ndarray - Expected data buffer next",
|
||||||
[None, None, None],
|
[None, None, None],
|
||||||
@ -660,39 +696,49 @@ fn format_rpc_ret<'ctx>(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Copy shape from the buffer to `ndarray.shape`.
|
// Copy shape from the buffer to `ndarray.shape`.
|
||||||
// We need to skip the first `sizeof(uint8_t*)` bytes to skip the `pdata` in `[pdata, shape]`.
|
let pbuffer_dims =
|
||||||
let pbuffer_shape = buffer.offset(ctx, sizeof_ptr.value);
|
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
||||||
let pbuffer_shape = pbuffer_shape.pointer_cast(generator, ctx, Int(SizeT));
|
|
||||||
|
|
||||||
// Copy shape from buffer to `ndarray.shape`
|
|
||||||
ndarray.copy_shape_from_array(generator, ctx, pbuffer_shape);
|
|
||||||
|
|
||||||
|
call_memcpy_generic(
|
||||||
|
ctx,
|
||||||
|
ndarray.dim_sizes().base_ptr(ctx, generator),
|
||||||
|
pbuffer_dims,
|
||||||
|
sizeof_dims,
|
||||||
|
llvm_i1.const_zero(),
|
||||||
|
);
|
||||||
// Restore stack from before allocation of buffer
|
// Restore stack from before allocation of buffer
|
||||||
call_stackrestore(ctx, stackptr);
|
call_stackrestore(ctx, stackptr);
|
||||||
|
|
||||||
// Allocate `ndarray.data`.
|
// Allocate `ndarray.data`.
|
||||||
// `ndarray.shape` must be initialized beforehand in this implementation
|
// `ndarray.shape` must be initialized beforehand in this implementation
|
||||||
// (for ndarray.create_data() to know how many elements to allocate)
|
// (for ndarray.create_data() to know how many elements to allocate)
|
||||||
ndarray.create_data(generator, ctx); // NOTE: the strides of `ndarray` has also been set to contiguous in `::create_data()`.
|
let num_elements =
|
||||||
|
call_ndarray_calc_size(generator, ctx, &ndarray.dim_sizes(), (None, None));
|
||||||
|
|
||||||
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
|
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
|
||||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||||
let num_elements = ndarray.size(generator, ctx);
|
let sizeof_data =
|
||||||
|
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
|
||||||
let expected_ndarray_nbytes = num_elements.mul(ctx, itemsize);
|
|
||||||
let cmp = expected_ndarray_nbytes.compare(ctx, IntPredicate::UGE, ndarray_nbytes);
|
|
||||||
|
|
||||||
ctx.make_assert(
|
ctx.make_assert(
|
||||||
generator,
|
generator,
|
||||||
cmp.value,
|
ctx.builder.build_int_compare(IntPredicate::UGE,
|
||||||
|
sizeof_data,
|
||||||
|
ndarray_nbytes,
|
||||||
|
"",
|
||||||
|
).unwrap(),
|
||||||
"0:AssertionError",
|
"0:AssertionError",
|
||||||
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
|
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
|
||||||
[Some(expected_ndarray_nbytes.value), Some(ndarray_nbytes.value), None],
|
[Some(sizeof_data), Some(ndarray_nbytes), None],
|
||||||
ctx.current_loc,
|
ctx.current_loc,
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
let ndarray_data = ndarray.instance.get(generator, ctx, |f| f.data);
|
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
|
||||||
|
|
||||||
|
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
|
||||||
|
let ndarray_data_i8 =
|
||||||
|
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
|
||||||
|
|
||||||
// NOTE: Currently on `prehead_bb`
|
// NOTE: Currently on `prehead_bb`
|
||||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||||
@ -701,7 +747,7 @@ fn format_rpc_ret<'ctx>(
|
|||||||
ctx.builder.position_at_end(head_bb);
|
ctx.builder.position_at_end(head_bb);
|
||||||
|
|
||||||
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
|
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
|
||||||
phi.add_incoming(&[(&ndarray_data.value, prehead_bb)]);
|
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]);
|
||||||
|
|
||||||
let alloc_size = ctx
|
let alloc_size = ctx
|
||||||
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
|
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
|
||||||
@ -716,12 +762,12 @@ fn format_rpc_ret<'ctx>(
|
|||||||
|
|
||||||
ctx.builder.position_at_end(alloc_bb);
|
ctx.builder.position_at_end(alloc_bb);
|
||||||
// Align the allocation to sizeof(T)
|
// Align the allocation to sizeof(T)
|
||||||
let alloc_size = round_up(ctx, alloc_size, itemsize.value);
|
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof);
|
||||||
let alloc_ptr = ctx
|
let alloc_ptr = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_array_alloca(
|
.build_array_alloca(
|
||||||
dtype_llvm,
|
llvm_elem_ty,
|
||||||
ctx.builder.build_int_unsigned_div(alloc_size, itemsize.value, "").unwrap(),
|
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(),
|
||||||
"rpc.alloc",
|
"rpc.alloc",
|
||||||
)
|
)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
@ -731,12 +777,12 @@ fn format_rpc_ret<'ctx>(
|
|||||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||||
|
|
||||||
ctx.builder.position_at_end(tail_bb);
|
ctx.builder.position_at_end(tail_bb);
|
||||||
ndarray.instance.value.as_basic_value_enum()
|
ndarray.as_base_value().into()
|
||||||
}
|
}
|
||||||
|
|
||||||
_ => {
|
_ => {
|
||||||
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
|
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
|
||||||
let slotgen = ctx.builder.build_bitcast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
|
let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
|
||||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||||
ctx.builder.position_at_end(head_bb);
|
ctx.builder.position_at_end(head_bb);
|
||||||
|
|
||||||
@ -757,7 +803,7 @@ fn format_rpc_ret<'ctx>(
|
|||||||
let alloc_ptr =
|
let alloc_ptr =
|
||||||
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
|
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
|
||||||
let alloc_ptr =
|
let alloc_ptr =
|
||||||
ctx.builder.build_bitcast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
|
ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
|
||||||
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
|
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
|
||||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||||
|
|
||||||
@ -775,6 +821,7 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||||||
fun: (&FunSignature, DefinitionId),
|
fun: (&FunSignature, DefinitionId),
|
||||||
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
||||||
generator: &mut dyn CodeGenerator,
|
generator: &mut dyn CodeGenerator,
|
||||||
|
is_async: bool,
|
||||||
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
||||||
let int8 = ctx.ctx.i8_type();
|
let int8 = ctx.ctx.i8_type();
|
||||||
let int32 = ctx.ctx.i32_type();
|
let int32 = ctx.ctx.i32_type();
|
||||||
@ -883,6 +930,29 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// call
|
// call
|
||||||
|
if is_async {
|
||||||
|
let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
|
||||||
|
ctx.module.add_function(
|
||||||
|
"rpc_send_async",
|
||||||
|
ctx.ctx.void_type().fn_type(
|
||||||
|
&[
|
||||||
|
int32.into(),
|
||||||
|
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
|
||||||
|
ptr_type.ptr_type(AddressSpace::default()).into(),
|
||||||
|
],
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
});
|
||||||
|
ctx.builder
|
||||||
|
.build_call(
|
||||||
|
rpc_send_async,
|
||||||
|
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
|
||||||
|
"rpc.send",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
} else {
|
||||||
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
|
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
|
||||||
ctx.module.add_function(
|
ctx.module.add_function(
|
||||||
"rpc_send",
|
"rpc_send",
|
||||||
@ -900,10 +970,15 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||||||
ctx.builder
|
ctx.builder
|
||||||
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
|
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
// reclaim stack space used by arguments
|
// reclaim stack space used by arguments
|
||||||
call_stackrestore(ctx, stackptr);
|
call_stackrestore(ctx, stackptr);
|
||||||
|
|
||||||
|
if is_async {
|
||||||
|
// async RPCs do not return any values
|
||||||
|
Ok(None)
|
||||||
|
} else {
|
||||||
let result = format_rpc_ret(generator, ctx, fun.0.ret);
|
let result = format_rpc_ret(generator, ctx, fun.0.ret);
|
||||||
|
|
||||||
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
|
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
|
||||||
@ -913,6 +988,7 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||||||
|
|
||||||
Ok(result)
|
Ok(result)
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
pub fn attributes_writeback(
|
pub fn attributes_writeback(
|
||||||
ctx: &mut CodeGenContext<'_, '_>,
|
ctx: &mut CodeGenContext<'_, '_>,
|
||||||
@ -1006,7 +1082,7 @@ pub fn attributes_writeback(
|
|||||||
let args: Vec<_> =
|
let args: Vec<_> =
|
||||||
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
|
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
|
||||||
if let Err(e) =
|
if let Err(e) =
|
||||||
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator)
|
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, false)
|
||||||
{
|
{
|
||||||
return Ok(Err(e));
|
return Ok(Err(e));
|
||||||
}
|
}
|
||||||
@ -1016,9 +1092,9 @@ pub fn attributes_writeback(
|
|||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn rpc_codegen_callback() -> Arc<GenCall> {
|
pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
|
||||||
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| {
|
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
|
||||||
rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
|
rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
|
||||||
})))
|
})))
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1283,46 +1359,56 @@ fn polymorphic_print<'ctx>(
|
|||||||
}
|
}
|
||||||
|
|
||||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
|
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||||
|
|
||||||
fmt.push_str("array([");
|
fmt.push_str("array([");
|
||||||
flush(ctx, generator, &mut fmt, &mut args);
|
flush(ctx, generator, &mut fmt, &mut args);
|
||||||
|
|
||||||
let ndarray = AnyObject { ty, value };
|
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
|
||||||
|
let last =
|
||||||
|
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||||
|
|
||||||
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
|
gen_for_callback_incrementing(
|
||||||
|
|
||||||
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
|
|
||||||
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
|
||||||
let i = hdl.get_index(generator, ctx);
|
|
||||||
let scalar = hdl.get_scalar(generator, ctx);
|
|
||||||
|
|
||||||
// if (i != 0) { puts(", "); }
|
|
||||||
gen_if_callback(
|
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
|_, ctx| {
|
None,
|
||||||
let not_first = i.compare(ctx, IntPredicate::NE, num_0);
|
llvm_usize.const_zero(),
|
||||||
Ok(not_first.value)
|
(len, false),
|
||||||
},
|
|generator, ctx, _, i| {
|
||||||
|generator, ctx| {
|
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
|
||||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
|
||||||
Ok(())
|
|
||||||
},
|
|
||||||
|_, _| Ok(()),
|
|
||||||
)?;
|
|
||||||
|
|
||||||
// Print element
|
|
||||||
polymorphic_print(
|
polymorphic_print(
|
||||||
ctx,
|
ctx,
|
||||||
generator,
|
generator,
|
||||||
&[(scalar.ty, scalar.value.into())],
|
&[(elem_ty, elem.into())],
|
||||||
"",
|
"",
|
||||||
None,
|
None,
|
||||||
true,
|
true,
|
||||||
as_rtio,
|
as_rtio,
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
|
gen_if_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
|_, ctx| {
|
||||||
|
Ok(ctx
|
||||||
|
.builder
|
||||||
|
.build_int_compare(IntPredicate::ULT, i, last, "")
|
||||||
|
.unwrap())
|
||||||
|
},
|
||||||
|
|generator, ctx| {
|
||||||
|
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
})?;
|
},
|
||||||
|
|_, _| Ok(()),
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
llvm_usize.const_int(1, false),
|
||||||
|
)?;
|
||||||
|
|
||||||
fmt.push_str(")]");
|
fmt.push_str(")]");
|
||||||
flush(ctx, generator, &mut fmt, &mut args);
|
flush(ctx, generator, &mut fmt, &mut args);
|
||||||
|
@ -16,14 +16,30 @@
|
|||||||
clippy::wildcard_imports
|
clippy::wildcard_imports
|
||||||
)]
|
)]
|
||||||
|
|
||||||
use std::collections::{HashMap, HashSet};
|
use std::{
|
||||||
use std::fs;
|
collections::{HashMap, HashSet},
|
||||||
use std::io::Write;
|
fs,
|
||||||
use std::process::Command;
|
io::Write,
|
||||||
use std::rc::Rc;
|
process::Command,
|
||||||
use std::sync::Arc;
|
rc::Rc,
|
||||||
|
sync::Arc,
|
||||||
|
};
|
||||||
|
|
||||||
use inkwell::{
|
use itertools::Itertools;
|
||||||
|
use parking_lot::{Mutex, RwLock};
|
||||||
|
use pyo3::{
|
||||||
|
create_exception, exceptions,
|
||||||
|
prelude::*,
|
||||||
|
types::{PyBytes, PyDict, PySet},
|
||||||
|
};
|
||||||
|
use tempfile::{self, TempDir};
|
||||||
|
|
||||||
|
use nac3core::{
|
||||||
|
codegen::{
|
||||||
|
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
|
||||||
|
CodeGenTargetMachineOptions, CodeGenTask, WithCall, WorkerRegistry,
|
||||||
|
},
|
||||||
|
inkwell::{
|
||||||
context::Context,
|
context::Context,
|
||||||
memory_buffer::MemoryBuffer,
|
memory_buffer::MemoryBuffer,
|
||||||
module::{Linkage, Module},
|
module::{Linkage, Module},
|
||||||
@ -31,33 +47,22 @@ use inkwell::{
|
|||||||
support::is_multithreaded,
|
support::is_multithreaded,
|
||||||
targets::*,
|
targets::*,
|
||||||
OptimizationLevel,
|
OptimizationLevel,
|
||||||
};
|
},
|
||||||
use itertools::Itertools;
|
nac3parser::{
|
||||||
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
|
||||||
use nac3core::toplevel::builtins::get_exn_constructor;
|
|
||||||
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
|
||||||
use nac3parser::{
|
|
||||||
ast::{ExprKind, Stmt, StmtKind, StrRef},
|
|
||||||
parser::parse_program,
|
parser::parse_program,
|
||||||
};
|
},
|
||||||
use pyo3::create_exception;
|
|
||||||
use pyo3::prelude::*;
|
|
||||||
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
|
|
||||||
|
|
||||||
use parking_lot::{Mutex, RwLock};
|
|
||||||
|
|
||||||
use nac3core::{
|
|
||||||
codegen::irrt::load_irrt,
|
|
||||||
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
|
|
||||||
symbol_resolver::SymbolResolver,
|
symbol_resolver::SymbolResolver,
|
||||||
toplevel::{
|
toplevel::{
|
||||||
|
builtins::get_exn_constructor,
|
||||||
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
|
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
|
||||||
DefinitionId, GenCall, TopLevelDef,
|
DefinitionId, GenCall, TopLevelDef,
|
||||||
},
|
},
|
||||||
typecheck::typedef::{FunSignature, FuncArg},
|
typecheck::{
|
||||||
typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
|
type_inferencer::PrimitiveStore,
|
||||||
|
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
||||||
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
use nac3ld::Linker;
|
use nac3ld::Linker;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
@ -65,15 +70,13 @@ use crate::{
|
|||||||
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
|
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
|
||||||
},
|
},
|
||||||
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
|
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
|
||||||
|
timeline::TimeFns,
|
||||||
};
|
};
|
||||||
use tempfile::{self, TempDir};
|
|
||||||
|
|
||||||
mod codegen;
|
mod codegen;
|
||||||
mod symbol_resolver;
|
mod symbol_resolver;
|
||||||
mod timeline;
|
mod timeline;
|
||||||
|
|
||||||
use timeline::TimeFns;
|
|
||||||
|
|
||||||
#[derive(PartialEq, Clone, Copy)]
|
#[derive(PartialEq, Clone, Copy)]
|
||||||
enum Isa {
|
enum Isa {
|
||||||
Host,
|
Host,
|
||||||
@ -194,10 +197,8 @@ impl Nac3 {
|
|||||||
body.retain(|stmt| {
|
body.retain(|stmt| {
|
||||||
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
|
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
|
||||||
decorator_list.iter().any(|decorator| {
|
decorator_list.iter().any(|decorator| {
|
||||||
if let ExprKind::Name { id, .. } = decorator.node {
|
if let Some(id) = decorator_id_string(decorator) {
|
||||||
id.to_string() == "kernel"
|
id == "kernel" || id == "portable" || id == "rpc"
|
||||||
|| id.to_string() == "portable"
|
|
||||||
|| id.to_string() == "rpc"
|
|
||||||
} else {
|
} else {
|
||||||
false
|
false
|
||||||
}
|
}
|
||||||
@ -210,9 +211,8 @@ impl Nac3 {
|
|||||||
}
|
}
|
||||||
StmtKind::FunctionDef { ref decorator_list, .. } => {
|
StmtKind::FunctionDef { ref decorator_list, .. } => {
|
||||||
decorator_list.iter().any(|decorator| {
|
decorator_list.iter().any(|decorator| {
|
||||||
if let ExprKind::Name { id, .. } = decorator.node {
|
if let Some(id) = decorator_id_string(decorator) {
|
||||||
let id = id.to_string();
|
id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
|
||||||
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
|
|
||||||
} else {
|
} else {
|
||||||
false
|
false
|
||||||
}
|
}
|
||||||
@ -478,9 +478,25 @@ impl Nac3 {
|
|||||||
|
|
||||||
match &stmt.node {
|
match &stmt.node {
|
||||||
StmtKind::FunctionDef { decorator_list, .. } => {
|
StmtKind::FunctionDef { decorator_list, .. } => {
|
||||||
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
|
if decorator_list
|
||||||
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
|
.iter()
|
||||||
rpc_ids.push((None, def_id));
|
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
|
||||||
|
{
|
||||||
|
store_fun
|
||||||
|
.call1(
|
||||||
|
py,
|
||||||
|
(
|
||||||
|
def_id.0.into_py(py),
|
||||||
|
module.getattr(py, name.to_string().as_str()).unwrap(),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
let is_async = decorator_list.iter().any(|decorator| {
|
||||||
|
decorator_get_flags(decorator)
|
||||||
|
.iter()
|
||||||
|
.any(|constant| *constant == Constant::Str("async".into()))
|
||||||
|
});
|
||||||
|
rpc_ids.push((None, def_id, is_async));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
StmtKind::ClassDef { name, body, .. } => {
|
StmtKind::ClassDef { name, body, .. } => {
|
||||||
@ -488,19 +504,26 @@ impl Nac3 {
|
|||||||
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
|
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
|
||||||
for stmt in body {
|
for stmt in body {
|
||||||
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
|
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
|
||||||
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
|
if decorator_list.iter().any(|decorator| {
|
||||||
|
decorator_id_string(decorator) == Some("rpc".to_string())
|
||||||
|
}) {
|
||||||
|
let is_async = decorator_list.iter().any(|decorator| {
|
||||||
|
decorator_get_flags(decorator)
|
||||||
|
.iter()
|
||||||
|
.any(|constant| *constant == Constant::Str("async".into()))
|
||||||
|
});
|
||||||
if name == &"__init__".into() {
|
if name == &"__init__".into() {
|
||||||
return Err(CompileError::new_err(format!(
|
return Err(CompileError::new_err(format!(
|
||||||
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
|
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
|
||||||
class_name, stmt.location
|
class_name, stmt.location
|
||||||
)));
|
)));
|
||||||
}
|
}
|
||||||
rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
|
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
_ => ()
|
_ => (),
|
||||||
}
|
}
|
||||||
|
|
||||||
let id = *name_to_pyid.get(&name).unwrap();
|
let id = *name_to_pyid.get(&name).unwrap();
|
||||||
@ -556,7 +579,7 @@ impl Nac3 {
|
|||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
// Process IRRT
|
// Process IRRT
|
||||||
let context = inkwell::context::Context::create();
|
let context = Context::create();
|
||||||
let irrt = load_irrt(&context, resolver.as_ref());
|
let irrt = load_irrt(&context, resolver.as_ref());
|
||||||
|
|
||||||
let fun_signature =
|
let fun_signature =
|
||||||
@ -596,13 +619,12 @@ impl Nac3 {
|
|||||||
let top_level = Arc::new(composer.make_top_level_context());
|
let top_level = Arc::new(composer.make_top_level_context());
|
||||||
|
|
||||||
{
|
{
|
||||||
let rpc_codegen = rpc_codegen_callback();
|
|
||||||
let defs = top_level.definitions.read();
|
let defs = top_level.definitions.read();
|
||||||
for (class_data, id) in &rpc_ids {
|
for (class_data, id, is_async) in &rpc_ids {
|
||||||
let mut def = defs[id.0].write();
|
let mut def = defs[id.0].write();
|
||||||
match &mut *def {
|
match &mut *def {
|
||||||
TopLevelDef::Function { codegen_callback, .. } => {
|
TopLevelDef::Function { codegen_callback, .. } => {
|
||||||
*codegen_callback = Some(rpc_codegen.clone());
|
*codegen_callback = Some(rpc_codegen_callback(*is_async));
|
||||||
}
|
}
|
||||||
TopLevelDef::Class { methods, .. } => {
|
TopLevelDef::Class { methods, .. } => {
|
||||||
let (class_def, method_name) = class_data.as_ref().unwrap();
|
let (class_def, method_name) = class_data.as_ref().unwrap();
|
||||||
@ -613,7 +635,7 @@ impl Nac3 {
|
|||||||
if let TopLevelDef::Function { codegen_callback, .. } =
|
if let TopLevelDef::Function { codegen_callback, .. } =
|
||||||
&mut *defs[id.0].write()
|
&mut *defs[id.0].write()
|
||||||
{
|
{
|
||||||
*codegen_callback = Some(rpc_codegen.clone());
|
*codegen_callback = Some(rpc_codegen_callback(*is_async));
|
||||||
store_fun
|
store_fun
|
||||||
.call1(
|
.call1(
|
||||||
py,
|
py,
|
||||||
@ -628,6 +650,11 @@ impl Nac3 {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
TopLevelDef::Variable { .. } => {
|
||||||
|
return Err(CompileError::new_err(String::from(
|
||||||
|
"Unsupported @rpc annotation on global variable",
|
||||||
|
)))
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -687,7 +714,7 @@ impl Nac3 {
|
|||||||
let buffer = buffer.as_slice().into();
|
let buffer = buffer.as_slice().into();
|
||||||
membuffer.lock().push(buffer);
|
membuffer.lock().push(buffer);
|
||||||
})));
|
})));
|
||||||
let size_t = Context::create()
|
let size_t = context
|
||||||
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
|
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
|
||||||
.get_bit_width();
|
.get_bit_width();
|
||||||
let num_threads = if is_multithreaded() { 4 } else { 1 };
|
let num_threads = if is_multithreaded() { 4 } else { 1 };
|
||||||
@ -706,7 +733,7 @@ impl Nac3 {
|
|||||||
|
|
||||||
let mut generator =
|
let mut generator =
|
||||||
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
|
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
|
||||||
let context = inkwell::context::Context::create();
|
let context = Context::create();
|
||||||
let module = context.create_module("attributes_writeback");
|
let module = context.create_module("attributes_writeback");
|
||||||
let target_machine = self.llvm_options.create_target_machine().unwrap();
|
let target_machine = self.llvm_options.create_target_machine().unwrap();
|
||||||
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
|
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
|
||||||
@ -844,6 +871,41 @@ impl Nac3 {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
|
||||||
|
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
|
||||||
|
if let ExprKind::Name { id, .. } = decorator.node {
|
||||||
|
// Bare decorator
|
||||||
|
return Some(id.to_string());
|
||||||
|
} else if let ExprKind::Call { func, .. } = &decorator.node {
|
||||||
|
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
|
||||||
|
// need to extract the id from within.
|
||||||
|
if let ExprKind::Name { id, .. } = func.node {
|
||||||
|
return Some(id.to_string());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
None
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Retrieves flags from a decorator, if any.
|
||||||
|
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
|
||||||
|
let mut flags = vec![];
|
||||||
|
if let ExprKind::Call { keywords, .. } = &decorator.node {
|
||||||
|
for keyword in keywords {
|
||||||
|
if keyword.node.arg != Some("flags".into()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if let ExprKind::Set { elts } = &keyword.node.value.node {
|
||||||
|
for elt in elts {
|
||||||
|
if let ExprKind::Constant { value, .. } = &elt.node {
|
||||||
|
flags.push(value.clone());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
flags
|
||||||
|
}
|
||||||
|
|
||||||
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
|
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
|
||||||
let linker_args = vec![
|
let linker_args = vec![
|
||||||
"-shared".to_string(),
|
"-shared".to_string(),
|
||||||
|
@ -1,17 +1,30 @@
|
|||||||
use crate::PrimitivePythonId;
|
use std::{
|
||||||
use inkwell::{
|
collections::{HashMap, HashSet},
|
||||||
module::Linkage,
|
sync::{
|
||||||
types::BasicType,
|
atomic::{AtomicBool, Ordering::Relaxed},
|
||||||
values::{BasicValue, BasicValueEnum},
|
Arc,
|
||||||
AddressSpace,
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
|
use parking_lot::RwLock;
|
||||||
|
use pyo3::{
|
||||||
|
types::{PyDict, PyTuple},
|
||||||
|
PyAny, PyObject, PyResult, Python,
|
||||||
|
};
|
||||||
|
|
||||||
use nac3core::{
|
use nac3core::{
|
||||||
codegen::{
|
codegen::{
|
||||||
model::*,
|
classes::{NDArrayType, ProxyType},
|
||||||
object::ndarray::{make_contiguous_strides, NDArray},
|
|
||||||
CodeGenContext, CodeGenerator,
|
CodeGenContext, CodeGenerator,
|
||||||
},
|
},
|
||||||
|
inkwell::{
|
||||||
|
module::Linkage,
|
||||||
|
types::{BasicType, BasicTypeEnum},
|
||||||
|
values::BasicValueEnum,
|
||||||
|
AddressSpace,
|
||||||
|
},
|
||||||
|
nac3parser::ast::{self, StrRef},
|
||||||
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
||||||
toplevel::{
|
toplevel::{
|
||||||
helper::PrimDef,
|
helper::PrimDef,
|
||||||
@ -23,19 +36,8 @@ use nac3core::{
|
|||||||
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
|
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use nac3parser::ast::{self, StrRef};
|
|
||||||
use parking_lot::RwLock;
|
use crate::PrimitivePythonId;
|
||||||
use pyo3::{
|
|
||||||
types::{PyDict, PyTuple},
|
|
||||||
PyAny, PyErr, PyObject, PyResult, Python,
|
|
||||||
};
|
|
||||||
use std::{
|
|
||||||
collections::{HashMap, HashSet},
|
|
||||||
sync::{
|
|
||||||
atomic::{AtomicBool, Ordering::Relaxed},
|
|
||||||
Arc,
|
|
||||||
},
|
|
||||||
};
|
|
||||||
|
|
||||||
pub enum PrimitiveValue {
|
pub enum PrimitiveValue {
|
||||||
I32(i32),
|
I32(i32),
|
||||||
@ -1086,12 +1088,15 @@ impl InnerResolver {
|
|||||||
let (ndarray_dtype, ndarray_ndims) =
|
let (ndarray_dtype, ndarray_ndims) =
|
||||||
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||||
|
|
||||||
let dtype = Any(ctx.get_llvm_type(generator, ndarray_dtype));
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
|
||||||
|
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
|
||||||
|
|
||||||
{
|
{
|
||||||
if self.global_value_ids.read().contains_key(&id) {
|
if self.global_value_ids.read().contains_key(&id) {
|
||||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||||
ctx.module.add_global(
|
ctx.module.add_global(
|
||||||
Struct(NDArray).llvm_type(generator, ctx.ctx),
|
ndarray_llvm_ty.as_underlying_type(),
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&id_str,
|
&id_str,
|
||||||
)
|
)
|
||||||
@ -1111,138 +1116,100 @@ impl InnerResolver {
|
|||||||
} else {
|
} else {
|
||||||
todo!("Unpacking literal of more than one element unimplemented")
|
todo!("Unpacking literal of more than one element unimplemented")
|
||||||
};
|
};
|
||||||
let Ok(ndims) = u64::try_from(ndarray_ndims) else {
|
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
|
||||||
unreachable!("Expected u64 value for ndarray_ndims")
|
unreachable!("Expected u64 value for ndarray_ndims")
|
||||||
};
|
};
|
||||||
|
|
||||||
// Obtain the shape of the ndarray
|
// Obtain the shape of the ndarray
|
||||||
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
||||||
assert_eq!(shape_tuple.len(), ndims as usize);
|
assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
|
||||||
|
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
|
||||||
// The Rust type inferencer cannot figure this out
|
|
||||||
let shape_values: Result<Vec<Instance<'ctx, Int<SizeT>>>, PyErr> = shape_tuple
|
|
||||||
.iter()
|
.iter()
|
||||||
.enumerate()
|
.enumerate()
|
||||||
.map(|(i, elem)| {
|
.map(|(i, elem)| {
|
||||||
let value = self
|
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err(
|
||||||
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
|
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")),
|
||||||
.map_err(|e| {
|
)
|
||||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
|
||||||
})?
|
|
||||||
.unwrap();
|
|
||||||
let value = Int(SizeT).check_value(generator, ctx.ctx, value).unwrap();
|
|
||||||
Ok(value)
|
|
||||||
})
|
})
|
||||||
.collect();
|
.collect();
|
||||||
let shape_values = shape_values?;
|
let shape_values = shape_values?.unwrap();
|
||||||
|
let shape_values = llvm_usize.const_array(
|
||||||
// Also use this opportunity to get the constant values of `shape_values` for calculating strides.
|
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
|
||||||
let shape_u64s = shape_values
|
);
|
||||||
.iter()
|
|
||||||
.map(|dim| {
|
|
||||||
assert!(dim.value.is_const());
|
|
||||||
dim.value.get_zero_extended_constant().unwrap()
|
|
||||||
})
|
|
||||||
.collect_vec();
|
|
||||||
let shape_values = Int(SizeT).const_array(generator, ctx.ctx, &shape_values);
|
|
||||||
|
|
||||||
// create a global for ndarray.shape and initialize it using the shape
|
// create a global for ndarray.shape and initialize it using the shape
|
||||||
let shape_global = ctx.module.add_global(
|
let shape_global = ctx.module.add_global(
|
||||||
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.llvm_type(generator, ctx.ctx),
|
llvm_usize.array_type(ndarray_ndims as u32),
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&(id_str.clone() + ".shape"),
|
&(id_str.clone() + ".shape"),
|
||||||
);
|
);
|
||||||
shape_global.set_initializer(&shape_values.value);
|
shape_global.set_initializer(&shape_values);
|
||||||
|
|
||||||
// Obtain the (flattened) elements of the ndarray
|
// Obtain the (flattened) elements of the ndarray
|
||||||
let sz: usize = obj.getattr("size")?.extract()?;
|
let sz: usize = obj.getattr("size")?.extract()?;
|
||||||
let data_values: Vec<Instance<'ctx, Any>> = (0..sz)
|
let data: Result<Option<Vec<_>>, _> = (0..sz)
|
||||||
.map(|i| {
|
.map(|i| {
|
||||||
obj.getattr("flat")?.get_item(i).and_then(|elem| {
|
obj.getattr("flat")?.get_item(i).and_then(|elem| {
|
||||||
let value = self
|
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| {
|
||||||
.get_obj_value(py, elem, ctx, generator, ndarray_dtype)
|
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||||
.map_err(|e| {
|
})
|
||||||
super::CompileError::new_err(format!(
|
})
|
||||||
"Error getting element {i}: {e}"
|
})
|
||||||
))
|
.collect();
|
||||||
})?
|
let data = data?.unwrap().into_iter();
|
||||||
.unwrap();
|
let data = match ndarray_dtype_llvm_ty {
|
||||||
|
BasicTypeEnum::ArrayType(ty) => {
|
||||||
|
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
|
||||||
|
}
|
||||||
|
|
||||||
let value = dtype.check_value(generator, ctx.ctx, value).unwrap();
|
BasicTypeEnum::FloatType(ty) => {
|
||||||
Ok(value)
|
ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec())
|
||||||
})
|
}
|
||||||
})
|
|
||||||
.try_collect()?;
|
BasicTypeEnum::IntType(ty) => {
|
||||||
let data = dtype.const_array(generator, ctx.ctx, &data_values);
|
ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec())
|
||||||
|
}
|
||||||
|
|
||||||
|
BasicTypeEnum::PointerType(ty) => {
|
||||||
|
ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec())
|
||||||
|
}
|
||||||
|
|
||||||
|
BasicTypeEnum::StructType(ty) => {
|
||||||
|
ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec())
|
||||||
|
}
|
||||||
|
|
||||||
|
BasicTypeEnum::VectorType(_) => unreachable!(),
|
||||||
|
};
|
||||||
|
|
||||||
// create a global for ndarray.data and initialize it using the elements
|
// create a global for ndarray.data and initialize it using the elements
|
||||||
//
|
|
||||||
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
|
|
||||||
// We will have to cast it to an `u8*` later.
|
|
||||||
let data_global = ctx.module.add_global(
|
let data_global = ctx.module.add_global(
|
||||||
Array { len: AnyLen(sz as u32), item: dtype }.llvm_type(generator, ctx.ctx),
|
ndarray_dtype_llvm_ty.array_type(sz as u32),
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&(id_str.clone() + ".data"),
|
&(id_str.clone() + ".data"),
|
||||||
);
|
);
|
||||||
data_global.set_initializer(&data.value);
|
data_global.set_initializer(&data);
|
||||||
|
|
||||||
// Get the constant itemsize.
|
|
||||||
let itemsize = dtype.llvm_type(generator, ctx.ctx).size_of().unwrap();
|
|
||||||
let itemsize = itemsize.get_zero_extended_constant().unwrap();
|
|
||||||
|
|
||||||
// Create the strides needed for ndarray.strides
|
|
||||||
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
|
|
||||||
let strides = strides
|
|
||||||
.into_iter()
|
|
||||||
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride, false))
|
|
||||||
.collect_vec();
|
|
||||||
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
|
|
||||||
|
|
||||||
// create a global for ndarray.strides and initialize it
|
|
||||||
let strides_global = ctx.module.add_global(
|
|
||||||
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.llvm_type(generator, ctx.ctx),
|
|
||||||
Some(AddressSpace::default()),
|
|
||||||
&(id_str.clone() + ".strides"),
|
|
||||||
);
|
|
||||||
strides_global.set_initializer(&strides.value);
|
|
||||||
|
|
||||||
// create a global for the ndarray object and initialize it
|
// create a global for the ndarray object and initialize it
|
||||||
// We are also doing [`Model::check_value`] instead of [`Model::believe_value`] to catch bugs.
|
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
|
||||||
|
llvm_usize.const_int(ndarray_ndims, false).into(),
|
||||||
|
shape_global
|
||||||
|
.as_pointer_value()
|
||||||
|
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
|
||||||
|
.into(),
|
||||||
|
data_global
|
||||||
|
.as_pointer_value()
|
||||||
|
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
|
||||||
|
.into(),
|
||||||
|
]);
|
||||||
|
|
||||||
// NOTE: data_global is an array of dtype, we want a `u8*`.
|
let ndarray = ctx.module.add_global(
|
||||||
let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap();
|
ndarray_llvm_ty.as_underlying_type(),
|
||||||
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value);
|
|
||||||
|
|
||||||
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize, false);
|
|
||||||
|
|
||||||
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
|
|
||||||
|
|
||||||
let ndarray_shape =
|
|
||||||
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap();
|
|
||||||
|
|
||||||
let ndarray_strides =
|
|
||||||
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, strides_global).unwrap();
|
|
||||||
|
|
||||||
let ndarray = Struct(NDArray).const_struct(
|
|
||||||
generator,
|
|
||||||
ctx.ctx,
|
|
||||||
&[
|
|
||||||
ndarray_data.value.as_basic_value_enum(),
|
|
||||||
ndarray_itemsize.value.as_basic_value_enum(),
|
|
||||||
ndarray_ndims.value.as_basic_value_enum(),
|
|
||||||
ndarray_shape.value.as_basic_value_enum(),
|
|
||||||
ndarray_strides.value.as_basic_value_enum(),
|
|
||||||
],
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray_global = ctx.module.add_global(
|
|
||||||
Struct(NDArray).llvm_type(generator, ctx.ctx),
|
|
||||||
Some(AddressSpace::default()),
|
Some(AddressSpace::default()),
|
||||||
&id_str,
|
&id_str,
|
||||||
);
|
);
|
||||||
ndarray_global.set_initializer(&ndarray.value);
|
ndarray.set_initializer(&value);
|
||||||
|
|
||||||
Ok(Some(ndarray_global.as_pointer_value().into()))
|
Ok(Some(ndarray.as_pointer_value().into()))
|
||||||
} else if ty_id == self.primitive_ids.tuple {
|
} else if ty_id == self.primitive_ids.tuple {
|
||||||
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
|
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
|
||||||
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
|
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
|
||||||
@ -1503,6 +1470,7 @@ impl SymbolResolver for Resolver {
|
|||||||
&self,
|
&self,
|
||||||
id: StrRef,
|
id: StrRef,
|
||||||
_: &mut CodeGenContext<'ctx, '_>,
|
_: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
_: &mut dyn CodeGenerator,
|
||||||
) -> Option<ValueEnum<'ctx>> {
|
) -> Option<ValueEnum<'ctx>> {
|
||||||
let sym_value = {
|
let sym_value = {
|
||||||
let id_to_val = self.0.id_to_pyval.read();
|
let id_to_val = self.0.id_to_pyval.read();
|
||||||
|
@ -1,9 +1,12 @@
|
|||||||
use inkwell::{
|
use itertools::Either;
|
||||||
|
|
||||||
|
use nac3core::{
|
||||||
|
codegen::CodeGenContext,
|
||||||
|
inkwell::{
|
||||||
values::{BasicValueEnum, CallSiteValue},
|
values::{BasicValueEnum, CallSiteValue},
|
||||||
AddressSpace, AtomicOrdering,
|
AddressSpace, AtomicOrdering,
|
||||||
|
},
|
||||||
};
|
};
|
||||||
use itertools::Either;
|
|
||||||
use nac3core::codegen::CodeGenContext;
|
|
||||||
|
|
||||||
/// Functions for manipulating the timeline.
|
/// Functions for manipulating the timeline.
|
||||||
pub trait TimeFns {
|
pub trait TimeFns {
|
||||||
@ -31,7 +34,7 @@ impl TimeFns for NowPinningTimeFns64 {
|
|||||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||||
let now_hiptr = ctx
|
let now_hiptr = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
@ -80,7 +83,7 @@ impl TimeFns for NowPinningTimeFns64 {
|
|||||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||||
let now_hiptr = ctx
|
let now_hiptr = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
@ -109,7 +112,7 @@ impl TimeFns for NowPinningTimeFns64 {
|
|||||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||||
let now_hiptr = ctx
|
let now_hiptr = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
@ -207,7 +210,7 @@ impl TimeFns for NowPinningTimeFns {
|
|||||||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||||
let now_hiptr = ctx
|
let now_hiptr = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
@ -258,7 +261,7 @@ impl TimeFns for NowPinningTimeFns {
|
|||||||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
|
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
|
||||||
let now_hiptr = ctx
|
let now_hiptr = ctx
|
||||||
.builder
|
.builder
|
||||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
|
@ -10,17 +10,17 @@ no-escape-analysis = []
|
|||||||
[dependencies]
|
[dependencies]
|
||||||
itertools = "0.13"
|
itertools = "0.13"
|
||||||
crossbeam = "0.8"
|
crossbeam = "0.8"
|
||||||
indexmap = "2.2"
|
indexmap = "2.6"
|
||||||
parking_lot = "0.12"
|
parking_lot = "0.12"
|
||||||
rayon = "1.8"
|
rayon = "1.10"
|
||||||
nac3parser = { path = "../nac3parser" }
|
nac3parser = { path = "../nac3parser" }
|
||||||
strum = "0.26"
|
strum = "0.26"
|
||||||
strum_macros = "0.26"
|
strum_macros = "0.26"
|
||||||
|
|
||||||
[dependencies.inkwell]
|
[dependencies.inkwell]
|
||||||
version = "0.4"
|
version = "0.5"
|
||||||
default-features = false
|
default-features = false
|
||||||
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
||||||
|
|
||||||
[dev-dependencies]
|
[dev-dependencies]
|
||||||
test-case = "1.2.0"
|
test-case = "1.2.0"
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
use regex::Regex;
|
|
||||||
use std::{
|
use std::{
|
||||||
env,
|
env,
|
||||||
fs::File,
|
fs::File,
|
||||||
@ -7,6 +6,8 @@ use std::{
|
|||||||
process::{Command, Stdio},
|
process::{Command, Stdio},
|
||||||
};
|
};
|
||||||
|
|
||||||
|
use regex::Regex;
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
let out_dir = env::var("OUT_DIR").unwrap();
|
let out_dir = env::var("OUT_DIR").unwrap();
|
||||||
let out_dir = Path::new(&out_dir);
|
let out_dir = Path::new(&out_dir);
|
||||||
|
@ -2,14 +2,5 @@
|
|||||||
#include "irrt/int_types.hpp"
|
#include "irrt/int_types.hpp"
|
||||||
#include "irrt/list.hpp"
|
#include "irrt/list.hpp"
|
||||||
#include "irrt/math.hpp"
|
#include "irrt/math.hpp"
|
||||||
#include "irrt/range.hpp"
|
#include "irrt/ndarray.hpp"
|
||||||
#include "irrt/slice.hpp"
|
#include "irrt/slice.hpp"
|
||||||
#include "irrt/ndarray/basic.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
#include "irrt/ndarray/iter.hpp"
|
|
||||||
#include "irrt/ndarray/indexing.hpp"
|
|
||||||
#include "irrt/ndarray/array.hpp"
|
|
||||||
#include "irrt/ndarray/reshape.hpp"
|
|
||||||
#include "irrt/ndarray/broadcast.hpp"
|
|
||||||
#include "irrt/ndarray/transpose.hpp"
|
|
||||||
#include "irrt/ndarray/matmul.hpp"
|
|
@ -55,14 +55,11 @@ void _raise_exception_helper(ExceptionId id,
|
|||||||
int64_t param2) {
|
int64_t param2) {
|
||||||
Exception<SizeT> e = {
|
Exception<SizeT> e = {
|
||||||
.id = id,
|
.id = id,
|
||||||
.filename = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(filename)),
|
.filename = {.base = reinterpret_cast<const uint8_t*>(filename), .len = __builtin_strlen(filename)},
|
||||||
.len = static_cast<int32_t>(__builtin_strlen(filename))},
|
|
||||||
.line = line,
|
.line = line,
|
||||||
.column = 0,
|
.column = 0,
|
||||||
.function = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(function)),
|
.function = {.base = reinterpret_cast<const uint8_t*>(function), .len = __builtin_strlen(function)},
|
||||||
.len = static_cast<int32_t>(__builtin_strlen(function))},
|
.msg = {.base = reinterpret_cast<const uint8_t*>(msg), .len = __builtin_strlen(msg)},
|
||||||
.msg = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(msg)),
|
|
||||||
.len = static_cast<int32_t>(__builtin_strlen(msg))},
|
|
||||||
};
|
};
|
||||||
e.params[0] = param0;
|
e.params[0] = param0;
|
||||||
e.params[1] = param1;
|
e.params[1] = param1;
|
||||||
|
@ -1,13 +1,22 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#if __STDC_VERSION__ >= 202000
|
||||||
using int8_t = _BitInt(8);
|
using int8_t = _BitInt(8);
|
||||||
using uint8_t = unsigned _BitInt(8);
|
using uint8_t = unsigned _BitInt(8);
|
||||||
using int32_t = _BitInt(32);
|
using int32_t = _BitInt(32);
|
||||||
using uint32_t = unsigned _BitInt(32);
|
using uint32_t = unsigned _BitInt(32);
|
||||||
using int64_t = _BitInt(64);
|
using int64_t = _BitInt(64);
|
||||||
using uint64_t = unsigned _BitInt(64);
|
using uint64_t = unsigned _BitInt(64);
|
||||||
|
#else
|
||||||
|
using int8_t = _ExtInt(8);
|
||||||
|
using uint8_t = unsigned _ExtInt(8);
|
||||||
|
using int32_t = _ExtInt(32);
|
||||||
|
using uint32_t = unsigned _ExtInt(32);
|
||||||
|
using int64_t = _ExtInt(64);
|
||||||
|
using uint64_t = unsigned _ExtInt(64);
|
||||||
|
#endif
|
||||||
|
|
||||||
// NDArray indices are always `uint32_t`.
|
// NDArray indices are always `uint32_t`.
|
||||||
using NDIndexInt = uint32_t;
|
using NDIndex = uint32_t;
|
||||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||||
using SliceIndex = int32_t;
|
using SliceIndex = int32_t;
|
@ -2,21 +2,6 @@
|
|||||||
|
|
||||||
#include "irrt/int_types.hpp"
|
#include "irrt/int_types.hpp"
|
||||||
#include "irrt/math_util.hpp"
|
#include "irrt/math_util.hpp"
|
||||||
#include "irrt/slice.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
/**
|
|
||||||
* @brief A list in NAC3.
|
|
||||||
*
|
|
||||||
* The `items` field is opaque. You must rely on external contexts to
|
|
||||||
* know how to interpret it.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
struct List {
|
|
||||||
uint8_t* items;
|
|
||||||
SizeT len;
|
|
||||||
};
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
extern "C" {
|
||||||
// Handle list assignment and dropping part of the list when
|
// Handle list assignment and dropping part of the list when
|
||||||
|
144
nac3core/irrt/irrt/ndarray.hpp
Normal file
144
nac3core/irrt/irrt/ndarray.hpp
Normal file
@ -0,0 +1,144 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "irrt/int_types.hpp"
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
template<typename SizeT>
|
||||||
|
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
|
||||||
|
__builtin_assume(end_idx <= list_len);
|
||||||
|
|
||||||
|
SizeT num_elems = 1;
|
||||||
|
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||||
|
SizeT val = list_data[i];
|
||||||
|
__builtin_assume(val > 0);
|
||||||
|
num_elems *= val;
|
||||||
|
}
|
||||||
|
return num_elems;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename SizeT>
|
||||||
|
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
|
||||||
|
SizeT stride = 1;
|
||||||
|
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||||
|
SizeT i = num_dims - dim - 1;
|
||||||
|
__builtin_assume(dims[i] > 0);
|
||||||
|
idxs[i] = (index / stride) % dims[i];
|
||||||
|
stride *= dims[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename SizeT>
|
||||||
|
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
|
||||||
|
SizeT idx = 0;
|
||||||
|
SizeT stride = 1;
|
||||||
|
for (SizeT i = 0; i < num_dims; ++i) {
|
||||||
|
SizeT ri = num_dims - i - 1;
|
||||||
|
if (ri < num_indices) {
|
||||||
|
idx += stride * indices[ri];
|
||||||
|
}
|
||||||
|
|
||||||
|
__builtin_assume(dims[i] > 0);
|
||||||
|
stride *= dims[ri];
|
||||||
|
}
|
||||||
|
return idx;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename SizeT>
|
||||||
|
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
|
||||||
|
SizeT lhs_ndims,
|
||||||
|
const SizeT* rhs_dims,
|
||||||
|
SizeT rhs_ndims,
|
||||||
|
SizeT* out_dims) {
|
||||||
|
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||||
|
|
||||||
|
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||||
|
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||||
|
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||||
|
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
||||||
|
|
||||||
|
if (lhs_dim_sz == nullptr) {
|
||||||
|
*out_dim = *rhs_dim_sz;
|
||||||
|
} else if (rhs_dim_sz == nullptr) {
|
||||||
|
*out_dim = *lhs_dim_sz;
|
||||||
|
} else if (*lhs_dim_sz == 1) {
|
||||||
|
*out_dim = *rhs_dim_sz;
|
||||||
|
} else if (*rhs_dim_sz == 1) {
|
||||||
|
*out_dim = *lhs_dim_sz;
|
||||||
|
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||||
|
*out_dim = *lhs_dim_sz;
|
||||||
|
} else {
|
||||||
|
__builtin_unreachable();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename SizeT>
|
||||||
|
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
|
||||||
|
SizeT src_ndims,
|
||||||
|
const NDIndex* in_idx,
|
||||||
|
NDIndex* out_idx) {
|
||||||
|
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||||
|
SizeT src_i = src_ndims - i - 1;
|
||||||
|
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
extern "C" {
|
||||||
|
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
|
||||||
|
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint64_t
|
||||||
|
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
|
||||||
|
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
|
||||||
|
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
|
||||||
|
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t
|
||||||
|
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
|
||||||
|
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint64_t
|
||||||
|
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
|
||||||
|
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
|
||||||
|
uint32_t lhs_ndims,
|
||||||
|
const uint32_t* rhs_dims,
|
||||||
|
uint32_t rhs_ndims,
|
||||||
|
uint32_t* out_dims) {
|
||||||
|
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
|
||||||
|
uint64_t lhs_ndims,
|
||||||
|
const uint64_t* rhs_dims,
|
||||||
|
uint64_t rhs_ndims,
|
||||||
|
uint64_t* out_dims) {
|
||||||
|
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
|
||||||
|
uint32_t src_ndims,
|
||||||
|
const NDIndex* in_idx,
|
||||||
|
NDIndex* out_idx) {
|
||||||
|
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||||
|
}
|
||||||
|
|
||||||
|
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
|
||||||
|
uint64_t src_ndims,
|
||||||
|
const NDIndex* in_idx,
|
||||||
|
NDIndex* out_idx) {
|
||||||
|
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||||
|
}
|
||||||
|
}
|
@ -1,134 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/debug.hpp"
|
|
||||||
#include "irrt/exception.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/list.hpp"
|
|
||||||
#include "irrt/ndarray/basic.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace ndarray {
|
|
||||||
namespace array {
|
|
||||||
/**
|
|
||||||
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
|
|
||||||
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
|
|
||||||
* [3.0]])`)
|
|
||||||
*
|
|
||||||
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
|
|
||||||
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
|
|
||||||
* of implementation details.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
|
||||||
if (shape[axis] == -1) {
|
|
||||||
// Dimension is unspecified. Set it.
|
|
||||||
shape[axis] = list->len;
|
|
||||||
} else {
|
|
||||||
// Dimension is specified. Check.
|
|
||||||
if (shape[axis] != list->len) {
|
|
||||||
// Mismatch, throw an error.
|
|
||||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
|
||||||
"The requested array has an inhomogenous shape "
|
|
||||||
"after {0} dimension(s).",
|
|
||||||
axis, shape[axis], list->len);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (axis + 1 == ndims) {
|
|
||||||
// `list` has type `list[ItemType]`
|
|
||||||
// Do nothing
|
|
||||||
} else {
|
|
||||||
// `list` has type `list[list[...]]`
|
|
||||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
|
||||||
for (SizeT i = 0; i < list->len; i++) {
|
|
||||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief See `set_and_validate_list_shape_helper`.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
|
||||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
|
||||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
|
||||||
}
|
|
||||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
|
|
||||||
*
|
|
||||||
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
|
|
||||||
*
|
|
||||||
* # Notes on `ndarray`
|
|
||||||
* The caller is responsible for allocating space for `ndarray`.
|
|
||||||
* Here is what this function expects from `ndarray` when called:
|
|
||||||
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
|
|
||||||
* - `ndarray->itemsize` has to be initialized.
|
|
||||||
* - `ndarray->ndims` has to be initialized.
|
|
||||||
* - `ndarray->shape` has to be initialized.
|
|
||||||
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
|
|
||||||
* When this function call ends:
|
|
||||||
* - `ndarray->data` is written with contents from `<list>`.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
|
||||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
|
||||||
if (IRRT_DEBUG_ASSERT_BOOL) {
|
|
||||||
if (!ndarray::basic::is_c_contiguous(ndarray)) {
|
|
||||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
|
||||||
NO_PARAM);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (axis + 1 == ndarray->ndims) {
|
|
||||||
// `list` has type `list[scalar]`
|
|
||||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
|
||||||
uint8_t* dst = ndarray->data + (ndarray->itemsize * (*index));
|
|
||||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
|
||||||
*index += list->len;
|
|
||||||
} else {
|
|
||||||
// `list` has type `list[list[...]]`
|
|
||||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < list->len; i++) {
|
|
||||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief See `write_list_to_array_helper`.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
|
||||||
SizeT index = 0;
|
|
||||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
|
||||||
}
|
|
||||||
} // namespace array
|
|
||||||
} // namespace ndarray
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
using namespace ndarray::array;
|
|
||||||
|
|
||||||
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
|
|
||||||
set_and_validate_list_shape(list, ndims, shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
|
|
||||||
set_and_validate_list_shape(list, ndims, shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
|
|
||||||
write_list_to_array(list, ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
|
|
||||||
write_list_to_array(list, ndarray);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,341 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/debug.hpp"
|
|
||||||
#include "irrt/exception.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace ndarray {
|
|
||||||
namespace basic {
|
|
||||||
/**
|
|
||||||
* @brief Assert that `shape` does not contain negative dimensions.
|
|
||||||
*
|
|
||||||
* @param ndims Number of dimensions in `shape`
|
|
||||||
* @param shape The shape to check on
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
|
|
||||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
|
||||||
if (shape[axis] < 0) {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
|
||||||
"negative dimensions are not allowed; axis {0} "
|
|
||||||
"has dimension {1}",
|
|
||||||
axis, shape[axis], NO_PARAM);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void assert_output_shape_same(SizeT ndarray_ndims,
|
|
||||||
const SizeT* ndarray_shape,
|
|
||||||
SizeT output_ndims,
|
|
||||||
const SizeT* output_shape) {
|
|
||||||
if (ndarray_ndims != output_ndims) {
|
|
||||||
// There is no corresponding NumPy error message like this.
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
|
||||||
output_ndims, ndarray_ndims, NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
|
|
||||||
if (ndarray_shape[axis] != output_shape[axis]) {
|
|
||||||
// There is no corresponding NumPy error message like this.
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
|
||||||
"Mismatched dimensions on axis {0}, output has "
|
|
||||||
"dimension {1}, but destination ndarray has dimension {2}.",
|
|
||||||
axis, output_shape[axis], ndarray_shape[axis]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Return the number of elements of an ndarray given its shape.
|
|
||||||
*
|
|
||||||
* @param ndims Number of dimensions in `shape`
|
|
||||||
* @param shape The shape of the ndarray
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
|
||||||
SizeT size = 1;
|
|
||||||
for (SizeT axis = 0; axis < ndims; axis++)
|
|
||||||
size *= shape[axis];
|
|
||||||
return size;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
|
||||||
*
|
|
||||||
* @param ndims Number of elements in `shape` and `indices`
|
|
||||||
* @param shape The shape of the ndarray
|
|
||||||
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
|
||||||
* @param nth The index of the element of interest.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
|
|
||||||
for (SizeT i = 0; i < ndims; i++) {
|
|
||||||
SizeT axis = ndims - i - 1;
|
|
||||||
SizeT dim = shape[axis];
|
|
||||||
|
|
||||||
indices[axis] = nth % dim;
|
|
||||||
nth /= dim;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Return the number of elements of an `ndarray`
|
|
||||||
*
|
|
||||||
* This function corresponds to `<an_ndarray>.size`
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
SizeT size(const NDArray<SizeT>* ndarray) {
|
|
||||||
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Return of the number of its content of an `ndarray`.
|
|
||||||
*
|
|
||||||
* This function corresponds to `<an_ndarray>.nbytes`.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
SizeT nbytes(const NDArray<SizeT>* ndarray) {
|
|
||||||
return size(ndarray) * ndarray->itemsize;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
|
||||||
*
|
|
||||||
* This function corresponds to `<an_ndarray>.__len__`.
|
|
||||||
*
|
|
||||||
* @param dst_length The length.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
SizeT len(const NDArray<SizeT>* ndarray) {
|
|
||||||
// numpy prohibits `__len__` on unsized objects
|
|
||||||
if (ndarray->ndims == 0) {
|
|
||||||
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
|
|
||||||
} else {
|
|
||||||
return ndarray->shape[0];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
|
||||||
*
|
|
||||||
* You may want to see ndarray's rules for C-contiguity:
|
|
||||||
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
|
|
||||||
// References:
|
|
||||||
// - tinynumpy's implementation:
|
|
||||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
|
||||||
// - ndarray's flags["C_CONTIGUOUS"]:
|
|
||||||
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
|
||||||
// - ndarray's rules for C-contiguity:
|
|
||||||
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
|
||||||
|
|
||||||
// From
|
|
||||||
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
|
||||||
//
|
|
||||||
// The traditional rule is that for an array to be flagged as C contiguous,
|
|
||||||
// the following must hold:
|
|
||||||
//
|
|
||||||
// strides[-1] == itemsize
|
|
||||||
// strides[i] == shape[i+1] * strides[i + 1]
|
|
||||||
// [...]
|
|
||||||
// According to these rules, a 0- or 1-dimensional array is either both
|
|
||||||
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
|
||||||
// can be C- or F- contiguous, or neither, but not both. Though there
|
|
||||||
// there are exceptions for arrays with zero or one item, in the first
|
|
||||||
// case the check is relaxed up to and including the first dimension
|
|
||||||
// with shape[i] == 0. In the second case `strides == itemsize` will
|
|
||||||
// can be true for all dimensions and both flags are set.
|
|
||||||
|
|
||||||
if (ndarray->ndims == 0) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (SizeT i = 1; i < ndarray->ndims; i++) {
|
|
||||||
SizeT axis_i = ndarray->ndims - i - 1;
|
|
||||||
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
|
|
||||||
*
|
|
||||||
* This function does no bound check.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
|
|
||||||
uint8_t* element = ndarray->data;
|
|
||||||
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
|
||||||
element += indices[dim_i] * ndarray->strides[dim_i];
|
|
||||||
return element;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
|
|
||||||
*
|
|
||||||
* This function does no bound check.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
|
|
||||||
uint8_t* element = ndarray->data;
|
|
||||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
|
||||||
SizeT axis = ndarray->ndims - i - 1;
|
|
||||||
SizeT dim = ndarray->shape[axis];
|
|
||||||
element += ndarray->strides[axis] * (nth % dim);
|
|
||||||
nth /= dim;
|
|
||||||
}
|
|
||||||
return element;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
|
|
||||||
*
|
|
||||||
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
|
|
||||||
SizeT stride_product = 1;
|
|
||||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
|
||||||
SizeT axis = ndarray->ndims - i - 1;
|
|
||||||
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
|
||||||
stride_product *= ndarray->shape[axis];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Set an element in `ndarray`.
|
|
||||||
*
|
|
||||||
* @param pelement Pointer to the element in `ndarray` to be set.
|
|
||||||
* @param pvalue Pointer to the value `pelement` will be set to.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement, const uint8_t* pvalue) {
|
|
||||||
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
|
||||||
*
|
|
||||||
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
|
||||||
// TODO: Make this faster with memcpy when we see a contiguous segment.
|
|
||||||
// TODO: Handle overlapping.
|
|
||||||
|
|
||||||
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < size(src_ndarray); i++) {
|
|
||||||
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
|
||||||
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
|
||||||
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} // namespace basic
|
|
||||||
} // namespace ndarray
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
using namespace ndarray::basic;
|
|
||||||
|
|
||||||
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
|
|
||||||
assert_shape_no_negative(ndims, shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
|
|
||||||
assert_shape_no_negative(ndims, shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
|
|
||||||
const int32_t* ndarray_shape,
|
|
||||||
int32_t output_ndims,
|
|
||||||
const int32_t* output_shape) {
|
|
||||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
|
|
||||||
const int64_t* ndarray_shape,
|
|
||||||
int64_t output_ndims,
|
|
||||||
const int64_t* output_shape) {
|
|
||||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
|
||||||
return size(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
|
||||||
return size(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
|
|
||||||
return nbytes(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
|
|
||||||
return nbytes(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
|
|
||||||
return len(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
|
|
||||||
return len(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
|
|
||||||
return is_c_contiguous(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
|
|
||||||
return is_c_contiguous(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
|
|
||||||
return get_nth_pelement(ndarray, nth);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
|
|
||||||
return get_nth_pelement(ndarray, nth);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint8_t* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
|
|
||||||
return get_pelement_by_indices(ndarray, indices);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint8_t* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
|
|
||||||
return get_pelement_by_indices(ndarray, indices);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
|
||||||
set_strides_by_shape(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
|
||||||
set_strides_by_shape(ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
|
||||||
copy_data(src_ndarray, dst_ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
|
||||||
copy_data(src_ndarray, dst_ndarray);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,165 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
#include "irrt/slice.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
template<typename SizeT>
|
|
||||||
struct ShapeEntry {
|
|
||||||
SizeT ndims;
|
|
||||||
SizeT* shape;
|
|
||||||
};
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace ndarray {
|
|
||||||
namespace broadcast {
|
|
||||||
/**
|
|
||||||
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
|
||||||
*
|
|
||||||
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
|
|
||||||
if (src_ndims > target_ndims) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < src_ndims; i++) {
|
|
||||||
SizeT target_dim = target_shape[target_ndims - i - 1];
|
|
||||||
SizeT src_dim = src_shape[src_ndims - i - 1];
|
|
||||||
if (!(src_dim == 1 || target_dim == src_dim)) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
|
||||||
*
|
|
||||||
* @param num_shapes Number of entries in `shapes`
|
|
||||||
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
|
||||||
* @param dst_ndims The length of `dst_shape`.
|
|
||||||
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
|
||||||
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
|
||||||
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
|
||||||
* of `np.broadcast_shapes` and write it here.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
|
|
||||||
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
|
|
||||||
dst_shape[dst_axis] = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef IRRT_DEBUG_ASSERT
|
|
||||||
SizeT max_ndims_found = 0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < num_shapes; i++) {
|
|
||||||
ShapeEntry<SizeT> entry = shapes[i];
|
|
||||||
|
|
||||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
|
||||||
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
|
||||||
|
|
||||||
#ifdef IRRT_DEBUG_ASSERT
|
|
||||||
max_ndims_found = max(max_ndims_found, entry.ndims);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
for (SizeT j = 0; j < entry.ndims; j++) {
|
|
||||||
SizeT entry_axis = entry.ndims - j - 1;
|
|
||||||
SizeT dst_axis = dst_ndims - j - 1;
|
|
||||||
|
|
||||||
SizeT entry_dim = entry.shape[entry_axis];
|
|
||||||
SizeT dst_dim = dst_shape[dst_axis];
|
|
||||||
|
|
||||||
if (dst_dim == 1) {
|
|
||||||
dst_shape[dst_axis] = entry_dim;
|
|
||||||
} else if (entry_dim == 1 || entry_dim == dst_dim) {
|
|
||||||
// Do nothing
|
|
||||||
} else {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
|
||||||
"shape mismatch: objects cannot be broadcast "
|
|
||||||
"to a single shape.",
|
|
||||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
|
||||||
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
|
||||||
*
|
|
||||||
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
|
||||||
* and return the result by modifying `dst_ndarray`.
|
|
||||||
*
|
|
||||||
* # Notes on `dst_ndarray`
|
|
||||||
* The caller is responsible for allocating space for the resulting ndarray.
|
|
||||||
* Here is what this function expects from `dst_ndarray` when called:
|
|
||||||
* - `dst_ndarray->data` does not have to be initialized.
|
|
||||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
|
||||||
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
|
||||||
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
|
||||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
|
||||||
* When this function call ends:
|
|
||||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
|
||||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
|
||||||
* - `dst_ndarray->ndims` is unchanged.
|
|
||||||
* - `dst_ndarray->shape` is unchanged.
|
|
||||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
|
||||||
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
|
||||||
src_ndarray->shape)) {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
|
|
||||||
NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
dst_ndarray->data = src_ndarray->data;
|
|
||||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
|
|
||||||
SizeT src_axis = src_ndarray->ndims - i - 1;
|
|
||||||
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
|
||||||
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
|
|
||||||
// Freeze the steps in-place
|
|
||||||
dst_ndarray->strides[dst_axis] = 0;
|
|
||||||
} else {
|
|
||||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} // namespace broadcast
|
|
||||||
} // namespace ndarray
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
using namespace ndarray::broadcast;
|
|
||||||
|
|
||||||
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
|
|
||||||
broadcast_to(src_ndarray, dst_ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
|
|
||||||
broadcast_to(src_ndarray, dst_ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
|
|
||||||
const ShapeEntry<int32_t>* shapes,
|
|
||||||
int32_t dst_ndims,
|
|
||||||
int32_t* dst_shape) {
|
|
||||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
|
|
||||||
const ShapeEntry<int64_t>* shapes,
|
|
||||||
int64_t dst_ndims,
|
|
||||||
int64_t* dst_shape) {
|
|
||||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,45 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
/**
|
|
||||||
* @brief The NDArray object
|
|
||||||
*
|
|
||||||
* Official numpy implementation:
|
|
||||||
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
struct NDArray {
|
|
||||||
/**
|
|
||||||
* @brief The underlying data this `ndarray` is pointing to.
|
|
||||||
*/
|
|
||||||
uint8_t* data;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief The number of bytes of a single element in `data`.
|
|
||||||
*/
|
|
||||||
SizeT itemsize;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief The number of dimensions of this shape.
|
|
||||||
*/
|
|
||||||
SizeT ndims;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief The NDArray shape, with length equal to `ndims`.
|
|
||||||
*
|
|
||||||
* Note that it may contain 0.
|
|
||||||
*/
|
|
||||||
SizeT* shape;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Array strides, with length equal to `ndims`
|
|
||||||
*
|
|
||||||
* The stride values are in units of bytes, not number of elements.
|
|
||||||
*
|
|
||||||
* Note that `strides` can have negative values or contain 0.
|
|
||||||
*/
|
|
||||||
SizeT* strides;
|
|
||||||
};
|
|
||||||
} // namespace
|
|
@ -1,220 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/exception.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/ndarray/basic.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
#include "irrt/range.hpp"
|
|
||||||
#include "irrt/slice.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
typedef uint8_t NDIndexType;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief A single element index
|
|
||||||
*
|
|
||||||
* `data` points to a `int32_t`.
|
|
||||||
*/
|
|
||||||
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief A slice index
|
|
||||||
*
|
|
||||||
* `data` points to a `Slice<int32_t>`.
|
|
||||||
*/
|
|
||||||
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief `np.newaxis` / `None`
|
|
||||||
*
|
|
||||||
* `data` is unused.
|
|
||||||
*/
|
|
||||||
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief `Ellipsis` / `...`
|
|
||||||
*
|
|
||||||
* `data` is unused.
|
|
||||||
*/
|
|
||||||
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief An index used in ndarray indexing
|
|
||||||
*
|
|
||||||
* That is:
|
|
||||||
* ```
|
|
||||||
* my_ndarray[::-1, 3, ..., np.newaxis]
|
|
||||||
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
|
|
||||||
* ```
|
|
||||||
*/
|
|
||||||
struct NDIndex {
|
|
||||||
/**
|
|
||||||
* @brief Enum tag to specify the type of index.
|
|
||||||
*
|
|
||||||
* Please see the comment of each enum constant.
|
|
||||||
*/
|
|
||||||
NDIndexType type;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief The accompanying data associated with `type`.
|
|
||||||
*
|
|
||||||
* Please see the comment of each enum constant.
|
|
||||||
*/
|
|
||||||
uint8_t* data;
|
|
||||||
};
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace ndarray {
|
|
||||||
namespace indexing {
|
|
||||||
/**
|
|
||||||
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
|
||||||
*
|
|
||||||
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
|
|
||||||
*
|
|
||||||
* This function also does proper assertions on `indices` to check for out of bounds access and more.
|
|
||||||
*
|
|
||||||
* # Notes on `dst_ndarray`
|
|
||||||
* The caller is responsible for allocating space for the resulting ndarray.
|
|
||||||
* Here is what this function expects from `dst_ndarray` when called:
|
|
||||||
* - `dst_ndarray->data` does not have to be initialized.
|
|
||||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
|
||||||
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
|
||||||
* indexing `src_ndarray` with `indices`.
|
|
||||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
|
||||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
|
||||||
* When this function call ends:
|
|
||||||
* - `dst_ndarray->data` is set to `src_ndarray->data`.
|
|
||||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
|
|
||||||
* - `dst_ndarray->ndims` is unchanged.
|
|
||||||
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
|
||||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
|
||||||
*
|
|
||||||
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
|
|
||||||
* @param src_ndarray The NDArray to be indexed.
|
|
||||||
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
|
||||||
// Validate `indices`.
|
|
||||||
|
|
||||||
// Expected value of `dst_ndarray->ndims`.
|
|
||||||
SizeT expected_dst_ndims = src_ndarray->ndims;
|
|
||||||
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
|
||||||
SizeT num_indexed = 0;
|
|
||||||
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
|
|
||||||
SizeT num_ellipsis = 0;
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < num_indices; i++) {
|
|
||||||
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
|
||||||
expected_dst_ndims--;
|
|
||||||
num_indexed++;
|
|
||||||
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
|
|
||||||
num_indexed++;
|
|
||||||
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
|
|
||||||
expected_dst_ndims++;
|
|
||||||
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
|
|
||||||
num_ellipsis++;
|
|
||||||
if (num_ellipsis > 1) {
|
|
||||||
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
|
|
||||||
NO_PARAM, NO_PARAM);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
__builtin_unreachable();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
|
||||||
|
|
||||||
if (src_ndarray->ndims - num_indexed < 0) {
|
|
||||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
|
||||||
"too many indices for array: array is {0}-dimensional, "
|
|
||||||
"but {1} were indexed",
|
|
||||||
src_ndarray->ndims, num_indices, NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
dst_ndarray->data = src_ndarray->data;
|
|
||||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
|
||||||
|
|
||||||
// Reference code:
|
|
||||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
|
||||||
SizeT src_axis = 0;
|
|
||||||
SizeT dst_axis = 0;
|
|
||||||
|
|
||||||
for (int32_t i = 0; i < num_indices; i++) {
|
|
||||||
const NDIndex* index = &indices[i];
|
|
||||||
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
|
||||||
SizeT input = (SizeT) * ((int32_t*)index->data);
|
|
||||||
|
|
||||||
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
|
|
||||||
if (k == -1) {
|
|
||||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
|
||||||
"index {0} is out of bounds for axis {1} "
|
|
||||||
"with size {2}",
|
|
||||||
input, src_axis, src_ndarray->shape[src_axis]);
|
|
||||||
}
|
|
||||||
|
|
||||||
dst_ndarray->data += k * src_ndarray->strides[src_axis];
|
|
||||||
|
|
||||||
src_axis++;
|
|
||||||
} else if (index->type == ND_INDEX_TYPE_SLICE) {
|
|
||||||
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
|
|
||||||
|
|
||||||
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
|
||||||
|
|
||||||
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis];
|
|
||||||
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
|
|
||||||
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
|
|
||||||
|
|
||||||
dst_axis++;
|
|
||||||
src_axis++;
|
|
||||||
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
|
|
||||||
dst_ndarray->strides[dst_axis] = 0;
|
|
||||||
dst_ndarray->shape[dst_axis] = 1;
|
|
||||||
|
|
||||||
dst_axis++;
|
|
||||||
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
|
|
||||||
// The number of ':' entries this '...' implies.
|
|
||||||
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
|
||||||
|
|
||||||
for (SizeT j = 0; j < ellipsis_size; j++) {
|
|
||||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
|
||||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
|
||||||
|
|
||||||
dst_axis++;
|
|
||||||
src_axis++;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
__builtin_unreachable();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
|
|
||||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
|
||||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
|
||||||
}
|
|
||||||
|
|
||||||
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
|
||||||
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
|
||||||
}
|
|
||||||
} // namespace indexing
|
|
||||||
} // namespace ndarray
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
using namespace ndarray::indexing;
|
|
||||||
|
|
||||||
void __nac3_ndarray_index(int32_t num_indices,
|
|
||||||
NDIndex* indices,
|
|
||||||
NDArray<int32_t>* src_ndarray,
|
|
||||||
NDArray<int32_t>* dst_ndarray) {
|
|
||||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_index64(int64_t num_indices,
|
|
||||||
NDIndex* indices,
|
|
||||||
NDArray<int64_t>* src_ndarray,
|
|
||||||
NDArray<int64_t>* dst_ndarray) {
|
|
||||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,146 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
/**
|
|
||||||
* @brief Helper struct to enumerate through an ndarray *efficiently*.
|
|
||||||
*
|
|
||||||
* Example usage (in pseudo-code):
|
|
||||||
* ```
|
|
||||||
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
|
|
||||||
* NDIter nditer;
|
|
||||||
* nditer.initialize(my_ndarray);
|
|
||||||
* while (nditer.has_element()) {
|
|
||||||
* // This body is run 6 (= my_ndarray.size) times.
|
|
||||||
*
|
|
||||||
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
|
|
||||||
* print(nditer.indices);
|
|
||||||
*
|
|
||||||
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
|
|
||||||
* print(nditer.nth);
|
|
||||||
*
|
|
||||||
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
|
|
||||||
* print(*((double *) nditer.element))
|
|
||||||
*
|
|
||||||
* nditer.next(); // Go to next element.
|
|
||||||
* }
|
|
||||||
* ```
|
|
||||||
*
|
|
||||||
* Interesting cases:
|
|
||||||
* - If `my_ndarray.ndims` == 0, there is one iteration.
|
|
||||||
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
struct NDIter {
|
|
||||||
// Information about the ndarray being iterated over.
|
|
||||||
SizeT ndims;
|
|
||||||
SizeT* shape;
|
|
||||||
SizeT* strides;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief The current indices.
|
|
||||||
*
|
|
||||||
* Must be allocated by the caller.
|
|
||||||
*/
|
|
||||||
SizeT* indices;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief The nth (0-based) index of the current indices.
|
|
||||||
*
|
|
||||||
* Initially this is 0.
|
|
||||||
*/
|
|
||||||
SizeT nth;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Pointer to the current element.
|
|
||||||
*
|
|
||||||
* Initially this points to first element of the ndarray.
|
|
||||||
*/
|
|
||||||
uint8_t* element;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Cache for the product of shape.
|
|
||||||
*
|
|
||||||
* Could be 0 if `shape` has 0s in it.
|
|
||||||
*/
|
|
||||||
SizeT size;
|
|
||||||
|
|
||||||
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element, SizeT* indices) {
|
|
||||||
this->ndims = ndims;
|
|
||||||
this->shape = shape;
|
|
||||||
this->strides = strides;
|
|
||||||
|
|
||||||
this->indices = indices;
|
|
||||||
this->element = element;
|
|
||||||
|
|
||||||
// Compute size
|
|
||||||
this->size = 1;
|
|
||||||
for (SizeT i = 0; i < ndims; i++) {
|
|
||||||
this->size *= shape[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
// `indices` starts on all 0s.
|
|
||||||
for (SizeT axis = 0; axis < ndims; axis++)
|
|
||||||
indices[axis] = 0;
|
|
||||||
nth = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
|
|
||||||
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
|
|
||||||
// element as well.
|
|
||||||
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Is the current iteration valid?
|
|
||||||
// If true, then `element`, `indices` and `nth` contain details about the current element.
|
|
||||||
bool has_element() { return nth < size; }
|
|
||||||
|
|
||||||
// Go to the next element.
|
|
||||||
void next() {
|
|
||||||
for (SizeT i = 0; i < ndims; i++) {
|
|
||||||
SizeT axis = ndims - i - 1;
|
|
||||||
indices[axis]++;
|
|
||||||
if (indices[axis] >= shape[axis]) {
|
|
||||||
indices[axis] = 0;
|
|
||||||
|
|
||||||
// TODO: There is something called backstrides to speedup iteration.
|
|
||||||
// See https://ajcr.net/stride-guide-part-1/, and
|
|
||||||
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
|
||||||
element -= strides[axis] * (shape[axis] - 1);
|
|
||||||
} else {
|
|
||||||
element += strides[axis];
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
nth++;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
|
|
||||||
iter->initialize_by_ndarray(ndarray, indices);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
|
|
||||||
iter->initialize_by_ndarray(ndarray, indices);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
|
|
||||||
return iter->has_element();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
|
|
||||||
return iter->has_element();
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_nditer_next(NDIter<int32_t>* iter) {
|
|
||||||
iter->next();
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
|
|
||||||
iter->next();
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,100 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/debug.hpp"
|
|
||||||
#include "irrt/exception.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/ndarray/basic.hpp"
|
|
||||||
#include "irrt/ndarray/broadcast.hpp"
|
|
||||||
#include "irrt/ndarray/iter.hpp"
|
|
||||||
|
|
||||||
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace ndarray {
|
|
||||||
namespace matmul {
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
|
|
||||||
*
|
|
||||||
* Example:
|
|
||||||
* Suppose `a_shape == [1, 97, 4, 2]`
|
|
||||||
* and `b_shape == [99, 98, 1, 2, 5]`,
|
|
||||||
*
|
|
||||||
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
|
||||||
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
|
||||||
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
|
||||||
* ^^^^^^^^^^ ^^^^
|
|
||||||
* (broadcasted) (4x2 @ 2x5 => 4x5)
|
|
||||||
*
|
|
||||||
* @param a_ndims Length of `a_shape`.
|
|
||||||
* @param a_shape Shape of `a`.
|
|
||||||
* @param b_ndims Length of `b_shape`.
|
|
||||||
* @param b_shape Shape of `b`.
|
|
||||||
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
|
|
||||||
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void calculate_shapes(SizeT a_ndims,
|
|
||||||
SizeT* a_shape,
|
|
||||||
SizeT b_ndims,
|
|
||||||
SizeT* b_shape,
|
|
||||||
SizeT final_ndims,
|
|
||||||
SizeT* new_a_shape,
|
|
||||||
SizeT* new_b_shape,
|
|
||||||
SizeT* dst_shape) {
|
|
||||||
debug_assert(SizeT, a_ndims >= 2);
|
|
||||||
debug_assert(SizeT, b_ndims >= 2);
|
|
||||||
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
|
||||||
|
|
||||||
// Check that a and b are compatible for matmul
|
|
||||||
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
|
|
||||||
// This is a custom error message. Different from NumPy.
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
|
||||||
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
const SizeT num_entries = 2;
|
|
||||||
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
|
|
||||||
{.ndims = b_ndims - 2, .shape = b_shape}};
|
|
||||||
|
|
||||||
// TODO: Optimize this
|
|
||||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
|
|
||||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
|
|
||||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
|
|
||||||
|
|
||||||
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
|
||||||
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
|
||||||
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
|
||||||
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
|
||||||
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
|
||||||
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
|
||||||
}
|
|
||||||
} // namespace matmul
|
|
||||||
} // namespace ndarray
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
using namespace ndarray::matmul;
|
|
||||||
|
|
||||||
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
|
|
||||||
int32_t* a_shape,
|
|
||||||
int32_t b_ndims,
|
|
||||||
int32_t* b_shape,
|
|
||||||
int32_t final_ndims,
|
|
||||||
int32_t* new_a_shape,
|
|
||||||
int32_t* new_b_shape,
|
|
||||||
int32_t* dst_shape) {
|
|
||||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
|
|
||||||
int64_t* a_shape,
|
|
||||||
int64_t b_ndims,
|
|
||||||
int64_t* b_shape,
|
|
||||||
int64_t final_ndims,
|
|
||||||
int64_t* new_a_shape,
|
|
||||||
int64_t* new_b_shape,
|
|
||||||
int64_t* dst_shape) {
|
|
||||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,99 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/exception.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace ndarray {
|
|
||||||
namespace reshape {
|
|
||||||
/**
|
|
||||||
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
|
||||||
*
|
|
||||||
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
|
||||||
* modified to contain the resolved dimension.
|
|
||||||
*
|
|
||||||
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
|
||||||
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
|
||||||
*
|
|
||||||
* @param size The `.size` of `<ndarray>`
|
|
||||||
* @param new_ndims Number of elements in `new_shape`
|
|
||||||
* @param new_shape Target shape to reshape to
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
|
|
||||||
// Is there a -1 in `new_shape`?
|
|
||||||
bool neg1_exists = false;
|
|
||||||
// Location of -1, only initialized if `neg1_exists` is true
|
|
||||||
SizeT neg1_axis_i;
|
|
||||||
// The computed ndarray size of `new_shape`
|
|
||||||
SizeT new_size = 1;
|
|
||||||
|
|
||||||
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
|
|
||||||
SizeT dim = new_shape[axis_i];
|
|
||||||
if (dim < 0) {
|
|
||||||
if (dim == -1) {
|
|
||||||
if (neg1_exists) {
|
|
||||||
// Multiple `-1` found. Throw an error.
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
|
|
||||||
NO_PARAM, NO_PARAM);
|
|
||||||
} else {
|
|
||||||
neg1_exists = true;
|
|
||||||
neg1_axis_i = axis_i;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// TODO: What? In `np.reshape` any negative dimensions is
|
|
||||||
// treated like its `-1`.
|
|
||||||
//
|
|
||||||
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
|
||||||
//
|
|
||||||
// It is not documented by numpy.
|
|
||||||
// Throw an error for now...
|
|
||||||
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
|
|
||||||
NO_PARAM);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
new_size *= dim;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
bool can_reshape;
|
|
||||||
if (neg1_exists) {
|
|
||||||
// Let `x` be the unknown dimension
|
|
||||||
// Solve `x * <new_size> = <size>`
|
|
||||||
if (new_size == 0 && size == 0) {
|
|
||||||
// `x` has infinitely many solutions
|
|
||||||
can_reshape = false;
|
|
||||||
} else if (new_size == 0 && size != 0) {
|
|
||||||
// `x` has no solutions
|
|
||||||
can_reshape = false;
|
|
||||||
} else if (size % new_size != 0) {
|
|
||||||
// `x` has no integer solutions
|
|
||||||
can_reshape = false;
|
|
||||||
} else {
|
|
||||||
can_reshape = true;
|
|
||||||
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
can_reshape = (new_size == size);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!can_reshape) {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
|
|
||||||
NO_PARAM);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} // namespace reshape
|
|
||||||
} // namespace ndarray
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
|
|
||||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
|
|
||||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,145 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/debug.hpp"
|
|
||||||
#include "irrt/exception.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
#include "irrt/ndarray/def.hpp"
|
|
||||||
#include "irrt/slice.hpp"
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Notes on `np.transpose(<array>, <axes>)`
|
|
||||||
*
|
|
||||||
* TODO: `axes`, if specified, can actually contain negative indices,
|
|
||||||
* but it is not documented in numpy.
|
|
||||||
*
|
|
||||||
* Supporting it for now.
|
|
||||||
*/
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace ndarray {
|
|
||||||
namespace transpose {
|
|
||||||
/**
|
|
||||||
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
|
||||||
*
|
|
||||||
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
|
||||||
* is specified but the user, use this function to do assertions on it.
|
|
||||||
*
|
|
||||||
* @param ndims The number of dimensions of `<array>`
|
|
||||||
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
|
||||||
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
|
||||||
* @param axes The user specified `<axes>`.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
|
|
||||||
if (ndims != num_axes) {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO: Optimize this
|
|
||||||
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
|
|
||||||
for (SizeT i = 0; i < ndims; i++)
|
|
||||||
axe_specified[i] = false;
|
|
||||||
|
|
||||||
for (SizeT i = 0; i < ndims; i++) {
|
|
||||||
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
|
||||||
if (axis == -1) {
|
|
||||||
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
|
|
||||||
NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (axe_specified[axis]) {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
axe_specified[axis] = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
|
||||||
*
|
|
||||||
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
|
||||||
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
|
||||||
*
|
|
||||||
* The transpose view created is returned by modifying `dst_ndarray`.
|
|
||||||
*
|
|
||||||
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
|
||||||
* Here is what this function expects from `dst_ndarray` when called:
|
|
||||||
* - `dst_ndarray->data` does not have to be initialized.
|
|
||||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
|
||||||
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
|
||||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
|
||||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
|
||||||
* When this function call ends:
|
|
||||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
|
||||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
|
||||||
* - `dst_ndarray->ndims` is unchanged
|
|
||||||
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
|
||||||
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
|
||||||
*
|
|
||||||
* @param src_ndarray The NDArray to build a transpose view on
|
|
||||||
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
|
||||||
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
|
||||||
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
|
|
||||||
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
|
||||||
const auto ndims = src_ndarray->ndims;
|
|
||||||
|
|
||||||
if (axes != nullptr)
|
|
||||||
assert_transpose_axes(ndims, num_axes, axes);
|
|
||||||
|
|
||||||
dst_ndarray->data = src_ndarray->data;
|
|
||||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
|
||||||
|
|
||||||
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
|
||||||
if (axes == nullptr) {
|
|
||||||
// `np.transpose(<array>, axes=None)`
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
|
||||||
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
|
||||||
* is reversing the order of strides and shape.
|
|
||||||
*
|
|
||||||
* This is a fast implementation to handle this special (but very common) case.
|
|
||||||
*/
|
|
||||||
|
|
||||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
|
||||||
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
|
||||||
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// `np.transpose(<array>, <axes>)`
|
|
||||||
|
|
||||||
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
|
||||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
|
||||||
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
|
||||||
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
|
||||||
|
|
||||||
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
|
||||||
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} // namespace transpose
|
|
||||||
} // namespace ndarray
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
using namespace ndarray::transpose;
|
|
||||||
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
|
|
||||||
NDArray<int32_t>* dst_ndarray,
|
|
||||||
int32_t num_axes,
|
|
||||||
const int32_t* axes) {
|
|
||||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
|
||||||
}
|
|
||||||
|
|
||||||
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
|
|
||||||
NDArray<int64_t>* dst_ndarray,
|
|
||||||
int64_t num_axes,
|
|
||||||
const int64_t* axes) {
|
|
||||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,47 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include "irrt/debug.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace range {
|
|
||||||
template<typename T>
|
|
||||||
T len(T start, T stop, T step) {
|
|
||||||
// Reference:
|
|
||||||
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
|
|
||||||
if (step > 0 && start < stop)
|
|
||||||
return 1 + (stop - 1 - start) / step;
|
|
||||||
else if (step < 0 && start > stop)
|
|
||||||
return 1 + (start - 1 - stop) / (-step);
|
|
||||||
else
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
} // namespace range
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief A Python range.
|
|
||||||
*/
|
|
||||||
template<typename T>
|
|
||||||
struct Range {
|
|
||||||
T start;
|
|
||||||
T stop;
|
|
||||||
T step;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Calculate the `len()` of this range.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
T len() {
|
|
||||||
debug_assert(SizeT, step != 0);
|
|
||||||
return range::len(start, stop, step);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
using namespace range;
|
|
||||||
|
|
||||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
|
|
||||||
return len(start, end, step);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,145 +1,6 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "irrt/debug.hpp"
|
|
||||||
#include "irrt/exception.hpp"
|
|
||||||
#include "irrt/int_types.hpp"
|
#include "irrt/int_types.hpp"
|
||||||
#include "irrt/math_util.hpp"
|
|
||||||
#include "irrt/range.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
namespace slice {
|
|
||||||
/**
|
|
||||||
* @brief Resolve a possibly negative index in a list of a known length.
|
|
||||||
*
|
|
||||||
* Returns -1 if the resolved index is out of the list's bounds.
|
|
||||||
*/
|
|
||||||
template<typename T>
|
|
||||||
T resolve_index_in_length(T length, T index) {
|
|
||||||
T resolved = index < 0 ? length + index : index;
|
|
||||||
if (0 <= resolved && resolved < length) {
|
|
||||||
return resolved;
|
|
||||||
} else {
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Resolve a slice as a range.
|
|
||||||
*
|
|
||||||
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
|
|
||||||
*/
|
|
||||||
template<typename T>
|
|
||||||
void indices(bool start_defined,
|
|
||||||
T start,
|
|
||||||
bool stop_defined,
|
|
||||||
T stop,
|
|
||||||
bool step_defined,
|
|
||||||
T step,
|
|
||||||
T length,
|
|
||||||
T* range_start,
|
|
||||||
T* range_stop,
|
|
||||||
T* range_step) {
|
|
||||||
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
|
||||||
*range_step = step_defined ? step : 1;
|
|
||||||
bool step_is_negative = *range_step < 0;
|
|
||||||
|
|
||||||
T lower, upper;
|
|
||||||
if (step_is_negative) {
|
|
||||||
lower = -1;
|
|
||||||
upper = length - 1;
|
|
||||||
} else {
|
|
||||||
lower = 0;
|
|
||||||
upper = length;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (start_defined) {
|
|
||||||
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
|
|
||||||
} else {
|
|
||||||
*range_start = step_is_negative ? upper : lower;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (stop_defined) {
|
|
||||||
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
|
|
||||||
} else {
|
|
||||||
*range_stop = step_is_negative ? lower : upper;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} // namespace slice
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief A Python-like slice with **unresolved** indices.
|
|
||||||
*/
|
|
||||||
template<typename T>
|
|
||||||
struct Slice {
|
|
||||||
bool start_defined;
|
|
||||||
T start;
|
|
||||||
|
|
||||||
bool stop_defined;
|
|
||||||
T stop;
|
|
||||||
|
|
||||||
bool step_defined;
|
|
||||||
T step;
|
|
||||||
|
|
||||||
Slice() { this->reset(); }
|
|
||||||
|
|
||||||
void reset() {
|
|
||||||
this->start_defined = false;
|
|
||||||
this->stop_defined = false;
|
|
||||||
this->step_defined = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
void set_start(T start) {
|
|
||||||
this->start_defined = true;
|
|
||||||
this->start = start;
|
|
||||||
}
|
|
||||||
|
|
||||||
void set_stop(T stop) {
|
|
||||||
this->stop_defined = true;
|
|
||||||
this->stop = stop;
|
|
||||||
}
|
|
||||||
|
|
||||||
void set_step(T step) {
|
|
||||||
this->step_defined = true;
|
|
||||||
this->step = step;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Resolve this slice as a range.
|
|
||||||
*
|
|
||||||
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
Range<T> indices(T length) {
|
|
||||||
// Reference:
|
|
||||||
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
|
||||||
debug_assert(SizeT, length >= 0);
|
|
||||||
|
|
||||||
Range<T> result;
|
|
||||||
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
|
|
||||||
&result.stop, &result.step);
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief Like `.indices()` but with assertions.
|
|
||||||
*/
|
|
||||||
template<typename SizeT>
|
|
||||||
Range<T> indices_checked(T length) {
|
|
||||||
// TODO: Switch to `SizeT length`
|
|
||||||
|
|
||||||
if (length < 0) {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
|
|
||||||
NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (this->step_defined && this->step == 0) {
|
|
||||||
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
|
|
||||||
}
|
|
||||||
|
|
||||||
return this->indices<SizeT>(length);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
extern "C" {
|
extern "C" {
|
||||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||||
@ -153,4 +14,15 @@ SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
|||||||
}
|
}
|
||||||
return i;
|
return i;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
|
||||||
|
SliceIndex diff = end - start;
|
||||||
|
if (diff > 0 && step > 0) {
|
||||||
|
return ((diff - 1) / step) + 1;
|
||||||
|
} else if (diff < 0 && step < 0) {
|
||||||
|
return ((diff + 1) / step) + 1;
|
||||||
|
} else {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
File diff suppressed because it is too large
Load Diff
@ -1,13 +1,17 @@
|
|||||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
|
||||||
use inkwell::context::Context;
|
|
||||||
use inkwell::types::{ArrayType, BasicType, StructType};
|
|
||||||
use inkwell::values::{ArrayValue, BasicValue, StructValue};
|
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
types::{AnyTypeEnum, BasicTypeEnum, IntType, PointerType},
|
context::Context,
|
||||||
values::{BasicValueEnum, IntValue, PointerValue},
|
types::{AnyTypeEnum, ArrayType, BasicType, BasicTypeEnum, IntType, PointerType, StructType},
|
||||||
|
values::{ArrayValue, BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
|
||||||
AddressSpace, IntPredicate,
|
AddressSpace, IntPredicate,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
|
||||||
|
llvm_intrinsics::call_int_umin,
|
||||||
|
stmt::gen_for_callback_incrementing,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
/// A LLVM type that is used to represent a non-primitive type in NAC3.
|
/// A LLVM type that is used to represent a non-primitive type in NAC3.
|
||||||
pub trait ProxyType<'ctx>: Into<Self::Base> {
|
pub trait ProxyType<'ctx>: Into<Self::Base> {
|
||||||
/// The LLVM type of which values of this type possess. This is usually a
|
/// The LLVM type of which values of this type possess. This is usually a
|
||||||
@ -1136,3 +1140,626 @@ impl<'ctx> From<RangeValue<'ctx>> for PointerValue<'ctx> {
|
|||||||
value.as_base_value()
|
value.as_base_value()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Proxy type for a `ndarray` type in LLVM.
|
||||||
|
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
||||||
|
pub struct NDArrayType<'ctx> {
|
||||||
|
ty: PointerType<'ctx>,
|
||||||
|
llvm_usize: IntType<'ctx>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayType<'ctx> {
|
||||||
|
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
|
||||||
|
pub fn is_type(llvm_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Result<(), String> {
|
||||||
|
let llvm_ndarray_ty = llvm_ty.get_element_type();
|
||||||
|
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
|
||||||
|
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
|
||||||
|
};
|
||||||
|
if llvm_ndarray_ty.count_fields() != 3 {
|
||||||
|
return Err(format!(
|
||||||
|
"Expected 3 fields in `NDArray`, got {}",
|
||||||
|
llvm_ndarray_ty.count_fields()
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
let ndarray_ndims_ty = llvm_ndarray_ty.get_field_type_at_index(0).unwrap();
|
||||||
|
let Ok(ndarray_ndims_ty) = IntType::try_from(ndarray_ndims_ty) else {
|
||||||
|
return Err(format!("Expected int type for `ndarray.0`, got {ndarray_ndims_ty}"));
|
||||||
|
};
|
||||||
|
if ndarray_ndims_ty.get_bit_width() != llvm_usize.get_bit_width() {
|
||||||
|
return Err(format!(
|
||||||
|
"Expected {}-bit int type for `ndarray.0`, got {}-bit int",
|
||||||
|
llvm_usize.get_bit_width(),
|
||||||
|
ndarray_ndims_ty.get_bit_width()
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
let ndarray_dims_ty = llvm_ndarray_ty.get_field_type_at_index(1).unwrap();
|
||||||
|
let Ok(ndarray_pdims) = PointerType::try_from(ndarray_dims_ty) else {
|
||||||
|
return Err(format!("Expected pointer type for `ndarray.1`, got {ndarray_dims_ty}"));
|
||||||
|
};
|
||||||
|
let ndarray_dims = ndarray_pdims.get_element_type();
|
||||||
|
let Ok(ndarray_dims) = IntType::try_from(ndarray_dims) else {
|
||||||
|
return Err(format!(
|
||||||
|
"Expected pointer-to-int type for `ndarray.1`, got pointer-to-{ndarray_dims}"
|
||||||
|
));
|
||||||
|
};
|
||||||
|
if ndarray_dims.get_bit_width() != llvm_usize.get_bit_width() {
|
||||||
|
return Err(format!(
|
||||||
|
"Expected pointer-to-{}-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
|
||||||
|
llvm_usize.get_bit_width(),
|
||||||
|
ndarray_dims.get_bit_width()
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
let ndarray_data_ty = llvm_ndarray_ty.get_field_type_at_index(2).unwrap();
|
||||||
|
let Ok(_) = PointerType::try_from(ndarray_data_ty) else {
|
||||||
|
return Err(format!("Expected pointer type for `ndarray.2`, got {ndarray_data_ty}"));
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Creates an instance of [`ListType`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn new<G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &G,
|
||||||
|
ctx: &'ctx Context,
|
||||||
|
dtype: BasicTypeEnum<'ctx>,
|
||||||
|
) -> Self {
|
||||||
|
let llvm_usize = generator.get_size_type(ctx);
|
||||||
|
|
||||||
|
// struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
||||||
|
//
|
||||||
|
// * num_dims: Number of dimensions in the array
|
||||||
|
// * dims: Pointer to an array containing the size of each dimension
|
||||||
|
// * data: Pointer to an array containing the array data
|
||||||
|
let llvm_ndarray = ctx
|
||||||
|
.struct_type(
|
||||||
|
&[
|
||||||
|
llvm_usize.into(),
|
||||||
|
llvm_usize.ptr_type(AddressSpace::default()).into(),
|
||||||
|
dtype.ptr_type(AddressSpace::default()).into(),
|
||||||
|
],
|
||||||
|
false,
|
||||||
|
)
|
||||||
|
.ptr_type(AddressSpace::default());
|
||||||
|
|
||||||
|
NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Creates an [`NDArrayType`] from a [`PointerType`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
|
||||||
|
debug_assert!(Self::is_type(ptr_ty, llvm_usize).is_ok());
|
||||||
|
|
||||||
|
NDArrayType { ty: ptr_ty, llvm_usize }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the type of the `size` field of this `ndarray` type.
|
||||||
|
#[must_use]
|
||||||
|
pub fn size_type(&self) -> IntType<'ctx> {
|
||||||
|
self.as_base_type()
|
||||||
|
.get_element_type()
|
||||||
|
.into_struct_type()
|
||||||
|
.get_field_type_at_index(0)
|
||||||
|
.map(BasicTypeEnum::into_int_type)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the element type of this `ndarray` type.
|
||||||
|
#[must_use]
|
||||||
|
pub fn element_type(&self) -> AnyTypeEnum<'ctx> {
|
||||||
|
self.as_base_type()
|
||||||
|
.get_element_type()
|
||||||
|
.into_struct_type()
|
||||||
|
.get_field_type_at_index(2)
|
||||||
|
.map(BasicTypeEnum::into_pointer_type)
|
||||||
|
.map(PointerType::get_element_type)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
|
||||||
|
type Base = PointerType<'ctx>;
|
||||||
|
type Underlying = StructType<'ctx>;
|
||||||
|
type Value = NDArrayValue<'ctx>;
|
||||||
|
|
||||||
|
fn new_value<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: Option<&'ctx str>,
|
||||||
|
) -> Self::Value {
|
||||||
|
self.create_value(
|
||||||
|
generator.gen_var_alloc(ctx, self.as_underlying_type().into(), name).unwrap(),
|
||||||
|
name,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn create_value(
|
||||||
|
&self,
|
||||||
|
value: <Self::Value as ProxyValue<'ctx>>::Base,
|
||||||
|
name: Option<&'ctx str>,
|
||||||
|
) -> Self::Value {
|
||||||
|
debug_assert_eq!(value.get_type(), self.as_base_type());
|
||||||
|
|
||||||
|
NDArrayValue { value, llvm_usize: self.llvm_usize, name }
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_base_type(&self) -> Self::Base {
|
||||||
|
self.ty
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_underlying_type(&self) -> Self::Underlying {
|
||||||
|
self.as_base_type().get_element_type().into_struct_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> From<NDArrayType<'ctx>> for PointerType<'ctx> {
|
||||||
|
fn from(value: NDArrayType<'ctx>) -> Self {
|
||||||
|
value.as_base_type()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Proxy type for accessing an `NDArray` value in LLVM.
|
||||||
|
#[derive(Copy, Clone)]
|
||||||
|
pub struct NDArrayValue<'ctx> {
|
||||||
|
value: PointerValue<'ctx>,
|
||||||
|
llvm_usize: IntType<'ctx>,
|
||||||
|
name: Option<&'ctx str>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayValue<'ctx> {
|
||||||
|
/// Checks whether `value` is an instance of `NDArray`, returning [Err] if `value` is not an
|
||||||
|
/// instance.
|
||||||
|
pub fn is_instance(value: PointerValue<'ctx>, llvm_usize: IntType<'ctx>) -> Result<(), String> {
|
||||||
|
NDArrayType::is_type(value.get_type(), llvm_usize)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Creates an [`NDArrayValue`] from a [`PointerValue`].
|
||||||
|
#[must_use]
|
||||||
|
pub fn from_ptr_val(
|
||||||
|
ptr: PointerValue<'ctx>,
|
||||||
|
llvm_usize: IntType<'ctx>,
|
||||||
|
name: Option<&'ctx str>,
|
||||||
|
) -> Self {
|
||||||
|
debug_assert!(Self::is_instance(ptr, llvm_usize).is_ok());
|
||||||
|
|
||||||
|
<Self as ProxyValue<'ctx>>::Type::from_type(ptr.get_type(), llvm_usize)
|
||||||
|
.create_value(ptr, name)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the pointer to the field storing the number of dimensions of this `NDArray`.
|
||||||
|
fn ptr_to_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
let var_name = self.name.map(|v| format!("{v}.ndims.addr")).unwrap_or_default();
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(
|
||||||
|
self.as_base_value(),
|
||||||
|
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
|
||||||
|
var_name.as_str(),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Stores the number of dimensions `ndims` into this instance.
|
||||||
|
pub fn store_ndims<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &G,
|
||||||
|
ndims: IntValue<'ctx>,
|
||||||
|
) {
|
||||||
|
debug_assert_eq!(ndims.get_type(), generator.get_size_type(ctx.ctx));
|
||||||
|
|
||||||
|
let pndims = self.ptr_to_ndims(ctx);
|
||||||
|
ctx.builder.build_store(pndims, ndims).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the number of dimensions of this `NDArray` as a value.
|
||||||
|
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||||
|
let pndims = self.ptr_to_ndims(ctx);
|
||||||
|
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the double-indirection pointer to the `dims` array, as if by calling `getelementptr`
|
||||||
|
/// on the field.
|
||||||
|
fn ptr_to_dims(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
let var_name = self.name.map(|v| format!("{v}.dims.addr")).unwrap_or_default();
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(
|
||||||
|
self.as_base_value(),
|
||||||
|
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
|
||||||
|
var_name.as_str(),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Stores the array of dimension sizes `dims` into this instance.
|
||||||
|
fn store_dim_sizes(&self, ctx: &CodeGenContext<'ctx, '_>, dims: PointerValue<'ctx>) {
|
||||||
|
ctx.builder.build_store(self.ptr_to_dims(ctx), dims).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience method for creating a new array storing dimension sizes with the given `size`.
|
||||||
|
pub fn create_dim_sizes(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
llvm_usize: IntType<'ctx>,
|
||||||
|
size: IntValue<'ctx>,
|
||||||
|
) {
|
||||||
|
self.store_dim_sizes(ctx, ctx.builder.build_array_alloca(llvm_usize, size, "").unwrap());
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a proxy object to the field storing the size of each dimension of this `NDArray`.
|
||||||
|
#[must_use]
|
||||||
|
pub fn dim_sizes(&self) -> NDArrayDimsProxy<'ctx, '_> {
|
||||||
|
NDArrayDimsProxy(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
|
||||||
|
/// on the field.
|
||||||
|
pub fn ptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(
|
||||||
|
self.as_base_value(),
|
||||||
|
&[llvm_i32.const_zero(), llvm_i32.const_int(2, true)],
|
||||||
|
var_name.as_str(),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Stores the array of data elements `data` into this instance.
|
||||||
|
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
|
||||||
|
ctx.builder.build_store(self.ptr_to_data(ctx), data).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Convenience method for creating a new array storing data elements with the given element
|
||||||
|
/// type `elem_ty` and `size`.
|
||||||
|
pub fn create_data(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
elem_ty: BasicTypeEnum<'ctx>,
|
||||||
|
size: IntValue<'ctx>,
|
||||||
|
) {
|
||||||
|
self.store_data(ctx, ctx.builder.build_array_alloca(elem_ty, size, "").unwrap());
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a proxy object to the field storing the data of this `NDArray`.
|
||||||
|
#[must_use]
|
||||||
|
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
|
||||||
|
NDArrayDataProxy(self)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
|
||||||
|
type Base = PointerValue<'ctx>;
|
||||||
|
type Underlying = StructValue<'ctx>;
|
||||||
|
type Type = NDArrayType<'ctx>;
|
||||||
|
|
||||||
|
fn get_type(&self) -> Self::Type {
|
||||||
|
NDArrayType::from_type(self.as_base_value().get_type(), self.llvm_usize)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_base_value(&self) -> Self::Base {
|
||||||
|
self.value
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_underlying_value(
|
||||||
|
&self,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
name: Option<&'ctx str>,
|
||||||
|
) -> Self::Underlying {
|
||||||
|
ctx.builder
|
||||||
|
.build_load(self.as_base_value(), name.unwrap_or_default())
|
||||||
|
.map(BasicValueEnum::into_struct_value)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> From<NDArrayValue<'ctx>> for PointerValue<'ctx> {
|
||||||
|
fn from(value: NDArrayValue<'ctx>) -> Self {
|
||||||
|
value.as_base_value()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM.
|
||||||
|
#[derive(Copy, Clone)]
|
||||||
|
pub struct NDArrayDimsProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
|
||||||
|
|
||||||
|
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDimsProxy<'ctx, '_> {
|
||||||
|
fn element_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &G,
|
||||||
|
) -> AnyTypeEnum<'ctx> {
|
||||||
|
self.0.dim_sizes().base_ptr(ctx, generator).get_type().get_element_type()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn base_ptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
_: &G,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
|
||||||
|
|
||||||
|
ctx.builder
|
||||||
|
.build_load(self.0.ptr_to_dims(ctx), var_name.as_str())
|
||||||
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn size<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
_: &G,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
self.0.load_ndims(ctx)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {
|
||||||
|
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &mut G,
|
||||||
|
idx: &IntValue<'ctx>,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &mut G,
|
||||||
|
idx: &IntValue<'ctx>,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let size = self.size(ctx, generator);
|
||||||
|
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
in_range,
|
||||||
|
"0:IndexError",
|
||||||
|
"index {0} is out of bounds for axis 0 with size {1}",
|
||||||
|
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
|
||||||
|
ctx.current_loc,
|
||||||
|
);
|
||||||
|
|
||||||
|
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {}
|
||||||
|
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {}
|
||||||
|
|
||||||
|
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {
|
||||||
|
fn downcast_to_type(
|
||||||
|
&self,
|
||||||
|
_: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
value: BasicValueEnum<'ctx>,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
value.into_int_value()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDimsProxy<'ctx, '_> {
|
||||||
|
fn upcast_from_type(
|
||||||
|
&self,
|
||||||
|
_: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
value: IntValue<'ctx>,
|
||||||
|
) -> BasicValueEnum<'ctx> {
|
||||||
|
value.into()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Proxy type for accessing the `data` array of an `NDArray` instance in LLVM.
|
||||||
|
#[derive(Copy, Clone)]
|
||||||
|
pub struct NDArrayDataProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
|
||||||
|
|
||||||
|
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
|
||||||
|
fn element_type<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &G,
|
||||||
|
) -> AnyTypeEnum<'ctx> {
|
||||||
|
self.0.data().base_ptr(ctx, generator).get_type().get_element_type()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn base_ptr<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
_: &G,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let var_name = self.0.name.map(|v| format!("{v}.data")).unwrap_or_default();
|
||||||
|
|
||||||
|
ctx.builder
|
||||||
|
.build_load(self.0.ptr_to_data(ctx), var_name.as_str())
|
||||||
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn size<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &G,
|
||||||
|
) -> IntValue<'ctx> {
|
||||||
|
call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
|
||||||
|
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &mut G,
|
||||||
|
idx: &IntValue<'ctx>,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(
|
||||||
|
self.base_ptr(ctx, generator),
|
||||||
|
&[*idx],
|
||||||
|
name.unwrap_or_default(),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &mut G,
|
||||||
|
idx: &IntValue<'ctx>,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let data_sz = self.size(ctx, generator);
|
||||||
|
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, data_sz, "").unwrap();
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
in_range,
|
||||||
|
"0:IndexError",
|
||||||
|
"index {0} is out of bounds with size {1}",
|
||||||
|
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
|
||||||
|
ctx.current_loc,
|
||||||
|
);
|
||||||
|
|
||||||
|
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
|
||||||
|
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayDataProxy<'ctx, '_> {}
|
||||||
|
|
||||||
|
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
|
||||||
|
for NDArrayDataProxy<'ctx, '_>
|
||||||
|
{
|
||||||
|
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &mut G,
|
||||||
|
indices: &Index,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
|
||||||
|
let indices_elem_ty = indices
|
||||||
|
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
||||||
|
.get_type()
|
||||||
|
.get_element_type();
|
||||||
|
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
||||||
|
panic!("Expected list[int32] but got {indices_elem_ty}")
|
||||||
|
};
|
||||||
|
assert_eq!(
|
||||||
|
indices_elem_ty.get_bit_width(),
|
||||||
|
32,
|
||||||
|
"Expected list[int32] but got list[int{}]",
|
||||||
|
indices_elem_ty.get_bit_width()
|
||||||
|
);
|
||||||
|
|
||||||
|
let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
ctx.builder
|
||||||
|
.build_in_bounds_gep(
|
||||||
|
self.base_ptr(ctx, generator),
|
||||||
|
&[index],
|
||||||
|
name.unwrap_or_default(),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &mut G,
|
||||||
|
indices: &Index,
|
||||||
|
name: Option<&str>,
|
||||||
|
) -> PointerValue<'ctx> {
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
|
||||||
|
let indices_size = indices.size(ctx, generator);
|
||||||
|
let nidx_leq_ndims = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_compare(IntPredicate::SLE, indices_size, self.0.load_ndims(ctx), "")
|
||||||
|
.unwrap();
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
nidx_leq_ndims,
|
||||||
|
"0:IndexError",
|
||||||
|
"invalid index to scalar variable",
|
||||||
|
[None, None, None],
|
||||||
|
ctx.current_loc,
|
||||||
|
);
|
||||||
|
|
||||||
|
let indices_len = indices.size(ctx, generator);
|
||||||
|
let ndarray_len = self.0.load_ndims(ctx);
|
||||||
|
let len = call_int_umin(ctx, indices_len, ndarray_len, None);
|
||||||
|
gen_for_callback_incrementing(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
None,
|
||||||
|
llvm_usize.const_zero(),
|
||||||
|
(len, false),
|
||||||
|
|generator, ctx, _, i| {
|
||||||
|
let (dim_idx, dim_sz) = unsafe {
|
||||||
|
(
|
||||||
|
indices.get_unchecked(ctx, generator, &i, None).into_int_value(),
|
||||||
|
self.0.dim_sizes().get_typed_unchecked(ctx, generator, &i, None),
|
||||||
|
)
|
||||||
|
};
|
||||||
|
let dim_idx = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_z_extend_or_bit_cast(dim_idx, dim_sz.get_type(), "")
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let dim_lt =
|
||||||
|
ctx.builder.build_int_compare(IntPredicate::SLT, dim_idx, dim_sz, "").unwrap();
|
||||||
|
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
dim_lt,
|
||||||
|
"0:IndexError",
|
||||||
|
"index {0} is out of bounds for axis 0 with size {1}",
|
||||||
|
[Some(dim_idx), Some(dim_sz), None],
|
||||||
|
ctx.current_loc,
|
||||||
|
);
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
llvm_usize.const_int(1, false),
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
unsafe { self.ptr_offset_unchecked(ctx, generator, indices, name) }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeAccessor<'ctx, Index>
|
||||||
|
for NDArrayDataProxy<'ctx, '_>
|
||||||
|
{
|
||||||
|
}
|
||||||
|
impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx, Index>
|
||||||
|
for NDArrayDataProxy<'ctx, '_>
|
||||||
|
{
|
||||||
|
}
|
||||||
|
@ -1,3 +1,9 @@
|
|||||||
|
use std::collections::HashMap;
|
||||||
|
|
||||||
|
use indexmap::IndexMap;
|
||||||
|
|
||||||
|
use nac3parser::ast::StrRef;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
symbol_resolver::SymbolValue,
|
symbol_resolver::SymbolValue,
|
||||||
toplevel::DefinitionId,
|
toplevel::DefinitionId,
|
||||||
@ -9,10 +15,6 @@ use crate::{
|
|||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
use indexmap::IndexMap;
|
|
||||||
use nac3parser::ast::StrRef;
|
|
||||||
use std::collections::HashMap;
|
|
||||||
|
|
||||||
pub struct ConcreteTypeStore {
|
pub struct ConcreteTypeStore {
|
||||||
store: Vec<ConcreteTypeEnum>,
|
store: Vec<ConcreteTypeEnum>,
|
||||||
}
|
}
|
||||||
|
@ -1,8 +1,28 @@
|
|||||||
|
use std::{
|
||||||
|
cmp::min,
|
||||||
|
collections::HashMap,
|
||||||
|
convert::TryInto,
|
||||||
|
iter::{once, repeat, repeat_with, zip},
|
||||||
|
};
|
||||||
|
|
||||||
|
use inkwell::{
|
||||||
|
attributes::{Attribute, AttributeLoc},
|
||||||
|
types::{AnyType, BasicType, BasicTypeEnum},
|
||||||
|
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue, StructValue},
|
||||||
|
AddressSpace, IntPredicate, OptimizationLevel,
|
||||||
|
};
|
||||||
|
use itertools::{chain, izip, Either, Itertools};
|
||||||
|
|
||||||
|
use nac3parser::ast::{
|
||||||
|
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
|
||||||
|
Unaryop,
|
||||||
|
};
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{
|
classes::{
|
||||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, ProxyType, ProxyValue,
|
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType,
|
||||||
RangeValue, UntypedArrayLikeAccessor,
|
ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
||||||
},
|
},
|
||||||
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
||||||
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
|
gen_in_range_check, get_llvm_abi_type, get_llvm_type, get_va_count_arg_name,
|
||||||
@ -12,8 +32,7 @@ use crate::{
|
|||||||
call_int_umin, call_memcpy_generic,
|
call_int_umin, call_memcpy_generic,
|
||||||
},
|
},
|
||||||
macros::codegen_unreachable,
|
macros::codegen_unreachable,
|
||||||
need_sret,
|
need_sret, numpy,
|
||||||
object::ndarray::{NDArrayOut, ScalarOrNDArray},
|
|
||||||
stmt::{
|
stmt::{
|
||||||
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
||||||
gen_var,
|
gen_var,
|
||||||
@ -21,34 +40,16 @@ use crate::{
|
|||||||
CodeGenContext, CodeGenTask, CodeGenerator,
|
CodeGenContext, CodeGenTask, CodeGenerator,
|
||||||
},
|
},
|
||||||
symbol_resolver::{SymbolValue, ValueEnum},
|
symbol_resolver::{SymbolValue, ValueEnum},
|
||||||
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
|
toplevel::{
|
||||||
|
helper::PrimDef,
|
||||||
|
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||||
|
DefinitionId, TopLevelDef,
|
||||||
|
},
|
||||||
typecheck::{
|
typecheck::{
|
||||||
magic_methods::{Binop, BinopVariant, HasOpInfo},
|
magic_methods::{Binop, BinopVariant, HasOpInfo},
|
||||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
typedef::{FunSignature, FuncArg, Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use inkwell::{
|
|
||||||
attributes::{Attribute, AttributeLoc},
|
|
||||||
types::{AnyType, BasicType, BasicTypeEnum},
|
|
||||||
values::{
|
|
||||||
BasicValue, BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue,
|
|
||||||
StructValue,
|
|
||||||
},
|
|
||||||
AddressSpace, IntPredicate, OptimizationLevel,
|
|
||||||
};
|
|
||||||
use itertools::{chain, izip, Either, Itertools};
|
|
||||||
use nac3parser::ast::{
|
|
||||||
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
|
|
||||||
Unaryop,
|
|
||||||
};
|
|
||||||
use std::cmp::min;
|
|
||||||
use std::iter::{repeat, repeat_with};
|
|
||||||
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
|
||||||
|
|
||||||
use super::object::{
|
|
||||||
any::AnyObject,
|
|
||||||
ndarray::{indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject},
|
|
||||||
};
|
|
||||||
|
|
||||||
pub fn get_subst_key(
|
pub fn get_subst_key(
|
||||||
unifier: &mut Unifier,
|
unifier: &mut Unifier,
|
||||||
@ -556,7 +557,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
|||||||
&& val_ty.get_element_type().is_struct_type()
|
&& val_ty.get_element_type().is_struct_type()
|
||||||
} =>
|
} =>
|
||||||
{
|
{
|
||||||
self.builder.build_bitcast(*val, arg_ty, "call_arg_cast").unwrap()
|
self.builder.build_bit_cast(*val, arg_ty, "call_arg_cast").unwrap()
|
||||||
}
|
}
|
||||||
_ => *val,
|
_ => *val,
|
||||||
})
|
})
|
||||||
@ -976,6 +977,7 @@ pub fn gen_call<'ctx, G: CodeGenerator>(
|
|||||||
TopLevelDef::Class { .. } => {
|
TopLevelDef::Class { .. } => {
|
||||||
return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?))
|
return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?))
|
||||||
}
|
}
|
||||||
|
TopLevelDef::Variable { .. } => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
.or_else(|_: String| {
|
.or_else(|_: String| {
|
||||||
@ -1547,75 +1549,99 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
|
|||||||
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
} else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|| ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
{
|
{
|
||||||
let left =
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty1, value: left_val });
|
|
||||||
let right =
|
|
||||||
ScalarOrNDArray::split_object(generator, ctx, AnyObject { ty: ty2, value: right_val });
|
|
||||||
|
|
||||||
// Inhomogeneous binary operations are not supported.
|
let is_ndarray1 = ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
||||||
assert!(ctx.unifier.unioned(left.get_dtype(), right.get_dtype()));
|
let is_ndarray2 = ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
||||||
|
|
||||||
let common_dtype = left.get_dtype();
|
if is_ndarray1 && is_ndarray2 {
|
||||||
|
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1);
|
||||||
|
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2);
|
||||||
|
|
||||||
let out = match op.variant {
|
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
||||||
BinopVariant::Normal => NDArrayOut::NewNDArray { dtype: common_dtype },
|
|
||||||
BinopVariant::AugAssign => {
|
|
||||||
// If this is an augmented assignment.
|
|
||||||
// `left` has to be an ndarray. If it were a scalar then NAC3 simply doesn't support it.
|
|
||||||
if let ScalarOrNDArray::NDArray(out_ndarray) = left {
|
|
||||||
NDArrayOut::WriteToNDArray { ndarray: out_ndarray }
|
|
||||||
} else {
|
|
||||||
panic!("left must be an ndarray")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
if op.base == Operator::MatMult {
|
let left_val =
|
||||||
// Handle matrix multiplication.
|
NDArrayValue::from_ptr_val(left_val.into_pointer_value(), llvm_usize, None);
|
||||||
let left = left.to_ndarray(generator, ctx);
|
let right_val =
|
||||||
let right = right.to_ndarray(generator, ctx);
|
NDArrayValue::from_ptr_val(right_val.into_pointer_value(), llvm_usize, None);
|
||||||
let result = NDArrayObject::matmul(generator, ctx, left, right, out)
|
|
||||||
.split_unsized(generator, ctx);
|
|
||||||
Ok(Some(ValueEnum::Dynamic(result.to_basic_value_enum())))
|
|
||||||
} else {
|
|
||||||
// For other operations, they are all elementwise operations.
|
|
||||||
|
|
||||||
// There are only three cases:
|
let res = if op.base == Operator::MatMult {
|
||||||
// - LHS is a scalar, RHS is an ndarray.
|
// MatMult is the only binop which is not an elementwise op
|
||||||
// - LHS is an ndarray, RHS is a scalar.
|
numpy::ndarray_matmul_2d(
|
||||||
// - LHS is an ndarray, RHS is an ndarray.
|
|
||||||
//
|
|
||||||
// For all cases, the scalar operand is promoted to an ndarray,
|
|
||||||
// the two are then broadcasted, and starmapped through.
|
|
||||||
|
|
||||||
let left = left.to_ndarray(generator, ctx);
|
|
||||||
let right = right.to_ndarray(generator, ctx);
|
|
||||||
|
|
||||||
let result = NDArrayObject::broadcast_starmap(
|
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
&[left, right],
|
ndarray_dtype1,
|
||||||
out,
|
match op.variant {
|
||||||
|generator, ctx, scalars| {
|
BinopVariant::Normal => None,
|
||||||
let left_value = scalars[0];
|
BinopVariant::AugAssign => Some(left_val),
|
||||||
let right_value = scalars[1];
|
},
|
||||||
|
left_val,
|
||||||
let result = gen_binop_expr_with_values(
|
right_val,
|
||||||
|
)?
|
||||||
|
} else {
|
||||||
|
numpy::ndarray_elementwise_binop_impl(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
(&Some(left.dtype), left_value),
|
ndarray_dtype1,
|
||||||
|
match op.variant {
|
||||||
|
BinopVariant::Normal => None,
|
||||||
|
BinopVariant::AugAssign => Some(left_val),
|
||||||
|
},
|
||||||
|
(left_val.as_base_value().into(), false),
|
||||||
|
(right_val.as_base_value().into(), false),
|
||||||
|
|generator, ctx, (lhs, rhs)| {
|
||||||
|
gen_binop_expr_with_values(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
(&Some(ndarray_dtype1), lhs),
|
||||||
op,
|
op,
|
||||||
(&Some(right.dtype), right_value),
|
(&Some(ndarray_dtype2), rhs),
|
||||||
ctx.current_loc,
|
ctx.current_loc,
|
||||||
)?
|
)?
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.to_basic_value_enum(ctx, generator, common_dtype)?;
|
.to_basic_value_enum(
|
||||||
|
ctx,
|
||||||
Ok(result)
|
generator,
|
||||||
},
|
ndarray_dtype1,
|
||||||
)
|
)
|
||||||
.unwrap();
|
},
|
||||||
Ok(Some(ValueEnum::Dynamic(result.instance.value.as_basic_value_enum())))
|
)?
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(Some(res.as_base_value().into()))
|
||||||
|
} else {
|
||||||
|
let (ndarray_dtype, _) =
|
||||||
|
unpack_ndarray_var_tys(&mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 });
|
||||||
|
let ndarray_val = NDArrayValue::from_ptr_val(
|
||||||
|
if is_ndarray1 { left_val } else { right_val }.into_pointer_value(),
|
||||||
|
llvm_usize,
|
||||||
|
None,
|
||||||
|
);
|
||||||
|
let res = numpy::ndarray_elementwise_binop_impl(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ndarray_dtype,
|
||||||
|
match op.variant {
|
||||||
|
BinopVariant::Normal => None,
|
||||||
|
BinopVariant::AugAssign => Some(ndarray_val),
|
||||||
|
},
|
||||||
|
(left_val, !is_ndarray1),
|
||||||
|
(right_val, !is_ndarray2),
|
||||||
|
|generator, ctx, (lhs, rhs)| {
|
||||||
|
gen_binop_expr_with_values(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
(&Some(ndarray_dtype), lhs),
|
||||||
|
op,
|
||||||
|
(&Some(ndarray_dtype), rhs),
|
||||||
|
ctx.current_loc,
|
||||||
|
)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
||||||
|
},
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(Some(res.as_base_value().into()))
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
|
||||||
@ -1773,12 +1799,14 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
|||||||
_ => val.into(),
|
_ => val.into(),
|
||||||
}
|
}
|
||||||
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
} else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) {
|
||||||
let ndarray = AnyObject { value: val, ty };
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||||
|
|
||||||
|
let val = NDArrayValue::from_ptr_val(val.into_pointer_value(), llvm_usize, None);
|
||||||
|
|
||||||
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
|
// ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before
|
||||||
// passing it to the elementwise codegen function
|
// passing it to the elementwise codegen function
|
||||||
let op = if ndarray.dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
|
let op = if ndarray_dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
|
||||||
if op == ast::Unaryop::Invert {
|
if op == ast::Unaryop::Invert {
|
||||||
ast::Unaryop::Not
|
ast::Unaryop::Not
|
||||||
} else {
|
} else {
|
||||||
@ -1792,18 +1820,20 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
|
|||||||
op
|
op
|
||||||
};
|
};
|
||||||
|
|
||||||
let mapped_ndarray = ndarray.map(
|
let res = numpy::ndarray_elementwise_unaryop_impl(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|
ndarray_dtype,
|
||||||
|generator, ctx, scalar| {
|
None,
|
||||||
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray.dtype), scalar))?
|
val,
|
||||||
|
|generator, ctx, val| {
|
||||||
|
gen_unaryop_expr_with_values(generator, ctx, op, (&Some(ndarray_dtype), val))?
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.to_basic_value_enum(ctx, generator, ndarray.dtype)
|
.to_basic_value_enum(ctx, generator, ndarray_dtype)
|
||||||
},
|
},
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
ValueEnum::Dynamic(mapped_ndarray.instance.value.as_basic_value_enum())
|
res.as_base_value().into()
|
||||||
} else {
|
} else {
|
||||||
unimplemented!()
|
unimplemented!()
|
||||||
}))
|
}))
|
||||||
@ -1846,33 +1876,39 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
|
|||||||
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|
||||||
{
|
{
|
||||||
let (Some(left_ty), left) = left else { codegen_unreachable!(ctx) };
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
let (Some(right_ty), right) = comparators[0] else { codegen_unreachable!(ctx) };
|
|
||||||
|
let (Some(left_ty), lhs) = left else { codegen_unreachable!(ctx) };
|
||||||
|
let (Some(right_ty), rhs) = comparators[0] else { codegen_unreachable!(ctx) };
|
||||||
let op = ops[0];
|
let op = ops[0];
|
||||||
|
|
||||||
let left = AnyObject { value: left, ty: left_ty };
|
let is_ndarray1 =
|
||||||
let left =
|
left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
||||||
ScalarOrNDArray::split_object(generator, ctx, left).to_ndarray(generator, ctx);
|
let is_ndarray2 =
|
||||||
|
right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id());
|
||||||
|
|
||||||
let right = AnyObject { value: right, ty: right_ty };
|
return if is_ndarray1 && is_ndarray2 {
|
||||||
let right =
|
let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, left_ty);
|
||||||
ScalarOrNDArray::split_object(generator, ctx, right).to_ndarray(generator, ctx);
|
let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, right_ty);
|
||||||
|
|
||||||
let result_ndarray = NDArrayObject::broadcast_starmap(
|
assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2));
|
||||||
|
|
||||||
|
let left_val =
|
||||||
|
NDArrayValue::from_ptr_val(lhs.into_pointer_value(), llvm_usize, None);
|
||||||
|
let res = numpy::ndarray_elementwise_binop_impl(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
&[left, right],
|
ctx.primitives.bool,
|
||||||
NDArrayOut::NewNDArray { dtype: ctx.primitives.bool },
|
None,
|
||||||
|generator, ctx, scalars| {
|
(left_val.as_base_value().into(), false),
|
||||||
let left_scalar = scalars[0];
|
(rhs, false),
|
||||||
let right_scalar = scalars[1];
|
|generator, ctx, (lhs, rhs)| {
|
||||||
|
|
||||||
let val = gen_cmpop_expr_with_values(
|
let val = gen_cmpop_expr_with_values(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
(Some(left.dtype), left_scalar),
|
(Some(ndarray_dtype1), lhs),
|
||||||
&[op],
|
&[op],
|
||||||
&[(Some(right.dtype), right_scalar)],
|
&[(Some(ndarray_dtype2), rhs)],
|
||||||
)?
|
)?
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.to_basic_value_enum(
|
.to_basic_value_enum(
|
||||||
@ -1885,7 +1921,40 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
|
|||||||
},
|
},
|
||||||
)?;
|
)?;
|
||||||
|
|
||||||
return Ok(Some(result_ndarray.instance.value.into()));
|
Ok(Some(res.as_base_value().into()))
|
||||||
|
} else {
|
||||||
|
let (ndarray_dtype, _) = unpack_ndarray_var_tys(
|
||||||
|
&mut ctx.unifier,
|
||||||
|
if is_ndarray1 { left_ty } else { right_ty },
|
||||||
|
);
|
||||||
|
let res = numpy::ndarray_elementwise_binop_impl(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
ctx.primitives.bool,
|
||||||
|
None,
|
||||||
|
(lhs, !is_ndarray1),
|
||||||
|
(rhs, !is_ndarray2),
|
||||||
|
|generator, ctx, (lhs, rhs)| {
|
||||||
|
let val = gen_cmpop_expr_with_values(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
(Some(ndarray_dtype), lhs),
|
||||||
|
&[op],
|
||||||
|
&[(Some(ndarray_dtype), rhs)],
|
||||||
|
)?
|
||||||
|
.unwrap()
|
||||||
|
.to_basic_value_enum(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
ctx.primitives.bool,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(generator.bool_to_i8(ctx, val.into_int_value()).into())
|
||||||
|
},
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(Some(res.as_base_value().into()))
|
||||||
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2436,6 +2505,338 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Generates code for a subscript expression on an `ndarray`.
|
||||||
|
///
|
||||||
|
/// * `ty` - The `Type` of the `NDArray` elements.
|
||||||
|
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
|
||||||
|
/// * `v` - The `NDArray` value.
|
||||||
|
/// * `slice` - The slice expression used to subscript into the `ndarray`.
|
||||||
|
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
ty: Type,
|
||||||
|
ndims: Type,
|
||||||
|
v: NDArrayValue<'ctx>,
|
||||||
|
slice: &Expr<Option<Type>>,
|
||||||
|
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
||||||
|
let llvm_i1 = ctx.ctx.bool_type();
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
|
||||||
|
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
|
||||||
|
codegen_unreachable!(ctx)
|
||||||
|
};
|
||||||
|
|
||||||
|
let ndims = values
|
||||||
|
.iter()
|
||||||
|
.map(|ndim| u64::try_from(ndim.clone()).map_err(|()| ndim.clone()))
|
||||||
|
.collect::<Result<Vec<_>, _>>()
|
||||||
|
.map_err(|val| {
|
||||||
|
format!(
|
||||||
|
"Expected non-negative literal for ndarray.ndims, got {}",
|
||||||
|
i128::try_from(val).unwrap()
|
||||||
|
)
|
||||||
|
})?;
|
||||||
|
|
||||||
|
assert!(!ndims.is_empty());
|
||||||
|
|
||||||
|
// The number of dimensions subscripted by the index expression.
|
||||||
|
// Slicing a ndarray will yield the same number of dimensions, whereas indexing into a
|
||||||
|
// dimension will remove a dimension.
|
||||||
|
let subscripted_dims = match &slice.node {
|
||||||
|
ExprKind::Tuple { elts, .. } => elts.iter().fold(0, |acc, value_subexpr| {
|
||||||
|
if let ExprKind::Slice { .. } = &value_subexpr.node {
|
||||||
|
acc
|
||||||
|
} else {
|
||||||
|
acc + 1
|
||||||
|
}
|
||||||
|
}),
|
||||||
|
|
||||||
|
ExprKind::Slice { .. } => 0,
|
||||||
|
_ => 1,
|
||||||
|
};
|
||||||
|
|
||||||
|
let ndarray_ndims_ty = ctx.unifier.get_fresh_literal(
|
||||||
|
ndims.iter().map(|v| SymbolValue::U64(v - subscripted_dims)).collect(),
|
||||||
|
None,
|
||||||
|
);
|
||||||
|
let ndarray_ty =
|
||||||
|
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty));
|
||||||
|
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
||||||
|
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
||||||
|
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum();
|
||||||
|
let sizeof_elem = llvm_ndarray_data_t.size_of().unwrap();
|
||||||
|
|
||||||
|
// Check that len is non-zero
|
||||||
|
let len = v.load_ndims(ctx);
|
||||||
|
ctx.make_assert(
|
||||||
|
generator,
|
||||||
|
ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(),
|
||||||
|
"0:IndexError",
|
||||||
|
"too many indices for array: array is {0}-dimensional but 1 were indexed",
|
||||||
|
[Some(len), None, None],
|
||||||
|
slice.location,
|
||||||
|
);
|
||||||
|
|
||||||
|
// Normalizes a possibly-negative index to its corresponding positive index
|
||||||
|
let normalize_index = |generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
index: IntValue<'ctx>,
|
||||||
|
dim: u64| {
|
||||||
|
gen_if_else_expr_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
|_, ctx| {
|
||||||
|
Ok(ctx
|
||||||
|
.builder
|
||||||
|
.build_int_compare(IntPredicate::SGE, index, index.get_type().const_zero(), "")
|
||||||
|
.unwrap())
|
||||||
|
},
|
||||||
|
|_, _| Ok(Some(index)),
|
||||||
|
|generator, ctx| {
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
|
||||||
|
let len = unsafe {
|
||||||
|
v.dim_sizes().get_typed_unchecked(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
&llvm_usize.const_int(dim, true),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
};
|
||||||
|
|
||||||
|
let index = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_add(
|
||||||
|
len,
|
||||||
|
ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(),
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
|
||||||
|
},
|
||||||
|
)
|
||||||
|
.map(|v| v.map(BasicValueEnum::into_int_value))
|
||||||
|
};
|
||||||
|
|
||||||
|
// Converts a slice expression into a slice-range tuple
|
||||||
|
let expr_to_slice = |generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
node: &ExprKind<Option<Type>>,
|
||||||
|
dim: u64| {
|
||||||
|
match node {
|
||||||
|
ExprKind::Constant { value: Constant::Int(v), .. } => {
|
||||||
|
let Some(index) =
|
||||||
|
normalize_index(generator, ctx, llvm_i32.const_int(*v as u64, true), dim)?
|
||||||
|
else {
|
||||||
|
return Ok(None);
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
||||||
|
}
|
||||||
|
|
||||||
|
ExprKind::Slice { lower, upper, step } => {
|
||||||
|
let dim_sz = unsafe {
|
||||||
|
v.dim_sizes().get_typed_unchecked(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
&llvm_usize.const_int(dim, false),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
};
|
||||||
|
|
||||||
|
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
|
||||||
|
}
|
||||||
|
|
||||||
|
_ => {
|
||||||
|
let Some(index) = generator.gen_expr(ctx, slice)? else { return Ok(None) };
|
||||||
|
let index = index
|
||||||
|
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
||||||
|
.into_int_value();
|
||||||
|
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
|
||||||
|
return Ok(None);
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let make_indices_arr = |generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>|
|
||||||
|
-> Result<_, String> {
|
||||||
|
Ok(if let ExprKind::Tuple { elts, .. } = &slice.node {
|
||||||
|
let llvm_int_ty = ctx.get_llvm_type(generator, elts[0].custom.unwrap());
|
||||||
|
let index_addr = generator.gen_array_var_alloc(
|
||||||
|
ctx,
|
||||||
|
llvm_int_ty,
|
||||||
|
llvm_usize.const_int(elts.len() as u64, false),
|
||||||
|
None,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
for (i, elt) in elts.iter().enumerate() {
|
||||||
|
let Some(index) = generator.gen_expr(ctx, elt)? else {
|
||||||
|
return Ok(None);
|
||||||
|
};
|
||||||
|
|
||||||
|
let index = index
|
||||||
|
.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?
|
||||||
|
.into_int_value();
|
||||||
|
let Some(index) = normalize_index(generator, ctx, index, 0)? else {
|
||||||
|
return Ok(None);
|
||||||
|
};
|
||||||
|
|
||||||
|
let store_ptr = unsafe {
|
||||||
|
index_addr.ptr_offset_unchecked(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
&llvm_usize.const_int(i as u64, false),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
};
|
||||||
|
ctx.builder.build_store(store_ptr, index).unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
Some(index_addr)
|
||||||
|
} else if let Some(index) = generator.gen_expr(ctx, slice)? {
|
||||||
|
let llvm_int_ty = ctx.get_llvm_type(generator, slice.custom.unwrap());
|
||||||
|
let index_addr = generator.gen_array_var_alloc(
|
||||||
|
ctx,
|
||||||
|
llvm_int_ty,
|
||||||
|
llvm_usize.const_int(1u64, false),
|
||||||
|
None,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let index =
|
||||||
|
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value();
|
||||||
|
let Some(index) = normalize_index(generator, ctx, index, 0)? else { return Ok(None) };
|
||||||
|
|
||||||
|
let store_ptr = unsafe {
|
||||||
|
index_addr.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||||
|
};
|
||||||
|
ctx.builder.build_store(store_ptr, index).unwrap();
|
||||||
|
|
||||||
|
Some(index_addr)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
})
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(Some(if ndims.len() == 1 && ndims[0] - subscripted_dims == 0 {
|
||||||
|
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
||||||
|
|
||||||
|
v.data().get(ctx, generator, &index_addr, None).into()
|
||||||
|
} else {
|
||||||
|
match &slice.node {
|
||||||
|
ExprKind::Tuple { elts, .. } => {
|
||||||
|
let slices = elts
|
||||||
|
.iter()
|
||||||
|
.enumerate()
|
||||||
|
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
|
||||||
|
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
|
||||||
|
.collect::<Result<Vec<_>, _>>()?;
|
||||||
|
if slices.len() < elts.len() {
|
||||||
|
return Ok(None);
|
||||||
|
}
|
||||||
|
|
||||||
|
let slices = slices.into_iter().map(Option::unwrap).collect_vec();
|
||||||
|
|
||||||
|
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &slices)?.as_base_value().into()
|
||||||
|
}
|
||||||
|
|
||||||
|
ExprKind::Slice { .. } => {
|
||||||
|
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
|
||||||
|
return Ok(None);
|
||||||
|
};
|
||||||
|
|
||||||
|
numpy::ndarray_sliced_copy(generator, ctx, ty, v, &[slice])?.as_base_value().into()
|
||||||
|
}
|
||||||
|
|
||||||
|
_ => {
|
||||||
|
// Accessing an element from a multi-dimensional `ndarray`
|
||||||
|
|
||||||
|
let Some(index_addr) = make_indices_arr(generator, ctx)? else { return Ok(None) };
|
||||||
|
|
||||||
|
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
||||||
|
// elements over
|
||||||
|
let subscripted_ndarray =
|
||||||
|
generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
|
||||||
|
let ndarray = NDArrayValue::from_ptr_val(subscripted_ndarray, llvm_usize, None);
|
||||||
|
|
||||||
|
let num_dims = v.load_ndims(ctx);
|
||||||
|
ndarray.store_ndims(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
ctx.builder
|
||||||
|
.build_int_sub(num_dims, llvm_usize.const_int(1, false), "")
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
|
||||||
|
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||||
|
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||||
|
|
||||||
|
let ndarray_num_dims = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_z_extend_or_bit_cast(
|
||||||
|
ndarray.load_ndims(ctx),
|
||||||
|
llvm_usize.size_of().get_type(),
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
let v_dims_src_ptr = unsafe {
|
||||||
|
v.dim_sizes().ptr_offset_unchecked(
|
||||||
|
ctx,
|
||||||
|
generator,
|
||||||
|
&llvm_usize.const_int(1, false),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
};
|
||||||
|
call_memcpy_generic(
|
||||||
|
ctx,
|
||||||
|
ndarray.dim_sizes().base_ptr(ctx, generator),
|
||||||
|
v_dims_src_ptr,
|
||||||
|
ctx.builder
|
||||||
|
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
|
||||||
|
.map(Into::into)
|
||||||
|
.unwrap(),
|
||||||
|
llvm_i1.const_zero(),
|
||||||
|
);
|
||||||
|
|
||||||
|
let ndarray_num_elems = call_ndarray_calc_size(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&ndarray.dim_sizes().as_slice_value(ctx, generator),
|
||||||
|
(None, None),
|
||||||
|
);
|
||||||
|
let ndarray_num_elems = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_z_extend_or_bit_cast(ndarray_num_elems, sizeof_elem.get_type(), "")
|
||||||
|
.unwrap();
|
||||||
|
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||||
|
|
||||||
|
let v_data_src_ptr = v.data().ptr_offset(ctx, generator, &index_addr, None);
|
||||||
|
call_memcpy_generic(
|
||||||
|
ctx,
|
||||||
|
ndarray.data().base_ptr(ctx, generator),
|
||||||
|
v_data_src_ptr,
|
||||||
|
ctx.builder
|
||||||
|
.build_int_mul(
|
||||||
|
ndarray_num_elems,
|
||||||
|
llvm_ndarray_data_t.size_of().unwrap(),
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.map(Into::into)
|
||||||
|
.unwrap(),
|
||||||
|
llvm_i1.const_zero(),
|
||||||
|
);
|
||||||
|
|
||||||
|
ndarray.as_base_value().into()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
/// See [`CodeGenerator::gen_expr`].
|
/// See [`CodeGenerator::gen_expr`].
|
||||||
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
pub fn gen_expr<'ctx, G: CodeGenerator>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
@ -2485,7 +2886,31 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
|||||||
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
|
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
|
||||||
None => {
|
None => {
|
||||||
let resolver = ctx.resolver.clone();
|
let resolver = ctx.resolver.clone();
|
||||||
resolver.get_symbol_value(*id, ctx).unwrap()
|
let value = resolver.get_symbol_value(*id, ctx, generator).unwrap();
|
||||||
|
|
||||||
|
let globals = ctx
|
||||||
|
.top_level
|
||||||
|
.definitions
|
||||||
|
.read()
|
||||||
|
.iter()
|
||||||
|
.filter_map(|def| {
|
||||||
|
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
|
||||||
|
Some((*simple_name, *ty))
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
|
||||||
|
if let Some((_, ty)) = globals.iter().find(|(name, _)| name == id) {
|
||||||
|
let ptr = value
|
||||||
|
.to_basic_value_enum(ctx, generator, *ty)
|
||||||
|
.map(BasicValueEnum::into_pointer_value)?;
|
||||||
|
|
||||||
|
ctx.builder.build_load(ptr, id.to_string().as_str()).map(Into::into).unwrap()
|
||||||
|
} else {
|
||||||
|
value
|
||||||
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
ExprKind::List { elts, .. } => {
|
ExprKind::List { elts, .. } => {
|
||||||
@ -3068,26 +3493,18 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
|||||||
v.data().get(ctx, generator, &index, None).into()
|
v.data().get(ctx, generator, &index, None).into()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
let Some(ndarray) = generator.gen_expr(ctx, value)? else {
|
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
||||||
|
|
||||||
|
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
||||||
|
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
||||||
|
.into_pointer_value()
|
||||||
|
} else {
|
||||||
return Ok(None);
|
return Ok(None);
|
||||||
};
|
};
|
||||||
|
let v = NDArrayValue::from_ptr_val(v, usize, None);
|
||||||
|
|
||||||
let ndarray_ty = value.custom.unwrap();
|
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
|
||||||
let ndarray = ndarray.to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
|
||||||
|
|
||||||
let ndarray = NDArrayObject::from_object(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
AnyObject { ty: ndarray_ty, value: ndarray },
|
|
||||||
);
|
|
||||||
|
|
||||||
let indices = gen_ndarray_subscript_ndindices(generator, ctx, slice)?;
|
|
||||||
let result = ndarray
|
|
||||||
.index(generator, ctx, &indices)
|
|
||||||
.split_unsized(generator, ctx)
|
|
||||||
.to_basic_value_enum();
|
|
||||||
return Ok(Some(ValueEnum::Dynamic(result)));
|
|
||||||
}
|
}
|
||||||
TypeEnum::TTuple { .. } => {
|
TypeEnum::TTuple { .. } => {
|
||||||
let index: u32 =
|
let index: u32 =
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
use inkwell::attributes::{Attribute, AttributeLoc};
|
use inkwell::{
|
||||||
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
|
attributes::{Attribute, AttributeLoc},
|
||||||
|
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||||
|
};
|
||||||
use itertools::Either;
|
use itertools::Either;
|
||||||
|
|
||||||
use crate::codegen::CodeGenContext;
|
use crate::codegen::CodeGenContext;
|
||||||
|
@ -1,15 +1,17 @@
|
|||||||
|
use inkwell::{
|
||||||
|
context::Context,
|
||||||
|
types::{BasicTypeEnum, IntType},
|
||||||
|
values::{BasicValueEnum, IntValue, PointerValue},
|
||||||
|
};
|
||||||
|
|
||||||
|
use nac3parser::ast::{Expr, Stmt, StrRef};
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
|
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
|
||||||
symbol_resolver::ValueEnum,
|
symbol_resolver::ValueEnum,
|
||||||
toplevel::{DefinitionId, TopLevelDef},
|
toplevel::{DefinitionId, TopLevelDef},
|
||||||
typecheck::typedef::{FunSignature, Type},
|
typecheck::typedef::{FunSignature, Type},
|
||||||
};
|
};
|
||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::{BasicTypeEnum, IntType},
|
|
||||||
values::{BasicValueEnum, IntValue, PointerValue},
|
|
||||||
};
|
|
||||||
use nac3parser::ast::{Expr, Stmt, StrRef};
|
|
||||||
|
|
||||||
pub trait CodeGenerator {
|
pub trait CodeGenerator {
|
||||||
/// Return the module name for the code generator.
|
/// Return the module name for the code generator.
|
||||||
|
@ -1,27 +1,28 @@
|
|||||||
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
|
||||||
|
|
||||||
use super::{
|
|
||||||
classes::{ArrayLikeValue, ListValue},
|
|
||||||
macros::codegen_unreachable,
|
|
||||||
model::{function::FnCall, *},
|
|
||||||
object::{
|
|
||||||
list::List,
|
|
||||||
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
|
|
||||||
},
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
};
|
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
context::Context,
|
context::Context,
|
||||||
memory_buffer::MemoryBuffer,
|
memory_buffer::MemoryBuffer,
|
||||||
module::Module,
|
module::Module,
|
||||||
types::BasicTypeEnum,
|
types::{BasicTypeEnum, IntType},
|
||||||
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||||
AddressSpace, IntPredicate,
|
AddressSpace, IntPredicate,
|
||||||
};
|
};
|
||||||
use itertools::Either;
|
use itertools::Either;
|
||||||
|
|
||||||
use nac3parser::ast::Expr;
|
use nac3parser::ast::Expr;
|
||||||
|
|
||||||
|
use super::{
|
||||||
|
classes::{
|
||||||
|
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
|
||||||
|
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||||
|
},
|
||||||
|
llvm_intrinsics,
|
||||||
|
macros::codegen_unreachable,
|
||||||
|
stmt::gen_for_callback_incrementing,
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
||||||
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
|
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
|
||||||
let bitcode_buf = MemoryBuffer::create_from_memory_range(
|
let bitcode_buf = MemoryBuffer::create_from_memory_range(
|
||||||
@ -583,294 +584,369 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
|
|||||||
.unwrap()
|
.unwrap()
|
||||||
}
|
}
|
||||||
|
|
||||||
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
|
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
||||||
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
|
/// calculated total size.
|
||||||
#[must_use]
|
///
|
||||||
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
|
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
||||||
generator: &mut G,
|
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
||||||
ctx: &CodeGenContext<'_, '_>,
|
/// or [`None`] if starting from the first dimension and ending at the last dimension
|
||||||
name: &str,
|
/// respectively.
|
||||||
) -> String {
|
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
||||||
let mut name = name.to_owned();
|
generator: &G,
|
||||||
match generator.get_size_type(ctx.ctx).get_bit_width() {
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
32 => {}
|
dims: &Dims,
|
||||||
64 => name.push_str("64"),
|
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
||||||
bit_width => {
|
) -> IntValue<'ctx>
|
||||||
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
where
|
||||||
}
|
G: CodeGenerator + ?Sized,
|
||||||
}
|
Dims: ArrayLikeIndexer<'ctx>,
|
||||||
name
|
{
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||||
|
|
||||||
|
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
||||||
|
32 => "__nac3_ndarray_calc_size",
|
||||||
|
64 => "__nac3_ndarray_calc_size64",
|
||||||
|
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||||
|
};
|
||||||
|
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
||||||
|
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
let ndarray_calc_size_fn =
|
||||||
|
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
||||||
|
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
||||||
|
});
|
||||||
|
|
||||||
|
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
||||||
|
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
||||||
|
ctx.builder
|
||||||
|
.build_call(
|
||||||
|
ndarray_calc_size_fn,
|
||||||
|
&[
|
||||||
|
dims.base_ptr(ctx, generator).into(),
|
||||||
|
dims.size(ctx, generator).into(),
|
||||||
|
begin.into(),
|
||||||
|
end.into(),
|
||||||
|
],
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.map(CallSiteValue::try_as_basic_value)
|
||||||
|
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||||
|
.map(Either::unwrap_left)
|
||||||
|
.unwrap()
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
||||||
|
/// containing `i32` indices of the flattened index.
|
||||||
|
///
|
||||||
|
/// * `index` - The index to compute the multidimensional index for.
|
||||||
|
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||||
|
/// `NDArray`.
|
||||||
|
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
index: IntValue<'ctx>,
|
||||||
|
ndarray: NDArrayValue<'ctx>,
|
||||||
|
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||||
|
let llvm_void = ctx.ctx.void_type();
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||||
|
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||||
|
|
||||||
|
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
||||||
|
32 => "__nac3_ndarray_calc_nd_indices",
|
||||||
|
64 => "__nac3_ndarray_calc_nd_indices64",
|
||||||
|
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||||
|
};
|
||||||
|
let ndarray_calc_nd_indices_fn =
|
||||||
|
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
||||||
|
let fn_type = llvm_void.fn_type(
|
||||||
|
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
|
||||||
|
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
||||||
|
});
|
||||||
|
|
||||||
|
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||||
|
let ndarray_dims = ndarray.dim_sizes();
|
||||||
|
|
||||||
|
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
||||||
|
|
||||||
|
ctx.builder
|
||||||
|
.build_call(
|
||||||
|
ndarray_calc_nd_indices_fn,
|
||||||
|
&[
|
||||||
|
index.into(),
|
||||||
|
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||||
|
ndarray_num_dims.into(),
|
||||||
|
indices.into(),
|
||||||
|
],
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
TypedArrayLikeAdapter::from(
|
||||||
|
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
||||||
|
Box::new(|_, v| v.into_int_value()),
|
||||||
|
Box::new(|_, v| v.into()),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
||||||
|
generator: &G,
|
||||||
|
ctx: &CodeGenContext<'ctx, '_>,
|
||||||
|
ndarray: NDArrayValue<'ctx>,
|
||||||
|
indices: &Indices,
|
||||||
|
) -> IntValue<'ctx>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Indices: ArrayLikeIndexer<'ctx>,
|
||||||
|
{
|
||||||
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
|
||||||
|
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||||
|
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||||
|
|
||||||
|
debug_assert_eq!(
|
||||||
|
IntType::try_from(indices.element_type(ctx, generator))
|
||||||
|
.map(IntType::get_bit_width)
|
||||||
|
.unwrap_or_default(),
|
||||||
|
llvm_i32.get_bit_width(),
|
||||||
|
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
||||||
|
);
|
||||||
|
debug_assert_eq!(
|
||||||
|
indices.size(ctx, generator).get_type().get_bit_width(),
|
||||||
|
llvm_usize.get_bit_width(),
|
||||||
|
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
||||||
|
);
|
||||||
|
|
||||||
|
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
||||||
|
32 => "__nac3_ndarray_flatten_index",
|
||||||
|
64 => "__nac3_ndarray_flatten_index64",
|
||||||
|
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||||
|
};
|
||||||
|
let ndarray_flatten_index_fn =
|
||||||
|
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
||||||
|
let fn_type = llvm_usize.fn_type(
|
||||||
|
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
|
||||||
|
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
||||||
|
});
|
||||||
|
|
||||||
|
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||||
|
let ndarray_dims = ndarray.dim_sizes();
|
||||||
|
|
||||||
|
let index = ctx
|
||||||
|
.builder
|
||||||
|
.build_call(
|
||||||
|
ndarray_flatten_index_fn,
|
||||||
|
&[
|
||||||
|
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||||
|
ndarray_num_dims.into(),
|
||||||
|
indices.base_ptr(ctx, generator).into(),
|
||||||
|
indices.size(ctx, generator).into(),
|
||||||
|
],
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.map(CallSiteValue::try_as_basic_value)
|
||||||
|
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||||
|
.map(Either::unwrap_left)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
index
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||||
|
/// multidimensional index.
|
||||||
|
///
|
||||||
|
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||||
|
/// `NDArray`.
|
||||||
|
/// * `indices` - The multidimensional index to compute the flattened index for.
|
||||||
|
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
ndims: Instance<'ctx, Int<SizeT>>,
|
ndarray: NDArrayValue<'ctx>,
|
||||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
indices: &Index,
|
||||||
) {
|
) -> IntValue<'ctx>
|
||||||
let name = get_sizet_dependent_function_name(
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Index: ArrayLikeIndexer<'ctx>,
|
||||||
|
{
|
||||||
|
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
||||||
|
/// dimension and size of each dimension of the resultant `ndarray`.
|
||||||
|
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
lhs: NDArrayValue<'ctx>,
|
||||||
|
rhs: NDArrayValue<'ctx>,
|
||||||
|
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||||
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||||
|
|
||||||
|
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||||
|
32 => "__nac3_ndarray_calc_broadcast",
|
||||||
|
64 => "__nac3_ndarray_calc_broadcast64",
|
||||||
|
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||||
|
};
|
||||||
|
let ndarray_calc_broadcast_fn =
|
||||||
|
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||||
|
let fn_type = llvm_usize.fn_type(
|
||||||
|
&[
|
||||||
|
llvm_pusize.into(),
|
||||||
|
llvm_usize.into(),
|
||||||
|
llvm_pusize.into(),
|
||||||
|
llvm_usize.into(),
|
||||||
|
llvm_pusize.into(),
|
||||||
|
],
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
|
||||||
|
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||||
|
});
|
||||||
|
|
||||||
|
let lhs_ndims = lhs.load_ndims(ctx);
|
||||||
|
let rhs_ndims = rhs.load_ndims(ctx);
|
||||||
|
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
||||||
|
|
||||||
|
gen_for_callback_incrementing(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
ctx,
|
||||||
"__nac3_ndarray_util_assert_shape_no_negative",
|
None,
|
||||||
);
|
llvm_usize.const_zero(),
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
|
(min_ndims, false),
|
||||||
}
|
|generator, ctx, _, idx| {
|
||||||
|
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
||||||
|
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
||||||
|
(
|
||||||
|
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||||
|
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||||
|
)
|
||||||
|
};
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
|
let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
||||||
generator: &mut G,
|
let lhs_eqz = ctx
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
.builder
|
||||||
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
|
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
||||||
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
.unwrap();
|
||||||
output_ndims: Instance<'ctx, Int<SizeT>>,
|
let rhs_eqz = ctx
|
||||||
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
.builder
|
||||||
) {
|
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
||||||
let name = get_sizet_dependent_function_name(
|
.unwrap();
|
||||||
|
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
||||||
|
|
||||||
|
let lhs_eq_rhs = ctx
|
||||||
|
.builder
|
||||||
|
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
||||||
|
|
||||||
|
ctx.make_assert(
|
||||||
generator,
|
generator,
|
||||||
ctx,
|
is_compatible,
|
||||||
"__nac3_ndarray_util_assert_output_shape_same",
|
"0:ValueError",
|
||||||
|
"operands could not be broadcast together",
|
||||||
|
[None, None, None],
|
||||||
|
ctx.current_loc,
|
||||||
);
|
);
|
||||||
FnCall::builder(generator, ctx, &name)
|
|
||||||
.arg(ndarray_ndims)
|
Ok(())
|
||||||
.arg(ndarray_shape)
|
},
|
||||||
.arg(output_ndims)
|
llvm_usize.const_int(1, false),
|
||||||
.arg(output_shape)
|
)
|
||||||
.returning_void();
|
.unwrap();
|
||||||
|
|
||||||
|
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
||||||
|
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
|
||||||
|
let lhs_ndims = lhs.load_ndims(ctx);
|
||||||
|
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
|
||||||
|
let rhs_ndims = rhs.load_ndims(ctx);
|
||||||
|
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
||||||
|
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
||||||
|
|
||||||
|
ctx.builder
|
||||||
|
.build_call(
|
||||||
|
ndarray_calc_broadcast_fn,
|
||||||
|
&[
|
||||||
|
lhs_dims.into(),
|
||||||
|
lhs_ndims.into(),
|
||||||
|
rhs_dims.into(),
|
||||||
|
rhs_ndims.into(),
|
||||||
|
out_dims.base_ptr(ctx, generator).into(),
|
||||||
|
],
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
TypedArrayLikeAdapter::from(
|
||||||
|
out_dims,
|
||||||
|
Box::new(|_, v| v.into_int_value()),
|
||||||
|
Box::new(|_, v| v.into()),
|
||||||
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
|
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||||
|
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
||||||
|
/// array `broadcast_idx`.
|
||||||
|
pub fn call_ndarray_calc_broadcast_index<
|
||||||
|
'ctx,
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
||||||
|
>(
|
||||||
generator: &mut G,
|
generator: &mut G,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
array: NDArrayValue<'ctx>,
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
broadcast_idx: &BroadcastIdx,
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
|
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("size")
|
let llvm_i32 = ctx.ctx.i32_type();
|
||||||
}
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||||
|
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||||
|
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
|
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||||
generator: &mut G,
|
32 => "__nac3_ndarray_calc_broadcast_idx",
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
64 => "__nac3_ndarray_calc_broadcast_idx64",
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
};
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
|
let ndarray_calc_broadcast_fn =
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
|
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||||
}
|
let fn_type = llvm_usize.fn_type(
|
||||||
|
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
||||||
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
|
false,
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("len")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
) -> Instance<'ctx, Int<Bool>> {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
index: Instance<'ctx, Int<SizeT>>,
|
|
||||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
|
||||||
let name =
|
|
||||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
) {
|
|
||||||
let name =
|
|
||||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
|
||||||
) -> Instance<'ctx, Int<Bool>> {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(iter).returning_auto("has_element")
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(iter).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
num_indices: Instance<'ctx, Int<SizeT>>,
|
|
||||||
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
|
||||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
|
|
||||||
FnCall::builder(generator, ctx, &name)
|
|
||||||
.arg(num_indices)
|
|
||||||
.arg(indices)
|
|
||||||
.arg(src_ndarray)
|
|
||||||
.arg(dst_ndarray)
|
|
||||||
.returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
|
||||||
ndims: Instance<'ctx, Int<SizeT>>,
|
|
||||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
"__nac3_ndarray_array_set_and_validate_list_shape",
|
|
||||||
);
|
);
|
||||||
FnCall::builder(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
|
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||||
generator: &mut G,
|
});
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
|
||||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
"__nac3_ndarray_array_write_list_to_array",
|
|
||||||
);
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
|
let broadcast_size = broadcast_idx.size(ctx, generator);
|
||||||
generator: &mut G,
|
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
size: Instance<'ctx, Int<SizeT>>,
|
|
||||||
new_ndims: Instance<'ctx, Int<SizeT>>,
|
|
||||||
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
|
|
||||||
);
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(size).arg(new_ndims).arg(new_shape).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
|
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
|
||||||
generator: &mut G,
|
let array_ndims = array.load_ndims(ctx);
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
let broadcast_idx_ptr = unsafe {
|
||||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
};
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
|
|
||||||
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
ctx.builder
|
||||||
generator: &mut G,
|
.build_call(
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ndarray_calc_broadcast_fn,
|
||||||
num_shape_entries: Instance<'ctx, Int<SizeT>>,
|
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
||||||
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
|
"",
|
||||||
dst_ndims: Instance<'ctx, Int<SizeT>>,
|
)
|
||||||
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
.unwrap();
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
|
|
||||||
FnCall::builder(generator, ctx, &name)
|
|
||||||
.arg(num_shape_entries)
|
|
||||||
.arg(shape_entries)
|
|
||||||
.arg(dst_ndims)
|
|
||||||
.arg(dst_shape)
|
|
||||||
.returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
TypedArrayLikeAdapter::from(
|
||||||
generator: &mut G,
|
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
Box::new(|_, v| v.into_int_value()),
|
||||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
Box::new(|_, v| v.into()),
|
||||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
)
|
||||||
num_axes: Instance<'ctx, Int<SizeT>>,
|
|
||||||
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
|
|
||||||
FnCall::builder(generator, ctx, &name)
|
|
||||||
.arg(src_ndarray)
|
|
||||||
.arg(dst_ndarray)
|
|
||||||
.arg(num_axes)
|
|
||||||
.arg(axes)
|
|
||||||
.returning_void();
|
|
||||||
}
|
|
||||||
|
|
||||||
#[allow(clippy::too_many_arguments)]
|
|
||||||
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
a_ndims: Instance<'ctx, Int<SizeT>>,
|
|
||||||
a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
b_ndims: Instance<'ctx, Int<SizeT>>,
|
|
||||||
b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
final_ndims: Instance<'ctx, Int<SizeT>>,
|
|
||||||
new_a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
new_b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let name =
|
|
||||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
|
|
||||||
FnCall::builder(generator, ctx, &name)
|
|
||||||
.arg(a_ndims)
|
|
||||||
.arg(a_shape)
|
|
||||||
.arg(b_ndims)
|
|
||||||
.arg(b_shape)
|
|
||||||
.arg(final_ndims)
|
|
||||||
.arg(new_a_shape)
|
|
||||||
.arg(new_b_shape)
|
|
||||||
.arg(dst_shape)
|
|
||||||
.returning_void();
|
|
||||||
}
|
}
|
||||||
|
@ -1,12 +1,14 @@
|
|||||||
use crate::codegen::CodeGenContext;
|
use inkwell::{
|
||||||
use inkwell::context::Context;
|
context::Context,
|
||||||
use inkwell::intrinsics::Intrinsic;
|
intrinsics::Intrinsic,
|
||||||
use inkwell::types::AnyTypeEnum::IntType;
|
types::{AnyTypeEnum::IntType, FloatType},
|
||||||
use inkwell::types::FloatType;
|
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
|
||||||
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
|
AddressSpace,
|
||||||
use inkwell::AddressSpace;
|
};
|
||||||
use itertools::Either;
|
use itertools::Either;
|
||||||
|
|
||||||
|
use crate::codegen::CodeGenContext;
|
||||||
|
|
||||||
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
|
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
|
||||||
/// functions.
|
/// functions.
|
||||||
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
|
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
|
||||||
@ -183,7 +185,7 @@ pub fn call_memcpy_generic<'ctx>(
|
|||||||
dest
|
dest
|
||||||
} else {
|
} else {
|
||||||
ctx.builder
|
ctx.builder
|
||||||
.build_bitcast(dest, llvm_p0i8, "")
|
.build_bit_cast(dest, llvm_p0i8, "")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap()
|
.unwrap()
|
||||||
};
|
};
|
||||||
@ -191,7 +193,7 @@ pub fn call_memcpy_generic<'ctx>(
|
|||||||
src
|
src
|
||||||
} else {
|
} else {
|
||||||
ctx.builder
|
ctx.builder
|
||||||
.build_bitcast(src, llvm_p0i8, "")
|
.build_bit_cast(src, llvm_p0i8, "")
|
||||||
.map(BasicValueEnum::into_pointer_value)
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
.unwrap()
|
.unwrap()
|
||||||
};
|
};
|
||||||
|
@ -1,12 +1,12 @@
|
|||||||
use crate::{
|
use std::{
|
||||||
codegen::classes::{ListType, ProxyType, RangeType},
|
collections::{HashMap, HashSet},
|
||||||
symbol_resolver::{StaticValue, SymbolResolver},
|
sync::{
|
||||||
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
|
atomic::{AtomicBool, Ordering},
|
||||||
typecheck::{
|
Arc,
|
||||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
|
||||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
|
||||||
},
|
},
|
||||||
|
thread,
|
||||||
};
|
};
|
||||||
|
|
||||||
use crossbeam::channel::{unbounded, Receiver, Sender};
|
use crossbeam::channel::{unbounded, Receiver, Sender};
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
@ -24,16 +24,19 @@ use inkwell::{
|
|||||||
AddressSpace, IntPredicate, OptimizationLevel,
|
AddressSpace, IntPredicate, OptimizationLevel,
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
use model::*;
|
|
||||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
|
||||||
use object::ndarray::NDArray;
|
|
||||||
use parking_lot::{Condvar, Mutex};
|
use parking_lot::{Condvar, Mutex};
|
||||||
use std::collections::{HashMap, HashSet};
|
|
||||||
use std::sync::{
|
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||||
atomic::{AtomicBool, Ordering},
|
|
||||||
Arc,
|
use crate::{
|
||||||
|
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||||
|
symbol_resolver::{StaticValue, SymbolResolver},
|
||||||
|
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
|
||||||
|
typecheck::{
|
||||||
|
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||||
|
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||||
|
},
|
||||||
};
|
};
|
||||||
use std::thread;
|
|
||||||
|
|
||||||
pub mod builtin_fns;
|
pub mod builtin_fns;
|
||||||
pub mod classes;
|
pub mod classes;
|
||||||
@ -43,9 +46,7 @@ pub mod extern_fns;
|
|||||||
mod generator;
|
mod generator;
|
||||||
pub mod irrt;
|
pub mod irrt;
|
||||||
pub mod llvm_intrinsics;
|
pub mod llvm_intrinsics;
|
||||||
pub mod model;
|
|
||||||
pub mod numpy;
|
pub mod numpy;
|
||||||
pub mod object;
|
|
||||||
pub mod stmt;
|
pub mod stmt;
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
@ -509,7 +510,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||||||
}
|
}
|
||||||
|
|
||||||
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||||
Ptr(Struct(NDArray)).llvm_type(generator, ctx).as_basic_type_enum()
|
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
|
||||||
|
let element_type = get_llvm_type(
|
||||||
|
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||||
|
);
|
||||||
|
|
||||||
|
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||||
}
|
}
|
||||||
|
|
||||||
_ => unreachable!(
|
_ => unreachable!(
|
||||||
@ -847,10 +853,9 @@ pub fn gen_func_impl<
|
|||||||
builder.position_at_end(init_bb);
|
builder.position_at_end(init_bb);
|
||||||
let body_bb = context.append_basic_block(fn_val, "body");
|
let body_bb = context.append_basic_block(fn_val, "body");
|
||||||
|
|
||||||
|
// Store non-vararg argument values into local variables
|
||||||
let mut var_assignment = HashMap::new();
|
let mut var_assignment = HashMap::new();
|
||||||
let offset = u32::from(has_sret);
|
let offset = u32::from(has_sret);
|
||||||
|
|
||||||
// Store non-vararg argument values into local variables
|
|
||||||
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
|
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
|
||||||
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
|
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
|
||||||
let local_type = get_llvm_type(
|
let local_type = get_llvm_type(
|
||||||
|
@ -1,42 +0,0 @@
|
|||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::{BasicType, BasicTypeEnum},
|
|
||||||
values::BasicValueEnum,
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::codegen::CodeGenerator;
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
/// A [`Model`] of any [`BasicTypeEnum`].
|
|
||||||
///
|
|
||||||
/// Use this when it is infeasible to use model abstractions.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
|
|
||||||
|
|
||||||
impl<'ctx> Model<'ctx> for Any<'ctx> {
|
|
||||||
type Value = BasicValueEnum<'ctx>;
|
|
||||||
type Type = BasicTypeEnum<'ctx>;
|
|
||||||
|
|
||||||
fn llvm_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
_ctx: &'ctx Context,
|
|
||||||
) -> Self::Type {
|
|
||||||
self.0
|
|
||||||
}
|
|
||||||
|
|
||||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &mut G,
|
|
||||||
_ctx: &'ctx Context,
|
|
||||||
ty: T,
|
|
||||||
) -> Result<(), ModelError> {
|
|
||||||
let ty = ty.as_basic_type_enum();
|
|
||||||
if ty == self.0 {
|
|
||||||
Ok(())
|
|
||||||
} else {
|
|
||||||
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,147 +0,0 @@
|
|||||||
use std::fmt;
|
|
||||||
|
|
||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::{ArrayType, BasicType, BasicTypeEnum},
|
|
||||||
values::{ArrayValue, IntValue},
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
/// Trait for Rust structs identifying length values for [`Array`].
|
|
||||||
pub trait ArrayLen: fmt::Debug + Clone + Copy {
|
|
||||||
fn length(&self) -> u32;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A statically known length.
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Len<const N: u32>;
|
|
||||||
|
|
||||||
/// A dynamically known length.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct AnyLen(pub u32);
|
|
||||||
|
|
||||||
impl<const N: u32> ArrayLen for Len<N> {
|
|
||||||
fn length(&self) -> u32 {
|
|
||||||
N
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl ArrayLen for AnyLen {
|
|
||||||
fn length(&self) -> u32 {
|
|
||||||
self.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A Model for an [`ArrayType`].
|
|
||||||
///
|
|
||||||
/// `Len` should be of a [`LenKind`] and `Item` should be a of [`Model`].
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Array<Len, Item> {
|
|
||||||
/// Length of this array.
|
|
||||||
pub len: Len,
|
|
||||||
/// [`Model`] of the array items.
|
|
||||||
pub item: Item,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
|
|
||||||
type Value = ArrayValue<'ctx>;
|
|
||||||
type Type = ArrayType<'ctx>;
|
|
||||||
|
|
||||||
fn llvm_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Self::Type {
|
|
||||||
self.item.llvm_type(generator, ctx).array_type(self.len.length())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
ty: T,
|
|
||||||
) -> Result<(), ModelError> {
|
|
||||||
let ty = ty.as_basic_type_enum();
|
|
||||||
let BasicTypeEnum::ArrayType(ty) = ty else {
|
|
||||||
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
|
|
||||||
};
|
|
||||||
|
|
||||||
if ty.len() != self.len.length() {
|
|
||||||
return Err(ModelError(format!(
|
|
||||||
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
|
|
||||||
ty.len(),
|
|
||||||
self.len.length()
|
|
||||||
)));
|
|
||||||
}
|
|
||||||
|
|
||||||
self.item
|
|
||||||
.check_type(generator, ctx, ty.get_element_type())
|
|
||||||
.map_err(|err| err.under_context("an ArrayType"))?;
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
|
|
||||||
/// Get the pointer to the `i`-th (0-based) array element.
|
|
||||||
pub fn gep(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
i: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Ptr<Item>> {
|
|
||||||
let zero = ctx.ctx.i32_type().const_zero();
|
|
||||||
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
|
|
||||||
|
|
||||||
unsafe { Ptr(self.model.0.item).believe_value(ptr) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Like `gep` but `i` is a constant.
|
|
||||||
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
|
|
||||||
assert!(
|
|
||||||
i < u64::from(self.model.0.len.length()),
|
|
||||||
"Index {i} is out of bounds. Array length = {}",
|
|
||||||
self.model.0.len.length()
|
|
||||||
);
|
|
||||||
|
|
||||||
let i = ctx.ctx.i32_type().const_int(i, false);
|
|
||||||
self.gep(ctx, i)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience function equivalent to `.gep(...).load(...)`.
|
|
||||||
pub fn get<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
i: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Item> {
|
|
||||||
self.gep(ctx, i).load(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Like `get` but `i` is a constant.
|
|
||||||
pub fn get_const<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
i: u64,
|
|
||||||
) -> Instance<'ctx, Item> {
|
|
||||||
self.gep_const(ctx, i).load(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience function equivalent to `.gep(...).store(...)`.
|
|
||||||
pub fn set(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
i: IntValue<'ctx>,
|
|
||||||
value: Instance<'ctx, Item>,
|
|
||||||
) {
|
|
||||||
self.gep(ctx, i).store(ctx, value);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Like `set` but `i` is a constant.
|
|
||||||
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
|
|
||||||
self.gep_const(ctx, i).store(ctx, value);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,207 +0,0 @@
|
|||||||
use std::fmt;
|
|
||||||
|
|
||||||
use inkwell::{context::Context, types::*, values::*};
|
|
||||||
use itertools::Itertools;
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
|
||||||
|
|
||||||
/// A error type for reporting any [`Model`]-related error (e.g., a [`BasicType`] mismatch).
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct ModelError(pub String);
|
|
||||||
|
|
||||||
impl ModelError {
|
|
||||||
/// Append a context message to the error.
|
|
||||||
pub(super) fn under_context(mut self, context: &str) -> Self {
|
|
||||||
self.0.push_str(" ... in ");
|
|
||||||
self.0.push_str(context);
|
|
||||||
self
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Trait for Rust structs identifying [`BasicType`]s in the context of a known [`CodeGenerator`] and [`CodeGenContext`].
|
|
||||||
///
|
|
||||||
/// For instance,
|
|
||||||
/// - [`Int<Int32>`] identifies an [`IntType`] with 32-bits.
|
|
||||||
/// - [`Int<SizeT>`] identifies an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
|
|
||||||
/// - [`Ptr<Int<SizeT>>`] identifies a [`PointerType`] that points to an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
|
|
||||||
/// - [`Int<AnyInt>`] identifies an [`IntType`] with bit-width of whatever is set in the [`AnyInt`] object.
|
|
||||||
/// - [`Any`] identifies a [`BasicType`] set in the [`Any`] object itself.
|
|
||||||
///
|
|
||||||
/// You can get the [`BasicType`] out of a model with [`Model::get_type`].
|
|
||||||
///
|
|
||||||
/// Furthermore, [`Instance<'ctx, M>`] is a simple structure that carries a [`BasicValue`] with [`BasicType`] identified by model `M`.
|
|
||||||
///
|
|
||||||
/// The main purpose of this abstraction is to have a more Rust type-safe way to use Inkwell and give type-hints for programmers.
|
|
||||||
///
|
|
||||||
/// ### Notes on `Default` trait
|
|
||||||
///
|
|
||||||
/// For some models like [`Int<Int32>`] or [`Int<SizeT>`], they have a [`Default`] trait since just by looking at their types, it is possible
|
|
||||||
/// to tell the [`BasicType`]s they are identifying.
|
|
||||||
///
|
|
||||||
/// This can be used to create strongly-typed interfaces accepting only values of a specific [`BasicType`] without having to worry about
|
|
||||||
/// writing debug assertions to check, for example, if the programmer has passed in an [`IntValue`] with the wrong bit-width.
|
|
||||||
/// ```ignore
|
|
||||||
/// fn give_me_i32_and_get_a_size_t_back<'ctx>(i32: Instance<'ctx, Int<Int32>>) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
/// // code...
|
|
||||||
/// }
|
|
||||||
/// ```
|
|
||||||
///
|
|
||||||
/// ### Notes on converting between Inkwell and model/ge.
|
|
||||||
///
|
|
||||||
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
|
|
||||||
/// [`Model::check_value`] or [`Model::believe_value`].
|
|
||||||
/// ```ignore
|
|
||||||
/// let my_value: IntValue<'ctx>;
|
|
||||||
///
|
|
||||||
/// let my_value = Int(Int32).check_value(my_value).unwrap(); // Panics if `my_value` is not 32-bit with a descriptive error message.
|
|
||||||
///
|
|
||||||
/// // or, if you are absolutely certain that `my_value` is 32-bit and doing extra checks is a waste of time:
|
|
||||||
/// let my_value = Int(Int32).believe_value(my_value);
|
|
||||||
/// ```
|
|
||||||
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
|
|
||||||
/// The [`BasicType`] *variant* this model is identifying.
|
|
||||||
type Type: BasicType<'ctx>;
|
|
||||||
|
|
||||||
/// The [`BasicValue`] type of the [`BasicType`] of this model.
|
|
||||||
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
|
|
||||||
|
|
||||||
/// Return the [`BasicType`] of this model.
|
|
||||||
#[must_use]
|
|
||||||
fn llvm_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context)
|
|
||||||
-> Self::Type;
|
|
||||||
|
|
||||||
/// Get the number of bytes of the [`BasicType`] of this model.
|
|
||||||
fn size_of<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> IntValue<'ctx> {
|
|
||||||
self.llvm_type(generator, ctx).size_of().unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
|
|
||||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
ty: T,
|
|
||||||
) -> Result<(), ModelError>;
|
|
||||||
|
|
||||||
/// Create an instance from a value.
|
|
||||||
///
|
|
||||||
/// # Safety
|
|
||||||
///
|
|
||||||
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
|
|
||||||
#[must_use]
|
|
||||||
unsafe fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
|
|
||||||
Instance { model: *self, value }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
|
|
||||||
/// Wrap the [`BasicValue`] into an [`Instance`] if it is.
|
|
||||||
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
value: V,
|
|
||||||
) -> Result<Instance<'ctx, Self>, ModelError> {
|
|
||||||
let value = value.as_basic_value_enum();
|
|
||||||
self.check_type(generator, ctx, value.get_type())
|
|
||||||
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
|
|
||||||
|
|
||||||
let Ok(value) = Self::Value::try_from(value) else {
|
|
||||||
unreachable!("check_type() has bad implementation")
|
|
||||||
};
|
|
||||||
unsafe { Ok(self.believe_value(value)) }
|
|
||||||
}
|
|
||||||
|
|
||||||
// Allocate a value on the stack and return its pointer.
|
|
||||||
fn alloca<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Ptr<Self>> {
|
|
||||||
let p = ctx.builder.build_alloca(self.llvm_type(generator, ctx.ctx), "").unwrap();
|
|
||||||
unsafe { Ptr(*self).believe_value(p) }
|
|
||||||
}
|
|
||||||
|
|
||||||
// Allocate an array on the stack and return its pointer.
|
|
||||||
fn array_alloca<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
len: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Ptr<Self>> {
|
|
||||||
let p =
|
|
||||||
ctx.builder.build_array_alloca(self.llvm_type(generator, ctx.ctx), len, "").unwrap();
|
|
||||||
unsafe { Ptr(*self).believe_value(p) }
|
|
||||||
}
|
|
||||||
|
|
||||||
fn var_alloca<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
name: Option<&str>,
|
|
||||||
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
|
||||||
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
|
|
||||||
let p = generator.gen_var_alloc(ctx, ty, name)?;
|
|
||||||
unsafe { Ok(Ptr(*self).believe_value(p)) }
|
|
||||||
}
|
|
||||||
|
|
||||||
fn array_var_alloca<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
len: IntValue<'ctx>,
|
|
||||||
name: Option<&'ctx str>,
|
|
||||||
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
|
||||||
// TODO: Remove ArraySliceValue
|
|
||||||
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
|
|
||||||
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
|
|
||||||
unsafe { Ok(Ptr(*self).believe_value(PointerValue::from(p))) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Allocate a constant array.
|
|
||||||
fn const_array<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
values: &[Instance<'ctx, Self>],
|
|
||||||
) -> Instance<'ctx, Array<AnyLen, Self>> {
|
|
||||||
macro_rules! make {
|
|
||||||
($t:expr, $into_value:expr) => {
|
|
||||||
$t.const_array(
|
|
||||||
&values
|
|
||||||
.iter()
|
|
||||||
.map(|x| $into_value(x.value.as_basic_value_enum()))
|
|
||||||
.collect_vec(),
|
|
||||||
)
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
let value = match self.llvm_type(generator, ctx).as_basic_type_enum() {
|
|
||||||
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
|
|
||||||
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
|
|
||||||
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
|
|
||||||
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
|
|
||||||
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
|
|
||||||
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
|
|
||||||
};
|
|
||||||
|
|
||||||
Array { len: AnyLen(values.len() as u32), item: *self }
|
|
||||||
.check_value(generator, ctx, value)
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct Instance<'ctx, M: Model<'ctx>> {
|
|
||||||
/// The model of this instance.
|
|
||||||
pub model: M,
|
|
||||||
|
|
||||||
/// The value of this instance.
|
|
||||||
///
|
|
||||||
/// It is guaranteed the [`BasicType`] of `value` is consistent with that of `model`.
|
|
||||||
pub value: M::Value,
|
|
||||||
}
|
|
@ -1,94 +0,0 @@
|
|||||||
use std::fmt;
|
|
||||||
|
|
||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::{BasicType, FloatType},
|
|
||||||
values::FloatValue,
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::codegen::CodeGenerator;
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
|
|
||||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> FloatType<'ctx>;
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Float32;
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Float64;
|
|
||||||
|
|
||||||
impl<'ctx> FloatKind<'ctx> for Float32 {
|
|
||||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> FloatType<'ctx> {
|
|
||||||
ctx.f32_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> FloatKind<'ctx> for Float64 {
|
|
||||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> FloatType<'ctx> {
|
|
||||||
ctx.f64_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
|
|
||||||
|
|
||||||
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
|
|
||||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
_ctx: &'ctx Context,
|
|
||||||
) -> FloatType<'ctx> {
|
|
||||||
self.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Float<N>(pub N);
|
|
||||||
|
|
||||||
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
|
|
||||||
type Value = FloatValue<'ctx>;
|
|
||||||
type Type = FloatType<'ctx>;
|
|
||||||
|
|
||||||
fn llvm_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Self::Type {
|
|
||||||
self.0.get_float_type(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
ty: T,
|
|
||||||
) -> Result<(), ModelError> {
|
|
||||||
let ty = ty.as_basic_type_enum();
|
|
||||||
let Ok(ty) = FloatType::try_from(ty) else {
|
|
||||||
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
|
|
||||||
};
|
|
||||||
|
|
||||||
let exp_ty = self.0.get_float_type(generator, ctx);
|
|
||||||
|
|
||||||
// TODO: Inkwell does not have get_bit_width for FloatType?
|
|
||||||
if ty != exp_ty {
|
|
||||||
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,122 +0,0 @@
|
|||||||
use inkwell::{
|
|
||||||
attributes::{Attribute, AttributeLoc},
|
|
||||||
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
|
|
||||||
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
|
|
||||||
};
|
|
||||||
use itertools::Itertools;
|
|
||||||
|
|
||||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
struct Arg<'ctx> {
|
|
||||||
ty: BasicMetadataTypeEnum<'ctx>,
|
|
||||||
val: BasicMetadataValueEnum<'ctx>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A convenience structure to construct & call an LLVM function.
|
|
||||||
///
|
|
||||||
/// ### Usage
|
|
||||||
///
|
|
||||||
/// The syntax is like this:
|
|
||||||
/// ```ignore
|
|
||||||
/// let result = CallFunction::begin("my_function_name")
|
|
||||||
/// .attrs(...)
|
|
||||||
/// .arg(arg1)
|
|
||||||
/// .arg(arg2)
|
|
||||||
/// .arg(arg3)
|
|
||||||
/// .returning("my_function_result", Int32);
|
|
||||||
/// ```
|
|
||||||
///
|
|
||||||
/// The function `my_function_name` is called when `.returning()` (or its variants) is called, returning
|
|
||||||
/// the result as an `Instance<'ctx, Int<Int32>>`.
|
|
||||||
///
|
|
||||||
/// If `my_function_name` has not been declared in `ctx.module`, once `.returning()` is called, a function
|
|
||||||
/// declaration of `my_function_name` is added to `ctx.module`, where the [`FunctionType`] is deduced from
|
|
||||||
/// the argument types and returning type.
|
|
||||||
pub struct FnCall<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
|
|
||||||
generator: &'d mut G,
|
|
||||||
ctx: &'b CodeGenContext<'ctx, 'a>,
|
|
||||||
/// Function name
|
|
||||||
name: &'c str,
|
|
||||||
/// Call arguments
|
|
||||||
args: Vec<Arg<'ctx>>,
|
|
||||||
/// LLVM function Attributes
|
|
||||||
attrs: Vec<&'static str>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> FnCall<'ctx, 'a, 'b, 'c, 'd, G> {
|
|
||||||
pub fn builder(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
|
|
||||||
FnCall { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Push a list of LLVM function attributes to the function declaration.
|
|
||||||
#[must_use]
|
|
||||||
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
|
|
||||||
self.attrs = attrs;
|
|
||||||
self
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Push a call argument to the function call.
|
|
||||||
#[allow(clippy::needless_pass_by_value)]
|
|
||||||
#[must_use]
|
|
||||||
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
|
|
||||||
let arg = Arg {
|
|
||||||
ty: arg.model.llvm_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
|
|
||||||
val: arg.value.as_basic_value_enum().into(),
|
|
||||||
};
|
|
||||||
self.args.push(arg);
|
|
||||||
self
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Call the function and expect the function to return a value of type of `return_model`.
|
|
||||||
#[must_use]
|
|
||||||
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
|
|
||||||
let ret_ty = return_model.llvm_type(self.generator, self.ctx.ctx);
|
|
||||||
|
|
||||||
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
|
|
||||||
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
|
|
||||||
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
|
|
||||||
ret
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
|
|
||||||
#[must_use]
|
|
||||||
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
|
|
||||||
self.returning(name, M::default())
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Call the function and expect the function to return a void-type.
|
|
||||||
pub fn returning_void(self) {
|
|
||||||
let ret_ty = self.ctx.ctx.void_type();
|
|
||||||
|
|
||||||
let _ = self.call(|tys| ret_ty.fn_type(tys, false), "");
|
|
||||||
}
|
|
||||||
|
|
||||||
fn call<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
|
|
||||||
where
|
|
||||||
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
|
|
||||||
{
|
|
||||||
// Get the LLVM function.
|
|
||||||
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
|
|
||||||
// Declare the function if it doesn't exist.
|
|
||||||
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
|
|
||||||
|
|
||||||
let func_type = make_fn_type(&tys);
|
|
||||||
let func = self.ctx.module.add_function(self.name, func_type, None);
|
|
||||||
|
|
||||||
for attr in &self.attrs {
|
|
||||||
func.add_attribute(
|
|
||||||
AttributeLoc::Function,
|
|
||||||
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
func
|
|
||||||
});
|
|
||||||
|
|
||||||
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
|
|
||||||
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,422 +0,0 @@
|
|||||||
use std::{cmp::Ordering, fmt};
|
|
||||||
|
|
||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::{BasicType, IntType},
|
|
||||||
values::IntValue,
|
|
||||||
IntPredicate,
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
|
|
||||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> IntType<'ctx>;
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Bool;
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Byte;
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Int32;
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Int64;
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct SizeT;
|
|
||||||
|
|
||||||
impl<'ctx> IntKind<'ctx> for Bool {
|
|
||||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> IntType<'ctx> {
|
|
||||||
ctx.bool_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> IntKind<'ctx> for Byte {
|
|
||||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> IntType<'ctx> {
|
|
||||||
ctx.i8_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> IntKind<'ctx> for Int32 {
|
|
||||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> IntType<'ctx> {
|
|
||||||
ctx.i32_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> IntKind<'ctx> for Int64 {
|
|
||||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> IntType<'ctx> {
|
|
||||||
ctx.i64_type()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> IntKind<'ctx> for SizeT {
|
|
||||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> IntType<'ctx> {
|
|
||||||
generator.get_size_type(ctx)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
|
|
||||||
|
|
||||||
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
|
|
||||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
_generator: &G,
|
|
||||||
_ctx: &'ctx Context,
|
|
||||||
) -> IntType<'ctx> {
|
|
||||||
self.0
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Int<N>(pub N);
|
|
||||||
|
|
||||||
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
|
|
||||||
type Value = IntValue<'ctx>;
|
|
||||||
type Type = IntType<'ctx>;
|
|
||||||
|
|
||||||
fn llvm_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Self::Type {
|
|
||||||
self.0.get_int_type(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
ty: T,
|
|
||||||
) -> Result<(), ModelError> {
|
|
||||||
let ty = ty.as_basic_type_enum();
|
|
||||||
let Ok(ty) = IntType::try_from(ty) else {
|
|
||||||
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
|
|
||||||
};
|
|
||||||
|
|
||||||
let exp_ty = self.0.get_int_type(generator, ctx);
|
|
||||||
if ty.get_bit_width() != exp_ty.get_bit_width() {
|
|
||||||
return Err(ModelError(format!(
|
|
||||||
"Expecting IntType to have {} bit(s), but got {} bit(s)",
|
|
||||||
exp_ty.get_bit_width(),
|
|
||||||
ty.get_bit_width()
|
|
||||||
)));
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, N: IntKind<'ctx>> Int<N> {
|
|
||||||
pub fn const_int<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
value: u64,
|
|
||||||
sign_extend: bool,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
let value = self.llvm_type(generator, ctx).const_int(value, sign_extend);
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn const_0<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
let value = self.llvm_type(generator, ctx).const_zero();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn const_1<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
self.const_int(generator, ctx, 1, false)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
let value = self.llvm_type(generator, ctx).const_all_ones();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
assert!(
|
|
||||||
value.get_type().get_bit_width()
|
|
||||||
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
|
||||||
);
|
|
||||||
let value = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_s_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
|
|
||||||
.unwrap();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn s_extend<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
assert!(
|
|
||||||
value.get_type().get_bit_width()
|
|
||||||
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
|
||||||
);
|
|
||||||
let value =
|
|
||||||
ctx.builder.build_int_s_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
assert!(
|
|
||||||
value.get_type().get_bit_width()
|
|
||||||
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
|
||||||
);
|
|
||||||
let value = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_z_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
|
|
||||||
.unwrap();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn z_extend<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
assert!(
|
|
||||||
value.get_type().get_bit_width()
|
|
||||||
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
|
||||||
);
|
|
||||||
let value =
|
|
||||||
ctx.builder.build_int_z_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
assert!(
|
|
||||||
value.get_type().get_bit_width()
|
|
||||||
>= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
|
||||||
);
|
|
||||||
let value = ctx
|
|
||||||
.builder
|
|
||||||
.build_int_truncate_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
|
|
||||||
.unwrap();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn truncate<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
assert!(
|
|
||||||
value.get_type().get_bit_width()
|
|
||||||
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
|
|
||||||
);
|
|
||||||
let value =
|
|
||||||
ctx.builder.build_int_truncate(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
|
|
||||||
unsafe { self.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
|
|
||||||
pub fn s_extend_or_truncate<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
let their_width = value.get_type().get_bit_width();
|
|
||||||
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
|
|
||||||
match their_width.cmp(&our_width) {
|
|
||||||
Ordering::Less => self.s_extend(generator, ctx, value),
|
|
||||||
Ordering::Equal => unsafe { self.believe_value(value) },
|
|
||||||
Ordering::Greater => self.truncate(generator, ctx, value),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// `zext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
|
|
||||||
pub fn z_extend_or_truncate<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
value: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
let their_width = value.get_type().get_bit_width();
|
|
||||||
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
|
|
||||||
match their_width.cmp(&our_width) {
|
|
||||||
Ordering::Less => self.z_extend(generator, ctx, value),
|
|
||||||
Ordering::Equal => unsafe { self.believe_value(value) },
|
|
||||||
Ordering::Greater => self.truncate(generator, ctx, value),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Int<Bool> {
|
|
||||||
#[must_use]
|
|
||||||
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
self.const_int(generator, ctx, 0, false)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
self.const_int(generator, ctx, 1, false)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
|
|
||||||
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).s_extend(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).z_extend(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).truncate(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn s_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).s_extend_or_truncate(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn z_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
to_int_kind: NewN,
|
|
||||||
) -> Instance<'ctx, Int<NewN>> {
|
|
||||||
Int(to_int_kind).z_extend_or_truncate(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
|
||||||
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
|
|
||||||
unsafe { self.model.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
|
||||||
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
|
|
||||||
unsafe { self.model.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
|
||||||
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
|
|
||||||
unsafe { self.model.believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn compare(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
op: IntPredicate,
|
|
||||||
other: Self,
|
|
||||||
) -> Instance<'ctx, Int<Bool>> {
|
|
||||||
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
|
|
||||||
unsafe { Int(Bool).believe_value(value) }
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,17 +0,0 @@
|
|||||||
mod any;
|
|
||||||
mod array;
|
|
||||||
mod core;
|
|
||||||
mod float;
|
|
||||||
pub mod function;
|
|
||||||
mod int;
|
|
||||||
mod ptr;
|
|
||||||
mod structure;
|
|
||||||
pub mod util;
|
|
||||||
|
|
||||||
pub use any::*;
|
|
||||||
pub use array::*;
|
|
||||||
pub use core::*;
|
|
||||||
pub use float::*;
|
|
||||||
pub use int::*;
|
|
||||||
pub use ptr::*;
|
|
||||||
pub use structure::*;
|
|
@ -1,223 +0,0 @@
|
|||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::{BasicType, BasicTypeEnum, PointerType},
|
|
||||||
values::{IntValue, PointerValue},
|
|
||||||
AddressSpace,
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
/// A model for [`PointerType`].
|
|
||||||
///
|
|
||||||
/// `Item` is the element type this pointer is pointing to, and should be of a [`Model`].
|
|
||||||
///
|
|
||||||
// TODO: LLVM 15: `Item` is a Rust type-hint for the LLVM type of value the `.store()/.load()` family
|
|
||||||
// of functions return. If a truly opaque pointer is needed, tell the programmer to use `OpaquePtr`.
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Ptr<Item>(pub Item);
|
|
||||||
|
|
||||||
/// An opaque pointer. Like [`Ptr`] but without any Rust type-hints about its element type.
|
|
||||||
///
|
|
||||||
/// `.load()/.store()` is not available for [`Instance`]s of opaque pointers.
|
|
||||||
pub type OpaquePtr = Ptr<()>;
|
|
||||||
|
|
||||||
// TODO: LLVM 15: `Item: Model<'ctx>` don't even need to be a model anymore. It will only be
|
|
||||||
// a type-hint for the `.load()/.store()` functions for the `pointee_ty`.
|
|
||||||
//
|
|
||||||
// See https://thedan64.github.io/inkwell/inkwell/builder/struct.Builder.html#method.build_load.
|
|
||||||
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
|
|
||||||
type Value = PointerValue<'ctx>;
|
|
||||||
type Type = PointerType<'ctx>;
|
|
||||||
|
|
||||||
fn llvm_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Self::Type {
|
|
||||||
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
|
|
||||||
self.0.llvm_type(generator, ctx).ptr_type(AddressSpace::default())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
ty: T,
|
|
||||||
) -> Result<(), ModelError> {
|
|
||||||
let ty = ty.as_basic_type_enum();
|
|
||||||
let Ok(ty) = PointerType::try_from(ty) else {
|
|
||||||
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
|
|
||||||
};
|
|
||||||
|
|
||||||
let elem_ty = ty.get_element_type();
|
|
||||||
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
|
|
||||||
return Err(ModelError(format!(
|
|
||||||
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
|
|
||||||
)));
|
|
||||||
};
|
|
||||||
|
|
||||||
// TODO: inkwell `get_element_type()` will be deprecated.
|
|
||||||
// Remove the check for `get_element_type()` when the time comes.
|
|
||||||
self.0
|
|
||||||
.check_type(generator, ctx, elem_ty)
|
|
||||||
.map_err(|err| err.under_context("a PointerType"))?;
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
|
|
||||||
/// Return a ***constant*** nullptr.
|
|
||||||
pub fn nullptr<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Instance<'ctx, Ptr<Item>> {
|
|
||||||
let ptr = self.llvm_type(generator, ctx).const_null();
|
|
||||||
unsafe { self.believe_value(ptr) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
|
|
||||||
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
ptr: PointerValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Ptr<Item>> {
|
|
||||||
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
|
|
||||||
// TODO: LLVM 15: This function will only have to be:
|
|
||||||
// ```
|
|
||||||
// return self.believe_value(ptr);
|
|
||||||
// ```
|
|
||||||
let t = self.llvm_type(generator, ctx.ctx);
|
|
||||||
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
|
|
||||||
unsafe { self.believe_value(ptr) }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
|
|
||||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn offset(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
offset: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Ptr<Item>> {
|
|
||||||
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
|
|
||||||
unsafe { self.model.believe_value(p) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
|
|
||||||
#[must_use]
|
|
||||||
pub fn offset_const(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
offset: i64,
|
|
||||||
) -> Instance<'ctx, Ptr<Item>> {
|
|
||||||
let offset = ctx.ctx.i32_type().const_int(offset as u64, true);
|
|
||||||
self.offset(ctx, offset)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_index(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
index: IntValue<'ctx>,
|
|
||||||
value: Instance<'ctx, Item>,
|
|
||||||
) {
|
|
||||||
self.offset(ctx, index).store(ctx, value);
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn set_index_const(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
index: i64,
|
|
||||||
value: Instance<'ctx, Item>,
|
|
||||||
) {
|
|
||||||
self.offset_const(ctx, index).store(ctx, value);
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn get_index<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
index: IntValue<'ctx>,
|
|
||||||
) -> Instance<'ctx, Item> {
|
|
||||||
self.offset(ctx, index).load(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn get_index_const<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
index: i64,
|
|
||||||
) -> Instance<'ctx, Item> {
|
|
||||||
self.offset_const(ctx, index).load(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Load the value with [`inkwell::builder::Builder::build_load`].
|
|
||||||
pub fn load<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Item> {
|
|
||||||
let value = ctx.builder.build_load(self.value, "").unwrap();
|
|
||||||
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Store a value with [`inkwell::builder::Builder::build_store`].
|
|
||||||
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
|
|
||||||
ctx.builder.build_store(self.value, value.value).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
|
|
||||||
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
new_item: NewItem,
|
|
||||||
) -> Instance<'ctx, Ptr<NewItem>> {
|
|
||||||
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
|
|
||||||
Ptr(new_item).pointer_cast(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Cast this pointer to `uint8_t*`
|
|
||||||
pub fn cast_to_pi8<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
|
||||||
Ptr(Int(Byte)).pointer_cast(generator, ctx, self.value)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
|
|
||||||
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
|
||||||
let value = ctx.builder.build_is_null(self.value, "").unwrap();
|
|
||||||
unsafe { Int(Bool).believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
|
|
||||||
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
|
||||||
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
|
|
||||||
unsafe { Int(Bool).believe_value(value) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// `memcpy` from another pointer.
|
|
||||||
pub fn copy_from<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
source: Self,
|
|
||||||
num_items: IntValue<'ctx>,
|
|
||||||
) {
|
|
||||||
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
|
|
||||||
let itemsize = self.model.size_of(generator, ctx.ctx);
|
|
||||||
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
|
|
||||||
let num_items = Int(SizeT).z_extend_or_truncate(generator, ctx, num_items);
|
|
||||||
let totalsize = itemsize.mul(ctx, num_items);
|
|
||||||
|
|
||||||
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
|
|
||||||
call_memcpy_generic(ctx, self.value, source.value, totalsize.value, is_volatile);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,364 +0,0 @@
|
|||||||
use std::fmt;
|
|
||||||
|
|
||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::{BasicType, BasicTypeEnum, StructType},
|
|
||||||
values::{BasicValueEnum, StructValue},
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
|
|
||||||
pub trait FieldTraversal<'ctx> {
|
|
||||||
/// Output type of [`FieldTraversal::add`].
|
|
||||||
type Output<M>;
|
|
||||||
|
|
||||||
/// Traverse through the type of a declared field and do something with it.
|
|
||||||
///
|
|
||||||
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
|
|
||||||
/// * `model` - The [`Model`] representing the LLVM type of this field.
|
|
||||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M>;
|
|
||||||
|
|
||||||
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
|
|
||||||
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Output<M> {
|
|
||||||
self.add(name, M::default())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Descriptor of an LLVM struct field.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct GepField<M> {
|
|
||||||
/// The GEP index of this field. This is the index to use with `build_gep`.
|
|
||||||
pub gep_index: u32,
|
|
||||||
/// The cosmetic name of this field.
|
|
||||||
pub name: &'static str,
|
|
||||||
/// The [`Model`] of this field's type.
|
|
||||||
pub model: M,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A traversal to calculate the GEP index of fields.
|
|
||||||
pub struct GepFieldTraversal {
|
|
||||||
/// The current GEP index.
|
|
||||||
gep_index_counter: u32,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
|
|
||||||
type Output<M> = GepField<M>;
|
|
||||||
|
|
||||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
|
|
||||||
let gep_index = self.gep_index_counter;
|
|
||||||
self.gep_index_counter += 1;
|
|
||||||
Self::Output { gep_index, name, model }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A traversal to collect the field types of a struct.
|
|
||||||
///
|
|
||||||
/// This is used to collect field types and construct the LLVM struct type with [`Context::struct_type`].
|
|
||||||
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
|
||||||
generator: &'a G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
/// The collected field types so far in exact order.
|
|
||||||
field_types: Vec<BasicTypeEnum<'ctx>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
|
|
||||||
type Output<M> = (); // Checking types return nothing.
|
|
||||||
|
|
||||||
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Output<M> {
|
|
||||||
let t = model.llvm_type(self.generator, self.ctx).as_basic_type_enum();
|
|
||||||
self.field_types.push(t);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A traversal to check the types of fields.
|
|
||||||
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
|
||||||
generator: &'a mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
/// The current GEP index, so we can tell the index of the field we are checking
|
|
||||||
/// and report the GEP index.
|
|
||||||
gep_index_counter: u32,
|
|
||||||
/// The [`StructType`] to check.
|
|
||||||
scrutinee: StructType<'ctx>,
|
|
||||||
/// The list of collected errors so far.
|
|
||||||
errors: Vec<ModelError>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
|
|
||||||
for CheckTypeFieldTraversal<'ctx, 'a, G>
|
|
||||||
{
|
|
||||||
type Output<M> = (); // Checking types return nothing.
|
|
||||||
|
|
||||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
|
|
||||||
let gep_index = self.gep_index_counter;
|
|
||||||
self.gep_index_counter += 1;
|
|
||||||
|
|
||||||
if let Some(t) = self.scrutinee.get_field_type_at_index(gep_index) {
|
|
||||||
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
|
|
||||||
self.errors
|
|
||||||
.push(err.under_context(format!("field #{gep_index} '{name}'").as_str()));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Otherwise, it will be caught by Struct's `check_type`.
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A trait for Rust structs identifying LLVM structures.
|
|
||||||
///
|
|
||||||
/// ### Example
|
|
||||||
///
|
|
||||||
/// Suppose you want to define this structure:
|
|
||||||
/// ```c
|
|
||||||
/// template <typename T>
|
|
||||||
/// struct ContiguousNDArray {
|
|
||||||
/// size_t ndims;
|
|
||||||
/// size_t* shape;
|
|
||||||
/// T* data;
|
|
||||||
/// }
|
|
||||||
/// ```
|
|
||||||
///
|
|
||||||
/// This is how it should be done:
|
|
||||||
/// ```ignore
|
|
||||||
/// pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
|
||||||
/// pub ndims: F::Out<Int<SizeT>>,
|
|
||||||
/// pub shape: F::Out<Ptr<Int<SizeT>>>,
|
|
||||||
/// pub data: F::Out<Ptr<Item>>,
|
|
||||||
/// }
|
|
||||||
///
|
|
||||||
/// /// An ndarray without strides and non-opaque `data` field in NAC3.
|
|
||||||
/// #[derive(Debug, Clone, Copy)]
|
|
||||||
/// pub struct ContiguousNDArray<M> {
|
|
||||||
/// /// [`Model`] of the items.
|
|
||||||
/// pub item: M,
|
|
||||||
/// }
|
|
||||||
///
|
|
||||||
/// impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
|
|
||||||
/// type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
|
|
||||||
///
|
|
||||||
/// fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
/// // The order of `traversal.add*` is important
|
|
||||||
/// Self::Fields {
|
|
||||||
/// ndims: traversal.add_auto("ndims"),
|
|
||||||
/// shape: traversal.add_auto("shape"),
|
|
||||||
/// data: traversal.add("data", Ptr(self.item)),
|
|
||||||
/// }
|
|
||||||
/// }
|
|
||||||
/// }
|
|
||||||
/// ```
|
|
||||||
///
|
|
||||||
/// The [`FieldTraversal`] here is a mechanism to allow the fields of `ContiguousNDArrayFields` to be
|
|
||||||
/// traversed to do useful work such as:
|
|
||||||
///
|
|
||||||
/// - To create the [`StructType`] of `ContiguousNDArray` by collecting [`BasicType`]s of the fields.
|
|
||||||
/// - To enable the `.gep(ctx, |f| f.ndims).store(ctx, ...)` syntax.
|
|
||||||
///
|
|
||||||
/// Suppose now that you have defined `ContiguousNDArray` and you want to allocate a `ContiguousNDArray`
|
|
||||||
/// with dtype `float64` in LLVM, this is how you do it:
|
|
||||||
/// ```ignore
|
|
||||||
/// type F64NDArray = Struct<ContiguousNDArray<Float<Float64>>>; // Type alias for leaner documentation
|
|
||||||
/// let model: F64NDArray = Struct(ContigousNDArray { item: Float(Float64) });
|
|
||||||
/// let ndarray: Instance<'ctx, Ptr<F64NDArray>> = model.alloca(generator, ctx);
|
|
||||||
/// ```
|
|
||||||
///
|
|
||||||
/// ...and here is how you may manipulate/access `ndarray`:
|
|
||||||
///
|
|
||||||
/// (NOTE: some arguments have been omitted)
|
|
||||||
///
|
|
||||||
/// ```ignore
|
|
||||||
/// // Get `&ndarray->data`
|
|
||||||
/// ndarray.gep(|f| f.data); // type: Instance<'ctx, Ptr<Float<Float64>>>
|
|
||||||
///
|
|
||||||
/// // Get `ndarray->ndims`
|
|
||||||
/// ndarray.get(|f| f.ndims); // type: Instance<'ctx, Int<SizeT>>
|
|
||||||
///
|
|
||||||
/// // Get `&ndarray->ndims`
|
|
||||||
/// ndarray.gep(|f| f.ndims); // type: Instance<'ctx, Ptr<Int<SizeT>>>
|
|
||||||
///
|
|
||||||
/// // Get `ndarray->shape[0]`
|
|
||||||
/// ndarray.get(|f| f.shape).get_index_const(0); // Instance<'ctx, Int<SizeT>>
|
|
||||||
///
|
|
||||||
/// // Get `&ndarray->shape[2]`
|
|
||||||
/// ndarray.get(|f| f.shape).offset_const(2); // Instance<'ctx, Ptr<Int<SizeT>>>
|
|
||||||
///
|
|
||||||
/// // Do `ndarray->ndims = 3;`
|
|
||||||
/// let num_3 = Int(SizeT).const_int(3);
|
|
||||||
/// ndarray.set(|f| f.ndims, num_3);
|
|
||||||
/// ```
|
|
||||||
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
|
|
||||||
/// The associated fields of this struct.
|
|
||||||
type Fields<F: FieldTraversal<'ctx>>;
|
|
||||||
|
|
||||||
/// Traverse through all fields of this [`StructKind`].
|
|
||||||
///
|
|
||||||
/// Only used internally in this module for implementing other components.
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
|
|
||||||
|
|
||||||
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
|
|
||||||
///
|
|
||||||
/// Only used internally in this module for implementing other components.
|
|
||||||
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
|
|
||||||
self.iter_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the LLVM [`StructType`] of this [`StructKind`].
|
|
||||||
fn get_struct_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> StructType<'ctx> {
|
|
||||||
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
|
|
||||||
self.iter_fields(&mut traversal);
|
|
||||||
|
|
||||||
ctx.struct_type(&traversal.field_types, false)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A model for LLVM struct.
|
|
||||||
///
|
|
||||||
/// `S` should be of a [`StructKind`].
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct Struct<S>(pub S);
|
|
||||||
|
|
||||||
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
|
|
||||||
/// Create a constant struct value from its fields.
|
|
||||||
///
|
|
||||||
/// This function also validates `fields` and panic when there is something wrong.
|
|
||||||
pub fn const_struct<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
fields: &[BasicValueEnum<'ctx>],
|
|
||||||
) -> Instance<'ctx, Self> {
|
|
||||||
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
|
|
||||||
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
|
|
||||||
// and if you try doing that Rust would force you put lifetimes everywhere.
|
|
||||||
let val = ctx.const_struct(fields, false);
|
|
||||||
self.check_value(generator, ctx, val).unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
|
|
||||||
type Value = StructValue<'ctx>;
|
|
||||||
type Type = StructType<'ctx>;
|
|
||||||
|
|
||||||
fn llvm_type<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Self::Type {
|
|
||||||
self.0.get_struct_type(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
ty: T,
|
|
||||||
) -> Result<(), ModelError> {
|
|
||||||
let ty = ty.as_basic_type_enum();
|
|
||||||
let Ok(ty) = StructType::try_from(ty) else {
|
|
||||||
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
|
|
||||||
};
|
|
||||||
|
|
||||||
// Check each field individually.
|
|
||||||
let mut traversal = CheckTypeFieldTraversal {
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
gep_index_counter: 0,
|
|
||||||
errors: Vec::new(),
|
|
||||||
scrutinee: ty,
|
|
||||||
};
|
|
||||||
self.0.iter_fields(&mut traversal);
|
|
||||||
|
|
||||||
// Check the number of fields.
|
|
||||||
let exp_num_fields = traversal.gep_index_counter;
|
|
||||||
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
|
|
||||||
if exp_num_fields != got_num_fields {
|
|
||||||
return Err(ModelError(format!(
|
|
||||||
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
|
|
||||||
)));
|
|
||||||
}
|
|
||||||
|
|
||||||
if !traversal.errors.is_empty() {
|
|
||||||
// Currently, only the first error is reported.
|
|
||||||
return Err(traversal.errors[0].clone());
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
|
|
||||||
/// Get a field with [`StructValue::get_field_at_index`].
|
|
||||||
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
get_field: GetField,
|
|
||||||
) -> Instance<'ctx, M>
|
|
||||||
where
|
|
||||||
M: Model<'ctx>,
|
|
||||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
|
||||||
{
|
|
||||||
let field = get_field(self.model.0.fields());
|
|
||||||
let val = self.value.get_field_at_index(field.gep_index).unwrap();
|
|
||||||
field.model.check_value(generator, ctx, val).unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
|
|
||||||
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
|
|
||||||
pub fn gep<M, GetField>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
get_field: GetField,
|
|
||||||
) -> Instance<'ctx, Ptr<M>>
|
|
||||||
where
|
|
||||||
M: Model<'ctx>,
|
|
||||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
|
||||||
{
|
|
||||||
let field = get_field(self.model.0 .0.fields());
|
|
||||||
let llvm_i32 = ctx.ctx.i32_type();
|
|
||||||
|
|
||||||
let ptr = unsafe {
|
|
||||||
ctx.builder
|
|
||||||
.build_in_bounds_gep(
|
|
||||||
self.value,
|
|
||||||
&[llvm_i32.const_zero(), llvm_i32.const_int(u64::from(field.gep_index), false)],
|
|
||||||
field.name,
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
};
|
|
||||||
|
|
||||||
unsafe { Ptr(field.model).believe_value(ptr) }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience function equivalent to `.gep(...).load(...)`.
|
|
||||||
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
get_field: GetField,
|
|
||||||
) -> Instance<'ctx, M>
|
|
||||||
where
|
|
||||||
M: Model<'ctx>,
|
|
||||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
|
||||||
{
|
|
||||||
self.gep(ctx, get_field).load(generator, ctx)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience function equivalent to `.gep(...).store(...)`.
|
|
||||||
pub fn set<M, GetField>(
|
|
||||||
&self,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
get_field: GetField,
|
|
||||||
value: Instance<'ctx, M>,
|
|
||||||
) where
|
|
||||||
M: Model<'ctx>,
|
|
||||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
|
||||||
{
|
|
||||||
self.gep(ctx, get_field).store(ctx, value);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,42 +0,0 @@
|
|||||||
use crate::codegen::{
|
|
||||||
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
|
|
||||||
///
|
|
||||||
/// `stop` is not included.
|
|
||||||
pub fn gen_for_model<'ctx, 'a, G, F, N>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
||||||
start: Instance<'ctx, Int<N>>,
|
|
||||||
stop: Instance<'ctx, Int<N>>,
|
|
||||||
step: Instance<'ctx, Int<N>>,
|
|
||||||
body: F,
|
|
||||||
) -> Result<(), String>
|
|
||||||
where
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
F: FnOnce(
|
|
||||||
&mut G,
|
|
||||||
&mut CodeGenContext<'ctx, 'a>,
|
|
||||||
BreakContinueHooks<'ctx>,
|
|
||||||
Instance<'ctx, Int<N>>,
|
|
||||||
) -> Result<(), String>,
|
|
||||||
N: IntKind<'ctx> + Default,
|
|
||||||
{
|
|
||||||
let int_model = Int(N::default());
|
|
||||||
gen_for_callback_incrementing(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
None,
|
|
||||||
start.value,
|
|
||||||
(stop.value, false),
|
|
||||||
|g, ctx, hooks, i| {
|
|
||||||
let i = unsafe { int_model.believe_value(i) };
|
|
||||||
body(g, ctx, hooks, i)
|
|
||||||
},
|
|
||||||
step.value,
|
|
||||||
)
|
|
||||||
}
|
|
File diff suppressed because it is too large
Load Diff
@ -1,12 +0,0 @@
|
|||||||
use inkwell::values::BasicValueEnum;
|
|
||||||
|
|
||||||
use crate::typecheck::typedef::Type;
|
|
||||||
|
|
||||||
/// A NAC3 LLVM Python object of any type.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct AnyObject<'ctx> {
|
|
||||||
/// Typechecker type of the object.
|
|
||||||
pub ty: Type,
|
|
||||||
/// LLVM value of the object.
|
|
||||||
pub value: BasicValueEnum<'ctx>,
|
|
||||||
}
|
|
@ -1,87 +0,0 @@
|
|||||||
use crate::{
|
|
||||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
|
||||||
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::any::AnyObject;
|
|
||||||
|
|
||||||
/// Fields of [`List`]
|
|
||||||
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
|
||||||
/// Array pointer to content
|
|
||||||
pub items: F::Output<Ptr<Item>>,
|
|
||||||
/// Number of items in the array
|
|
||||||
pub len: F::Output<Int<SizeT>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A list in NAC3.
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct List<Item> {
|
|
||||||
/// Model of the list items
|
|
||||||
pub item: Item,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
|
|
||||||
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
|
|
||||||
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
Self::Fields {
|
|
||||||
items: traversal.add("items", Ptr(self.item)),
|
|
||||||
len: traversal.add_auto("len"),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Struct<List<Item>>>> {
|
|
||||||
/// Cast the items pointer to `uint8_t*`.
|
|
||||||
pub fn with_pi8_items<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
|
|
||||||
self.pointer_cast(generator, ctx, Struct(List { item: Int(Byte) }))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A NAC3 Python List object.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct ListObject<'ctx> {
|
|
||||||
/// Typechecker type of the list items
|
|
||||||
pub item_type: Type,
|
|
||||||
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ListObject<'ctx> {
|
|
||||||
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
|
|
||||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
object: AnyObject<'ctx>,
|
|
||||||
) -> Self {
|
|
||||||
// Check typechecker type and extract `item_type`
|
|
||||||
let item_type = match &*ctx.unifier.get_ty(object.ty) {
|
|
||||||
TypeEnum::TObj { obj_id, params, .. }
|
|
||||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
|
||||||
{
|
|
||||||
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
|
|
||||||
}
|
|
||||||
_ => {
|
|
||||||
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
let plist = Ptr(Struct(List { item: Any(ctx.get_llvm_type(generator, item_type)) }));
|
|
||||||
|
|
||||||
// Create object
|
|
||||||
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
|
|
||||||
ListObject { item_type, instance: value }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the `len()` of this list.
|
|
||||||
pub fn len<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
self.instance.get(generator, ctx, |f| f.len)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,5 +0,0 @@
|
|||||||
pub mod any;
|
|
||||||
pub mod list;
|
|
||||||
pub mod ndarray;
|
|
||||||
pub mod tuple;
|
|
||||||
pub mod utils;
|
|
@ -1,184 +0,0 @@
|
|||||||
use super::NDArrayObject;
|
|
||||||
use crate::{
|
|
||||||
codegen::{
|
|
||||||
irrt::{
|
|
||||||
call_nac3_ndarray_array_set_and_validate_list_shape,
|
|
||||||
call_nac3_ndarray_array_write_list_to_array,
|
|
||||||
},
|
|
||||||
model::*,
|
|
||||||
object::{any::AnyObject, list::ListObject},
|
|
||||||
stmt::gen_if_else_expr_callback,
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
},
|
|
||||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
|
||||||
typecheck::typedef::{Type, TypeEnum},
|
|
||||||
};
|
|
||||||
|
|
||||||
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(list)`.
|
|
||||||
fn get_list_object_dtype_and_ndims<'ctx>(
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
list: ListObject<'ctx>,
|
|
||||||
) -> (Type, u64) {
|
|
||||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
|
|
||||||
|
|
||||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
|
|
||||||
let ndims = ndims + 1; // To count `list` itself.
|
|
||||||
|
|
||||||
(dtype, ndims)
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Implementation of `np_array(<list>, copy=True)`
|
|
||||||
fn make_np_array_list_copy_true_impl<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
list: ListObject<'ctx>,
|
|
||||||
) -> Self {
|
|
||||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
|
|
||||||
let list_value = list.instance.with_pi8_items(generator, ctx);
|
|
||||||
|
|
||||||
// Validate `list` has a consistent shape.
|
|
||||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
|
||||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
|
||||||
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int, false);
|
|
||||||
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
|
||||||
call_nac3_ndarray_array_set_and_validate_list_shape(
|
|
||||||
generator, ctx, list_value, ndims, shape,
|
|
||||||
);
|
|
||||||
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
|
|
||||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
|
||||||
ndarray.create_data(generator, ctx);
|
|
||||||
|
|
||||||
// Copy all contents from the list.
|
|
||||||
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Implementation of `np_array(<list>, copy=None)`
|
|
||||||
fn make_np_array_list_copy_none_impl<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
list: ListObject<'ctx>,
|
|
||||||
) -> Self {
|
|
||||||
// np_array without copying is only possible `list` is not nested.
|
|
||||||
//
|
|
||||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
|
||||||
// to the array pointer of `list`.
|
|
||||||
//
|
|
||||||
// If `list` is `list[list[T]]` or worse, copy.
|
|
||||||
|
|
||||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
|
||||||
if ndims == 1 {
|
|
||||||
// `list` is not nested
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
|
|
||||||
|
|
||||||
// Set data
|
|
||||||
let data = list.instance.get(generator, ctx, |f| f.items).cast_to_pi8(generator, ctx);
|
|
||||||
ndarray.instance.set(ctx, |f| f.data, data);
|
|
||||||
|
|
||||||
// ndarray->shape[0] = list->len;
|
|
||||||
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
let list_len = list.instance.get(generator, ctx, |f| f.len);
|
|
||||||
shape.set_index_const(ctx, 0, list_len);
|
|
||||||
|
|
||||||
// Set strides, the `data` is contiguous
|
|
||||||
ndarray.set_strides_contiguous(generator, ctx);
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
} else {
|
|
||||||
// `list` is nested, copy
|
|
||||||
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Implementation of `np_array(<list>, copy=copy)`
|
|
||||||
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
list: ListObject<'ctx>,
|
|
||||||
copy: Instance<'ctx, Int<Bool>>,
|
|
||||||
) -> Self {
|
|
||||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
|
||||||
|
|
||||||
let ndarray = gen_if_else_expr_callback(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
|_generator, _ctx| Ok(copy.value),
|
|
||||||
|generator, ctx| {
|
|
||||||
let ndarray =
|
|
||||||
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list);
|
|
||||||
Ok(Some(ndarray.instance.value))
|
|
||||||
},
|
|
||||||
|generator, ctx| {
|
|
||||||
let ndarray =
|
|
||||||
NDArrayObject::make_np_array_list_copy_none_impl(generator, ctx, list);
|
|
||||||
Ok(Some(ndarray.instance.value))
|
|
||||||
},
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Implementation of `np_array(<ndarray>, copy=copy)`.
|
|
||||||
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: NDArrayObject<'ctx>,
|
|
||||||
copy: Instance<'ctx, Int<Bool>>,
|
|
||||||
) -> Self {
|
|
||||||
let ndarray_val = gen_if_else_expr_callback(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
|_generator, _ctx| Ok(copy.value),
|
|
||||||
|generator, ctx| {
|
|
||||||
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
|
||||||
Ok(Some(ndarray.instance.value))
|
|
||||||
},
|
|
||||||
|_generator, _ctx| {
|
|
||||||
// No need to copy. Return `ndarray` itself.
|
|
||||||
Ok(Some(ndarray.instance.value))
|
|
||||||
},
|
|
||||||
)
|
|
||||||
.unwrap()
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
NDArrayObject::from_value_and_unpacked_types(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
ndarray_val,
|
|
||||||
ndarray.dtype,
|
|
||||||
ndarray.ndims,
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a new ndarray like `np.array()`.
|
|
||||||
///
|
|
||||||
/// NOTE: The `ndmin` argument is not here. You may want to
|
|
||||||
/// do [`NDArrayObject::atleast_nd`] to achieve that.
|
|
||||||
pub fn make_np_array<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
object: AnyObject<'ctx>,
|
|
||||||
copy: Instance<'ctx, Int<Bool>>,
|
|
||||||
) -> Self {
|
|
||||||
match &*ctx.unifier.get_ty(object.ty) {
|
|
||||||
TypeEnum::TObj { obj_id, .. }
|
|
||||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
|
||||||
{
|
|
||||||
let list = ListObject::from_object(generator, ctx, object);
|
|
||||||
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
|
|
||||||
}
|
|
||||||
TypeEnum::TObj { obj_id, .. }
|
|
||||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
|
||||||
{
|
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
|
||||||
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
|
|
||||||
}
|
|
||||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,139 +0,0 @@
|
|||||||
use itertools::Itertools;
|
|
||||||
|
|
||||||
use crate::codegen::{
|
|
||||||
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
|
|
||||||
model::*,
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::NDArrayObject;
|
|
||||||
|
|
||||||
/// Fields of [`ShapeEntry`]
|
|
||||||
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
|
|
||||||
pub ndims: F::Output<Int<SizeT>>,
|
|
||||||
pub shape: F::Output<Ptr<Int<SizeT>>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// An IRRT structure used in broadcasting.
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct ShapeEntry;
|
|
||||||
|
|
||||||
impl<'ctx> StructKind<'ctx> for ShapeEntry {
|
|
||||||
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
|
|
||||||
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Create a broadcast view on this ndarray with a target shape.
|
|
||||||
///
|
|
||||||
/// The input shape will be checked to make sure that it contains no negative values.
|
|
||||||
///
|
|
||||||
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
|
||||||
/// The caller has to figure this out for this function.
|
|
||||||
/// * `target_shape` - An array pointer pointing to the target shape.
|
|
||||||
#[must_use]
|
|
||||||
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
target_ndims: u64,
|
|
||||||
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> Self {
|
|
||||||
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
|
|
||||||
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
|
|
||||||
|
|
||||||
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
|
|
||||||
broadcast_ndarray
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/// A result produced by [`broadcast_all_ndarrays`]
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct BroadcastAllResult<'ctx> {
|
|
||||||
/// The statically known `ndims` of the broadcast result.
|
|
||||||
pub ndims: u64,
|
|
||||||
/// The broadcasting shape.
|
|
||||||
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
/// Broadcasted views on the inputs.
|
|
||||||
///
|
|
||||||
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
|
||||||
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
|
||||||
/// is the same as the input.
|
|
||||||
pub ndarrays: Vec<NDArrayObject<'ctx>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
|
|
||||||
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
|
|
||||||
broadcast_ndims: u64,
|
|
||||||
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
|
|
||||||
let num_shape_entries = Int(SizeT).const_int(
|
|
||||||
generator,
|
|
||||||
ctx.ctx,
|
|
||||||
u64::try_from(in_shape_entries.len()).unwrap(),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
|
|
||||||
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
|
|
||||||
let pshape_entry = shape_entries.offset_const(ctx, i64::try_from(i).unwrap());
|
|
||||||
|
|
||||||
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims, false);
|
|
||||||
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
|
|
||||||
|
|
||||||
pshape_entry.set(ctx, |f| f.shape, *in_shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims, false);
|
|
||||||
call_nac3_ndarray_broadcast_shapes(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
num_shape_entries,
|
|
||||||
shape_entries,
|
|
||||||
broadcast_ndims,
|
|
||||||
broadcast_shape,
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
|
|
||||||
/// containing all the information of the result of the broadcast operation.
|
|
||||||
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarrays: &[Self],
|
|
||||||
) -> BroadcastAllResult<'ctx> {
|
|
||||||
assert!(!ndarrays.is_empty());
|
|
||||||
|
|
||||||
// Infer the broadcast output ndims.
|
|
||||||
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
|
|
||||||
|
|
||||||
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int, false);
|
|
||||||
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
|
|
||||||
|
|
||||||
let shape_entries = ndarrays
|
|
||||||
.iter()
|
|
||||||
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
|
|
||||||
.collect_vec();
|
|
||||||
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
|
|
||||||
|
|
||||||
// Broadcast all the inputs to shape `dst_shape`.
|
|
||||||
let broadcast_ndarrays: Vec<_> = ndarrays
|
|
||||||
.iter()
|
|
||||||
.map(|ndarray| {
|
|
||||||
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
|
|
||||||
})
|
|
||||||
.collect_vec();
|
|
||||||
|
|
||||||
BroadcastAllResult {
|
|
||||||
ndims: broadcast_ndims_int,
|
|
||||||
shape: broadcast_shape,
|
|
||||||
ndarrays: broadcast_ndarrays,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,134 +0,0 @@
|
|||||||
use crate::{
|
|
||||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
|
||||||
typecheck::typedef::Type,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::NDArrayObject;
|
|
||||||
|
|
||||||
/// Fields of [`ContiguousNDArray`]
|
|
||||||
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
|
||||||
pub ndims: F::Output<Int<SizeT>>,
|
|
||||||
pub shape: F::Output<Ptr<Int<SizeT>>>,
|
|
||||||
pub data: F::Output<Ptr<Item>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// An ndarray without strides and non-opaque `data` field in NAC3.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct ContiguousNDArray<M> {
|
|
||||||
/// [`Model`] of the items.
|
|
||||||
pub item: M,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
|
|
||||||
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
|
|
||||||
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
Self::Fields {
|
|
||||||
ndims: traversal.add_auto("ndims"),
|
|
||||||
shape: traversal.add_auto("shape"),
|
|
||||||
data: traversal.add("data", Ptr(self.item)),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Create a [`ContiguousNDArray`] from the contents of this ndarray.
|
|
||||||
///
|
|
||||||
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
|
|
||||||
///
|
|
||||||
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
|
|
||||||
/// the returned [`ContiguousNDArray`] and copy contents of this ndarray to there.
|
|
||||||
///
|
|
||||||
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`ContiguousNDArray`]
|
|
||||||
/// will share memory with this ndarray.
|
|
||||||
///
|
|
||||||
/// The `item_model` sets the [`Model`] of the returned [`ContiguousNDArray`]'s `Item` model for type-safety, and
|
|
||||||
/// should match the `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics. Use model [`Any`]
|
|
||||||
/// if you don't care/cannot know the [`Model`] in advance.
|
|
||||||
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
item_model: Item,
|
|
||||||
) -> Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>> {
|
|
||||||
// Sanity check on `self.dtype` and `item_model`.
|
|
||||||
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
|
||||||
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
|
||||||
|
|
||||||
let cdarray_model = Struct(ContiguousNDArray { item: item_model });
|
|
||||||
|
|
||||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
|
||||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
|
||||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
|
||||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
|
||||||
|
|
||||||
// Allocate and setup the resulting [`ContiguousNDArray`].
|
|
||||||
let result = cdarray_model.alloca(generator, ctx);
|
|
||||||
|
|
||||||
// Set ndims and shape.
|
|
||||||
let ndims = self.ndims_llvm(generator, ctx.ctx);
|
|
||||||
result.set(ctx, |f| f.ndims, ndims);
|
|
||||||
|
|
||||||
let shape = self.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
result.set(ctx, |f| f.shape, shape);
|
|
||||||
|
|
||||||
let is_contiguous = self.is_c_contiguous(generator, ctx);
|
|
||||||
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
|
|
||||||
|
|
||||||
// Inserting into then_bb; This ndarray is contiguous.
|
|
||||||
ctx.builder.position_at_end(then_bb);
|
|
||||||
let data = self.instance.get(generator, ctx, |f| f.data);
|
|
||||||
let data = data.pointer_cast(generator, ctx, item_model);
|
|
||||||
result.set(ctx, |f| f.data, data);
|
|
||||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
|
||||||
|
|
||||||
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
|
|
||||||
// `make_copy` produces an ndarray with contiguous `data`.
|
|
||||||
ctx.builder.position_at_end(else_bb);
|
|
||||||
let copied_ndarray = self.make_copy(generator, ctx);
|
|
||||||
let data = copied_ndarray.instance.get(generator, ctx, |f| f.data);
|
|
||||||
let data = data.pointer_cast(generator, ctx, item_model);
|
|
||||||
result.set(ctx, |f| f.data, data);
|
|
||||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
|
||||||
|
|
||||||
// Reposition to end_bb for continuation
|
|
||||||
ctx.builder.position_at_end(end_bb);
|
|
||||||
|
|
||||||
result
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an [`NDArrayObject`] from a [`ContiguousNDArray`].
|
|
||||||
///
|
|
||||||
/// The operation is super cheap. The newly created [`NDArrayObject`] will share the
|
|
||||||
/// same memory as the [`ContiguousNDArray`].
|
|
||||||
///
|
|
||||||
/// `ndims` has to be provided as [`NDArrayObject`] requires a statically known `ndims` value, despite
|
|
||||||
/// the fact that the information should be contained within the [`ContiguousNDArray`].
|
|
||||||
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
carray: Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>>,
|
|
||||||
dtype: Type,
|
|
||||||
ndims: u64,
|
|
||||||
) -> Self {
|
|
||||||
// Sanity check on `dtype` and `contiguous_array`'s `Item` model.
|
|
||||||
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
|
||||||
carray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
|
||||||
|
|
||||||
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
|
|
||||||
|
|
||||||
// Allocate the resulting ndarray.
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
|
||||||
|
|
||||||
// Copy shape and update strides
|
|
||||||
let shape = carray.get(generator, ctx, |f| f.shape);
|
|
||||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
|
||||||
ndarray.set_strides_contiguous(generator, ctx);
|
|
||||||
|
|
||||||
// Share data
|
|
||||||
let data = carray.get(generator, ctx, |f| f.data).pointer_cast(generator, ctx, Int(Byte));
|
|
||||||
ndarray.instance.set(ctx, |f| f.data, data);
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,176 +0,0 @@
|
|||||||
use inkwell::{values::BasicValueEnum, IntPredicate};
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{
|
|
||||||
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
|
|
||||||
CodeGenerator,
|
|
||||||
},
|
|
||||||
typecheck::typedef::Type,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::NDArrayObject;
|
|
||||||
|
|
||||||
/// Get the zero value in `np.zeros()` of a `dtype`.
|
|
||||||
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
) -> BasicValueEnum<'ctx> {
|
|
||||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
|
||||||
.iter()
|
|
||||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
|
||||||
{
|
|
||||||
ctx.ctx.i32_type().const_zero().into()
|
|
||||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
|
||||||
.iter()
|
|
||||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
|
||||||
{
|
|
||||||
ctx.ctx.i64_type().const_zero().into()
|
|
||||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
|
||||||
ctx.ctx.f64_type().const_zero().into()
|
|
||||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
|
||||||
ctx.ctx.bool_type().const_zero().into()
|
|
||||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
|
||||||
ctx.gen_string(generator, "").into()
|
|
||||||
} else {
|
|
||||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the one value in `np.ones()` of a `dtype`.
|
|
||||||
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
) -> BasicValueEnum<'ctx> {
|
|
||||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
|
||||||
.iter()
|
|
||||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
|
||||||
{
|
|
||||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
|
||||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
|
||||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
|
||||||
.iter()
|
|
||||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
|
||||||
{
|
|
||||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
|
||||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
|
||||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
|
||||||
ctx.ctx.f64_type().const_float(1.0).into()
|
|
||||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
|
||||||
ctx.ctx.bool_type().const_int(1, false).into()
|
|
||||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
|
||||||
ctx.gen_string(generator, "1").into()
|
|
||||||
} else {
|
|
||||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Create an ndarray like `np.empty`.
|
|
||||||
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
ndims: u64,
|
|
||||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> Self {
|
|
||||||
// Validate `shape`
|
|
||||||
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
|
|
||||||
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
|
|
||||||
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
|
||||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
|
||||||
ndarray.create_data(generator, ctx);
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an ndarray like `np.full`.
|
|
||||||
pub fn make_np_full<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
ndims: u64,
|
|
||||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
fill_value: BasicValueEnum<'ctx>,
|
|
||||||
) -> Self {
|
|
||||||
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
|
|
||||||
ndarray.fill(generator, ctx, fill_value);
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an ndarray like `np.zero`.
|
|
||||||
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
ndims: u64,
|
|
||||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> Self {
|
|
||||||
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
|
||||||
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an ndarray like `np.ones`.
|
|
||||||
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
ndims: u64,
|
|
||||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> Self {
|
|
||||||
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
|
||||||
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an ndarray like `np.eye`.
|
|
||||||
pub fn make_np_eye<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
nrows: Instance<'ctx, Int<SizeT>>,
|
|
||||||
ncols: Instance<'ctx, Int<SizeT>>,
|
|
||||||
offset: Instance<'ctx, Int<SizeT>>,
|
|
||||||
) -> Self {
|
|
||||||
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
|
||||||
let ndone = ndarray_one_value(generator, ctx, dtype);
|
|
||||||
|
|
||||||
let ndarray = NDArrayObject::alloca_dynamic_shape(generator, ctx, dtype, &[nrows, ncols]);
|
|
||||||
|
|
||||||
// Create data and make the matrix like look np.eye()
|
|
||||||
ndarray.create_data(generator, ctx);
|
|
||||||
ndarray
|
|
||||||
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
|
||||||
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
|
||||||
// and this loop would not execute.
|
|
||||||
|
|
||||||
// Load up `row_i` and `col_i` from indices.
|
|
||||||
let row_i = nditer.get_indices().get_index_const(generator, ctx, 0);
|
|
||||||
let col_i = nditer.get_indices().get_index_const(generator, ctx, 1);
|
|
||||||
|
|
||||||
let be_one = row_i.add(ctx, offset).compare(ctx, IntPredicate::EQ, col_i);
|
|
||||||
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
|
|
||||||
|
|
||||||
let p = nditer.get_pointer(generator, ctx);
|
|
||||||
ctx.builder.build_store(p, value).unwrap();
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
})
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an ndarray like `np.identity`.
|
|
||||||
pub fn make_np_identity<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
size: Instance<'ctx, Int<SizeT>>,
|
|
||||||
) -> Self {
|
|
||||||
// Convenient implementation
|
|
||||||
let offset = Int(SizeT).const_0(generator, ctx.ctx);
|
|
||||||
NDArrayObject::make_np_eye(generator, ctx, dtype, size, size, offset)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,227 +0,0 @@
|
|||||||
use crate::codegen::{
|
|
||||||
irrt::call_nac3_ndarray_index,
|
|
||||||
model::*,
|
|
||||||
object::utils::slice::{RustSlice, Slice},
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::NDArrayObject;
|
|
||||||
|
|
||||||
pub type NDIndexType = Byte;
|
|
||||||
|
|
||||||
/// Fields of [`NDIndex`]
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
|
|
||||||
pub type_: F::Output<Int<NDIndexType>>,
|
|
||||||
pub data: F::Output<Ptr<Int<Byte>>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// An IRRT representation of an ndarray subscript index.
|
|
||||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
|
||||||
pub struct NDIndex;
|
|
||||||
|
|
||||||
impl<'ctx> StructKind<'ctx> for NDIndex {
|
|
||||||
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
|
|
||||||
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// A convenience enum representing a [`NDIndex`].
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub enum RustNDIndex<'ctx> {
|
|
||||||
SingleElement(Instance<'ctx, Int<Int32>>),
|
|
||||||
Slice(RustSlice<'ctx, Int32>),
|
|
||||||
NewAxis,
|
|
||||||
Ellipsis,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> RustNDIndex<'ctx> {
|
|
||||||
/// Get the value to set `NDIndex::type` for this variant.
|
|
||||||
fn get_type_id(&self) -> u64 {
|
|
||||||
// Defined in IRRT, must be in sync
|
|
||||||
match self {
|
|
||||||
RustNDIndex::SingleElement(_) => 0,
|
|
||||||
RustNDIndex::Slice(_) => 1,
|
|
||||||
RustNDIndex::NewAxis => 2,
|
|
||||||
RustNDIndex::Ellipsis => 3,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Serialize this [`RustNDIndex`] by writing it into an LLVM [`NDIndex`].
|
|
||||||
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
|
||||||
) {
|
|
||||||
// Set `dst_ndindex_ptr->type`
|
|
||||||
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
|
|
||||||
ctx,
|
|
||||||
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id(), false),
|
|
||||||
);
|
|
||||||
|
|
||||||
// Set `dst_ndindex_ptr->data`
|
|
||||||
match self {
|
|
||||||
RustNDIndex::SingleElement(in_index) => {
|
|
||||||
let index_ptr = Int(Int32).alloca(generator, ctx);
|
|
||||||
index_ptr.store(ctx, *in_index);
|
|
||||||
|
|
||||||
dst_ndindex_ptr
|
|
||||||
.gep(ctx, |f| f.data)
|
|
||||||
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
|
||||||
}
|
|
||||||
RustNDIndex::Slice(in_rust_slice) => {
|
|
||||||
let user_slice_ptr = Struct(Slice(Int32)).alloca(generator, ctx);
|
|
||||||
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
|
|
||||||
|
|
||||||
dst_ndindex_ptr
|
|
||||||
.gep(ctx, |f| f.data)
|
|
||||||
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
|
||||||
}
|
|
||||||
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Serialize a list of `RustNDIndex` as a newly allocated LLVM array of `NDIndex`.
|
|
||||||
pub fn make_ndindices<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
in_ndindices: &[RustNDIndex<'ctx>],
|
|
||||||
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
|
|
||||||
let ndindex_model = Struct(NDIndex);
|
|
||||||
|
|
||||||
// Allocate the LLVM ndindices.
|
|
||||||
let num_ndindices =
|
|
||||||
Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64, false);
|
|
||||||
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
|
|
||||||
|
|
||||||
// Initialize all of them.
|
|
||||||
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
|
|
||||||
let pndindex = ndindices.offset_const(ctx, i64::try_from(i).unwrap());
|
|
||||||
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
|
|
||||||
}
|
|
||||||
|
|
||||||
(num_ndindices, ndindices)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Get the expected `ndims` after indexing with `indices`.
|
|
||||||
#[must_use]
|
|
||||||
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
|
|
||||||
let mut ndims = self.ndims;
|
|
||||||
for index in indices {
|
|
||||||
match index {
|
|
||||||
RustNDIndex::SingleElement(_) => {
|
|
||||||
ndims -= 1; // Single elements decrements ndims
|
|
||||||
}
|
|
||||||
RustNDIndex::NewAxis => {
|
|
||||||
ndims += 1; // `np.newaxis` / `none` adds a new axis
|
|
||||||
}
|
|
||||||
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ndims
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
|
||||||
///
|
|
||||||
/// This function behaves like NumPy's ndarray indexing, but if the indices index
|
|
||||||
/// into a single element, an unsized ndarray is returned.
|
|
||||||
#[must_use]
|
|
||||||
pub fn index<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
indices: &[RustNDIndex<'ctx>],
|
|
||||||
) -> Self {
|
|
||||||
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
|
|
||||||
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
|
|
||||||
|
|
||||||
let (num_indices, indices) = RustNDIndex::make_ndindices(generator, ctx, indices);
|
|
||||||
call_nac3_ndarray_index(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
num_indices,
|
|
||||||
indices,
|
|
||||||
self.instance,
|
|
||||||
dst_ndarray.instance,
|
|
||||||
);
|
|
||||||
|
|
||||||
dst_ndarray
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub mod util {
|
|
||||||
use itertools::Itertools;
|
|
||||||
use nac3parser::ast::{Expr, ExprKind};
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{model::*, object::utils::slice::util::gen_slice, CodeGenContext, CodeGenerator},
|
|
||||||
typecheck::typedef::Type,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::RustNDIndex;
|
|
||||||
|
|
||||||
/// Generate LLVM code to transform an ndarray subscript expression to
|
|
||||||
/// its list of [`RustNDIndex`]
|
|
||||||
///
|
|
||||||
/// i.e.,
|
|
||||||
/// ```python
|
|
||||||
/// my_ndarray[::3, 1, :2:]
|
|
||||||
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
|
|
||||||
/// ```
|
|
||||||
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
subscript: &Expr<Option<Type>>,
|
|
||||||
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
|
|
||||||
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
|
||||||
|
|
||||||
// Annoying notes about `slice`
|
|
||||||
// - `my_array[5]`
|
|
||||||
// - slice is a `Constant`
|
|
||||||
// - `my_array[:5]`
|
|
||||||
// - slice is a `Slice`
|
|
||||||
// - `my_array[:]`
|
|
||||||
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
|
||||||
// - `my_array[:, :]`
|
|
||||||
// - slice is now a `Tuple` of two `Slice`-s
|
|
||||||
//
|
|
||||||
// In summary:
|
|
||||||
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
|
||||||
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
|
||||||
//
|
|
||||||
// So we first "flatten" out the slice expression
|
|
||||||
let index_exprs = match &subscript.node {
|
|
||||||
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
|
|
||||||
_ => vec![subscript],
|
|
||||||
};
|
|
||||||
|
|
||||||
// Process all index expressions
|
|
||||||
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
|
|
||||||
for index_expr in index_exprs {
|
|
||||||
// NOTE: Currently nac3core's slices do not have an object representation,
|
|
||||||
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
|
||||||
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
|
|
||||||
// Handle slices
|
|
||||||
let slice = gen_slice(generator, ctx, lower, upper, step)?;
|
|
||||||
RustNDIndex::Slice(slice)
|
|
||||||
} else {
|
|
||||||
// Treat and handle everything else as a single element index.
|
|
||||||
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
|
|
||||||
ctx,
|
|
||||||
generator,
|
|
||||||
ctx.primitives.int32, // Must be int32, this checks for illegal values
|
|
||||||
)?;
|
|
||||||
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
|
|
||||||
|
|
||||||
RustNDIndex::SingleElement(index)
|
|
||||||
};
|
|
||||||
rust_ndindices.push(ndindex);
|
|
||||||
}
|
|
||||||
Ok(rust_ndindices)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,219 +0,0 @@
|
|||||||
use inkwell::values::BasicValueEnum;
|
|
||||||
use itertools::Itertools;
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{
|
|
||||||
object::ndarray::{AnyObject, NDArrayObject},
|
|
||||||
stmt::gen_for_callback,
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
},
|
|
||||||
typecheck::typedef::Type,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::{nditer::NDIterHandle, NDArrayOut, ScalarOrNDArray};
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping` elementwise.
|
|
||||||
///
|
|
||||||
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when iterating through
|
|
||||||
/// the input `ndarrays` after broadcasting. The output of `mapping` is the result of the elementwise operation.
|
|
||||||
///
|
|
||||||
/// `out` specifies whether the result should be a new ndarray or to be written an existing ndarray.
|
|
||||||
pub fn broadcast_starmap<'a, G, MappingFn>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
||||||
ndarrays: &[Self],
|
|
||||||
out: NDArrayOut<'ctx>,
|
|
||||||
mapping: MappingFn,
|
|
||||||
) -> Result<Self, String>
|
|
||||||
where
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
MappingFn: FnOnce(
|
|
||||||
&mut G,
|
|
||||||
&mut CodeGenContext<'ctx, 'a>,
|
|
||||||
&[BasicValueEnum<'ctx>],
|
|
||||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
|
||||||
{
|
|
||||||
// Broadcast inputs
|
|
||||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
|
|
||||||
|
|
||||||
let out_ndarray = match out {
|
|
||||||
NDArrayOut::NewNDArray { dtype } => {
|
|
||||||
// Create a new ndarray based on the broadcast shape.
|
|
||||||
let result_ndarray =
|
|
||||||
NDArrayObject::alloca(generator, ctx, dtype, broadcast_result.ndims);
|
|
||||||
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
|
|
||||||
result_ndarray.create_data(generator, ctx);
|
|
||||||
result_ndarray
|
|
||||||
}
|
|
||||||
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
|
||||||
// Use an existing ndarray.
|
|
||||||
|
|
||||||
// Check that its shape is compatible with the broadcast shape.
|
|
||||||
result_ndarray.assert_can_be_written_by_out(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
broadcast_result.ndims,
|
|
||||||
broadcast_result.shape,
|
|
||||||
);
|
|
||||||
result_ndarray
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Map element-wise and store results into `mapped_ndarray`.
|
|
||||||
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
|
|
||||||
gen_for_callback(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
Some("broadcast_starmap"),
|
|
||||||
|generator, ctx| {
|
|
||||||
// Create NDIters for all broadcasted input ndarrays.
|
|
||||||
let other_nditers = broadcast_result
|
|
||||||
.ndarrays
|
|
||||||
.iter()
|
|
||||||
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
|
|
||||||
.collect_vec();
|
|
||||||
Ok((nditer, other_nditers))
|
|
||||||
},
|
|
||||||
|generator, ctx, (out_nditer, _in_nditers)| {
|
|
||||||
// We can simply use `out_nditer`'s `has_element()`.
|
|
||||||
// `in_nditers`' `has_element()`s should return the same value.
|
|
||||||
Ok(out_nditer.has_element(generator, ctx).value)
|
|
||||||
},
|
|
||||||
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
|
||||||
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
|
||||||
// and write to `out_ndarray`.
|
|
||||||
let in_scalars = in_nditers
|
|
||||||
.iter()
|
|
||||||
.map(|nditer| nditer.get_scalar(generator, ctx).value)
|
|
||||||
.collect_vec();
|
|
||||||
|
|
||||||
let result = mapping(generator, ctx, &in_scalars)?;
|
|
||||||
|
|
||||||
let p = out_nditer.get_pointer(generator, ctx);
|
|
||||||
ctx.builder.build_store(p, result).unwrap();
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
},
|
|
||||||
|generator, ctx, (out_nditer, in_nditers)| {
|
|
||||||
// Advance all iterators
|
|
||||||
out_nditer.next(generator, ctx);
|
|
||||||
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
|
|
||||||
Ok(())
|
|
||||||
},
|
|
||||||
)?;
|
|
||||||
|
|
||||||
Ok(out_ndarray)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Map through this ndarray with an elementwise function.
|
|
||||||
pub fn map<'a, G, Mapping>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
||||||
out: NDArrayOut<'ctx>,
|
|
||||||
mapping: Mapping,
|
|
||||||
) -> Result<Self, String>
|
|
||||||
where
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
Mapping: FnOnce(
|
|
||||||
&mut G,
|
|
||||||
&mut CodeGenContext<'ctx, 'a>,
|
|
||||||
BasicValueEnum<'ctx>,
|
|
||||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
|
||||||
{
|
|
||||||
NDArrayObject::broadcast_starmap(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
&[*self],
|
|
||||||
out,
|
|
||||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
|
||||||
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a scalar.
|
|
||||||
///
|
|
||||||
/// This function is very helpful when implementing NumPy functions that takes on either scalars or ndarrays or a mix of them
|
|
||||||
/// as their inputs and produces either an ndarray with broadcast, or a scalar if all its inputs are all scalars.
|
|
||||||
///
|
|
||||||
/// For example ,this function can be used to implement `np.add`, which has the following behaviors:
|
|
||||||
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
|
|
||||||
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is converted into an ndarray and broadcasted.
|
|
||||||
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) -> ndarray; there is broadcasting.
|
|
||||||
///
|
|
||||||
/// ## Details:
|
|
||||||
///
|
|
||||||
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
|
|
||||||
///
|
|
||||||
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be 'as-ndarray'-ed into ndarrays,
|
|
||||||
/// then all inputs (now all ndarrays) will be passed to [`NDArrayObject::broadcasting_starmap`] and **create** a new ndarray
|
|
||||||
/// with dtype `ret_dtype`.
|
|
||||||
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
||||||
inputs: &[ScalarOrNDArray<'ctx>],
|
|
||||||
ret_dtype: Type,
|
|
||||||
mapping: MappingFn,
|
|
||||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
|
||||||
where
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
MappingFn: FnOnce(
|
|
||||||
&mut G,
|
|
||||||
&mut CodeGenContext<'ctx, 'a>,
|
|
||||||
&[BasicValueEnum<'ctx>],
|
|
||||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
|
||||||
{
|
|
||||||
// Check if all inputs are Scalars
|
|
||||||
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
|
|
||||||
|
|
||||||
if let Some(scalars) = all_scalars {
|
|
||||||
let scalars = scalars.iter().map(|scalar| scalar.value).collect_vec();
|
|
||||||
let value = mapping(generator, ctx, &scalars)?;
|
|
||||||
|
|
||||||
Ok(ScalarOrNDArray::Scalar(AnyObject { ty: ret_dtype, value }))
|
|
||||||
} else {
|
|
||||||
// Promote all input to ndarrays and map through them.
|
|
||||||
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
|
|
||||||
let ndarray = NDArrayObject::broadcast_starmap(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
&inputs,
|
|
||||||
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
|
||||||
mapping,
|
|
||||||
)?;
|
|
||||||
Ok(ScalarOrNDArray::NDArray(ndarray))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
|
|
||||||
///
|
|
||||||
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a [`ScalarOrNDArray::Scalar`] of that result.
|
|
||||||
///
|
|
||||||
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new ndarray of the results will be created and
|
|
||||||
/// returned as a [`ScalarOrNDArray::NDArray`].
|
|
||||||
pub fn map<'a, G, Mapping>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
||||||
ret_dtype: Type,
|
|
||||||
mapping: Mapping,
|
|
||||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
|
||||||
where
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
Mapping: FnOnce(
|
|
||||||
&mut G,
|
|
||||||
&mut CodeGenContext<'ctx, 'a>,
|
|
||||||
BasicValueEnum<'ctx>,
|
|
||||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
|
||||||
{
|
|
||||||
ScalarOrNDArray::broadcasting_starmap(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
&[*self],
|
|
||||||
ret_dtype,
|
|
||||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,218 +0,0 @@
|
|||||||
use std::cmp::max;
|
|
||||||
|
|
||||||
use nac3parser::ast::Operator;
|
|
||||||
use util::gen_for_model;
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{
|
|
||||||
expr::gen_binop_expr_with_values, irrt::call_nac3_ndarray_matmul_calculate_shapes,
|
|
||||||
model::*, object::ndarray::indexing::RustNDIndex, CodeGenContext, CodeGenerator,
|
|
||||||
},
|
|
||||||
typecheck::{magic_methods::Binop, typedef::Type},
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::{NDArrayObject, NDArrayOut};
|
|
||||||
|
|
||||||
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
|
|
||||||
///
|
|
||||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
|
||||||
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dst_dtype: Type,
|
|
||||||
in_a: NDArrayObject<'ctx>,
|
|
||||||
in_b: NDArrayObject<'ctx>,
|
|
||||||
) -> NDArrayObject<'ctx> {
|
|
||||||
assert!(in_a.ndims >= 2);
|
|
||||||
assert!(in_b.ndims >= 2);
|
|
||||||
|
|
||||||
// Deduce ndims of the result of matmul.
|
|
||||||
let ndims_int = max(in_a.ndims, in_b.ndims);
|
|
||||||
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int, false);
|
|
||||||
|
|
||||||
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
|
|
||||||
// destination ndarray to store the result of matmul.
|
|
||||||
let (lhs, rhs, dst) = {
|
|
||||||
let in_lhs_ndims = in_a.ndims_llvm(generator, ctx.ctx);
|
|
||||||
let in_lhs_shape = in_a.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
let in_rhs_ndims = in_b.ndims_llvm(generator, ctx.ctx);
|
|
||||||
let in_rhs_shape = in_b.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
let lhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
|
||||||
let rhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
|
||||||
let dst_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
|
||||||
|
|
||||||
// Matmul dimension compatibility is checked here.
|
|
||||||
call_nac3_ndarray_matmul_calculate_shapes(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
in_lhs_ndims,
|
|
||||||
in_lhs_shape,
|
|
||||||
in_rhs_ndims,
|
|
||||||
in_rhs_shape,
|
|
||||||
ndims,
|
|
||||||
lhs_shape,
|
|
||||||
rhs_shape,
|
|
||||||
dst_shape,
|
|
||||||
);
|
|
||||||
|
|
||||||
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, lhs_shape);
|
|
||||||
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, rhs_shape);
|
|
||||||
|
|
||||||
let dst = NDArrayObject::alloca(generator, ctx, dst_dtype, ndims_int);
|
|
||||||
dst.copy_shape_from_array(generator, ctx, dst_shape);
|
|
||||||
dst.create_data(generator, ctx);
|
|
||||||
|
|
||||||
(lhs, rhs, dst)
|
|
||||||
};
|
|
||||||
|
|
||||||
let len = lhs.instance.get(generator, ctx, |f| f.shape).get_index_const(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
i64::try_from(ndims_int - 1).unwrap(),
|
|
||||||
);
|
|
||||||
|
|
||||||
let at_row = i64::try_from(ndims_int - 2).unwrap();
|
|
||||||
let at_col = i64::try_from(ndims_int - 1).unwrap();
|
|
||||||
|
|
||||||
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
|
|
||||||
let dst_zero = dst_dtype_llvm.const_zero();
|
|
||||||
|
|
||||||
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
|
||||||
let pdst_ij = hdl.get_pointer(generator, ctx);
|
|
||||||
|
|
||||||
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
|
|
||||||
|
|
||||||
let indices = hdl.get_indices();
|
|
||||||
let i = indices.get_index_const(generator, ctx, at_row);
|
|
||||||
let j = indices.get_index_const(generator, ctx, at_col);
|
|
||||||
|
|
||||||
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0, false);
|
|
||||||
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1, false);
|
|
||||||
|
|
||||||
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
|
|
||||||
// `indices` is modified to index into `a` and `b`, and restored.
|
|
||||||
indices.set_index_const(ctx, at_row, i);
|
|
||||||
indices.set_index_const(ctx, at_col, k);
|
|
||||||
let a_ik = lhs.get_scalar_by_indices(generator, ctx, indices);
|
|
||||||
|
|
||||||
indices.set_index_const(ctx, at_row, k);
|
|
||||||
indices.set_index_const(ctx, at_col, j);
|
|
||||||
let b_kj = rhs.get_scalar_by_indices(generator, ctx, indices);
|
|
||||||
|
|
||||||
// Restore `indices`.
|
|
||||||
indices.set_index_const(ctx, at_row, i);
|
|
||||||
indices.set_index_const(ctx, at_col, j);
|
|
||||||
|
|
||||||
// x = a_[...]ik * b_[...]kj
|
|
||||||
let x = gen_binop_expr_with_values(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
(&Some(lhs.dtype), a_ik.value),
|
|
||||||
Binop::normal(Operator::Mult),
|
|
||||||
(&Some(rhs.dtype), b_kj.value),
|
|
||||||
ctx.current_loc,
|
|
||||||
)?
|
|
||||||
.unwrap()
|
|
||||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
|
||||||
|
|
||||||
// dst_[...]ij += x
|
|
||||||
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
|
|
||||||
let dst_ij = gen_binop_expr_with_values(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
(&Some(dst_dtype), dst_ij),
|
|
||||||
Binop::normal(Operator::Add),
|
|
||||||
(&Some(dst_dtype), x),
|
|
||||||
ctx.current_loc,
|
|
||||||
)?
|
|
||||||
.unwrap()
|
|
||||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
|
||||||
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
})
|
|
||||||
})
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
dst
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Perform `np.matmul` according to the rules in
|
|
||||||
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
|
|
||||||
///
|
|
||||||
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`]
|
|
||||||
/// to handle when the output could be a scalar.
|
|
||||||
///
|
|
||||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
|
||||||
pub fn matmul<G: CodeGenerator>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
a: Self,
|
|
||||||
b: Self,
|
|
||||||
out: NDArrayOut<'ctx>,
|
|
||||||
) -> Self {
|
|
||||||
// Sanity check, but type inference should prevent this.
|
|
||||||
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
|
|
||||||
|
|
||||||
/*
|
|
||||||
If both arguments are 2-D they are multiplied like conventional matrices.
|
|
||||||
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indices and broadcast accordingly.
|
|
||||||
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
|
|
||||||
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
|
|
||||||
*/
|
|
||||||
|
|
||||||
let new_a = if a.ndims == 1 {
|
|
||||||
// Prepend 1 to its dimensions
|
|
||||||
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
|
|
||||||
} else {
|
|
||||||
a
|
|
||||||
};
|
|
||||||
|
|
||||||
let new_b = if b.ndims == 1 {
|
|
||||||
// Append 1 to its dimensions
|
|
||||||
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
|
|
||||||
} else {
|
|
||||||
b
|
|
||||||
};
|
|
||||||
|
|
||||||
// NOTE: `result` will always be a newly allocated ndarray.
|
|
||||||
// Current implementation cannot do in-place matrix muliplication.
|
|
||||||
let mut result = matmul_at_least_2d(generator, ctx, out.get_dtype(), new_a, new_b);
|
|
||||||
|
|
||||||
// Postprocessing on the result to remove prepended/appended axes.
|
|
||||||
let mut postindices = vec![];
|
|
||||||
let zero = Int(Int32).const_0(generator, ctx.ctx);
|
|
||||||
|
|
||||||
if a.ndims == 1 {
|
|
||||||
// Remove the prepended 1
|
|
||||||
postindices.push(RustNDIndex::SingleElement(zero));
|
|
||||||
}
|
|
||||||
|
|
||||||
if b.ndims == 1 {
|
|
||||||
// Remove the appended 1
|
|
||||||
postindices.push(RustNDIndex::Ellipsis);
|
|
||||||
postindices.push(RustNDIndex::SingleElement(zero));
|
|
||||||
}
|
|
||||||
|
|
||||||
if !postindices.is_empty() {
|
|
||||||
result = result.index(generator, ctx, &postindices);
|
|
||||||
}
|
|
||||||
|
|
||||||
match out {
|
|
||||||
NDArrayOut::NewNDArray { .. } => result,
|
|
||||||
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
|
|
||||||
let result_shape = result.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
out_ndarray.assert_can_be_written_by_out(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
result.ndims,
|
|
||||||
result_shape,
|
|
||||||
);
|
|
||||||
|
|
||||||
out_ndarray.copy_data_from(generator, ctx, result);
|
|
||||||
out_ndarray
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,670 +0,0 @@
|
|||||||
pub mod array;
|
|
||||||
pub mod broadcast;
|
|
||||||
pub mod contiguous;
|
|
||||||
pub mod factory;
|
|
||||||
pub mod indexing;
|
|
||||||
pub mod map;
|
|
||||||
pub mod matmul;
|
|
||||||
pub mod nditer;
|
|
||||||
pub mod shape_util;
|
|
||||||
pub mod view;
|
|
||||||
|
|
||||||
use inkwell::{
|
|
||||||
context::Context,
|
|
||||||
types::BasicType,
|
|
||||||
values::{BasicValue, BasicValueEnum, PointerValue},
|
|
||||||
AddressSpace,
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{
|
|
||||||
irrt::{
|
|
||||||
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
|
|
||||||
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
|
|
||||||
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
|
|
||||||
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
|
|
||||||
call_nac3_ndarray_util_assert_output_shape_same,
|
|
||||||
},
|
|
||||||
model::*,
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
},
|
|
||||||
toplevel::{
|
|
||||||
helper::{create_ndims, extract_ndims},
|
|
||||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
|
||||||
},
|
|
||||||
typecheck::typedef::{Type, TypeEnum},
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::{any::AnyObject, tuple::TupleObject};
|
|
||||||
|
|
||||||
/// Fields of [`NDArray`]
|
|
||||||
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
|
|
||||||
pub data: F::Output<Ptr<Int<Byte>>>,
|
|
||||||
pub itemsize: F::Output<Int<SizeT>>,
|
|
||||||
pub ndims: F::Output<Int<SizeT>>,
|
|
||||||
pub shape: F::Output<Ptr<Int<SizeT>>>,
|
|
||||||
pub strides: F::Output<Ptr<Int<SizeT>>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A strided ndarray in NAC3.
|
|
||||||
///
|
|
||||||
/// See IRRT implementation for details about its fields.
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct NDArray;
|
|
||||||
|
|
||||||
impl<'ctx> StructKind<'ctx> for NDArray {
|
|
||||||
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
|
|
||||||
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
Self::Fields {
|
|
||||||
data: traversal.add_auto("data"),
|
|
||||||
itemsize: traversal.add_auto("itemsize"),
|
|
||||||
ndims: traversal.add_auto("ndims"),
|
|
||||||
shape: traversal.add_auto("shape"),
|
|
||||||
strides: traversal.add_auto("strides"),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A NAC3 Python ndarray object.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub struct NDArrayObject<'ctx> {
|
|
||||||
pub dtype: Type,
|
|
||||||
pub ndims: u64,
|
|
||||||
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
|
|
||||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
object: AnyObject<'ctx>,
|
|
||||||
) -> NDArrayObject<'ctx> {
|
|
||||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
|
|
||||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
|
||||||
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
|
|
||||||
/// `dtype` and `ndims`.
|
|
||||||
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
value: V,
|
|
||||||
dtype: Type,
|
|
||||||
ndims: u64,
|
|
||||||
) -> Self {
|
|
||||||
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
|
|
||||||
NDArrayObject { dtype, ndims, instance: value }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get this ndarray's `ndims` as an LLVM constant.
|
|
||||||
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &'ctx Context,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
Int(SizeT).const_int(generator, ctx, self.ndims, false)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the typechecker ndarray type of this [`NDArrayObject`].
|
|
||||||
pub fn get_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
|
|
||||||
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
|
|
||||||
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Forget that this is an ndarray and convert into an [`AnyObject`].
|
|
||||||
pub fn to_any(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
|
||||||
let ty = self.get_type(ctx);
|
|
||||||
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
|
|
||||||
///
|
|
||||||
/// `shape` and `strides` will be automatically allocated onto the stack.
|
|
||||||
///
|
|
||||||
/// The returned ndarray's content will be:
|
|
||||||
/// - `data`: uninitialized.
|
|
||||||
/// - `itemsize`: set to the `sizeof()` of `dtype`.
|
|
||||||
/// - `ndims`: set to the value of `ndims`.
|
|
||||||
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
|
|
||||||
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
|
|
||||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
ndims: u64,
|
|
||||||
) -> Self {
|
|
||||||
let ndarray = Struct(NDArray).alloca(generator, ctx);
|
|
||||||
|
|
||||||
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
|
|
||||||
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
|
|
||||||
ndarray.set(ctx, |f| f.itemsize, itemsize);
|
|
||||||
|
|
||||||
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
|
|
||||||
ndarray.set(ctx, |f| f.ndims, ndims_val);
|
|
||||||
|
|
||||||
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
|
||||||
ndarray.set(ctx, |f| f.shape, shape);
|
|
||||||
|
|
||||||
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
|
||||||
ndarray.set(ctx, |f| f.strides, strides);
|
|
||||||
|
|
||||||
NDArrayObject { dtype, ndims, instance: ndarray }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
|
|
||||||
///
|
|
||||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
|
||||||
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
shape: &[u64],
|
|
||||||
) -> Self {
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
|
||||||
|
|
||||||
// Write shape
|
|
||||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
for (i, dim) in shape.iter().enumerate() {
|
|
||||||
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim, false);
|
|
||||||
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, dim);
|
|
||||||
}
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
|
|
||||||
///
|
|
||||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
|
||||||
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
dtype: Type,
|
|
||||||
shape: &[Instance<'ctx, Int<SizeT>>],
|
|
||||||
) -> Self {
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
|
||||||
|
|
||||||
// Write shape
|
|
||||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
for (i, dim) in shape.iter().enumerate() {
|
|
||||||
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, *dim);
|
|
||||||
}
|
|
||||||
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
|
||||||
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
|
||||||
///
|
|
||||||
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
|
||||||
///
|
|
||||||
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
|
||||||
pub fn create_data<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) {
|
|
||||||
let nbytes = self.nbytes(generator, ctx);
|
|
||||||
|
|
||||||
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
|
|
||||||
self.instance.set(ctx, |f| f.data, data);
|
|
||||||
|
|
||||||
self.set_strides_contiguous(generator, ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Copy shape dimensions from an array.
|
|
||||||
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
|
||||||
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Copy shape dimensions from an ndarray.
|
|
||||||
/// Panics if `ndims` mismatches.
|
|
||||||
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
src_ndarray: NDArrayObject<'ctx>,
|
|
||||||
) {
|
|
||||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
|
||||||
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
self.copy_shape_from_array(generator, ctx, src_shape);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Copy strides dimensions from an array.
|
|
||||||
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
|
||||||
self.instance
|
|
||||||
.get(generator, ctx, |f| f.strides)
|
|
||||||
.copy_from(generator, ctx, strides, num_items);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Copy strides dimensions from an ndarray.
|
|
||||||
/// Panics if `ndims` mismatches.
|
|
||||||
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
src_ndarray: NDArrayObject<'ctx>,
|
|
||||||
) {
|
|
||||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
|
||||||
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
|
|
||||||
self.copy_strides_from_array(generator, ctx, src_strides);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the `np.size()` of this ndarray.
|
|
||||||
pub fn size<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
call_nac3_ndarray_size(generator, ctx, self.instance)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the `ndarray.nbytes` of this ndarray.
|
|
||||||
pub fn nbytes<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the `len()` of this ndarray.
|
|
||||||
pub fn len<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
call_nac3_ndarray_len(generator, ctx, self.instance)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Check if this ndarray is C-contiguous.
|
|
||||||
///
|
|
||||||
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
|
|
||||||
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<Bool>> {
|
|
||||||
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the pointer to the n-th (0-based) element.
|
|
||||||
///
|
|
||||||
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
|
||||||
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
nth: Instance<'ctx, Int<SizeT>>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
|
||||||
|
|
||||||
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
|
|
||||||
ctx.builder
|
|
||||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the n-th (0-based) scalar.
|
|
||||||
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
nth: Instance<'ctx, Int<SizeT>>,
|
|
||||||
) -> AnyObject<'ctx> {
|
|
||||||
let ptr = self.get_nth_pelement(generator, ctx, nth);
|
|
||||||
let value = ctx.builder.build_load(ptr, "").unwrap();
|
|
||||||
AnyObject { ty: self.dtype, value }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the pointer to the element indexed by `indices`.
|
|
||||||
///
|
|
||||||
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
|
||||||
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
|
||||||
|
|
||||||
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
|
|
||||||
ctx.builder
|
|
||||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the scalar indexed by `indices`.
|
|
||||||
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> AnyObject<'ctx> {
|
|
||||||
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
|
|
||||||
let value = ctx.builder.build_load(ptr, "").unwrap();
|
|
||||||
AnyObject { ty: self.dtype, value }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
|
|
||||||
///
|
|
||||||
/// Update the ndarray's strides to make the ndarray contiguous.
|
|
||||||
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
|
|
||||||
self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) {
|
|
||||||
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
|
|
||||||
///
|
|
||||||
/// The new ndarray will own its data and will be C-contiguous.
|
|
||||||
#[must_use]
|
|
||||||
pub fn make_copy<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Self {
|
|
||||||
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
|
||||||
|
|
||||||
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx);
|
|
||||||
clone.copy_shape_from_array(generator, ctx, shape);
|
|
||||||
clone.create_data(generator, ctx);
|
|
||||||
clone.copy_data_from(generator, ctx, *self);
|
|
||||||
clone
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Copy data from another ndarray.
|
|
||||||
///
|
|
||||||
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
|
|
||||||
/// do not matter. The copying order is determined by how their flattened views look.
|
|
||||||
///
|
|
||||||
/// Panics if the `dtype`s of ndarrays are different.
|
|
||||||
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
src: NDArrayObject<'ctx>,
|
|
||||||
) {
|
|
||||||
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
|
|
||||||
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
|
|
||||||
#[must_use]
|
|
||||||
pub fn is_unsized(&self) -> bool {
|
|
||||||
self.ndims == 0
|
|
||||||
}
|
|
||||||
|
|
||||||
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
|
|
||||||
/// Otherwise, do nothing and return the ndarray itself.
|
|
||||||
pub fn split_unsized<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> ScalarOrNDArray<'ctx> {
|
|
||||||
if self.is_unsized() {
|
|
||||||
// NOTE: `np.size(self) == 0` here is never possible.
|
|
||||||
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
|
||||||
let value = self.get_nth_scalar(generator, ctx, zero).value;
|
|
||||||
|
|
||||||
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
|
|
||||||
} else {
|
|
||||||
ScalarOrNDArray::NDArray(*self)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Fill the ndarray with a scalar.
|
|
||||||
///
|
|
||||||
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
|
|
||||||
pub fn fill<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
value: BasicValueEnum<'ctx>,
|
|
||||||
) {
|
|
||||||
// TODO: It is possible to optimize this by exploiting contiguous strides with memset.
|
|
||||||
// Probably best to implement in IRRT.
|
|
||||||
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
|
||||||
let p = nditer.get_pointer(generator, ctx);
|
|
||||||
ctx.builder.build_store(p, value).unwrap();
|
|
||||||
Ok(())
|
|
||||||
})
|
|
||||||
.unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
|
|
||||||
///
|
|
||||||
/// The returned integers in the tuple are in int32.
|
|
||||||
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> TupleObject<'ctx> {
|
|
||||||
// TODO: Return a tuple of SizeT
|
|
||||||
|
|
||||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
|
||||||
|
|
||||||
for i in 0..self.ndims {
|
|
||||||
let dim = self
|
|
||||||
.instance
|
|
||||||
.get(generator, ctx, |f| f.shape)
|
|
||||||
.get_index_const(generator, ctx, i64::try_from(i).unwrap())
|
|
||||||
.truncate_or_bit_cast(generator, ctx, Int32);
|
|
||||||
|
|
||||||
objects.push(AnyObject {
|
|
||||||
ty: ctx.primitives.int32,
|
|
||||||
value: dim.value.as_basic_value_enum(),
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
TupleObject::from_objects(generator, ctx, objects)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create the strides tuple of this ndarray like `<ndarray>.strides`.
|
|
||||||
///
|
|
||||||
/// The returned integers in the tuple are in int32.
|
|
||||||
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> TupleObject<'ctx> {
|
|
||||||
// TODO: Return a tuple of SizeT.
|
|
||||||
|
|
||||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
|
||||||
|
|
||||||
for i in 0..self.ndims {
|
|
||||||
let dim = self
|
|
||||||
.instance
|
|
||||||
.get(generator, ctx, |f| f.strides)
|
|
||||||
.get_index_const(generator, ctx, i64::try_from(i).unwrap())
|
|
||||||
.truncate_or_bit_cast(generator, ctx, Int32);
|
|
||||||
|
|
||||||
objects.push(AnyObject {
|
|
||||||
ty: ctx.primitives.int32,
|
|
||||||
value: dim.value.as_basic_value_enum(),
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
TupleObject::from_objects(generator, ctx, objects)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create an unsized ndarray to contain `object`.
|
|
||||||
pub fn make_unsized<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
object: AnyObject<'ctx>,
|
|
||||||
) -> NDArrayObject<'ctx> {
|
|
||||||
// We have to put the value on the stack to get a data pointer.
|
|
||||||
let data = ctx.builder.build_alloca(object.value.get_type(), "make_unsized").unwrap();
|
|
||||||
ctx.builder.build_store(data, object.value).unwrap();
|
|
||||||
let data = Ptr(Int(Byte)).pointer_cast(generator, ctx, data);
|
|
||||||
|
|
||||||
let ndarray = NDArrayObject::alloca(generator, ctx, object.ty, 0);
|
|
||||||
ndarray.instance.set(ctx, |f| f.data, data);
|
|
||||||
ndarray
|
|
||||||
}
|
|
||||||
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
|
|
||||||
///
|
|
||||||
/// Raise an exception if the shapes do not match.
|
|
||||||
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
out_ndims: u64,
|
|
||||||
out_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) {
|
|
||||||
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
|
|
||||||
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
|
|
||||||
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims, false);
|
|
||||||
let output_shape = out_shape;
|
|
||||||
|
|
||||||
call_nac3_ndarray_util_assert_output_shape_same(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
ndarray_ndims,
|
|
||||||
ndarray_shape,
|
|
||||||
output_ndims,
|
|
||||||
output_shape,
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub enum ScalarOrNDArray<'ctx> {
|
|
||||||
Scalar(AnyObject<'ctx>),
|
|
||||||
NDArray(NDArrayObject<'ctx>),
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
|
|
||||||
type Error = ();
|
|
||||||
|
|
||||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
|
||||||
match value {
|
|
||||||
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
|
|
||||||
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
|
|
||||||
type Error = ();
|
|
||||||
|
|
||||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
|
||||||
match value {
|
|
||||||
ScalarOrNDArray::Scalar(_scalar) => Err(()),
|
|
||||||
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
|
||||||
/// Split on `object` either into a scalar or an ndarray.
|
|
||||||
///
|
|
||||||
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
|
|
||||||
///
|
|
||||||
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
|
|
||||||
pub fn split_object<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
object: AnyObject<'ctx>,
|
|
||||||
) -> ScalarOrNDArray<'ctx> {
|
|
||||||
match &*ctx.unifier.get_ty(object.ty) {
|
|
||||||
TypeEnum::TObj { obj_id, .. }
|
|
||||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
|
||||||
{
|
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
|
||||||
ScalarOrNDArray::NDArray(ndarray)
|
|
||||||
}
|
|
||||||
_ => ScalarOrNDArray::Scalar(object),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
|
|
||||||
match self {
|
|
||||||
ScalarOrNDArray::Scalar(scalar) => scalar.value,
|
|
||||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
|
|
||||||
/// - If this is an ndarray, the ndarray is returned.
|
|
||||||
/// - If this is a scalar, this function returns new ndarray created with [`NDArrayObject::make_unsized`].
|
|
||||||
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> NDArrayObject<'ctx> {
|
|
||||||
match self {
|
|
||||||
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
|
||||||
ScalarOrNDArray::Scalar(scalar) => NDArrayObject::make_unsized(generator, ctx, *scalar),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the dtype of the ndarray created if this were called with [`ScalarOrNDArray::to_ndarray`].
|
|
||||||
#[must_use]
|
|
||||||
pub fn get_dtype(&self) -> Type {
|
|
||||||
match self {
|
|
||||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
|
|
||||||
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// An helper enum specifying how a function should produce its output.
|
|
||||||
///
|
|
||||||
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
|
|
||||||
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a function will
|
|
||||||
/// create a new ndarray and store the result in it.
|
|
||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub enum NDArrayOut<'ctx> {
|
|
||||||
/// Tell a function should create a new ndarray with the expected element type `dtype`.
|
|
||||||
NewNDArray { dtype: Type },
|
|
||||||
/// Tell a function to write the result to `ndarray`.
|
|
||||||
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayOut<'ctx> {
|
|
||||||
/// Get the dtype of this output.
|
|
||||||
#[must_use]
|
|
||||||
pub fn get_dtype(&self) -> Type {
|
|
||||||
match self {
|
|
||||||
NDArrayOut::NewNDArray { dtype } => *dtype,
|
|
||||||
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
|
|
||||||
///
|
|
||||||
/// This function is used generating strides for globally defined contiguous ndarrays.
|
|
||||||
#[must_use]
|
|
||||||
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
|
|
||||||
let mut strides = Vec::with_capacity(ndims as usize);
|
|
||||||
let mut stride_product = 1u64;
|
|
||||||
for i in 0..ndims {
|
|
||||||
let axis = ndims - i - 1;
|
|
||||||
strides[axis as usize] = stride_product * itemsize;
|
|
||||||
stride_product *= shape[axis as usize];
|
|
||||||
}
|
|
||||||
strides
|
|
||||||
}
|
|
@ -1,179 +0,0 @@
|
|||||||
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
|
|
||||||
|
|
||||||
use crate::codegen::{
|
|
||||||
irrt::{call_nac3_nditer_has_element, call_nac3_nditer_initialize, call_nac3_nditer_next},
|
|
||||||
model::*,
|
|
||||||
object::any::AnyObject,
|
|
||||||
stmt::{gen_for_callback, BreakContinueHooks},
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::NDArrayObject;
|
|
||||||
|
|
||||||
/// Fields of [`NDIter`]
|
|
||||||
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
|
|
||||||
pub ndims: F::Output<Int<SizeT>>,
|
|
||||||
pub shape: F::Output<Ptr<Int<SizeT>>>,
|
|
||||||
pub strides: F::Output<Ptr<Int<SizeT>>>,
|
|
||||||
|
|
||||||
pub indices: F::Output<Ptr<Int<SizeT>>>,
|
|
||||||
pub nth: F::Output<Int<SizeT>>,
|
|
||||||
pub element: F::Output<Ptr<Int<Byte>>>,
|
|
||||||
|
|
||||||
pub size: F::Output<Int<SizeT>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// An IRRT helper structure used to iterate through an ndarray.
|
|
||||||
#[derive(Debug, Clone, Copy, Default)]
|
|
||||||
pub struct NDIter;
|
|
||||||
|
|
||||||
impl<'ctx> StructKind<'ctx> for NDIter {
|
|
||||||
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
|
|
||||||
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
Self::Fields {
|
|
||||||
ndims: traversal.add_auto("ndims"),
|
|
||||||
shape: traversal.add_auto("shape"),
|
|
||||||
strides: traversal.add_auto("strides"),
|
|
||||||
|
|
||||||
indices: traversal.add_auto("indices"),
|
|
||||||
nth: traversal.add_auto("nth"),
|
|
||||||
element: traversal.add_auto("element"),
|
|
||||||
|
|
||||||
size: traversal.add_auto("size"),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A helper structure with a convenient interface to interact with [`NDIter`].
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct NDIterHandle<'ctx> {
|
|
||||||
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
|
||||||
/// The ndarray this [`NDIter`] to iterating over.
|
|
||||||
ndarray: NDArrayObject<'ctx>,
|
|
||||||
/// The current indices of [`NDIter`].
|
|
||||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDIterHandle<'ctx> {
|
|
||||||
/// Allocate an [`NDIter`] that iterates through an ndarray.
|
|
||||||
pub fn new<G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndarray: NDArrayObject<'ctx>,
|
|
||||||
) -> Self {
|
|
||||||
let nditer = Struct(NDIter).alloca(generator, ctx);
|
|
||||||
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
|
||||||
|
|
||||||
// The caller has the responsibility to allocate 'indices' for `NDIter`.
|
|
||||||
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
|
||||||
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
|
|
||||||
|
|
||||||
NDIterHandle { ndarray, instance: nditer, indices }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Is the current iteration valid?
|
|
||||||
///
|
|
||||||
/// If true, then `element`, `indices` and `nth` contain details about the current element.
|
|
||||||
///
|
|
||||||
/// If `ndarray` is unsized, this returns true only for the first iteration.
|
|
||||||
/// If `ndarray` is 0-sized, this always returns false.
|
|
||||||
#[must_use]
|
|
||||||
pub fn has_element<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<Bool>> {
|
|
||||||
call_nac3_nditer_has_element(generator, ctx, self.instance)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Go to the next element. If `has_element()` is false, then this has undefined behavior.
|
|
||||||
///
|
|
||||||
/// If `ndarray` is unsized, this can only be called once.
|
|
||||||
/// If `ndarray` is 0-sized, this can never be called.
|
|
||||||
pub fn next<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) {
|
|
||||||
call_nac3_nditer_next(generator, ctx, self.instance);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get pointer to the current element.
|
|
||||||
#[must_use]
|
|
||||||
pub fn get_pointer<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> PointerValue<'ctx> {
|
|
||||||
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
|
|
||||||
|
|
||||||
let p = self.instance.get(generator, ctx, |f| f.element);
|
|
||||||
ctx.builder
|
|
||||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
|
|
||||||
.unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the value of the current element.
|
|
||||||
#[must_use]
|
|
||||||
pub fn get_scalar<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> AnyObject<'ctx> {
|
|
||||||
let p = self.get_pointer(generator, ctx);
|
|
||||||
let value = ctx.builder.build_load(p, "value").unwrap();
|
|
||||||
AnyObject { ty: self.ndarray.dtype, value }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the index of the current element if this ndarray were a flat ndarray.
|
|
||||||
#[must_use]
|
|
||||||
pub fn get_index<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
self.instance.get(generator, ctx, |f| f.nth)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the indices of the current element.
|
|
||||||
#[must_use]
|
|
||||||
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
|
|
||||||
self.indices
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Iterate through every element in the ndarray.
|
|
||||||
///
|
|
||||||
/// `body` has access to [`BreakContinueHooks`] to short-circuit and [`NDIterHandle`] to
|
|
||||||
/// get properties of the current iteration (e.g., the current element, indices, etc.)
|
|
||||||
pub fn foreach<'a, G, F>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
||||||
body: F,
|
|
||||||
) -> Result<(), String>
|
|
||||||
where
|
|
||||||
G: CodeGenerator + ?Sized,
|
|
||||||
F: FnOnce(
|
|
||||||
&mut G,
|
|
||||||
&mut CodeGenContext<'ctx, 'a>,
|
|
||||||
BreakContinueHooks<'ctx>,
|
|
||||||
NDIterHandle<'ctx>,
|
|
||||||
) -> Result<(), String>,
|
|
||||||
{
|
|
||||||
gen_for_callback(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
Some("ndarray_foreach"),
|
|
||||||
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|
|
||||||
|generator, ctx, nditer| Ok(nditer.has_element(generator, ctx).value),
|
|
||||||
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|
|
||||||
|generator, ctx, nditer| {
|
|
||||||
nditer.next(generator, ctx);
|
|
||||||
Ok(())
|
|
||||||
},
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,105 +0,0 @@
|
|||||||
use util::gen_for_model;
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{
|
|
||||||
model::*,
|
|
||||||
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
},
|
|
||||||
typecheck::typedef::TypeEnum,
|
|
||||||
};
|
|
||||||
|
|
||||||
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
|
|
||||||
///
|
|
||||||
/// * `sequence` - The `sequence` parameter.
|
|
||||||
/// * `sequence_ty` - The typechecker type of `sequence`
|
|
||||||
///
|
|
||||||
/// The `sequence` argument type may only be one of the following:
|
|
||||||
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
|
||||||
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
|
||||||
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
|
||||||
///
|
|
||||||
/// All `int32` values will be sign-extended to `SizeT`.
|
|
||||||
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
input_sequence: AnyObject<'ctx>,
|
|
||||||
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
|
|
||||||
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
|
||||||
let one = Int(SizeT).const_1(generator, ctx.ctx);
|
|
||||||
|
|
||||||
// The result `list` to return.
|
|
||||||
match &*ctx.unifier.get_ty(input_sequence.ty) {
|
|
||||||
TypeEnum::TObj { obj_id, .. }
|
|
||||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
|
||||||
{
|
|
||||||
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
|
||||||
|
|
||||||
// Check `input_sequence`
|
|
||||||
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
|
|
||||||
|
|
||||||
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
|
|
||||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
|
||||||
|
|
||||||
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
|
|
||||||
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
|
|
||||||
// Load the i-th int32 in the input sequence
|
|
||||||
let int = input_sequence
|
|
||||||
.instance
|
|
||||||
.get(generator, ctx, |f| f.items)
|
|
||||||
.get_index(generator, ctx, i.value)
|
|
||||||
.value
|
|
||||||
.into_int_value();
|
|
||||||
|
|
||||||
// Cast to SizeT
|
|
||||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
|
||||||
|
|
||||||
// Store
|
|
||||||
result.set_index(ctx, i.value, int);
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
})
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
(len, result)
|
|
||||||
}
|
|
||||||
TypeEnum::TTuple { .. } => {
|
|
||||||
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
|
||||||
|
|
||||||
let input_sequence = TupleObject::from_object(ctx, input_sequence);
|
|
||||||
|
|
||||||
let len = input_sequence.len(generator, ctx);
|
|
||||||
|
|
||||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
|
||||||
|
|
||||||
for i in 0..input_sequence.num_elements() {
|
|
||||||
// Get the i-th element off of the tuple and load it into `result`.
|
|
||||||
let int = input_sequence.index(ctx, i).value.into_int_value();
|
|
||||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
|
||||||
|
|
||||||
result.set_index_const(ctx, i64::try_from(i).unwrap(), int);
|
|
||||||
}
|
|
||||||
|
|
||||||
(len, result)
|
|
||||||
}
|
|
||||||
TypeEnum::TObj { obj_id, .. }
|
|
||||||
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
|
||||||
{
|
|
||||||
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
|
||||||
let input_int = input_sequence.value.into_int_value();
|
|
||||||
|
|
||||||
let len = Int(SizeT).const_1(generator, ctx.ctx);
|
|
||||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
|
||||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
|
|
||||||
|
|
||||||
// Storing into result[0]
|
|
||||||
result.store(ctx, int);
|
|
||||||
|
|
||||||
(len, result)
|
|
||||||
}
|
|
||||||
_ => panic!(
|
|
||||||
"encountered unknown sequence type: {}",
|
|
||||||
ctx.unifier.stringify(input_sequence.ty)
|
|
||||||
),
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,119 +0,0 @@
|
|||||||
use crate::codegen::{
|
|
||||||
irrt::{call_nac3_ndarray_reshape_resolve_and_check_new_shape, call_nac3_ndarray_transpose},
|
|
||||||
model::*,
|
|
||||||
CodeGenContext, CodeGenerator,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::{indexing::RustNDIndex, NDArrayObject};
|
|
||||||
|
|
||||||
impl<'ctx> NDArrayObject<'ctx> {
|
|
||||||
/// Make sure the ndarray is at least `ndmin`-dimensional.
|
|
||||||
///
|
|
||||||
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
|
|
||||||
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
|
|
||||||
#[must_use]
|
|
||||||
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
ndmin: u64,
|
|
||||||
) -> Self {
|
|
||||||
if self.ndims < ndmin {
|
|
||||||
// Extend the dimensions with np.newaxis.
|
|
||||||
let mut indices = vec![];
|
|
||||||
for _ in self.ndims..ndmin {
|
|
||||||
indices.push(RustNDIndex::NewAxis);
|
|
||||||
}
|
|
||||||
indices.push(RustNDIndex::Ellipsis);
|
|
||||||
self.index(generator, ctx, &indices)
|
|
||||||
} else {
|
|
||||||
*self
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a reshaped view on this ndarray like `np.reshape()`.
|
|
||||||
///
|
|
||||||
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
|
|
||||||
///
|
|
||||||
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
|
|
||||||
///
|
|
||||||
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
|
|
||||||
/// * `new_shape` - The target shape to do `np.reshape()`.
|
|
||||||
#[must_use]
|
|
||||||
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
new_ndims: u64,
|
|
||||||
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
|
||||||
) -> Self {
|
|
||||||
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
|
|
||||||
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
|
|
||||||
// without copying data. Look into how numpy does it.
|
|
||||||
|
|
||||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
|
||||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
|
||||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
|
||||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
|
||||||
|
|
||||||
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims);
|
|
||||||
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
|
|
||||||
|
|
||||||
// Reolsve negative indices
|
|
||||||
let size = self.size(generator, ctx);
|
|
||||||
let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx);
|
|
||||||
let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape);
|
|
||||||
call_nac3_ndarray_reshape_resolve_and_check_new_shape(
|
|
||||||
generator, ctx, size, dst_ndims, dst_shape,
|
|
||||||
);
|
|
||||||
|
|
||||||
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
|
|
||||||
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
|
|
||||||
|
|
||||||
// Inserting into then_bb: reshape is possible without copying
|
|
||||||
ctx.builder.position_at_end(then_bb);
|
|
||||||
dst_ndarray.set_strides_contiguous(generator, ctx);
|
|
||||||
dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data));
|
|
||||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
|
||||||
|
|
||||||
// Inserting into else_bb: reshape is impossible without copying
|
|
||||||
ctx.builder.position_at_end(else_bb);
|
|
||||||
dst_ndarray.create_data(generator, ctx);
|
|
||||||
dst_ndarray.copy_data_from(generator, ctx, *self);
|
|
||||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
|
||||||
|
|
||||||
// Reposition for continuation
|
|
||||||
ctx.builder.position_at_end(end_bb);
|
|
||||||
|
|
||||||
dst_ndarray
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
|
|
||||||
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
|
|
||||||
#[must_use]
|
|
||||||
pub fn transpose<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
axes: Option<Instance<'ctx, Ptr<Int<SizeT>>>>,
|
|
||||||
) -> Self {
|
|
||||||
// Define models
|
|
||||||
let transposed_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
|
||||||
|
|
||||||
let num_axes = self.ndims_llvm(generator, ctx.ctx);
|
|
||||||
|
|
||||||
// `axes = nullptr` if `axes` is unspecified.
|
|
||||||
let axes = axes.unwrap_or_else(|| Ptr(Int(SizeT)).nullptr(generator, ctx.ctx));
|
|
||||||
|
|
||||||
call_nac3_ndarray_transpose(
|
|
||||||
generator,
|
|
||||||
ctx,
|
|
||||||
self.instance,
|
|
||||||
transposed_ndarray.instance,
|
|
||||||
num_axes,
|
|
||||||
axes,
|
|
||||||
);
|
|
||||||
|
|
||||||
transposed_ndarray
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,99 +0,0 @@
|
|||||||
use inkwell::values::StructValue;
|
|
||||||
use itertools::Itertools;
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
|
||||||
typecheck::typedef::{Type, TypeEnum},
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::any::AnyObject;
|
|
||||||
|
|
||||||
/// A NAC3 tuple object.
|
|
||||||
///
|
|
||||||
/// NOTE: This struct has no copy trait.
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct TupleObject<'ctx> {
|
|
||||||
/// The type of the tuple.
|
|
||||||
pub tys: Vec<Type>,
|
|
||||||
/// The underlying LLVM struct value of this tuple.
|
|
||||||
pub value: StructValue<'ctx>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx> TupleObject<'ctx> {
|
|
||||||
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
|
|
||||||
// TODO: Keep `is_vararg_ctx` from TTuple?
|
|
||||||
|
|
||||||
// Sanity check on object type.
|
|
||||||
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
|
|
||||||
panic!(
|
|
||||||
"Expected type to be a TypeEnum::TTuple, got {}",
|
|
||||||
ctx.unifier.stringify(object.ty)
|
|
||||||
);
|
|
||||||
};
|
|
||||||
|
|
||||||
// Check number of fields
|
|
||||||
let value = object.value.into_struct_value();
|
|
||||||
let value_num_fields = value.get_type().count_fields() as usize;
|
|
||||||
assert!(
|
|
||||||
value_num_fields == tys.len(),
|
|
||||||
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
|
|
||||||
tys.len(),
|
|
||||||
value_num_fields
|
|
||||||
);
|
|
||||||
|
|
||||||
TupleObject { tys: tys.clone(), value }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
|
|
||||||
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
objects: I,
|
|
||||||
) -> Self
|
|
||||||
where
|
|
||||||
I: IntoIterator<Item = AnyObject<'ctx>>,
|
|
||||||
{
|
|
||||||
let (values, tys): (Vec<_>, Vec<_>) =
|
|
||||||
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
|
|
||||||
|
|
||||||
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
|
||||||
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
|
|
||||||
|
|
||||||
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
|
|
||||||
for (i, val) in values.into_iter().enumerate() {
|
|
||||||
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
|
|
||||||
ctx.builder.build_store(pval, val).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
|
|
||||||
TupleObject { tys, value }
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn num_elements(&self) -> usize {
|
|
||||||
self.tys.len()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the `len()` of this tuple.
|
|
||||||
#[must_use]
|
|
||||||
pub fn len<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
) -> Instance<'ctx, Int<SizeT>> {
|
|
||||||
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64, false)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the `i`-th (0-based) object in this tuple.
|
|
||||||
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
|
|
||||||
assert!(
|
|
||||||
i < self.num_elements(),
|
|
||||||
"Tuple object with length {} have index {i}",
|
|
||||||
self.num_elements()
|
|
||||||
);
|
|
||||||
|
|
||||||
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
|
|
||||||
let ty = self.tys[i];
|
|
||||||
AnyObject { ty, value }
|
|
||||||
}
|
|
||||||
}
|
|
@ -1 +0,0 @@
|
|||||||
pub mod slice;
|
|
@ -1,125 +0,0 @@
|
|||||||
use crate::codegen::{model::*, CodeGenContext, CodeGenerator};
|
|
||||||
|
|
||||||
/// Fields of [`Slice`]
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
|
|
||||||
pub start_defined: F::Output<Int<Bool>>,
|
|
||||||
pub start: F::Output<Int<N>>,
|
|
||||||
pub stop_defined: F::Output<Int<Bool>>,
|
|
||||||
pub stop: F::Output<Int<N>>,
|
|
||||||
pub step_defined: F::Output<Int<Bool>>,
|
|
||||||
pub step: F::Output<Int<N>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// An IRRT representation of an (unresolved) slice.
|
|
||||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
|
||||||
pub struct Slice<N>(pub N);
|
|
||||||
|
|
||||||
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
|
|
||||||
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
|
|
||||||
|
|
||||||
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
|
||||||
Self::Fields {
|
|
||||||
start_defined: traversal.add_auto("start_defined"),
|
|
||||||
start: traversal.add("start", Int(self.0)),
|
|
||||||
stop_defined: traversal.add_auto("stop_defined"),
|
|
||||||
stop: traversal.add("stop", Int(self.0)),
|
|
||||||
step_defined: traversal.add_auto("step_defined"),
|
|
||||||
step: traversal.add("step", Int(self.0)),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A Rust structure that has [`Slice`] utilities and looks like a [`Slice`] but
|
|
||||||
/// `start`, `stop` and `step` are held by LLVM registers only and possibly
|
|
||||||
/// [`Option::None`] if unspecified.
|
|
||||||
#[derive(Debug, Clone)]
|
|
||||||
pub struct RustSlice<'ctx, N: IntKind<'ctx>> {
|
|
||||||
// It is possible that `start`, `stop`, and `step` are all `None`.
|
|
||||||
// We need to know the `int_kind` even when that is the case.
|
|
||||||
pub int_kind: N,
|
|
||||||
pub start: Option<Instance<'ctx, Int<N>>>,
|
|
||||||
pub stop: Option<Instance<'ctx, Int<N>>>,
|
|
||||||
pub step: Option<Instance<'ctx, Int<N>>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<'ctx, N: IntKind<'ctx>> RustSlice<'ctx, N> {
|
|
||||||
/// Write the contents to an LLVM [`Slice`].
|
|
||||||
pub fn write_to_slice<G: CodeGenerator + ?Sized>(
|
|
||||||
&self,
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &CodeGenContext<'ctx, '_>,
|
|
||||||
dst_slice_ptr: Instance<'ctx, Ptr<Struct<Slice<N>>>>,
|
|
||||||
) {
|
|
||||||
let false_ = Int(Bool).const_false(generator, ctx.ctx);
|
|
||||||
let true_ = Int(Bool).const_true(generator, ctx.ctx);
|
|
||||||
|
|
||||||
match self.start {
|
|
||||||
Some(start) => {
|
|
||||||
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
|
|
||||||
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
|
|
||||||
}
|
|
||||||
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
|
|
||||||
}
|
|
||||||
|
|
||||||
match self.stop {
|
|
||||||
Some(stop) => {
|
|
||||||
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
|
|
||||||
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
|
|
||||||
}
|
|
||||||
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
|
|
||||||
}
|
|
||||||
|
|
||||||
match self.step {
|
|
||||||
Some(step) => {
|
|
||||||
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
|
|
||||||
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
|
|
||||||
}
|
|
||||||
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub mod util {
|
|
||||||
use nac3parser::ast::Expr;
|
|
||||||
|
|
||||||
use crate::{
|
|
||||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
|
||||||
typecheck::typedef::Type,
|
|
||||||
};
|
|
||||||
|
|
||||||
use super::RustSlice;
|
|
||||||
|
|
||||||
/// Generate LLVM IR for an [`ExprKind::Slice`] and convert it into a [`RustSlice`].
|
|
||||||
#[allow(clippy::type_complexity)]
|
|
||||||
pub fn gen_slice<'ctx, G: CodeGenerator>(
|
|
||||||
generator: &mut G,
|
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
||||||
lower: &Option<Box<Expr<Option<Type>>>>,
|
|
||||||
upper: &Option<Box<Expr<Option<Type>>>>,
|
|
||||||
step: &Option<Box<Expr<Option<Type>>>>,
|
|
||||||
) -> Result<RustSlice<'ctx, Int32>, String> {
|
|
||||||
let mut help = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
|
|
||||||
Ok(match value_expr {
|
|
||||||
None => None,
|
|
||||||
Some(value_expr) => {
|
|
||||||
let value_expr = generator
|
|
||||||
.gen_expr(ctx, value_expr)?
|
|
||||||
.unwrap()
|
|
||||||
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?;
|
|
||||||
|
|
||||||
let value_expr =
|
|
||||||
Int(Int32).check_value(generator, ctx.ctx, value_expr).unwrap();
|
|
||||||
|
|
||||||
Some(value_expr)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
};
|
|
||||||
|
|
||||||
let start = help(lower)?;
|
|
||||||
let stop = help(upper)?;
|
|
||||||
let step = help(step)?;
|
|
||||||
|
|
||||||
Ok(RustSlice { int_kind: Int32, start, stop, step })
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,15 +1,22 @@
|
|||||||
|
use inkwell::{
|
||||||
|
attributes::{Attribute, AttributeLoc},
|
||||||
|
basic_block::BasicBlock,
|
||||||
|
types::{BasicType, BasicTypeEnum},
|
||||||
|
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
|
||||||
|
IntPredicate,
|
||||||
|
};
|
||||||
|
use itertools::{izip, Itertools};
|
||||||
|
|
||||||
|
use nac3parser::ast::{
|
||||||
|
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
||||||
|
};
|
||||||
|
|
||||||
use super::{
|
use super::{
|
||||||
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
||||||
expr::{destructure_range, gen_binop_expr},
|
expr::{destructure_range, gen_binop_expr},
|
||||||
gen_in_range_check,
|
gen_in_range_check,
|
||||||
irrt::{handle_slice_indices, list_slice_assignment},
|
irrt::{handle_slice_indices, list_slice_assignment},
|
||||||
macros::codegen_unreachable,
|
macros::codegen_unreachable,
|
||||||
object::{
|
|
||||||
any::AnyObject,
|
|
||||||
ndarray::{
|
|
||||||
indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject, ScalarOrNDArray,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
CodeGenContext, CodeGenerator,
|
CodeGenContext, CodeGenerator,
|
||||||
};
|
};
|
||||||
use crate::{
|
use crate::{
|
||||||
@ -20,17 +27,6 @@ use crate::{
|
|||||||
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
|
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use inkwell::{
|
|
||||||
attributes::{Attribute, AttributeLoc},
|
|
||||||
basic_block::BasicBlock,
|
|
||||||
types::{BasicType, BasicTypeEnum},
|
|
||||||
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
|
|
||||||
IntPredicate,
|
|
||||||
};
|
|
||||||
use itertools::{izip, Itertools};
|
|
||||||
use nac3parser::ast::{
|
|
||||||
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
|
||||||
};
|
|
||||||
|
|
||||||
/// See [`CodeGenerator::gen_var_alloc`].
|
/// See [`CodeGenerator::gen_var_alloc`].
|
||||||
pub fn gen_var<'ctx>(
|
pub fn gen_var<'ctx>(
|
||||||
@ -415,47 +411,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
|||||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||||
{
|
{
|
||||||
// Handle NDArray item assignment
|
// Handle NDArray item assignment
|
||||||
// Process target
|
todo!("ndarray subscript assignment is not yet implemented");
|
||||||
let target = generator
|
|
||||||
.gen_expr(ctx, target)?
|
|
||||||
.unwrap()
|
|
||||||
.to_basic_value_enum(ctx, generator, target_ty)?;
|
|
||||||
let target = AnyObject { value: target, ty: target_ty };
|
|
||||||
|
|
||||||
// Process key
|
|
||||||
let key = gen_ndarray_subscript_ndindices(generator, ctx, key)?;
|
|
||||||
|
|
||||||
// Process value
|
|
||||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
|
||||||
let value = AnyObject { value, ty: value_ty };
|
|
||||||
|
|
||||||
/*
|
|
||||||
Reference code:
|
|
||||||
```python
|
|
||||||
target = target[key]
|
|
||||||
value = np.asarray(value)
|
|
||||||
|
|
||||||
shape = np.broadcast_shape((target, value))
|
|
||||||
|
|
||||||
target = np.broadcast_to(target, shape)
|
|
||||||
value = np.broadcast_to(value, shape)
|
|
||||||
|
|
||||||
...and finally copy 1-1 from value to target.
|
|
||||||
```
|
|
||||||
*/
|
|
||||||
|
|
||||||
let target = NDArrayObject::from_object(generator, ctx, target);
|
|
||||||
let target = target.index(generator, ctx, &key);
|
|
||||||
|
|
||||||
let value =
|
|
||||||
ScalarOrNDArray::split_object(generator, ctx, value).to_ndarray(generator, ctx);
|
|
||||||
|
|
||||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
|
|
||||||
|
|
||||||
let target = broadcast_result.ndarrays[0];
|
|
||||||
let value = broadcast_result.ndarrays[1];
|
|
||||||
|
|
||||||
target.copy_data_from(generator, ctx, value);
|
|
||||||
}
|
}
|
||||||
_ => {
|
_ => {
|
||||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||||
@ -1872,6 +1828,37 @@ pub fn gen_stmt<G: CodeGenerator>(
|
|||||||
stmt.location,
|
stmt.location,
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
StmtKind::Global { names, .. } => {
|
||||||
|
let registered_globals = ctx
|
||||||
|
.top_level
|
||||||
|
.definitions
|
||||||
|
.read()
|
||||||
|
.iter()
|
||||||
|
.filter_map(|def| {
|
||||||
|
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
|
||||||
|
Some((*simple_name, *ty))
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
|
||||||
|
for id in names {
|
||||||
|
let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else {
|
||||||
|
return Err(format!("{id} is not a global at {}", stmt.location));
|
||||||
|
};
|
||||||
|
|
||||||
|
let resolver = ctx.resolver.clone();
|
||||||
|
let ptr = resolver
|
||||||
|
.get_symbol_value(*id, ctx, generator)
|
||||||
|
.map(|val| val.to_basic_value_enum(ctx, generator, *ty))
|
||||||
|
.transpose()?
|
||||||
|
.map(BasicValueEnum::into_pointer_value)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
ctx.var_assignment.insert(*id, (ptr, None, 0));
|
||||||
|
}
|
||||||
|
}
|
||||||
_ => unimplemented!(),
|
_ => unimplemented!(),
|
||||||
};
|
};
|
||||||
Ok(())
|
Ok(())
|
||||||
|
@ -1,6 +1,23 @@
|
|||||||
|
use std::{
|
||||||
|
collections::{HashMap, HashSet},
|
||||||
|
sync::Arc,
|
||||||
|
};
|
||||||
|
|
||||||
|
use indexmap::IndexMap;
|
||||||
|
use indoc::indoc;
|
||||||
|
use inkwell::{
|
||||||
|
targets::{InitializationConfig, Target},
|
||||||
|
OptimizationLevel,
|
||||||
|
};
|
||||||
|
use nac3parser::{
|
||||||
|
ast::{fold::Fold, FileName, StrRef},
|
||||||
|
parser::parse_program,
|
||||||
|
};
|
||||||
|
use parking_lot::RwLock;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
classes::{ListType, ProxyType, RangeType},
|
classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||||
concrete_type::ConcreteTypeStore,
|
concrete_type::ConcreteTypeStore,
|
||||||
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
|
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
|
||||||
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||||
@ -11,24 +28,10 @@ use crate::{
|
|||||||
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
|
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
|
||||||
},
|
},
|
||||||
typecheck::{
|
typecheck::{
|
||||||
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
|
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
|
||||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use indexmap::IndexMap;
|
|
||||||
use indoc::indoc;
|
|
||||||
use inkwell::{
|
|
||||||
targets::{InitializationConfig, Target},
|
|
||||||
OptimizationLevel,
|
|
||||||
};
|
|
||||||
use nac3parser::ast::FileName;
|
|
||||||
use nac3parser::{
|
|
||||||
ast::{fold::Fold, StrRef},
|
|
||||||
parser::parse_program,
|
|
||||||
};
|
|
||||||
use parking_lot::RwLock;
|
|
||||||
use std::collections::{HashMap, HashSet};
|
|
||||||
use std::sync::Arc;
|
|
||||||
|
|
||||||
struct Resolver {
|
struct Resolver {
|
||||||
id_to_type: HashMap<StrRef, Type>,
|
id_to_type: HashMap<StrRef, Type>,
|
||||||
@ -64,6 +67,7 @@ impl SymbolResolver for Resolver {
|
|||||||
&self,
|
&self,
|
||||||
_: StrRef,
|
_: StrRef,
|
||||||
_: &mut CodeGenContext<'ctx, '_>,
|
_: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
_: &mut dyn CodeGenerator,
|
||||||
) -> Option<ValueEnum<'ctx>> {
|
) -> Option<ValueEnum<'ctx>> {
|
||||||
unimplemented!()
|
unimplemented!()
|
||||||
}
|
}
|
||||||
@ -138,7 +142,8 @@ fn test_primitives() {
|
|||||||
};
|
};
|
||||||
let mut virtual_checks = Vec::new();
|
let mut virtual_checks = Vec::new();
|
||||||
let mut calls = HashMap::new();
|
let mut calls = HashMap::new();
|
||||||
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into();
|
let mut identifiers: HashMap<_, _> =
|
||||||
|
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
|
||||||
let mut inferencer = Inferencer {
|
let mut inferencer = Inferencer {
|
||||||
top_level: &top_level,
|
top_level: &top_level,
|
||||||
function_data: &mut function_data,
|
function_data: &mut function_data,
|
||||||
@ -317,7 +322,8 @@ fn test_simple_call() {
|
|||||||
};
|
};
|
||||||
let mut virtual_checks = Vec::new();
|
let mut virtual_checks = Vec::new();
|
||||||
let mut calls = HashMap::new();
|
let mut calls = HashMap::new();
|
||||||
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into();
|
let mut identifiers: HashMap<_, _> =
|
||||||
|
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
|
||||||
let mut inferencer = Inferencer {
|
let mut inferencer = Inferencer {
|
||||||
top_level: &top_level,
|
top_level: &top_level,
|
||||||
function_data: &mut function_data,
|
function_data: &mut function_data,
|
||||||
@ -456,3 +462,15 @@ fn test_classes_range_type_new() {
|
|||||||
let llvm_range = RangeType::new(&ctx);
|
let llvm_range = RangeType::new(&ctx);
|
||||||
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_classes_ndarray_type_new() {
|
||||||
|
let ctx = inkwell::context::Context::create();
|
||||||
|
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||||
|
|
||||||
|
let llvm_i32 = ctx.i32_type();
|
||||||
|
let llvm_usize = generator.get_size_type(&ctx);
|
||||||
|
|
||||||
|
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||||
|
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||||
|
}
|
||||||
|
@ -19,6 +19,10 @@
|
|||||||
clippy::wildcard_imports
|
clippy::wildcard_imports
|
||||||
)]
|
)]
|
||||||
|
|
||||||
|
// users of nac3core need to use the same version of these dependencies, so expose them as nac3core::*
|
||||||
|
pub use inkwell;
|
||||||
|
pub use nac3parser;
|
||||||
|
|
||||||
pub mod codegen;
|
pub mod codegen;
|
||||||
pub mod symbol_resolver;
|
pub mod symbol_resolver;
|
||||||
pub mod toplevel;
|
pub mod toplevel;
|
||||||
|
@ -1,7 +1,15 @@
|
|||||||
use std::fmt::Debug;
|
use std::{
|
||||||
use std::rc::Rc;
|
collections::{HashMap, HashSet},
|
||||||
use std::sync::Arc;
|
fmt::{Debug, Display},
|
||||||
use std::{collections::HashMap, collections::HashSet, fmt::Display};
|
rc::Rc,
|
||||||
|
sync::Arc,
|
||||||
|
};
|
||||||
|
|
||||||
|
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
|
||||||
|
use itertools::{chain, izip, Itertools};
|
||||||
|
use parking_lot::RwLock;
|
||||||
|
|
||||||
|
use nac3parser::ast::{Constant, Expr, Location, StrRef};
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{CodeGenContext, CodeGenerator},
|
codegen::{CodeGenContext, CodeGenerator},
|
||||||
@ -11,10 +19,6 @@ use crate::{
|
|||||||
typedef::{Type, TypeEnum, Unifier, VarMap},
|
typedef::{Type, TypeEnum, Unifier, VarMap},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
|
|
||||||
use itertools::{chain, izip, Itertools};
|
|
||||||
use nac3parser::ast::{Constant, Expr, Location, StrRef};
|
|
||||||
use parking_lot::RwLock;
|
|
||||||
|
|
||||||
#[derive(Clone, PartialEq, Debug)]
|
#[derive(Clone, PartialEq, Debug)]
|
||||||
pub enum SymbolValue {
|
pub enum SymbolValue {
|
||||||
@ -365,6 +369,7 @@ pub trait SymbolResolver {
|
|||||||
&self,
|
&self,
|
||||||
str: StrRef,
|
str: StrRef,
|
||||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
generator: &mut dyn CodeGenerator,
|
||||||
) -> Option<ValueEnum<'ctx>>;
|
) -> Option<ValueEnum<'ctx>>;
|
||||||
|
|
||||||
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>;
|
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>;
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
use std::iter::once;
|
use std::iter::once;
|
||||||
|
|
||||||
use helper::{debug_assert_prim_is_allowed, extract_ndims, make_exception_fields, PrimDefDetails};
|
|
||||||
use indexmap::IndexMap;
|
use indexmap::IndexMap;
|
||||||
use inkwell::{
|
use inkwell::{
|
||||||
attributes::{Attribute, AttributeLoc},
|
attributes::{Attribute, AttributeLoc},
|
||||||
@ -9,19 +8,17 @@ use inkwell::{
|
|||||||
IntPredicate,
|
IntPredicate,
|
||||||
};
|
};
|
||||||
use itertools::Either;
|
use itertools::Either;
|
||||||
use numpy::unpack_ndarray_var_tys;
|
|
||||||
use strum::IntoEnumIterator;
|
use strum::IntoEnumIterator;
|
||||||
|
|
||||||
|
use super::{
|
||||||
|
helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails},
|
||||||
|
*,
|
||||||
|
};
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{
|
codegen::{
|
||||||
builtin_fns,
|
builtin_fns,
|
||||||
classes::{ProxyValue, RangeValue},
|
classes::{ProxyValue, RangeValue},
|
||||||
model::*,
|
|
||||||
numpy::*,
|
numpy::*,
|
||||||
object::{
|
|
||||||
any::AnyObject,
|
|
||||||
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
|
|
||||||
},
|
|
||||||
stmt::exn_constructor,
|
stmt::exn_constructor,
|
||||||
},
|
},
|
||||||
symbol_resolver::SymbolValue,
|
symbol_resolver::SymbolValue,
|
||||||
@ -29,8 +26,6 @@ use crate::{
|
|||||||
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
|
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
|
||||||
};
|
};
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>;
|
type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>;
|
||||||
|
|
||||||
pub fn get_exn_constructor(
|
pub fn get_exn_constructor(
|
||||||
@ -517,14 +512,6 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
| PrimDef::FunNpEye
|
| PrimDef::FunNpEye
|
||||||
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
|
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
|
||||||
|
|
||||||
PrimDef::FunNpSize | PrimDef::FunNpShape | PrimDef::FunNpStrides => {
|
|
||||||
self.build_ndarray_property_getter_function(prim)
|
|
||||||
}
|
|
||||||
|
|
||||||
PrimDef::FunNpBroadcastTo | PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
|
||||||
self.build_ndarray_view_function(prim)
|
|
||||||
}
|
|
||||||
|
|
||||||
PrimDef::FunStr => self.build_str_function(),
|
PrimDef::FunStr => self.build_str_function(),
|
||||||
|
|
||||||
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
|
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
|
||||||
@ -590,6 +577,10 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
| PrimDef::FunNpHypot
|
| PrimDef::FunNpHypot
|
||||||
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
|
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
|
||||||
|
|
||||||
|
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
||||||
|
self.build_np_sp_ndarray_function(prim)
|
||||||
|
}
|
||||||
|
|
||||||
PrimDef::FunNpDot
|
PrimDef::FunNpDot
|
||||||
| PrimDef::FunNpLinalgCholesky
|
| PrimDef::FunNpLinalgCholesky
|
||||||
| PrimDef::FunNpLinalgQr
|
| PrimDef::FunNpLinalgQr
|
||||||
@ -1395,171 +1386,6 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn build_ndarray_property_getter_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
||||||
debug_assert_prim_is_allowed(
|
|
||||||
prim,
|
|
||||||
&[PrimDef::FunNpSize, PrimDef::FunNpShape, PrimDef::FunNpStrides],
|
|
||||||
);
|
|
||||||
|
|
||||||
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
|
||||||
&[self.primitives.ndarray],
|
|
||||||
Some("T".into()),
|
|
||||||
None,
|
|
||||||
);
|
|
||||||
|
|
||||||
match prim {
|
|
||||||
PrimDef::FunNpSize => create_fn_by_codegen(
|
|
||||||
self.unifier,
|
|
||||||
&into_var_map([in_ndarray_ty]),
|
|
||||||
prim.name(),
|
|
||||||
self.primitives.int32,
|
|
||||||
&[(in_ndarray_ty.ty, "a")],
|
|
||||||
Box::new(|ctx, obj, fun, args, generator| {
|
|
||||||
assert!(obj.is_none());
|
|
||||||
assert_eq!(args.len(), 1);
|
|
||||||
|
|
||||||
let ndarray_ty = fun.0.args[0].ty;
|
|
||||||
let ndarray =
|
|
||||||
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
|
||||||
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
|
||||||
|
|
||||||
let size =
|
|
||||||
ndarray.size(generator, ctx).truncate_or_bit_cast(generator, ctx, Int32);
|
|
||||||
Ok(Some(size.value.as_basic_value_enum()))
|
|
||||||
}),
|
|
||||||
),
|
|
||||||
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
|
|
||||||
// The function signatures of `np_shape` an `np_size` are the same.
|
|
||||||
// Mixed together for convenience.
|
|
||||||
|
|
||||||
// The return type is a tuple of variable length depending on the ndims of the input ndarray.
|
|
||||||
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special folding
|
|
||||||
|
|
||||||
create_fn_by_codegen(
|
|
||||||
self.unifier,
|
|
||||||
&into_var_map([in_ndarray_ty]),
|
|
||||||
prim.name(),
|
|
||||||
ret_ty,
|
|
||||||
&[(in_ndarray_ty.ty, "a")],
|
|
||||||
Box::new(move |ctx, obj, fun, args, generator| {
|
|
||||||
assert!(obj.is_none());
|
|
||||||
assert_eq!(args.len(), 1);
|
|
||||||
|
|
||||||
let ndarray_ty = fun.0.args[0].ty;
|
|
||||||
let ndarray =
|
|
||||||
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
|
||||||
|
|
||||||
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
|
||||||
|
|
||||||
let result_tuple = match prim {
|
|
||||||
PrimDef::FunNpShape => ndarray.make_shape_tuple(generator, ctx),
|
|
||||||
PrimDef::FunNpStrides => ndarray.make_strides_tuple(generator, ctx),
|
|
||||||
_ => unreachable!(),
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(Some(result_tuple.value.as_basic_value_enum()))
|
|
||||||
}),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Build np/sp functions that take as input `NDArray` only
|
|
||||||
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
||||||
debug_assert_prim_is_allowed(
|
|
||||||
prim,
|
|
||||||
&[PrimDef::FunNpBroadcastTo, PrimDef::FunNpTranspose, PrimDef::FunNpReshape],
|
|
||||||
);
|
|
||||||
|
|
||||||
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
|
||||||
&[self.primitives.ndarray],
|
|
||||||
Some("T".into()),
|
|
||||||
None,
|
|
||||||
);
|
|
||||||
|
|
||||||
match prim {
|
|
||||||
PrimDef::FunNpTranspose => {
|
|
||||||
create_fn_by_codegen(
|
|
||||||
self.unifier,
|
|
||||||
&into_var_map([in_ndarray_ty]),
|
|
||||||
prim.name(),
|
|
||||||
in_ndarray_ty.ty,
|
|
||||||
&[(in_ndarray_ty.ty, "x")],
|
|
||||||
Box::new(move |ctx, _, fun, args, generator| {
|
|
||||||
let arg_ty = fun.0.args[0].ty;
|
|
||||||
let arg_val =
|
|
||||||
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
||||||
|
|
||||||
let arg = AnyObject { ty: arg_ty, value: arg_val };
|
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, arg);
|
|
||||||
|
|
||||||
let ndarray = ndarray.transpose(generator, ctx, None); // TODO: Add axes argument
|
|
||||||
Ok(Some(ndarray.instance.value.as_basic_value_enum()))
|
|
||||||
}),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
|
||||||
// the `param_ty` for `create_fn_by_codegen`.
|
|
||||||
//
|
|
||||||
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
|
||||||
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
|
||||||
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
|
||||||
PrimDef::FunNpBroadcastTo | PrimDef::FunNpReshape => {
|
|
||||||
// These two functions have the same function signature.
|
|
||||||
// Mixed together for convenience.
|
|
||||||
|
|
||||||
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
|
|
||||||
|
|
||||||
create_fn_by_codegen(
|
|
||||||
self.unifier,
|
|
||||||
&VarMap::new(),
|
|
||||||
prim.name(),
|
|
||||||
ret_ty,
|
|
||||||
&[
|
|
||||||
(in_ndarray_ty.ty, "x"),
|
|
||||||
(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape"), // Handled by special folding
|
|
||||||
],
|
|
||||||
Box::new(move |ctx, _, fun, args, generator| {
|
|
||||||
let ndarray_ty = fun.0.args[0].ty;
|
|
||||||
let ndarray_val =
|
|
||||||
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
|
||||||
|
|
||||||
let shape_ty = fun.0.args[1].ty;
|
|
||||||
let shape_val =
|
|
||||||
args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
|
|
||||||
|
|
||||||
let ndarray = AnyObject { value: ndarray_val, ty: ndarray_ty };
|
|
||||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
|
||||||
|
|
||||||
let shape = AnyObject { value: shape_val, ty: shape_ty };
|
|
||||||
let (_, shape) = parse_numpy_int_sequence(generator, ctx, shape);
|
|
||||||
|
|
||||||
// The ndims after reshaping is gotten from the return type of the call.
|
|
||||||
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
|
||||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
|
||||||
|
|
||||||
let new_ndarray = match prim {
|
|
||||||
PrimDef::FunNpBroadcastTo => {
|
|
||||||
ndarray.broadcast_to(generator, ctx, ndims, shape)
|
|
||||||
}
|
|
||||||
PrimDef::FunNpReshape => {
|
|
||||||
ndarray.reshape_or_copy(generator, ctx, ndims, shape)
|
|
||||||
}
|
|
||||||
_ => unreachable!(),
|
|
||||||
};
|
|
||||||
Ok(Some(new_ndarray.instance.value.as_basic_value_enum()))
|
|
||||||
}),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
_ => unreachable!(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Build the `str()` function.
|
/// Build the `str()` function.
|
||||||
fn build_str_function(&mut self) -> TopLevelDef {
|
fn build_str_function(&mut self) -> TopLevelDef {
|
||||||
let prim = PrimDef::FunStr;
|
let prim = PrimDef::FunStr;
|
||||||
@ -2047,6 +1873,57 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Build np/sp functions that take as input `NDArray` only
|
||||||
|
fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||||
|
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
|
||||||
|
|
||||||
|
match prim {
|
||||||
|
PrimDef::FunNpTranspose => {
|
||||||
|
let ndarray_ty = self.unifier.get_fresh_var_with_range(
|
||||||
|
&[self.ndarray_num_ty],
|
||||||
|
Some("T".into()),
|
||||||
|
None,
|
||||||
|
);
|
||||||
|
create_fn_by_codegen(
|
||||||
|
self.unifier,
|
||||||
|
&into_var_map([ndarray_ty]),
|
||||||
|
prim.name(),
|
||||||
|
ndarray_ty.ty,
|
||||||
|
&[(ndarray_ty.ty, "x")],
|
||||||
|
Box::new(move |ctx, _, fun, args, generator| {
|
||||||
|
let arg_ty = fun.0.args[0].ty;
|
||||||
|
let arg_val =
|
||||||
|
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
||||||
|
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
|
||||||
|
}),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
||||||
|
// the `param_ty` for `create_fn_by_codegen`.
|
||||||
|
//
|
||||||
|
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
||||||
|
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
||||||
|
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
||||||
|
PrimDef::FunNpReshape => create_fn_by_codegen(
|
||||||
|
self.unifier,
|
||||||
|
&VarMap::new(),
|
||||||
|
prim.name(),
|
||||||
|
self.ndarray_num_ty,
|
||||||
|
&[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
||||||
|
Box::new(move |ctx, _, fun, args, generator| {
|
||||||
|
let x1_ty = fun.0.args[0].ty;
|
||||||
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
||||||
|
let x2_ty = fun.0.args[1].ty;
|
||||||
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
||||||
|
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
||||||
|
}),
|
||||||
|
),
|
||||||
|
|
||||||
|
_ => unreachable!(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Build `np_linalg` and `sp_linalg` functions
|
/// Build `np_linalg` and `sp_linalg` functions
|
||||||
///
|
///
|
||||||
/// The input to these functions must be floating point `NDArray`
|
/// The input to these functions must be floating point `NDArray`
|
||||||
@ -2078,12 +1955,10 @@ impl<'a> BuiltinBuilder<'a> {
|
|||||||
Box::new(move |ctx, _, fun, args, generator| {
|
Box::new(move |ctx, _, fun, args, generator| {
|
||||||
let x1_ty = fun.0.args[0].ty;
|
let x1_ty = fun.0.args[0].ty;
|
||||||
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
||||||
|
|
||||||
let x2_ty = fun.0.args[1].ty;
|
let x2_ty = fun.0.args[1].ty;
|
||||||
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
||||||
|
|
||||||
let result = ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?;
|
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
||||||
Ok(Some(result))
|
|
||||||
}),
|
}),
|
||||||
),
|
),
|
||||||
|
|
||||||
|
@ -1,17 +1,17 @@
|
|||||||
use nac3parser::ast::fold::Fold;
|
|
||||||
use std::rc::Rc;
|
use std::rc::Rc;
|
||||||
|
|
||||||
|
use nac3parser::ast::{fold::Fold, ExprKind, Ident};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::{expr::get_subst_key, stmt::exn_constructor},
|
codegen::{expr::get_subst_key, stmt::exn_constructor},
|
||||||
symbol_resolver::SymbolValue,
|
symbol_resolver::SymbolValue,
|
||||||
typecheck::{
|
typecheck::{
|
||||||
type_inferencer::{FunctionData, Inferencer},
|
type_inferencer::{FunctionData, IdentifierInfo, Inferencer},
|
||||||
typedef::{TypeVar, VarMap},
|
typedef::{TypeVar, VarMap},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
use super::*;
|
|
||||||
|
|
||||||
pub struct ComposerConfig {
|
pub struct ComposerConfig {
|
||||||
pub kernel_ann: Option<&'static str>,
|
pub kernel_ann: Option<&'static str>,
|
||||||
pub kernel_invariant_ann: &'static str,
|
pub kernel_invariant_ann: &'static str,
|
||||||
@ -101,7 +101,8 @@ impl TopLevelComposer {
|
|||||||
.iter()
|
.iter()
|
||||||
.map(|def_ast| match *def_ast.0.read() {
|
.map(|def_ast| match *def_ast.0.read() {
|
||||||
TopLevelDef::Class { name, .. } => name.to_string(),
|
TopLevelDef::Class { name, .. } => name.to_string(),
|
||||||
TopLevelDef::Function { simple_name, .. } => simple_name.to_string(),
|
TopLevelDef::Function { simple_name, .. }
|
||||||
|
| TopLevelDef::Variable { simple_name, .. } => simple_name.to_string(),
|
||||||
})
|
})
|
||||||
.collect_vec();
|
.collect_vec();
|
||||||
|
|
||||||
@ -381,13 +382,87 @@ impl TopLevelComposer {
|
|||||||
))
|
))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ast::StmtKind::Assign { .. } => {
|
||||||
|
// Assignment statements can assign to (and therefore create) more than one
|
||||||
|
// variable, but this function only allows returning one set of symbol information.
|
||||||
|
// We want to avoid changing this to return a `Vec` of symbol info, as this would
|
||||||
|
// require `iter().next().unwrap()` on every variable created from a non-Assign
|
||||||
|
// statement.
|
||||||
|
//
|
||||||
|
// Make callers use `register_top_level_var` instead, as it provides more
|
||||||
|
// fine-grained control over which symbols to register, while also simplifying the
|
||||||
|
// usage of this function.
|
||||||
|
panic!("Registration of top-level Assign statements must use TopLevelComposer::register_top_level_var (at {})", ast.location);
|
||||||
|
}
|
||||||
|
|
||||||
|
ast::StmtKind::AnnAssign { target, annotation, .. } => {
|
||||||
|
let ExprKind::Name { id: name, .. } = target.node else {
|
||||||
|
return Err(format!(
|
||||||
|
"global variable declaration must be an identifier (at {})",
|
||||||
|
target.location
|
||||||
|
));
|
||||||
|
};
|
||||||
|
|
||||||
|
self.register_top_level_var(
|
||||||
|
name,
|
||||||
|
Some(annotation.as_ref().clone()),
|
||||||
|
resolver,
|
||||||
|
mod_path,
|
||||||
|
target.location,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
_ => Err(format!(
|
_ => Err(format!(
|
||||||
"registrations of constructs other than top level classes/functions are not supported (at {})",
|
"registrations of constructs other than top level classes/functions/variables are not supported (at {})",
|
||||||
ast.location
|
ast.location
|
||||||
)),
|
)),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Registers a top-level variable with the given `name` into the composer.
|
||||||
|
///
|
||||||
|
/// `annotation` - The type annotation of the top-level variable, or [`None`] if no type
|
||||||
|
/// annotation is provided.
|
||||||
|
/// `location` - The location of the top-level variable.
|
||||||
|
pub fn register_top_level_var(
|
||||||
|
&mut self,
|
||||||
|
name: Ident,
|
||||||
|
annotation: Option<Expr>,
|
||||||
|
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
|
||||||
|
mod_path: &str,
|
||||||
|
location: Location,
|
||||||
|
) -> Result<(StrRef, DefinitionId, Option<Type>), String> {
|
||||||
|
if self.keyword_list.contains(&name) {
|
||||||
|
return Err(format!("cannot use keyword `{name}` as a class name (at {location})"));
|
||||||
|
}
|
||||||
|
|
||||||
|
let global_var_name =
|
||||||
|
if mod_path.is_empty() { name.to_string() } else { format!("{mod_path}.{name}") };
|
||||||
|
|
||||||
|
if !self.defined_names.insert(global_var_name.clone()) {
|
||||||
|
return Err(format!(
|
||||||
|
"global variable `{global_var_name}` defined twice (at {location})"
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
let ty_to_be_unified = self.unifier.get_dummy_var().ty;
|
||||||
|
self.definition_ast_list.push((
|
||||||
|
RwLock::new(Self::make_top_level_variable_def(
|
||||||
|
global_var_name,
|
||||||
|
name,
|
||||||
|
// dummy here, unify with correct type later,
|
||||||
|
ty_to_be_unified,
|
||||||
|
annotation,
|
||||||
|
resolver,
|
||||||
|
Some(location),
|
||||||
|
))
|
||||||
|
.into(),
|
||||||
|
None,
|
||||||
|
));
|
||||||
|
|
||||||
|
Ok((name, DefinitionId(self.definition_ast_list.len() - 1), Some(ty_to_be_unified)))
|
||||||
|
}
|
||||||
|
|
||||||
pub fn start_analysis(&mut self, inference: bool) -> Result<(), HashSet<String>> {
|
pub fn start_analysis(&mut self, inference: bool) -> Result<(), HashSet<String>> {
|
||||||
self.analyze_top_level_class_type_var()?;
|
self.analyze_top_level_class_type_var()?;
|
||||||
self.analyze_top_level_class_bases()?;
|
self.analyze_top_level_class_bases()?;
|
||||||
@ -396,6 +471,7 @@ impl TopLevelComposer {
|
|||||||
if inference {
|
if inference {
|
||||||
self.analyze_function_instance()?;
|
self.analyze_function_instance()?;
|
||||||
}
|
}
|
||||||
|
self.analyze_top_level_variables()?;
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -433,7 +509,7 @@ impl TopLevelComposer {
|
|||||||
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
||||||
// i.e. only simple names are allowed in the subscript
|
// i.e. only simple names are allowed in the subscript
|
||||||
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
||||||
ast::ExprKind::Subscript { value, slice, .. }
|
ExprKind::Subscript { value, slice, .. }
|
||||||
if {
|
if {
|
||||||
matches!(
|
matches!(
|
||||||
&value.node,
|
&value.node,
|
||||||
@ -449,9 +525,9 @@ impl TopLevelComposer {
|
|||||||
}
|
}
|
||||||
is_generic = true;
|
is_generic = true;
|
||||||
|
|
||||||
let type_var_list: Vec<&ast::Expr<()>>;
|
let type_var_list: Vec<&Expr<()>>;
|
||||||
// if `class A(Generic[T, V, G])`
|
// if `class A(Generic[T, V, G])`
|
||||||
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
if let ExprKind::Tuple { elts, .. } = &slice.node {
|
||||||
type_var_list = elts.iter().collect_vec();
|
type_var_list = elts.iter().collect_vec();
|
||||||
// `class A(Generic[T])`
|
// `class A(Generic[T])`
|
||||||
} else {
|
} else {
|
||||||
@ -500,6 +576,7 @@ impl TopLevelComposer {
|
|||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
};
|
};
|
||||||
|
|
||||||
let mut errors = HashSet::new();
|
let mut errors = HashSet::new();
|
||||||
for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) {
|
for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) {
|
||||||
if class_ast.is_none() {
|
if class_ast.is_none() {
|
||||||
@ -853,7 +930,6 @@ impl TopLevelComposer {
|
|||||||
let unifier = self.unifier.borrow_mut();
|
let unifier = self.unifier.borrow_mut();
|
||||||
let primitives_store = &self.primitives_ty;
|
let primitives_store = &self.primitives_ty;
|
||||||
|
|
||||||
let mut errors = HashSet::new();
|
|
||||||
let mut analyze = |function_def: &Arc<RwLock<TopLevelDef>>, function_ast: &Option<Stmt>| {
|
let mut analyze = |function_def: &Arc<RwLock<TopLevelDef>>, function_ast: &Option<Stmt>| {
|
||||||
let mut function_def = function_def.write();
|
let mut function_def = function_def.write();
|
||||||
let function_def = &mut *function_def;
|
let function_def = &mut *function_def;
|
||||||
@ -962,15 +1038,15 @@ impl TopLevelComposer {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
let arg_with_default: Vec<(&ast::Located<ast::ArgData<()>>, Option<&ast::Expr>)> =
|
let arg_with_default: Vec<(&ast::Located<ast::ArgData<()>>, Option<&Expr>)> = args
|
||||||
args.args
|
.args
|
||||||
.iter()
|
.iter()
|
||||||
.rev()
|
.rev()
|
||||||
.zip(
|
.zip(
|
||||||
args.defaults
|
args.defaults
|
||||||
.iter()
|
.iter()
|
||||||
.rev()
|
.rev()
|
||||||
.map(|x| -> Option<&ast::Expr> { Some(x) })
|
.map(|x| -> Option<&Expr> { Some(x) })
|
||||||
.chain(std::iter::repeat(None)),
|
.chain(std::iter::repeat(None)),
|
||||||
)
|
)
|
||||||
.collect_vec();
|
.collect_vec();
|
||||||
@ -1128,6 +1204,8 @@ impl TopLevelComposer {
|
|||||||
})?;
|
})?;
|
||||||
Ok(())
|
Ok(())
|
||||||
};
|
};
|
||||||
|
|
||||||
|
let mut errors = HashSet::new();
|
||||||
for (function_def, function_ast) in def_list.iter().skip(self.builtin_num) {
|
for (function_def, function_ast) in def_list.iter().skip(self.builtin_num) {
|
||||||
if function_ast.is_none() {
|
if function_ast.is_none() {
|
||||||
continue;
|
continue;
|
||||||
@ -1229,7 +1307,7 @@ impl TopLevelComposer {
|
|||||||
|
|
||||||
let arg_with_default: Vec<(
|
let arg_with_default: Vec<(
|
||||||
&ast::Located<ast::ArgData<()>>,
|
&ast::Located<ast::ArgData<()>>,
|
||||||
Option<&ast::Expr>,
|
Option<&Expr>,
|
||||||
)> = args
|
)> = args
|
||||||
.args
|
.args
|
||||||
.iter()
|
.iter()
|
||||||
@ -1238,7 +1316,7 @@ impl TopLevelComposer {
|
|||||||
args.defaults
|
args.defaults
|
||||||
.iter()
|
.iter()
|
||||||
.rev()
|
.rev()
|
||||||
.map(|x| -> Option<&ast::Expr> { Some(x) })
|
.map(|x| -> Option<&Expr> { Some(x) })
|
||||||
.chain(std::iter::repeat(None)),
|
.chain(std::iter::repeat(None)),
|
||||||
)
|
)
|
||||||
.collect_vec();
|
.collect_vec();
|
||||||
@ -1395,7 +1473,7 @@ impl TopLevelComposer {
|
|||||||
.map_err(|e| HashSet::from([e.to_display(unifier).to_string()]))?;
|
.map_err(|e| HashSet::from([e.to_display(unifier).to_string()]))?;
|
||||||
}
|
}
|
||||||
ast::StmtKind::AnnAssign { target, annotation, value, .. } => {
|
ast::StmtKind::AnnAssign { target, annotation, value, .. } => {
|
||||||
if let ast::ExprKind::Name { id: attr, .. } = &target.node {
|
if let ExprKind::Name { id: attr, .. } = &target.node {
|
||||||
if defined_fields.insert(attr.to_string()) {
|
if defined_fields.insert(attr.to_string()) {
|
||||||
let dummy_field_type = unifier.get_dummy_var().ty;
|
let dummy_field_type = unifier.get_dummy_var().ty;
|
||||||
|
|
||||||
@ -1403,7 +1481,7 @@ impl TopLevelComposer {
|
|||||||
None => {
|
None => {
|
||||||
// handle Kernel[T], KernelInvariant[T]
|
// handle Kernel[T], KernelInvariant[T]
|
||||||
let (annotation, mutable) = match &annotation.node {
|
let (annotation, mutable) = match &annotation.node {
|
||||||
ast::ExprKind::Subscript { value, slice, .. }
|
ExprKind::Subscript { value, slice, .. }
|
||||||
if matches!(
|
if matches!(
|
||||||
&value.node,
|
&value.node,
|
||||||
ast::ExprKind::Name { id, .. } if id == &core_config.kernel_invariant_ann.into()
|
ast::ExprKind::Name { id, .. } if id == &core_config.kernel_invariant_ann.into()
|
||||||
@ -1411,7 +1489,7 @@ impl TopLevelComposer {
|
|||||||
{
|
{
|
||||||
(slice, false)
|
(slice, false)
|
||||||
}
|
}
|
||||||
ast::ExprKind::Subscript { value, slice, .. }
|
ExprKind::Subscript { value, slice, .. }
|
||||||
if matches!(
|
if matches!(
|
||||||
&value.node,
|
&value.node,
|
||||||
ast::ExprKind::Name { id, .. } if core_config.kernel_ann.map_or(false, |c| id == &c.into())
|
ast::ExprKind::Name { id, .. } if core_config.kernel_ann.map_or(false, |c| id == &c.into())
|
||||||
@ -1429,13 +1507,13 @@ impl TopLevelComposer {
|
|||||||
Some(boxed_expr) => {
|
Some(boxed_expr) => {
|
||||||
// Class attributes are set as immutable regardless
|
// Class attributes are set as immutable regardless
|
||||||
let (annotation, _) = match &annotation.node {
|
let (annotation, _) = match &annotation.node {
|
||||||
ast::ExprKind::Subscript { slice, .. } => (slice, false),
|
ExprKind::Subscript { slice, .. } => (slice, false),
|
||||||
_ if core_config.kernel_ann.is_none() => (annotation, false),
|
_ if core_config.kernel_ann.is_none() => (annotation, false),
|
||||||
_ => continue,
|
_ => continue,
|
||||||
};
|
};
|
||||||
|
|
||||||
match &**boxed_expr {
|
match &**boxed_expr {
|
||||||
ast::Located {location: _, custom: (), node: ast::ExprKind::Constant { value: v, kind: _ }} => {
|
ast::Located {location: _, custom: (), node: ExprKind::Constant { value: v, kind: _ }} => {
|
||||||
// Restricting the types allowed to be defined as class attributes
|
// Restricting the types allowed to be defined as class attributes
|
||||||
match v {
|
match v {
|
||||||
ast::Constant::Bool(_) | ast::Constant::Str(_) | ast::Constant::Int(_) | ast::Constant::Float(_) => {}
|
ast::Constant::Bool(_) | ast::Constant::Str(_) | ast::Constant::Int(_) | ast::Constant::Float(_) => {}
|
||||||
@ -1702,7 +1780,6 @@ impl TopLevelComposer {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
let mut errors = HashSet::new();
|
|
||||||
let mut analyze = |i, def: &Arc<RwLock<TopLevelDef>>, ast: &Option<Stmt>| {
|
let mut analyze = |i, def: &Arc<RwLock<TopLevelDef>>, ast: &Option<Stmt>| {
|
||||||
let class_def = def.read();
|
let class_def = def.read();
|
||||||
if let TopLevelDef::Class {
|
if let TopLevelDef::Class {
|
||||||
@ -1845,6 +1922,8 @@ impl TopLevelComposer {
|
|||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
};
|
};
|
||||||
|
|
||||||
|
let mut errors = HashSet::new();
|
||||||
for (i, (def, ast)) in definition_ast_list.iter().enumerate().skip(self.builtin_num) {
|
for (i, (def, ast)) in definition_ast_list.iter().enumerate().skip(self.builtin_num) {
|
||||||
if ast.is_none() {
|
if ast.is_none() {
|
||||||
continue;
|
continue;
|
||||||
@ -1882,19 +1961,20 @@ impl TopLevelComposer {
|
|||||||
if ast.is_none() {
|
if ast.is_none() {
|
||||||
return Ok(());
|
return Ok(());
|
||||||
}
|
}
|
||||||
let mut function_def = def.write();
|
|
||||||
if let TopLevelDef::Function {
|
let (name, simple_name, signature, resolver) = {
|
||||||
instance_to_stmt,
|
let function_def = def.read();
|
||||||
instance_to_symbol,
|
let TopLevelDef::Function { name, simple_name, signature, resolver, .. } =
|
||||||
name,
|
&*function_def
|
||||||
simple_name,
|
else {
|
||||||
signature,
|
return Ok(());
|
||||||
resolver,
|
};
|
||||||
..
|
|
||||||
} = &mut *function_def
|
(name.clone(), *simple_name, *signature, resolver.clone())
|
||||||
{
|
};
|
||||||
let signature_ty_enum = unifier.get_ty(*signature);
|
|
||||||
let TypeEnum::TFunc(FunSignature { args, ret, vars }) = signature_ty_enum.as_ref()
|
let signature_ty_enum = unifier.get_ty(signature);
|
||||||
|
let TypeEnum::TFunc(FunSignature { args, ret, vars, .. }) = signature_ty_enum.as_ref()
|
||||||
else {
|
else {
|
||||||
unreachable!("must be typeenum::tfunc")
|
unreachable!("must be typeenum::tfunc")
|
||||||
};
|
};
|
||||||
@ -2002,11 +2082,11 @@ impl TopLevelComposer {
|
|||||||
})
|
})
|
||||||
};
|
};
|
||||||
let mut identifiers = {
|
let mut identifiers = {
|
||||||
let mut result: HashSet<_> = HashSet::new();
|
let mut result = HashMap::new();
|
||||||
if self_type.is_some() {
|
if self_type.is_some() {
|
||||||
result.insert("self".into());
|
result.insert("self".into(), IdentifierInfo::default());
|
||||||
}
|
}
|
||||||
result.extend(inst_args.iter().map(|x| x.name));
|
result.extend(inst_args.iter().map(|x| (x.name, IdentifierInfo::default())));
|
||||||
result
|
result
|
||||||
};
|
};
|
||||||
let mut calls: HashMap<CodeLocation, CallId> = HashMap::new();
|
let mut calls: HashMap<CodeLocation, CallId> = HashMap::new();
|
||||||
@ -2043,23 +2123,43 @@ impl TopLevelComposer {
|
|||||||
else {
|
else {
|
||||||
unreachable!("must be function def ast")
|
unreachable!("must be function def ast")
|
||||||
};
|
};
|
||||||
if !decorator_list.is_empty()
|
|
||||||
&& matches!(&decorator_list[0].node,
|
if !decorator_list.is_empty() {
|
||||||
ast::ExprKind::Name{ id, .. } if id == &"extern".into())
|
if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"extern".into())
|
||||||
{
|
|
||||||
instance_to_symbol.insert(String::new(), simple_name.to_string());
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if !decorator_list.is_empty()
|
|
||||||
&& matches!(&decorator_list[0].node,
|
|
||||||
ast::ExprKind::Name{ id, .. } if id == &"rpc".into())
|
|
||||||
{
|
{
|
||||||
|
let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write()
|
||||||
|
else {
|
||||||
|
unreachable!()
|
||||||
|
};
|
||||||
instance_to_symbol.insert(String::new(), simple_name.to_string());
|
instance_to_symbol.insert(String::new(), simple_name.to_string());
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
let fun_body = body
|
if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"rpc".into())
|
||||||
.into_iter()
|
{
|
||||||
|
let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write()
|
||||||
|
else {
|
||||||
|
unreachable!()
|
||||||
|
};
|
||||||
|
instance_to_symbol.insert(String::new(), simple_name.to_string());
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if let ExprKind::Call { func, .. } = &decorator_list[0].node {
|
||||||
|
if matches!(&func.node, ExprKind::Name { id, .. } if id == &"rpc".into()) {
|
||||||
|
let TopLevelDef::Function { instance_to_symbol, .. } =
|
||||||
|
&mut *def.write()
|
||||||
|
else {
|
||||||
|
unreachable!()
|
||||||
|
};
|
||||||
|
instance_to_symbol.insert(String::new(), simple_name.to_string());
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let fun_body =
|
||||||
|
body.into_iter()
|
||||||
.map(|b| inferencer.fold_stmt(b))
|
.map(|b| inferencer.fold_stmt(b))
|
||||||
.collect::<Result<Vec<_>, _>>()?;
|
.collect::<Result<Vec<_>, _>>()?;
|
||||||
|
|
||||||
@ -2129,6 +2229,9 @@ impl TopLevelComposer {
|
|||||||
)]));
|
)]));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
let TopLevelDef::Function { instance_to_stmt, .. } = &mut *def.write() else {
|
||||||
|
unreachable!()
|
||||||
|
};
|
||||||
instance_to_stmt.insert(
|
instance_to_stmt.insert(
|
||||||
get_subst_key(
|
get_subst_key(
|
||||||
unifier,
|
unifier,
|
||||||
@ -2144,10 +2247,10 @@ impl TopLevelComposer {
|
|||||||
},
|
},
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
};
|
};
|
||||||
|
|
||||||
for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.builtin_num) {
|
for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.builtin_num) {
|
||||||
if ast.is_none() {
|
if ast.is_none() {
|
||||||
continue;
|
continue;
|
||||||
@ -2161,4 +2264,59 @@ impl TopLevelComposer {
|
|||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Step 6. Analyze and populate the types of global variables.
|
||||||
|
fn analyze_top_level_variables(&mut self) -> Result<(), HashSet<String>> {
|
||||||
|
let def_list = &self.definition_ast_list;
|
||||||
|
let temp_def_list = self.extract_def_list();
|
||||||
|
let unifier = &mut self.unifier;
|
||||||
|
let primitives_store = &self.primitives_ty;
|
||||||
|
|
||||||
|
let mut analyze = |variable_def: &Arc<RwLock<TopLevelDef>>| -> Result<_, HashSet<String>> {
|
||||||
|
let TopLevelDef::Variable { ty: dummy_ty, ty_decl, resolver, loc, .. } =
|
||||||
|
&*variable_def.read()
|
||||||
|
else {
|
||||||
|
// not top level variable def, skip
|
||||||
|
return Ok(());
|
||||||
|
};
|
||||||
|
|
||||||
|
let resolver = &**resolver.as_ref().unwrap();
|
||||||
|
|
||||||
|
if let Some(ty_decl) = ty_decl {
|
||||||
|
let ty_annotation = parse_ast_to_type_annotation_kinds(
|
||||||
|
resolver,
|
||||||
|
&temp_def_list,
|
||||||
|
unifier,
|
||||||
|
primitives_store,
|
||||||
|
ty_decl,
|
||||||
|
HashMap::new(),
|
||||||
|
)?;
|
||||||
|
let ty_from_ty_annotation = get_type_from_type_annotation_kinds(
|
||||||
|
&temp_def_list,
|
||||||
|
unifier,
|
||||||
|
primitives_store,
|
||||||
|
&ty_annotation,
|
||||||
|
&mut None,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
unifier.unify(*dummy_ty, ty_from_ty_annotation).map_err(|e| {
|
||||||
|
HashSet::from([e.at(Some(loc.unwrap())).to_display(unifier).to_string()])
|
||||||
|
})?;
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut errors = HashSet::new();
|
||||||
|
for (variable_def, _) in def_list.iter().skip(self.builtin_num) {
|
||||||
|
if let Err(e) = analyze(variable_def) {
|
||||||
|
errors.extend(e);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if !errors.is_empty() {
|
||||||
|
return Err(errors);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,14 +1,17 @@
|
|||||||
use std::convert::TryInto;
|
use std::convert::TryInto;
|
||||||
|
|
||||||
use crate::symbol_resolver::SymbolValue;
|
|
||||||
use crate::toplevel::numpy::unpack_ndarray_var_tys;
|
|
||||||
use crate::typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap};
|
|
||||||
use ast::ExprKind;
|
|
||||||
use nac3parser::ast::{Constant, Location};
|
|
||||||
use strum::IntoEnumIterator;
|
use strum::IntoEnumIterator;
|
||||||
use strum_macros::EnumIter;
|
use strum_macros::EnumIter;
|
||||||
|
|
||||||
|
use ast::ExprKind;
|
||||||
|
use nac3parser::ast::{Constant, Location};
|
||||||
|
|
||||||
use super::*;
|
use super::*;
|
||||||
|
use crate::{
|
||||||
|
symbol_resolver::SymbolValue,
|
||||||
|
toplevel::numpy::unpack_ndarray_var_tys,
|
||||||
|
typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap},
|
||||||
|
};
|
||||||
|
|
||||||
/// All primitive types and functions in nac3core.
|
/// All primitive types and functions in nac3core.
|
||||||
#[derive(Clone, Copy, Debug, EnumIter, PartialEq, Eq)]
|
#[derive(Clone, Copy, Debug, EnumIter, PartialEq, Eq)]
|
||||||
@ -53,16 +56,6 @@ pub enum PrimDef {
|
|||||||
FunNpEye,
|
FunNpEye,
|
||||||
FunNpIdentity,
|
FunNpIdentity,
|
||||||
|
|
||||||
// NumPy ndarray property getters
|
|
||||||
FunNpSize,
|
|
||||||
FunNpShape,
|
|
||||||
FunNpStrides,
|
|
||||||
|
|
||||||
// NumPy ndarray view functions
|
|
||||||
FunNpBroadcastTo,
|
|
||||||
FunNpTranspose,
|
|
||||||
FunNpReshape,
|
|
||||||
|
|
||||||
// Miscellaneous NumPy & SciPy functions
|
// Miscellaneous NumPy & SciPy functions
|
||||||
FunNpRound,
|
FunNpRound,
|
||||||
FunNpFloor,
|
FunNpFloor,
|
||||||
@ -110,6 +103,8 @@ pub enum PrimDef {
|
|||||||
FunNpLdExp,
|
FunNpLdExp,
|
||||||
FunNpHypot,
|
FunNpHypot,
|
||||||
FunNpNextAfter,
|
FunNpNextAfter,
|
||||||
|
FunNpTranspose,
|
||||||
|
FunNpReshape,
|
||||||
|
|
||||||
// Linalg functions
|
// Linalg functions
|
||||||
FunNpDot,
|
FunNpDot,
|
||||||
@ -247,16 +242,6 @@ impl PrimDef {
|
|||||||
PrimDef::FunNpEye => fun("np_eye", None),
|
PrimDef::FunNpEye => fun("np_eye", None),
|
||||||
PrimDef::FunNpIdentity => fun("np_identity", None),
|
PrimDef::FunNpIdentity => fun("np_identity", None),
|
||||||
|
|
||||||
// NumPy NDArray property getters,
|
|
||||||
PrimDef::FunNpSize => fun("np_size", None),
|
|
||||||
PrimDef::FunNpShape => fun("np_shape", None),
|
|
||||||
PrimDef::FunNpStrides => fun("np_strides", None),
|
|
||||||
|
|
||||||
// NumPy NDArray view functions
|
|
||||||
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
|
|
||||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
|
||||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
|
||||||
|
|
||||||
// Miscellaneous NumPy & SciPy functions
|
// Miscellaneous NumPy & SciPy functions
|
||||||
PrimDef::FunNpRound => fun("np_round", None),
|
PrimDef::FunNpRound => fun("np_round", None),
|
||||||
PrimDef::FunNpFloor => fun("np_floor", None),
|
PrimDef::FunNpFloor => fun("np_floor", None),
|
||||||
@ -304,6 +289,8 @@ impl PrimDef {
|
|||||||
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
||||||
PrimDef::FunNpHypot => fun("np_hypot", None),
|
PrimDef::FunNpHypot => fun("np_hypot", None),
|
||||||
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
||||||
|
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||||
|
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||||
|
|
||||||
// Linalg functions
|
// Linalg functions
|
||||||
PrimDef::FunNpDot => fun("np_dot", None),
|
PrimDef::FunNpDot => fun("np_dot", None),
|
||||||
@ -404,6 +391,9 @@ impl TopLevelDef {
|
|||||||
r
|
r
|
||||||
}
|
}
|
||||||
),
|
),
|
||||||
|
TopLevelDef::Variable { name, ty, .. } => {
|
||||||
|
format!("Variable {{ name: {name:?}, ty: {:?} }}", unifier.stringify(*ty),)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -605,6 +595,18 @@ impl TopLevelComposer {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn make_top_level_variable_def(
|
||||||
|
name: String,
|
||||||
|
simple_name: StrRef,
|
||||||
|
ty: Type,
|
||||||
|
ty_decl: Option<Expr>,
|
||||||
|
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
|
||||||
|
loc: Option<Location>,
|
||||||
|
) -> TopLevelDef {
|
||||||
|
TopLevelDef::Variable { name, simple_name, ty, ty_decl, resolver, loc }
|
||||||
|
}
|
||||||
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
|
pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
|
||||||
class_name.push('.');
|
class_name.push('.');
|
||||||
@ -1134,23 +1136,3 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
|
|||||||
_ => 0,
|
_ => 0,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
|
|
||||||
/// The `ndims` must only contain 1 value.
|
|
||||||
#[must_use]
|
|
||||||
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
|
|
||||||
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
|
|
||||||
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
|
|
||||||
panic!("ndims_ty should be a TLiteral");
|
|
||||||
};
|
|
||||||
|
|
||||||
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
|
|
||||||
|
|
||||||
let ndims = values[0].clone();
|
|
||||||
u64::try_from(ndims).unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
|
|
||||||
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
|
|
||||||
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
|
|
||||||
}
|
|
||||||
|
@ -6,24 +6,24 @@ use std::{
|
|||||||
sync::Arc,
|
sync::Arc,
|
||||||
};
|
};
|
||||||
|
|
||||||
use super::codegen::CodeGenContext;
|
|
||||||
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
||||||
use super::typecheck::typedef::{
|
|
||||||
FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier, VarMap,
|
|
||||||
};
|
|
||||||
use crate::{
|
|
||||||
codegen::CodeGenerator,
|
|
||||||
symbol_resolver::{SymbolResolver, ValueEnum},
|
|
||||||
typecheck::{
|
|
||||||
type_inferencer::CodeLocation,
|
|
||||||
typedef::{CallId, TypeVarId},
|
|
||||||
},
|
|
||||||
};
|
|
||||||
use inkwell::values::BasicValueEnum;
|
use inkwell::values::BasicValueEnum;
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
use nac3parser::ast::{self, Location, Stmt, StrRef};
|
|
||||||
use parking_lot::RwLock;
|
use parking_lot::RwLock;
|
||||||
|
|
||||||
|
use nac3parser::ast::{self, Expr, Location, Stmt, StrRef};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
codegen::{CodeGenContext, CodeGenerator},
|
||||||
|
symbol_resolver::{SymbolResolver, ValueEnum},
|
||||||
|
typecheck::{
|
||||||
|
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||||
|
typedef::{
|
||||||
|
CallId, FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, TypeVarId, Unifier,
|
||||||
|
VarMap,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
|
||||||
pub struct DefinitionId(pub usize);
|
pub struct DefinitionId(pub usize);
|
||||||
|
|
||||||
@ -148,6 +148,25 @@ pub enum TopLevelDef {
|
|||||||
/// Definition location.
|
/// Definition location.
|
||||||
loc: Option<Location>,
|
loc: Option<Location>,
|
||||||
},
|
},
|
||||||
|
Variable {
|
||||||
|
/// Qualified name of the global variable, should be unique globally.
|
||||||
|
name: String,
|
||||||
|
|
||||||
|
/// Simple name, the same as in method/function definition.
|
||||||
|
simple_name: StrRef,
|
||||||
|
|
||||||
|
/// Type of the global variable.
|
||||||
|
ty: Type,
|
||||||
|
|
||||||
|
/// The declared type of the global variable, or [`None`] if no type annotation is provided.
|
||||||
|
ty_decl: Option<Expr>,
|
||||||
|
|
||||||
|
/// Symbol resolver of the module defined the class.
|
||||||
|
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
|
||||||
|
|
||||||
|
/// Definition location.
|
||||||
|
loc: Option<Location>,
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
pub struct TopLevelContext {
|
pub struct TopLevelContext {
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
toplevel::helper::PrimDef,
|
toplevel::helper::PrimDef,
|
||||||
typecheck::{
|
typecheck::{
|
||||||
@ -5,7 +7,6 @@ use crate::{
|
|||||||
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
|
||||||
|
|
||||||
/// Creates a `ndarray` [`Type`] with the given type arguments.
|
/// Creates a `ndarray` [`Type`] with the given type arguments.
|
||||||
///
|
///
|
||||||
|
@ -5,7 +5,7 @@ expression: res_vec
|
|||||||
[
|
[
|
||||||
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
|
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
|
||||||
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
|
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(241)]\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
|
||||||
|
@ -7,7 +7,7 @@ expression: res_vec
|
|||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B[typevar246]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar246\"]\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",
|
||||||
|
@ -5,8 +5,8 @@ expression: res_vec
|
|||||||
[
|
[
|
||||||
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
|
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
|
||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(259)]\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(264)]\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n",
|
||||||
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
|
@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
|
|||||||
expression: res_vec
|
expression: res_vec
|
||||||
---
|
---
|
||||||
[
|
[
|
||||||
"Class {\nname: \"A\",\nancestors: [\"A[typevar245, typevar246]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar245\", \"typevar246\"]\n}\n",
|
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n",
|
||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",
|
||||||
|
@ -6,12 +6,12 @@ expression: res_vec
|
|||||||
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(265)]\n}\n",
|
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n",
|
||||||
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||||
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
|
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
|
||||||
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(273)]\n}\n",
|
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
|
||||||
]
|
]
|
||||||
|
@ -1,21 +1,24 @@
|
|||||||
|
use std::{collections::HashMap, sync::Arc};
|
||||||
|
|
||||||
|
use indoc::indoc;
|
||||||
|
use parking_lot::Mutex;
|
||||||
|
use test_case::test_case;
|
||||||
|
|
||||||
|
use nac3parser::{
|
||||||
|
ast::{fold::Fold, FileName},
|
||||||
|
parser::parse_program,
|
||||||
|
};
|
||||||
|
|
||||||
use super::*;
|
use super::*;
|
||||||
use crate::toplevel::helper::PrimDef;
|
|
||||||
use crate::typecheck::typedef::into_var_map;
|
|
||||||
use crate::{
|
use crate::{
|
||||||
codegen::CodeGenContext,
|
codegen::CodeGenContext,
|
||||||
symbol_resolver::{SymbolResolver, ValueEnum},
|
symbol_resolver::{SymbolResolver, ValueEnum},
|
||||||
toplevel::DefinitionId,
|
toplevel::{helper::PrimDef, DefinitionId},
|
||||||
typecheck::{
|
typecheck::{
|
||||||
type_inferencer::PrimitiveStore,
|
type_inferencer::PrimitiveStore,
|
||||||
typedef::{Type, Unifier},
|
typedef::{into_var_map, Type, Unifier},
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use indoc::indoc;
|
|
||||||
use nac3parser::ast::FileName;
|
|
||||||
use nac3parser::{ast::fold::Fold, parser::parse_program};
|
|
||||||
use parking_lot::Mutex;
|
|
||||||
use std::{collections::HashMap, sync::Arc};
|
|
||||||
use test_case::test_case;
|
|
||||||
|
|
||||||
struct ResolverInternal {
|
struct ResolverInternal {
|
||||||
id_to_type: Mutex<HashMap<StrRef, Type>>,
|
id_to_type: Mutex<HashMap<StrRef, Type>>,
|
||||||
@ -62,6 +65,7 @@ impl SymbolResolver for Resolver {
|
|||||||
&self,
|
&self,
|
||||||
_: StrRef,
|
_: StrRef,
|
||||||
_: &mut CodeGenContext<'ctx, '_>,
|
_: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
_: &mut dyn CodeGenerator,
|
||||||
) -> Option<ValueEnum<'ctx>> {
|
) -> Option<ValueEnum<'ctx>> {
|
||||||
unimplemented!()
|
unimplemented!()
|
||||||
}
|
}
|
||||||
|
@ -1,10 +1,14 @@
|
|||||||
use super::*;
|
|
||||||
use crate::symbol_resolver::SymbolValue;
|
|
||||||
use crate::toplevel::helper::{PrimDef, PrimDefDetails};
|
|
||||||
use crate::typecheck::typedef::VarMap;
|
|
||||||
use nac3parser::ast::Constant;
|
|
||||||
use strum::IntoEnumIterator;
|
use strum::IntoEnumIterator;
|
||||||
|
|
||||||
|
use nac3parser::ast::Constant;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
use crate::{
|
||||||
|
symbol_resolver::SymbolValue,
|
||||||
|
toplevel::helper::{PrimDef, PrimDefDetails},
|
||||||
|
typecheck::typedef::VarMap,
|
||||||
|
};
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
#[derive(Clone, Debug)]
|
||||||
pub enum TypeAnnotation {
|
pub enum TypeAnnotation {
|
||||||
Primitive(Type),
|
Primitive(Type),
|
||||||
|
@ -1,13 +1,19 @@
|
|||||||
use crate::toplevel::helper::PrimDef;
|
use std::{
|
||||||
|
collections::{HashMap, HashSet},
|
||||||
|
iter::once,
|
||||||
|
};
|
||||||
|
|
||||||
use super::type_inferencer::Inferencer;
|
|
||||||
use super::typedef::{Type, TypeEnum};
|
|
||||||
use nac3parser::ast::{
|
use nac3parser::ast::{
|
||||||
self, Constant, Expr, ExprKind,
|
self, Constant, Expr, ExprKind,
|
||||||
Operator::{LShift, RShift},
|
Operator::{LShift, RShift},
|
||||||
Stmt, StmtKind, StrRef,
|
Stmt, StmtKind, StrRef,
|
||||||
};
|
};
|
||||||
use std::{collections::HashSet, iter::once};
|
|
||||||
|
use super::{
|
||||||
|
type_inferencer::{DeclarationSource, IdentifierInfo, Inferencer},
|
||||||
|
typedef::{Type, TypeEnum},
|
||||||
|
};
|
||||||
|
use crate::toplevel::helper::PrimDef;
|
||||||
|
|
||||||
impl<'a> Inferencer<'a> {
|
impl<'a> Inferencer<'a> {
|
||||||
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
|
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
|
||||||
@ -21,15 +27,29 @@ impl<'a> Inferencer<'a> {
|
|||||||
fn check_pattern(
|
fn check_pattern(
|
||||||
&mut self,
|
&mut self,
|
||||||
pattern: &Expr<Option<Type>>,
|
pattern: &Expr<Option<Type>>,
|
||||||
defined_identifiers: &mut HashSet<StrRef>,
|
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
|
||||||
) -> Result<(), HashSet<String>> {
|
) -> Result<(), HashSet<String>> {
|
||||||
match &pattern.node {
|
match &pattern.node {
|
||||||
ExprKind::Name { id, .. } if id == &"none".into() => {
|
ExprKind::Name { id, .. } if id == &"none".into() => {
|
||||||
Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)]))
|
Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)]))
|
||||||
}
|
}
|
||||||
ExprKind::Name { id, .. } => {
|
ExprKind::Name { id, .. } => {
|
||||||
if !defined_identifiers.contains(id) {
|
// If `id` refers to a declared symbol, reject this assignment if it is used in the
|
||||||
defined_identifiers.insert(*id);
|
// context of an (implicit) global variable
|
||||||
|
if let Some(id_info) = defined_identifiers.get(id) {
|
||||||
|
if matches!(
|
||||||
|
id_info.source,
|
||||||
|
DeclarationSource::Global { is_explicit: Some(false) }
|
||||||
|
) {
|
||||||
|
return Err(HashSet::from([format!(
|
||||||
|
"cannot access local variable '{id}' before it is declared (at {})",
|
||||||
|
pattern.location
|
||||||
|
)]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if !defined_identifiers.contains_key(id) {
|
||||||
|
defined_identifiers.insert(*id, IdentifierInfo::default());
|
||||||
}
|
}
|
||||||
self.should_have_value(pattern)?;
|
self.should_have_value(pattern)?;
|
||||||
Ok(())
|
Ok(())
|
||||||
@ -69,7 +89,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
fn check_expr(
|
fn check_expr(
|
||||||
&mut self,
|
&mut self,
|
||||||
expr: &Expr<Option<Type>>,
|
expr: &Expr<Option<Type>>,
|
||||||
defined_identifiers: &mut HashSet<StrRef>,
|
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
|
||||||
) -> Result<(), HashSet<String>> {
|
) -> Result<(), HashSet<String>> {
|
||||||
// there are some cases where the custom field is None
|
// there are some cases where the custom field is None
|
||||||
if let Some(ty) = &expr.custom {
|
if let Some(ty) = &expr.custom {
|
||||||
@ -90,7 +110,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
return Ok(());
|
return Ok(());
|
||||||
}
|
}
|
||||||
self.should_have_value(expr)?;
|
self.should_have_value(expr)?;
|
||||||
if !defined_identifiers.contains(id) {
|
if !defined_identifiers.contains_key(id) {
|
||||||
match self.function_data.resolver.get_symbol_type(
|
match self.function_data.resolver.get_symbol_type(
|
||||||
self.unifier,
|
self.unifier,
|
||||||
&self.top_level.definitions.read(),
|
&self.top_level.definitions.read(),
|
||||||
@ -98,7 +118,22 @@ impl<'a> Inferencer<'a> {
|
|||||||
*id,
|
*id,
|
||||||
) {
|
) {
|
||||||
Ok(_) => {
|
Ok(_) => {
|
||||||
self.defined_identifiers.insert(*id);
|
let is_global = self.is_id_global(*id);
|
||||||
|
|
||||||
|
defined_identifiers.insert(
|
||||||
|
*id,
|
||||||
|
IdentifierInfo {
|
||||||
|
source: match is_global {
|
||||||
|
Some(true) => {
|
||||||
|
DeclarationSource::Global { is_explicit: Some(false) }
|
||||||
|
}
|
||||||
|
Some(false) => {
|
||||||
|
DeclarationSource::Global { is_explicit: None }
|
||||||
|
}
|
||||||
|
None => DeclarationSource::Local,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
);
|
||||||
}
|
}
|
||||||
Err(e) => {
|
Err(e) => {
|
||||||
return Err(HashSet::from([format!(
|
return Err(HashSet::from([format!(
|
||||||
@ -171,9 +206,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
let mut defined_identifiers = defined_identifiers.clone();
|
let mut defined_identifiers = defined_identifiers.clone();
|
||||||
for arg in &args.args {
|
for arg in &args.args {
|
||||||
// TODO: should we check the types here?
|
// TODO: should we check the types here?
|
||||||
if !defined_identifiers.contains(&arg.node.arg) {
|
defined_identifiers.entry(arg.node.arg).or_default();
|
||||||
defined_identifiers.insert(arg.node.arg);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
self.check_expr(body, &mut defined_identifiers)?;
|
self.check_expr(body, &mut defined_identifiers)?;
|
||||||
}
|
}
|
||||||
@ -236,7 +269,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
fn check_stmt(
|
fn check_stmt(
|
||||||
&mut self,
|
&mut self,
|
||||||
stmt: &Stmt<Option<Type>>,
|
stmt: &Stmt<Option<Type>>,
|
||||||
defined_identifiers: &mut HashSet<StrRef>,
|
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
|
||||||
) -> Result<bool, HashSet<String>> {
|
) -> Result<bool, HashSet<String>> {
|
||||||
match &stmt.node {
|
match &stmt.node {
|
||||||
StmtKind::For { target, iter, body, orelse, .. } => {
|
StmtKind::For { target, iter, body, orelse, .. } => {
|
||||||
@ -262,9 +295,11 @@ impl<'a> Inferencer<'a> {
|
|||||||
let body_returned = self.check_block(body, &mut body_identifiers)?;
|
let body_returned = self.check_block(body, &mut body_identifiers)?;
|
||||||
let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?;
|
let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?;
|
||||||
|
|
||||||
for ident in &body_identifiers {
|
for ident in body_identifiers.keys() {
|
||||||
if !defined_identifiers.contains(ident) && orelse_identifiers.contains(ident) {
|
if !defined_identifiers.contains_key(ident)
|
||||||
defined_identifiers.insert(*ident);
|
&& orelse_identifiers.contains_key(ident)
|
||||||
|
{
|
||||||
|
defined_identifiers.insert(*ident, IdentifierInfo::default());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Ok(body_returned && orelse_returned)
|
Ok(body_returned && orelse_returned)
|
||||||
@ -295,7 +330,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
let mut defined_identifiers = defined_identifiers.clone();
|
let mut defined_identifiers = defined_identifiers.clone();
|
||||||
let ast::ExcepthandlerKind::ExceptHandler { name, body, .. } = &handler.node;
|
let ast::ExcepthandlerKind::ExceptHandler { name, body, .. } = &handler.node;
|
||||||
if let Some(name) = name {
|
if let Some(name) = name {
|
||||||
defined_identifiers.insert(*name);
|
defined_identifiers.insert(*name, IdentifierInfo::default());
|
||||||
}
|
}
|
||||||
self.check_block(body, &mut defined_identifiers)?;
|
self.check_block(body, &mut defined_identifiers)?;
|
||||||
}
|
}
|
||||||
@ -359,6 +394,44 @@ impl<'a> Inferencer<'a> {
|
|||||||
}
|
}
|
||||||
Ok(true)
|
Ok(true)
|
||||||
}
|
}
|
||||||
|
StmtKind::Global { names, .. } => {
|
||||||
|
for id in names {
|
||||||
|
if let Some(id_info) = defined_identifiers.get(id) {
|
||||||
|
if id_info.source == DeclarationSource::Local {
|
||||||
|
return Err(HashSet::from([format!(
|
||||||
|
"name '{id}' is referenced prior to global declaration at {}",
|
||||||
|
stmt.location,
|
||||||
|
)]));
|
||||||
|
}
|
||||||
|
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
match self.function_data.resolver.get_symbol_type(
|
||||||
|
self.unifier,
|
||||||
|
&self.top_level.definitions.read(),
|
||||||
|
self.primitives,
|
||||||
|
*id,
|
||||||
|
) {
|
||||||
|
Ok(_) => {
|
||||||
|
defined_identifiers.insert(
|
||||||
|
*id,
|
||||||
|
IdentifierInfo {
|
||||||
|
source: DeclarationSource::Global { is_explicit: Some(true) },
|
||||||
|
},
|
||||||
|
);
|
||||||
|
}
|
||||||
|
Err(e) => {
|
||||||
|
return Err(HashSet::from([format!(
|
||||||
|
"type error at identifier `{}` ({}) at {}",
|
||||||
|
id, e, stmt.location
|
||||||
|
)]))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(false)
|
||||||
|
}
|
||||||
// break, raise, etc.
|
// break, raise, etc.
|
||||||
_ => Ok(false),
|
_ => Ok(false),
|
||||||
}
|
}
|
||||||
@ -367,7 +440,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
pub fn check_block(
|
pub fn check_block(
|
||||||
&mut self,
|
&mut self,
|
||||||
block: &[Stmt<Option<Type>>],
|
block: &[Stmt<Option<Type>>],
|
||||||
defined_identifiers: &mut HashSet<StrRef>,
|
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
|
||||||
) -> Result<bool, HashSet<String>> {
|
) -> Result<bool, HashSet<String>> {
|
||||||
let mut ret = false;
|
let mut ret = false;
|
||||||
for stmt in block {
|
for stmt in block {
|
||||||
|
@ -1,19 +1,21 @@
|
|||||||
use crate::symbol_resolver::SymbolValue;
|
use std::{cmp::max, collections::HashMap, rc::Rc};
|
||||||
use crate::toplevel::helper::{extract_ndims, PrimDef};
|
|
||||||
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
|
|
||||||
use crate::typecheck::{
|
|
||||||
type_inferencer::*,
|
|
||||||
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
|
||||||
};
|
|
||||||
use itertools::{iproduct, Itertools};
|
use itertools::{iproduct, Itertools};
|
||||||
use nac3parser::ast::StrRef;
|
|
||||||
use nac3parser::ast::{Cmpop, Operator, Unaryop};
|
|
||||||
use std::cmp::max;
|
|
||||||
use std::collections::HashMap;
|
|
||||||
use std::rc::Rc;
|
|
||||||
use strum::IntoEnumIterator;
|
use strum::IntoEnumIterator;
|
||||||
|
|
||||||
use super::typedef::into_var_map;
|
use nac3parser::ast::{Cmpop, Operator, StrRef, Unaryop};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
symbol_resolver::SymbolValue,
|
||||||
|
toplevel::{
|
||||||
|
helper::PrimDef,
|
||||||
|
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||||
|
},
|
||||||
|
typecheck::{
|
||||||
|
type_inferencer::*,
|
||||||
|
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
/// The variant of a binary operator.
|
/// The variant of a binary operator.
|
||||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||||
@ -173,8 +175,19 @@ pub fn impl_binop(
|
|||||||
ops: &[Operator],
|
ops: &[Operator],
|
||||||
) {
|
) {
|
||||||
with_fields(unifier, ty, |unifier, fields| {
|
with_fields(unifier, ty, |unifier, fields| {
|
||||||
let other_tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
|
let (other_ty, other_var_id) = if other_ty.len() == 1 {
|
||||||
let function_vars = into_var_map([other_tvar]);
|
(other_ty[0], None)
|
||||||
|
} else {
|
||||||
|
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
|
||||||
|
(tvar.ty, Some(tvar.id))
|
||||||
|
};
|
||||||
|
|
||||||
|
let function_vars = if let Some(var_id) = other_var_id {
|
||||||
|
vec![(var_id, other_ty)].into_iter().collect::<VarMap>()
|
||||||
|
} else {
|
||||||
|
VarMap::new()
|
||||||
|
};
|
||||||
|
|
||||||
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
|
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
|
||||||
|
|
||||||
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
|
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
|
||||||
@ -185,7 +198,7 @@ pub fn impl_binop(
|
|||||||
ret: ret_ty,
|
ret: ret_ty,
|
||||||
vars: function_vars.clone(),
|
vars: function_vars.clone(),
|
||||||
args: vec![FuncArg {
|
args: vec![FuncArg {
|
||||||
ty: other_tvar.ty,
|
ty: other_ty,
|
||||||
default_value: None,
|
default_value: None,
|
||||||
name: "other".into(),
|
name: "other".into(),
|
||||||
is_vararg: false,
|
is_vararg: false,
|
||||||
@ -528,43 +541,36 @@ pub fn typeof_binop(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
||||||
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
|
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
|
||||||
|
TypeEnum::TLiteral { values, .. } => {
|
||||||
let (rhs_dtype, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
assert_eq!(values.len(), 1);
|
||||||
let rhs_ndims = extract_ndims(unifier, rhs_ndims);
|
u64::try_from(values[0].clone()).unwrap()
|
||||||
|
|
||||||
if !(unifier.unioned(lhs_dtype, primitives.float)
|
|
||||||
&& unifier.unioned(rhs_dtype, primitives.float))
|
|
||||||
{
|
|
||||||
return Err(format!(
|
|
||||||
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
|
|
||||||
unifier.stringify(lhs),
|
|
||||||
unifier.stringify(rhs)
|
|
||||||
));
|
|
||||||
}
|
}
|
||||||
|
_ => unreachable!(),
|
||||||
// Deduce the ndims of the resulting ndarray.
|
};
|
||||||
// If this is 0 (an unsized ndarray), matmul returns a scalar just like NumPy.
|
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
||||||
let result_ndims = match (lhs_ndims, rhs_ndims) {
|
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
|
||||||
(0, _) | (_, 0) => {
|
TypeEnum::TLiteral { values, .. } => {
|
||||||
return Err(
|
assert_eq!(values.len(), 1);
|
||||||
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
|
u64::try_from(values[0].clone()).unwrap()
|
||||||
)
|
|
||||||
}
|
}
|
||||||
(1, 1) => 0,
|
_ => unreachable!(),
|
||||||
(1, _) => rhs_ndims - 1,
|
|
||||||
(_, 1) => lhs_ndims - 1,
|
|
||||||
(m, n) => max(m, n),
|
|
||||||
};
|
};
|
||||||
|
|
||||||
if result_ndims == 0 {
|
match (lhs_ndims, rhs_ndims) {
|
||||||
// If the result is unsized, NumPy returns a scalar.
|
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
|
||||||
primitives.float
|
(lhs, rhs) if lhs == 0 || rhs == 0 => {
|
||||||
} else {
|
return Err(format!(
|
||||||
let result_ndims_ty =
|
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
|
||||||
unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
|
u8::from(rhs == 0)
|
||||||
make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
|
))
|
||||||
|
}
|
||||||
|
(lhs, rhs) => {
|
||||||
|
return Err(format!(
|
||||||
|
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
|
||||||
|
))
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -767,7 +773,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
|||||||
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
||||||
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], None);
|
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
|
||||||
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
||||||
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
||||||
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||||
|
@ -1,14 +1,14 @@
|
|||||||
use std::collections::HashMap;
|
use std::{collections::HashMap, fmt::Display};
|
||||||
use std::fmt::Display;
|
|
||||||
|
|
||||||
use crate::typecheck::{magic_methods::HasOpInfo, typedef::TypeEnum};
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use nac3parser::ast::{Cmpop, Location, StrRef};
|
||||||
|
|
||||||
use super::{
|
use super::{
|
||||||
magic_methods::Binop,
|
magic_methods::Binop,
|
||||||
typedef::{RecordKey, Type, Unifier},
|
typedef::{RecordKey, Type, Unifier},
|
||||||
};
|
};
|
||||||
use itertools::Itertools;
|
use crate::typecheck::{magic_methods::HasOpInfo, typedef::TypeEnum};
|
||||||
use nac3parser::ast::{Cmpop, Location, StrRef};
|
|
||||||
|
|
||||||
#[derive(Debug, Clone)]
|
#[derive(Debug, Clone)]
|
||||||
pub enum TypeErrorKind {
|
pub enum TypeErrorKind {
|
||||||
|
@ -1,32 +1,36 @@
|
|||||||
use std::cmp::max;
|
use std::{
|
||||||
use std::collections::{HashMap, HashSet};
|
cell::RefCell,
|
||||||
use std::convert::{From, TryInto};
|
cmp::max,
|
||||||
use std::iter::{self, once};
|
collections::{HashMap, HashSet},
|
||||||
use std::{cell::RefCell, sync::Arc};
|
convert::{From, TryInto},
|
||||||
|
iter::once,
|
||||||
|
sync::Arc,
|
||||||
|
};
|
||||||
|
|
||||||
|
use itertools::{izip, Itertools};
|
||||||
|
|
||||||
|
use nac3parser::ast::{
|
||||||
|
self,
|
||||||
|
fold::{self, Fold},
|
||||||
|
Arguments, Comprehension, ExprContext, ExprKind, Ident, Located, Location, StrRef,
|
||||||
|
};
|
||||||
|
|
||||||
use super::{
|
use super::{
|
||||||
magic_methods::*,
|
magic_methods::*,
|
||||||
type_error::{TypeError, TypeErrorKind},
|
type_error::{TypeError, TypeErrorKind},
|
||||||
typedef::{
|
typedef::{
|
||||||
into_var_map, iter_type_vars, Call, CallId, FunSignature, FuncArg, OperatorInfo,
|
into_var_map, iter_type_vars, Call, CallId, FunSignature, FuncArg, Mapping, OperatorInfo,
|
||||||
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
|
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
use crate::toplevel::type_annotation::TypeAnnotation;
|
|
||||||
use crate::{
|
use crate::{
|
||||||
symbol_resolver::{SymbolResolver, SymbolValue},
|
symbol_resolver::{SymbolResolver, SymbolValue},
|
||||||
toplevel::{
|
toplevel::{
|
||||||
helper::{arraylike_flatten_element_type, arraylike_get_ndims, PrimDef},
|
helper::{arraylike_flatten_element_type, arraylike_get_ndims, PrimDef},
|
||||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||||
|
type_annotation::TypeAnnotation,
|
||||||
TopLevelContext, TopLevelDef,
|
TopLevelContext, TopLevelDef,
|
||||||
},
|
},
|
||||||
typecheck::typedef::Mapping,
|
|
||||||
};
|
|
||||||
use itertools::{izip, Itertools};
|
|
||||||
use nac3parser::ast::{
|
|
||||||
self,
|
|
||||||
fold::{self, Fold},
|
|
||||||
Arguments, Comprehension, ExprContext, ExprKind, Located, Location, StrRef,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
@ -84,6 +88,40 @@ impl PrimitiveStore {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// The location where an identifier declaration refers to.
|
||||||
|
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||||
|
pub enum DeclarationSource {
|
||||||
|
/// Local scope.
|
||||||
|
Local,
|
||||||
|
|
||||||
|
/// Global scope.
|
||||||
|
Global {
|
||||||
|
/// Whether the identifier is declared by the use of `global` statement. This field is
|
||||||
|
/// [`None`] if the identifier does not refer to a variable.
|
||||||
|
is_explicit: Option<bool>,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Information regarding a defined identifier.
|
||||||
|
#[derive(Clone, Copy, Debug)]
|
||||||
|
pub struct IdentifierInfo {
|
||||||
|
/// Whether this identifier refers to a global variable.
|
||||||
|
pub source: DeclarationSource,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Default for IdentifierInfo {
|
||||||
|
fn default() -> Self {
|
||||||
|
IdentifierInfo { source: DeclarationSource::Local }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl IdentifierInfo {
|
||||||
|
#[must_use]
|
||||||
|
pub fn new() -> IdentifierInfo {
|
||||||
|
IdentifierInfo::default()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
pub struct FunctionData {
|
pub struct FunctionData {
|
||||||
pub resolver: Arc<dyn SymbolResolver + Send + Sync>,
|
pub resolver: Arc<dyn SymbolResolver + Send + Sync>,
|
||||||
pub return_type: Option<Type>,
|
pub return_type: Option<Type>,
|
||||||
@ -92,7 +130,7 @@ pub struct FunctionData {
|
|||||||
|
|
||||||
pub struct Inferencer<'a> {
|
pub struct Inferencer<'a> {
|
||||||
pub top_level: &'a TopLevelContext,
|
pub top_level: &'a TopLevelContext,
|
||||||
pub defined_identifiers: HashSet<StrRef>,
|
pub defined_identifiers: HashMap<StrRef, IdentifierInfo>,
|
||||||
pub function_data: &'a mut FunctionData,
|
pub function_data: &'a mut FunctionData,
|
||||||
pub unifier: &'a mut Unifier,
|
pub unifier: &'a mut Unifier,
|
||||||
pub primitives: &'a PrimitiveStore,
|
pub primitives: &'a PrimitiveStore,
|
||||||
@ -224,9 +262,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
|
|||||||
handler.location,
|
handler.location,
|
||||||
));
|
));
|
||||||
if let Some(name) = name {
|
if let Some(name) = name {
|
||||||
if !self.defined_identifiers.contains(&name) {
|
self.defined_identifiers.entry(name).or_default();
|
||||||
self.defined_identifiers.insert(name);
|
|
||||||
}
|
|
||||||
if let Some(old_typ) = self.variable_mapping.insert(name, typ) {
|
if let Some(old_typ) = self.variable_mapping.insert(name, typ) {
|
||||||
let loc = handler.location;
|
let loc = handler.location;
|
||||||
self.unifier.unify(old_typ, typ).map_err(|e| {
|
self.unifier.unify(old_typ, typ).map_err(|e| {
|
||||||
@ -378,6 +414,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
|
|||||||
| ast::StmtKind::Continue { .. }
|
| ast::StmtKind::Continue { .. }
|
||||||
| ast::StmtKind::Expr { .. }
|
| ast::StmtKind::Expr { .. }
|
||||||
| ast::StmtKind::For { .. }
|
| ast::StmtKind::For { .. }
|
||||||
|
| ast::StmtKind::Global { .. }
|
||||||
| ast::StmtKind::Pass { .. }
|
| ast::StmtKind::Pass { .. }
|
||||||
| ast::StmtKind::Try { .. } => {}
|
| ast::StmtKind::Try { .. } => {}
|
||||||
ast::StmtKind::If { test, .. } | ast::StmtKind::While { test, .. } => {
|
ast::StmtKind::If { test, .. } | ast::StmtKind::While { test, .. } => {
|
||||||
@ -549,7 +586,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
|
|||||||
unreachable!("must be tobj")
|
unreachable!("must be tobj")
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if !self.defined_identifiers.contains(id) {
|
if !self.defined_identifiers.contains_key(id) {
|
||||||
match self.function_data.resolver.get_symbol_type(
|
match self.function_data.resolver.get_symbol_type(
|
||||||
self.unifier,
|
self.unifier,
|
||||||
&self.top_level.definitions.read(),
|
&self.top_level.definitions.read(),
|
||||||
@ -557,7 +594,22 @@ impl<'a> Fold<()> for Inferencer<'a> {
|
|||||||
*id,
|
*id,
|
||||||
) {
|
) {
|
||||||
Ok(_) => {
|
Ok(_) => {
|
||||||
self.defined_identifiers.insert(*id);
|
let is_global = self.is_id_global(*id);
|
||||||
|
|
||||||
|
self.defined_identifiers.insert(
|
||||||
|
*id,
|
||||||
|
IdentifierInfo {
|
||||||
|
source: match is_global {
|
||||||
|
Some(true) => DeclarationSource::Global {
|
||||||
|
is_explicit: Some(false),
|
||||||
|
},
|
||||||
|
Some(false) => {
|
||||||
|
DeclarationSource::Global { is_explicit: None }
|
||||||
|
}
|
||||||
|
None => DeclarationSource::Local,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
);
|
||||||
}
|
}
|
||||||
Err(e) => {
|
Err(e) => {
|
||||||
return report_error(
|
return report_error(
|
||||||
@ -622,8 +674,8 @@ impl<'a> Inferencer<'a> {
|
|||||||
fn infer_pattern<T>(&mut self, pattern: &ast::Expr<T>) -> Result<(), InferenceError> {
|
fn infer_pattern<T>(&mut self, pattern: &ast::Expr<T>) -> Result<(), InferenceError> {
|
||||||
match &pattern.node {
|
match &pattern.node {
|
||||||
ExprKind::Name { id, .. } => {
|
ExprKind::Name { id, .. } => {
|
||||||
if !self.defined_identifiers.contains(id) {
|
if !self.defined_identifiers.contains_key(id) {
|
||||||
self.defined_identifiers.insert(*id);
|
self.defined_identifiers.insert(*id, IdentifierInfo::default());
|
||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
@ -732,8 +784,8 @@ impl<'a> Inferencer<'a> {
|
|||||||
let mut defined_identifiers = self.defined_identifiers.clone();
|
let mut defined_identifiers = self.defined_identifiers.clone();
|
||||||
for arg in &args.args {
|
for arg in &args.args {
|
||||||
let name = &arg.node.arg;
|
let name = &arg.node.arg;
|
||||||
if !defined_identifiers.contains(name) {
|
if !defined_identifiers.contains_key(name) {
|
||||||
defined_identifiers.insert(*name);
|
defined_identifiers.insert(*name, IdentifierInfo::default());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
let fn_args: Vec<_> = args
|
let fn_args: Vec<_> = args
|
||||||
@ -1183,45 +1235,6 @@ impl<'a> Inferencer<'a> {
|
|||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
|
|
||||||
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
|
|
||||||
let ndarray = self.fold_expr(args.remove(0))?;
|
|
||||||
|
|
||||||
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
|
|
||||||
|
|
||||||
// Make a tuple of size `ndims` full of int32 (TODO: Make it usize)
|
|
||||||
let ret_ty = TypeEnum::TTuple {
|
|
||||||
ty: iter::repeat(self.primitives.int32).take(ndims as usize).collect_vec(),
|
|
||||||
is_vararg_ctx: false,
|
|
||||||
};
|
|
||||||
let ret_ty = self.unifier.add_ty(ret_ty);
|
|
||||||
|
|
||||||
let func_ty = TypeEnum::TFunc(FunSignature {
|
|
||||||
args: vec![FuncArg {
|
|
||||||
name: "a".into(),
|
|
||||||
default_value: None,
|
|
||||||
ty: ndarray.custom.unwrap(),
|
|
||||||
is_vararg: false,
|
|
||||||
}],
|
|
||||||
ret: ret_ty,
|
|
||||||
vars: VarMap::new(),
|
|
||||||
});
|
|
||||||
let func_ty = self.unifier.add_ty(func_ty);
|
|
||||||
|
|
||||||
return Ok(Some(Located {
|
|
||||||
location,
|
|
||||||
custom: Some(ret_ty),
|
|
||||||
node: ExprKind::Call {
|
|
||||||
func: Box::new(Located {
|
|
||||||
custom: Some(func_ty),
|
|
||||||
location: func.location,
|
|
||||||
node: ExprKind::Name { id: *id, ctx: *ctx },
|
|
||||||
}),
|
|
||||||
args: vec![ndarray],
|
|
||||||
keywords: vec![],
|
|
||||||
},
|
|
||||||
}));
|
|
||||||
}
|
|
||||||
|
|
||||||
if id == &"np_dot".into() {
|
if id == &"np_dot".into() {
|
||||||
let arg0 = self.fold_expr(args.remove(0))?;
|
let arg0 = self.fold_expr(args.remove(0))?;
|
||||||
let arg1 = self.fold_expr(args.remove(0))?;
|
let arg1 = self.fold_expr(args.remove(0))?;
|
||||||
@ -1543,7 +1556,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
// 2-argument ndarray n-dimensional factory functions
|
// 2-argument ndarray n-dimensional factory functions
|
||||||
if ["np_reshape".into(), "np_broadcast_to".into()].contains(id) && args.len() == 2 {
|
if id == &"np_reshape".into() && args.len() == 2 {
|
||||||
let arg0 = self.fold_expr(args.remove(0))?;
|
let arg0 = self.fold_expr(args.remove(0))?;
|
||||||
|
|
||||||
let shape_expr = args.remove(0);
|
let shape_expr = args.remove(0);
|
||||||
@ -1589,36 +1602,29 @@ impl<'a> Inferencer<'a> {
|
|||||||
}
|
}
|
||||||
// 2-argument ndarray n-dimensional creation functions
|
// 2-argument ndarray n-dimensional creation functions
|
||||||
if id == &"np_full".into() && args.len() == 2 {
|
if id == &"np_full".into() && args.len() == 2 {
|
||||||
let ExprKind::List { elts, .. } = &args[0].node else {
|
// Parse arguments
|
||||||
return report_error(
|
let shape_expr = args.remove(0);
|
||||||
format!(
|
let (ndims, shape) =
|
||||||
"Expected List literal for first argument of {id}, got {}",
|
self.fold_numpy_function_call_shape_argument(*id, 0, shape_expr)?; // Special handling for `shape`
|
||||||
args[0].node.name()
|
|
||||||
)
|
|
||||||
.as_str(),
|
|
||||||
args[0].location,
|
|
||||||
);
|
|
||||||
};
|
|
||||||
|
|
||||||
let ndims = elts.len() as u64;
|
let fill_value = self.fold_expr(args.remove(0))?;
|
||||||
|
|
||||||
let arg0 = self.fold_expr(args.remove(0))?;
|
// Build the return type
|
||||||
let arg1 = self.fold_expr(args.remove(0))?;
|
let dtype = fill_value.custom.unwrap();
|
||||||
|
|
||||||
let ty = arg1.custom.unwrap();
|
|
||||||
let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None);
|
let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None);
|
||||||
let ret = make_ndarray_ty(self.unifier, self.primitives, Some(ty), Some(ndims));
|
let ret = make_ndarray_ty(self.unifier, self.primitives, Some(dtype), Some(ndims));
|
||||||
|
|
||||||
let custom = self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
let custom = self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||||
args: vec![
|
args: vec![
|
||||||
FuncArg {
|
FuncArg {
|
||||||
name: "shape".into(),
|
name: "shape".into(),
|
||||||
ty: arg0.custom.unwrap(),
|
ty: shape.custom.unwrap(),
|
||||||
default_value: None,
|
default_value: None,
|
||||||
is_vararg: false,
|
is_vararg: false,
|
||||||
},
|
},
|
||||||
FuncArg {
|
FuncArg {
|
||||||
name: "fill_value".into(),
|
name: "fill_value".into(),
|
||||||
ty: arg1.custom.unwrap(),
|
ty: fill_value.custom.unwrap(),
|
||||||
default_value: None,
|
default_value: None,
|
||||||
is_vararg: false,
|
is_vararg: false,
|
||||||
},
|
},
|
||||||
@ -1636,7 +1642,7 @@ impl<'a> Inferencer<'a> {
|
|||||||
location: func.location,
|
location: func.location,
|
||||||
node: ExprKind::Name { id: *id, ctx: *ctx },
|
node: ExprKind::Name { id: *id, ctx: *ctx },
|
||||||
}),
|
}),
|
||||||
args: vec![arg0, arg1],
|
args: vec![shape, fill_value],
|
||||||
keywords: vec![],
|
keywords: vec![],
|
||||||
},
|
},
|
||||||
}));
|
}));
|
||||||
@ -2679,4 +2685,22 @@ impl<'a> Inferencer<'a> {
|
|||||||
self.constrain(body.custom.unwrap(), orelse.custom.unwrap(), &body.location)?;
|
self.constrain(body.custom.unwrap(), orelse.custom.unwrap(), &body.location)?;
|
||||||
Ok(body.custom.unwrap())
|
Ok(body.custom.unwrap())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Determines whether the given `id` refers to a global symbol.
|
||||||
|
///
|
||||||
|
/// Returns `Some(true)` if `id` refers to a global variable, `Some(false)` if `id` refers to a
|
||||||
|
/// class/function, and `None` if `id` refers to a local symbol.
|
||||||
|
pub(super) fn is_id_global(&self, id: Ident) -> Option<bool> {
|
||||||
|
self.top_level
|
||||||
|
.definitions
|
||||||
|
.read()
|
||||||
|
.iter()
|
||||||
|
.map(|def| match *def.read() {
|
||||||
|
TopLevelDef::Class { name, .. } => (name, false),
|
||||||
|
TopLevelDef::Function { simple_name, .. } => (simple_name, false),
|
||||||
|
TopLevelDef::Variable { simple_name, .. } => (simple_name, true),
|
||||||
|
})
|
||||||
|
.find(|(global, _)| global == &id)
|
||||||
|
.map(|(_, has_explicit_prop)| has_explicit_prop)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,18 +1,20 @@
|
|||||||
use super::super::{magic_methods::with_fields, typedef::*};
|
use std::iter::zip;
|
||||||
use super::*;
|
|
||||||
use crate::{
|
|
||||||
codegen::CodeGenContext,
|
|
||||||
symbol_resolver::ValueEnum,
|
|
||||||
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
|
|
||||||
};
|
|
||||||
use indexmap::IndexMap;
|
use indexmap::IndexMap;
|
||||||
use indoc::indoc;
|
use indoc::indoc;
|
||||||
use nac3parser::ast::FileName;
|
|
||||||
use nac3parser::parser::parse_program;
|
|
||||||
use parking_lot::RwLock;
|
use parking_lot::RwLock;
|
||||||
use std::iter::zip;
|
|
||||||
use test_case::test_case;
|
use test_case::test_case;
|
||||||
|
|
||||||
|
use nac3parser::{ast::FileName, parser::parse_program};
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
use crate::{
|
||||||
|
codegen::{CodeGenContext, CodeGenerator},
|
||||||
|
symbol_resolver::ValueEnum,
|
||||||
|
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
|
||||||
|
typecheck::{magic_methods::with_fields, typedef::*},
|
||||||
|
};
|
||||||
|
|
||||||
struct Resolver {
|
struct Resolver {
|
||||||
id_to_type: HashMap<StrRef, Type>,
|
id_to_type: HashMap<StrRef, Type>,
|
||||||
id_to_def: HashMap<StrRef, DefinitionId>,
|
id_to_def: HashMap<StrRef, DefinitionId>,
|
||||||
@ -41,6 +43,7 @@ impl SymbolResolver for Resolver {
|
|||||||
&self,
|
&self,
|
||||||
_: StrRef,
|
_: StrRef,
|
||||||
_: &mut CodeGenContext<'ctx, '_>,
|
_: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
_: &mut dyn CodeGenerator,
|
||||||
) -> Option<ValueEnum<'ctx>> {
|
) -> Option<ValueEnum<'ctx>> {
|
||||||
unimplemented!()
|
unimplemented!()
|
||||||
}
|
}
|
||||||
@ -517,7 +520,7 @@ impl TestEnvironment {
|
|||||||
primitives: &mut self.primitives,
|
primitives: &mut self.primitives,
|
||||||
virtual_checks: &mut self.virtual_checks,
|
virtual_checks: &mut self.virtual_checks,
|
||||||
calls: &mut self.calls,
|
calls: &mut self.calls,
|
||||||
defined_identifiers: HashSet::default(),
|
defined_identifiers: HashMap::default(),
|
||||||
in_handler: false,
|
in_handler: false,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -593,8 +596,9 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
|
|||||||
println!("source:\n{source}");
|
println!("source:\n{source}");
|
||||||
let mut env = TestEnvironment::new();
|
let mut env = TestEnvironment::new();
|
||||||
let id_to_name = std::mem::take(&mut env.id_to_name);
|
let id_to_name = std::mem::take(&mut env.id_to_name);
|
||||||
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
|
let mut defined_identifiers: HashMap<_, _> =
|
||||||
defined_identifiers.insert("virtual".into());
|
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
|
||||||
|
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
|
||||||
let mut inferencer = env.get_inferencer();
|
let mut inferencer = env.get_inferencer();
|
||||||
inferencer.defined_identifiers.clone_from(&defined_identifiers);
|
inferencer.defined_identifiers.clone_from(&defined_identifiers);
|
||||||
let statements = parse_program(source, FileName::default()).unwrap();
|
let statements = parse_program(source, FileName::default()).unwrap();
|
||||||
@ -739,8 +743,9 @@ fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) {
|
|||||||
println!("source:\n{source}");
|
println!("source:\n{source}");
|
||||||
let mut env = TestEnvironment::basic_test_env();
|
let mut env = TestEnvironment::basic_test_env();
|
||||||
let id_to_name = std::mem::take(&mut env.id_to_name);
|
let id_to_name = std::mem::take(&mut env.id_to_name);
|
||||||
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
|
let mut defined_identifiers: HashMap<_, _> =
|
||||||
defined_identifiers.insert("virtual".into());
|
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
|
||||||
|
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
|
||||||
let mut inferencer = env.get_inferencer();
|
let mut inferencer = env.get_inferencer();
|
||||||
inferencer.defined_identifiers.clone_from(&defined_identifiers);
|
inferencer.defined_identifiers.clone_from(&defined_identifiers);
|
||||||
let statements = parse_program(source, FileName::default()).unwrap();
|
let statements = parse_program(source, FileName::default()).unwrap();
|
||||||
|
@ -1,21 +1,28 @@
|
|||||||
use super::magic_methods::{Binop, HasOpInfo};
|
use std::{
|
||||||
use super::type_error::{TypeError, TypeErrorKind};
|
borrow::Cow,
|
||||||
use super::unification_table::{UnificationKey, UnificationTable};
|
cell::RefCell,
|
||||||
use crate::symbol_resolver::SymbolValue;
|
collections::{HashMap, HashSet},
|
||||||
use crate::toplevel::helper::PrimDef;
|
fmt::{self, Display},
|
||||||
use crate::toplevel::{DefinitionId, TopLevelContext, TopLevelDef};
|
iter::{repeat, zip},
|
||||||
use crate::typecheck::magic_methods::OpInfo;
|
rc::Rc,
|
||||||
use crate::typecheck::type_inferencer::PrimitiveStore;
|
sync::{Arc, Mutex},
|
||||||
|
};
|
||||||
|
|
||||||
use indexmap::IndexMap;
|
use indexmap::IndexMap;
|
||||||
use itertools::{repeat_n, Itertools};
|
use itertools::{repeat_n, Itertools};
|
||||||
|
|
||||||
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
|
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
|
||||||
use std::cell::RefCell;
|
|
||||||
use std::collections::HashMap;
|
use super::{
|
||||||
use std::fmt::{self, Display};
|
magic_methods::{Binop, HasOpInfo},
|
||||||
use std::iter::{repeat, zip};
|
type_error::{TypeError, TypeErrorKind},
|
||||||
use std::rc::Rc;
|
unification_table::{UnificationKey, UnificationTable},
|
||||||
use std::sync::{Arc, Mutex};
|
};
|
||||||
use std::{borrow::Cow, collections::HashSet};
|
use crate::{
|
||||||
|
symbol_resolver::SymbolValue,
|
||||||
|
toplevel::{helper::PrimDef, DefinitionId, TopLevelContext, TopLevelDef},
|
||||||
|
typecheck::{magic_methods::OpInfo, type_inferencer::PrimitiveStore},
|
||||||
|
};
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod test;
|
mod test;
|
||||||
@ -670,8 +677,8 @@ impl Unifier {
|
|||||||
let num_args = posargs.len() + kwargs.len();
|
let num_args = posargs.len() + kwargs.len();
|
||||||
|
|
||||||
// Now we check the arguments against the parameters,
|
// Now we check the arguments against the parameters,
|
||||||
// and depending on what `call_info` is, we might change how the behavior `unify_call()`
|
// and depending on what `call_info` is, we might change how `unify_call()` behaves
|
||||||
// in hopes to improve user error messages when type checking fails.
|
// to improve user error messages when type checking fails.
|
||||||
match operator_info {
|
match operator_info {
|
||||||
Some(OperatorInfo::IsBinaryOp { self_type, operator }) => {
|
Some(OperatorInfo::IsBinaryOp { self_type, operator }) => {
|
||||||
// The call is written in the form of (say) `a + b`.
|
// The call is written in the form of (say) `a + b`.
|
||||||
|
@ -1,10 +1,12 @@
|
|||||||
use super::super::magic_methods::with_fields;
|
use std::collections::HashMap;
|
||||||
use super::*;
|
|
||||||
use indoc::indoc;
|
use indoc::indoc;
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
use std::collections::HashMap;
|
|
||||||
use test_case::test_case;
|
use test_case::test_case;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
use crate::typecheck::magic_methods::with_fields;
|
||||||
|
|
||||||
impl Unifier {
|
impl Unifier {
|
||||||
/// Check whether two types are equal.
|
/// Check whether two types are equal.
|
||||||
fn eq(&mut self, a: Type, b: Type) -> bool {
|
fn eq(&mut self, a: Type, b: Type) -> bool {
|
||||||
|
@ -21,13 +21,12 @@
|
|||||||
clippy::wildcard_imports
|
clippy::wildcard_imports
|
||||||
)]
|
)]
|
||||||
|
|
||||||
|
use std::{collections::HashMap, mem, ptr, slice, str};
|
||||||
|
|
||||||
|
use byteorder::{ByteOrder, LittleEndian};
|
||||||
|
|
||||||
use dwarf::*;
|
use dwarf::*;
|
||||||
use elf::*;
|
use elf::*;
|
||||||
use std::collections::HashMap;
|
|
||||||
use std::{mem, ptr, slice, str};
|
|
||||||
|
|
||||||
extern crate byteorder;
|
|
||||||
use byteorder::{ByteOrder, LittleEndian};
|
|
||||||
|
|
||||||
mod dwarf;
|
mod dwarf;
|
||||||
mod elf;
|
mod elf;
|
||||||
|
@ -8,15 +8,15 @@ license = "MIT"
|
|||||||
edition = "2021"
|
edition = "2021"
|
||||||
|
|
||||||
[build-dependencies]
|
[build-dependencies]
|
||||||
lalrpop = "0.20"
|
lalrpop = "0.22"
|
||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
nac3ast = { path = "../nac3ast" }
|
nac3ast = { path = "../nac3ast" }
|
||||||
lalrpop-util = "0.20"
|
lalrpop-util = "0.22"
|
||||||
log = "0.4"
|
log = "0.4"
|
||||||
unic-emoji-char = "0.9"
|
unic-emoji-char = "0.9"
|
||||||
unic-ucd-ident = "0.9"
|
unic-ucd-ident = "0.9"
|
||||||
unicode_names2 = "1.2"
|
unicode_names2 = "1.3"
|
||||||
phf = { version = "0.11", features = ["macros"] }
|
phf = { version = "0.11", features = ["macros"] }
|
||||||
ahash = "0.8"
|
ahash = "0.8"
|
||||||
|
|
||||||
|
@ -1,8 +1,10 @@
|
|||||||
use crate::ast::Ident;
|
use crate::{
|
||||||
use crate::ast::Location;
|
ast::{Ident, Location},
|
||||||
use crate::error::*;
|
error::*,
|
||||||
use crate::token::Tok;
|
token::Tok,
|
||||||
|
};
|
||||||
use lalrpop_util::ParseError;
|
use lalrpop_util::ParseError;
|
||||||
|
|
||||||
use nac3ast::*;
|
use nac3ast::*;
|
||||||
|
|
||||||
pub fn make_config_comment(
|
pub fn make_config_comment(
|
||||||
|
@ -1,13 +1,12 @@
|
|||||||
//! Define internal parse error types
|
//! Define internal parse error types
|
||||||
//! The goal is to provide a matching and a safe error API, maksing errors from LALR
|
//! The goal is to provide a matching and a safe error API, maksing errors from LALR
|
||||||
use lalrpop_util::ParseError as LalrpopError;
|
|
||||||
|
|
||||||
use crate::ast::Location;
|
|
||||||
use crate::token::Tok;
|
|
||||||
|
|
||||||
use std::error::Error;
|
use std::error::Error;
|
||||||
use std::fmt;
|
use std::fmt;
|
||||||
|
|
||||||
|
use lalrpop_util::ParseError as LalrpopError;
|
||||||
|
|
||||||
|
use crate::{ast::Location, token::Tok};
|
||||||
|
|
||||||
/// Represents an error during lexical scanning.
|
/// Represents an error during lexical scanning.
|
||||||
#[derive(Debug, PartialEq)]
|
#[derive(Debug, PartialEq)]
|
||||||
pub struct LexicalError {
|
pub struct LexicalError {
|
||||||
|
@ -1,12 +1,11 @@
|
|||||||
use std::iter;
|
use std::{iter, mem, str};
|
||||||
use std::mem;
|
|
||||||
use std::str;
|
|
||||||
|
|
||||||
use crate::ast::{Constant, ConversionFlag, Expr, ExprKind, Location};
|
|
||||||
use crate::error::{FStringError, FStringErrorType, ParseError};
|
|
||||||
use crate::parser::parse_expression;
|
|
||||||
|
|
||||||
use self::FStringErrorType::*;
|
use self::FStringErrorType::*;
|
||||||
|
use crate::{
|
||||||
|
ast::{Constant, ConversionFlag, Expr, ExprKind, Location},
|
||||||
|
error::{FStringError, FStringErrorType, ParseError},
|
||||||
|
parser::parse_expression,
|
||||||
|
};
|
||||||
|
|
||||||
struct FStringParser<'a> {
|
struct FStringParser<'a> {
|
||||||
chars: iter::Peekable<str::Chars<'a>>,
|
chars: iter::Peekable<str::Chars<'a>>,
|
||||||
|
@ -1,8 +1,11 @@
|
|||||||
use ahash::RandomState;
|
|
||||||
use std::collections::HashSet;
|
use std::collections::HashSet;
|
||||||
|
|
||||||
use crate::ast;
|
use ahash::RandomState;
|
||||||
use crate::error::{LexicalError, LexicalErrorType};
|
|
||||||
|
use crate::{
|
||||||
|
ast,
|
||||||
|
error::{LexicalError, LexicalErrorType},
|
||||||
|
};
|
||||||
|
|
||||||
pub struct ArgumentList {
|
pub struct ArgumentList {
|
||||||
pub args: Vec<ast::Expr>,
|
pub args: Vec<ast::Expr>,
|
||||||
|
@ -1,17 +1,17 @@
|
|||||||
//! This module takes care of lexing python source text.
|
//! This module takes care of lexing python source text.
|
||||||
//!
|
//!
|
||||||
//! This means source code is translated into separate tokens.
|
//! This means source code is translated into separate tokens.
|
||||||
|
use std::{char, cmp::Ordering, num::IntErrorKind, str::FromStr};
|
||||||
|
|
||||||
pub use super::token::Tok;
|
|
||||||
use crate::ast::{FileName, Location};
|
|
||||||
use crate::error::{LexicalError, LexicalErrorType};
|
|
||||||
use std::char;
|
|
||||||
use std::cmp::Ordering;
|
|
||||||
use std::num::IntErrorKind;
|
|
||||||
use std::str::FromStr;
|
|
||||||
use unic_emoji_char::is_emoji_presentation;
|
use unic_emoji_char::is_emoji_presentation;
|
||||||
use unic_ucd_ident::{is_xid_continue, is_xid_start};
|
use unic_ucd_ident::{is_xid_continue, is_xid_start};
|
||||||
|
|
||||||
|
pub use super::token::Tok;
|
||||||
|
use crate::{
|
||||||
|
ast::{FileName, Location},
|
||||||
|
error::{LexicalError, LexicalErrorType},
|
||||||
|
};
|
||||||
|
|
||||||
#[derive(Clone, Copy, PartialEq, Debug, Default)]
|
#[derive(Clone, Copy, PartialEq, Debug, Default)]
|
||||||
struct IndentationLevel {
|
struct IndentationLevel {
|
||||||
tabs: usize,
|
tabs: usize,
|
||||||
|
@ -5,14 +5,16 @@
|
|||||||
//! parse a whole program, a single statement, or a single
|
//! parse a whole program, a single statement, or a single
|
||||||
//! expression.
|
//! expression.
|
||||||
|
|
||||||
use nac3ast::Location;
|
|
||||||
use std::iter;
|
use std::iter;
|
||||||
|
|
||||||
use crate::ast::{self, FileName};
|
use nac3ast::Location;
|
||||||
use crate::error::ParseError;
|
|
||||||
use crate::lexer;
|
|
||||||
pub use crate::mode::Mode;
|
pub use crate::mode::Mode;
|
||||||
use crate::python;
|
use crate::{
|
||||||
|
ast::{self, FileName},
|
||||||
|
error::ParseError,
|
||||||
|
lexer, python,
|
||||||
|
};
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Parse python code.
|
* Parse python code.
|
||||||
|
@ -1,8 +1,9 @@
|
|||||||
//! Different token definitions.
|
//! Different token definitions.
|
||||||
//! Loosely based on token.h from CPython source:
|
//! Loosely based on token.h from CPython source:
|
||||||
use crate::ast;
|
|
||||||
use std::fmt::{self, Write};
|
use std::fmt::{self, Write};
|
||||||
|
|
||||||
|
use crate::ast;
|
||||||
|
|
||||||
/// Python source code can be tokenized in a sequence of these tokens.
|
/// Python source code can be tokenized in a sequence of these tokens.
|
||||||
#[derive(Clone, Debug, PartialEq)]
|
#[derive(Clone, Debug, PartialEq)]
|
||||||
pub enum Tok {
|
pub enum Tok {
|
||||||
|
@ -9,14 +9,8 @@ no-escape-analysis = ["nac3core/no-escape-analysis"]
|
|||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
parking_lot = "0.12"
|
parking_lot = "0.12"
|
||||||
nac3parser = { path = "../nac3parser" }
|
|
||||||
nac3core = { path = "../nac3core" }
|
nac3core = { path = "../nac3core" }
|
||||||
|
|
||||||
[dependencies.clap]
|
[dependencies.clap]
|
||||||
version = "4.5"
|
version = "4.5"
|
||||||
features = ["derive"]
|
features = ["derive"]
|
||||||
|
|
||||||
[dependencies.inkwell]
|
|
||||||
version = "0.4"
|
|
||||||
default-features = false
|
|
||||||
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
|
||||||
|
@ -179,16 +179,6 @@ def patch(module):
|
|||||||
module.np_identity = np.identity
|
module.np_identity = np.identity
|
||||||
module.np_array = np.array
|
module.np_array = np.array
|
||||||
|
|
||||||
# NumPy NDArray view functions
|
|
||||||
module.np_broadcast_to = np.broadcast_to
|
|
||||||
module.np_transpose = np.transpose
|
|
||||||
module.np_reshape = np.reshape
|
|
||||||
|
|
||||||
# NumPy NDArray property getters
|
|
||||||
module.np_size = np.size
|
|
||||||
module.np_shape = np.shape
|
|
||||||
module.np_strides = lambda ndarray: ndarray.strides
|
|
||||||
|
|
||||||
# NumPy Math functions
|
# NumPy Math functions
|
||||||
module.np_isnan = np.isnan
|
module.np_isnan = np.isnan
|
||||||
module.np_isinf = np.isinf
|
module.np_isinf = np.isinf
|
||||||
@ -228,6 +218,8 @@ def patch(module):
|
|||||||
module.np_ldexp = np.ldexp
|
module.np_ldexp = np.ldexp
|
||||||
module.np_hypot = np.hypot
|
module.np_hypot = np.hypot
|
||||||
module.np_nextafter = np.nextafter
|
module.np_nextafter = np.nextafter
|
||||||
|
module.np_transpose = np.transpose
|
||||||
|
module.np_reshape = np.reshape
|
||||||
|
|
||||||
# SciPy Math functions
|
# SciPy Math functions
|
||||||
module.sp_spec_erf = special.erf
|
module.sp_spec_erf = special.erf
|
||||||
|
31
nac3standalone/demo/src/globals.py
Normal file
31
nac3standalone/demo/src/globals.py
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
@extern
|
||||||
|
def output_int32(x: int32):
|
||||||
|
...
|
||||||
|
|
||||||
|
@extern
|
||||||
|
def output_int64(x: int64):
|
||||||
|
...
|
||||||
|
|
||||||
|
X: int32 = 0
|
||||||
|
Y = int64(1)
|
||||||
|
|
||||||
|
def f():
|
||||||
|
global X, Y
|
||||||
|
X = 1
|
||||||
|
Y = int64(2)
|
||||||
|
|
||||||
|
def run() -> int32:
|
||||||
|
global X, Y
|
||||||
|
|
||||||
|
output_int32(X)
|
||||||
|
output_int64(Y)
|
||||||
|
f()
|
||||||
|
output_int32(X)
|
||||||
|
output_int64(Y)
|
||||||
|
|
||||||
|
X = 0
|
||||||
|
Y = int64(0)
|
||||||
|
output_int32(X)
|
||||||
|
output_int64(Y)
|
||||||
|
|
||||||
|
return 0
|
@ -68,19 +68,6 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
|
|||||||
for c in range(len(n[r])):
|
for c in range(len(n[r])):
|
||||||
output_float64(n[r][c])
|
output_float64(n[r][c])
|
||||||
|
|
||||||
def output_ndarray_float_3(n: ndarray[float, Literal[3]]):
|
|
||||||
for d in range(len(n)):
|
|
||||||
for r in range(len(n[d])):
|
|
||||||
for c in range(len(n[d][r])):
|
|
||||||
output_float64(n[d][r][c])
|
|
||||||
|
|
||||||
def output_ndarray_float_4(n: ndarray[float, Literal[4]]):
|
|
||||||
for x in range(len(n)):
|
|
||||||
for y in range(len(n[x])):
|
|
||||||
for z in range(len(n[x][y])):
|
|
||||||
for w in range(len(n[x][y][z])):
|
|
||||||
output_float64(n[x][y][z][w])
|
|
||||||
|
|
||||||
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
|
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@ -127,12 +114,22 @@ def test_ndarray_ones():
|
|||||||
n: ndarray[float, 1] = np_ones([1])
|
n: ndarray[float, 1] = np_ones([1])
|
||||||
output_ndarray_float_1(n)
|
output_ndarray_float_1(n)
|
||||||
|
|
||||||
|
dim = (1,)
|
||||||
|
n_tup: ndarray[float, 1] = np_ones(dim)
|
||||||
|
output_ndarray_float_1(n_tup)
|
||||||
|
|
||||||
def test_ndarray_full():
|
def test_ndarray_full():
|
||||||
n_float: ndarray[float, 1] = np_full([1], 2.0)
|
n_float: ndarray[float, 1] = np_full([1], 2.0)
|
||||||
output_ndarray_float_1(n_float)
|
output_ndarray_float_1(n_float)
|
||||||
n_i32: ndarray[int32, 1] = np_full([1], 2)
|
n_i32: ndarray[int32, 1] = np_full([1], 2)
|
||||||
output_ndarray_int32_1(n_i32)
|
output_ndarray_int32_1(n_i32)
|
||||||
|
|
||||||
|
dim = (1,)
|
||||||
|
n_float_tup: ndarray[float, 1] = np_full(dim, 2.0)
|
||||||
|
output_ndarray_float_1(n_float_tup)
|
||||||
|
n_i32_tup: ndarray[int32, 1] = np_full(dim, 2)
|
||||||
|
output_ndarray_int32_1(n_i32_tup)
|
||||||
|
|
||||||
def test_ndarray_eye():
|
def test_ndarray_eye():
|
||||||
n: ndarray[float, 2] = np_eye(2)
|
n: ndarray[float, 2] = np_eye(2)
|
||||||
output_ndarray_float_2(n)
|
output_ndarray_float_2(n)
|
||||||
@ -199,104 +196,6 @@ def test_ndarray_nd_idx():
|
|||||||
output_float64(x[1, 0])
|
output_float64(x[1, 0])
|
||||||
output_float64(x[1, 1])
|
output_float64(x[1, 1])
|
||||||
|
|
||||||
def test_ndarray_transpose():
|
|
||||||
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
|
|
||||||
y = np_transpose(x)
|
|
||||||
z = np_transpose(y)
|
|
||||||
|
|
||||||
output_int32(np_shape(x)[0])
|
|
||||||
output_int32(np_shape(x)[1])
|
|
||||||
output_ndarray_float_2(x)
|
|
||||||
|
|
||||||
output_int32(np_shape(y)[0])
|
|
||||||
output_int32(np_shape(y)[1])
|
|
||||||
output_ndarray_float_2(y)
|
|
||||||
|
|
||||||
output_int32(np_shape(z)[0])
|
|
||||||
output_int32(np_shape(z)[1])
|
|
||||||
output_ndarray_float_2(z)
|
|
||||||
|
|
||||||
def test_ndarray_reshape():
|
|
||||||
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
|
|
||||||
x = np_reshape(w, (1, 2, 1, -1))
|
|
||||||
y = np_reshape(x, [2, -1])
|
|
||||||
z = np_reshape(y, 10)
|
|
||||||
|
|
||||||
output_int32(np_shape(w)[0])
|
|
||||||
output_ndarray_float_1(w)
|
|
||||||
|
|
||||||
output_int32(np_shape(x)[0])
|
|
||||||
output_int32(np_shape(x)[1])
|
|
||||||
output_int32(np_shape(x)[2])
|
|
||||||
output_int32(np_shape(x)[3])
|
|
||||||
output_ndarray_float_4(x)
|
|
||||||
|
|
||||||
output_int32(np_shape(y)[0])
|
|
||||||
output_int32(np_shape(y)[1])
|
|
||||||
output_ndarray_float_2(y)
|
|
||||||
|
|
||||||
output_int32(np_shape(z)[0])
|
|
||||||
output_ndarray_float_1(z)
|
|
||||||
|
|
||||||
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
|
|
||||||
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
|
|
||||||
|
|
||||||
output_int32(np_shape(x1)[0])
|
|
||||||
output_ndarray_int32_1(x1)
|
|
||||||
|
|
||||||
output_int32(np_shape(x2)[0])
|
|
||||||
output_int32(np_shape(x2)[1])
|
|
||||||
output_ndarray_int32_2(x2)
|
|
||||||
|
|
||||||
def test_ndarray_broadcast_to():
|
|
||||||
xs = np_array([1.0, 2.0, 3.0])
|
|
||||||
ys = np_broadcast_to(xs, (1, 3))
|
|
||||||
zs = np_broadcast_to(ys, (2, 4, 3))
|
|
||||||
|
|
||||||
output_int32(np_shape(xs)[0])
|
|
||||||
output_ndarray_float_1(xs)
|
|
||||||
|
|
||||||
output_int32(np_shape(ys)[0])
|
|
||||||
output_int32(np_shape(ys)[1])
|
|
||||||
output_ndarray_float_2(ys)
|
|
||||||
|
|
||||||
output_int32(np_shape(zs)[0])
|
|
||||||
output_int32(np_shape(zs)[1])
|
|
||||||
output_int32(np_shape(zs)[2])
|
|
||||||
output_ndarray_float_3(zs)
|
|
||||||
|
|
||||||
def test_ndarray_subscript_assignment():
|
|
||||||
xs = np_array([[11.0, 22.0, 33.0, 44.0], [55.0, 66.0, 77.0, 88.0]])
|
|
||||||
|
|
||||||
xs[0, 0] = 99.0
|
|
||||||
output_ndarray_float_2(xs)
|
|
||||||
|
|
||||||
xs[0] = 100.0
|
|
||||||
output_ndarray_float_2(xs)
|
|
||||||
|
|
||||||
xs[:, ::2] = 101.0
|
|
||||||
output_ndarray_float_2(xs)
|
|
||||||
|
|
||||||
xs[1:, 0] = 102.0
|
|
||||||
output_ndarray_float_2(xs)
|
|
||||||
|
|
||||||
xs[0] = np_array([-1.0, -2.0, -3.0, -4.0])
|
|
||||||
output_ndarray_float_2(xs)
|
|
||||||
|
|
||||||
xs[:] = np_array([-5.0, -6.0, -7.0, -8.0])
|
|
||||||
output_ndarray_float_2(xs)
|
|
||||||
|
|
||||||
# Test assignment with memory sharing
|
|
||||||
ys1 = np_reshape(xs, (2, 4))
|
|
||||||
ys2 = np_transpose(ys1)
|
|
||||||
ys3 = ys2[::-1, 0]
|
|
||||||
ys3[0] = -999.0
|
|
||||||
|
|
||||||
output_ndarray_float_2(xs)
|
|
||||||
output_ndarray_float_2(ys1)
|
|
||||||
output_ndarray_float_2(ys2)
|
|
||||||
output_ndarray_float_1(ys3)
|
|
||||||
|
|
||||||
def test_ndarray_add():
|
def test_ndarray_add():
|
||||||
x = np_identity(2)
|
x = np_identity(2)
|
||||||
y = x + np_ones([2, 2])
|
y = x + np_ones([2, 2])
|
||||||
@ -641,59 +540,11 @@ def test_ndarray_ipow_broadcast_scalar():
|
|||||||
output_ndarray_float_2(x)
|
output_ndarray_float_2(x)
|
||||||
|
|
||||||
def test_ndarray_matmul():
|
def test_ndarray_matmul():
|
||||||
# 2D @ 2D -> 2D
|
x = np_identity(2)
|
||||||
a1 = np_array([[2.0, 3.0], [5.0, 7.0]])
|
y = x @ np_ones([2, 2])
|
||||||
b1 = np_array([[11.0, 13.0], [17.0, 23.0]])
|
|
||||||
c1 = a1 @ b1
|
|
||||||
output_int32(np_shape(c1)[0])
|
|
||||||
output_int32(np_shape(c1)[1])
|
|
||||||
output_ndarray_float_2(c1)
|
|
||||||
|
|
||||||
# 1D @ 1D -> Scalar
|
output_ndarray_float_2(x)
|
||||||
a2 = np_array([2.0, 3.0, 5.0])
|
output_ndarray_float_2(y)
|
||||||
b2 = np_array([7.0, 11.0, 13.0])
|
|
||||||
c2 = a2 @ b2
|
|
||||||
output_float64(c2)
|
|
||||||
|
|
||||||
# 2D @ 1D -> 1D
|
|
||||||
a3 = np_array([[1.0, 2.0, 3.0], [7.0, 8.0, 9.0]])
|
|
||||||
b3 = np_array([4.0, 5.0, 6.0])
|
|
||||||
c3 = a3 @ b3
|
|
||||||
output_int32(np_shape(c3)[0])
|
|
||||||
output_ndarray_float_1(c3)
|
|
||||||
|
|
||||||
# 1D @ 2D -> 1D
|
|
||||||
a4 = np_array([1.0, 2.0, 3.0])
|
|
||||||
b4 = np_array([[4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])
|
|
||||||
c4 = a4 @ b4
|
|
||||||
output_int32(np_shape(c4)[0])
|
|
||||||
output_ndarray_float_1(c4)
|
|
||||||
|
|
||||||
# Broadcasting
|
|
||||||
a5 = np_array([
|
|
||||||
[[ 0.0, 1.0, 2.0, 3.0],
|
|
||||||
[ 4.0, 5.0, 6.0, 7.0]],
|
|
||||||
[[ 8.0, 9.0, 10.0, 11.0],
|
|
||||||
[12.0, 13.0, 14.0, 15.0]],
|
|
||||||
[[16.0, 17.0, 18.0, 19.0],
|
|
||||||
[20.0, 21.0, 22.0, 23.0]]
|
|
||||||
])
|
|
||||||
b5 = np_array([
|
|
||||||
[[[ 0.0, 1.0, 2.0],
|
|
||||||
[ 3.0, 4.0, 5.0],
|
|
||||||
[ 6.0, 7.0, 8.0],
|
|
||||||
[ 9.0, 10.0, 11.0]]],
|
|
||||||
[[[12.0, 13.0, 14.0],
|
|
||||||
[15.0, 16.0, 17.0],
|
|
||||||
[18.0, 19.0, 20.0],
|
|
||||||
[21.0, 22.0, 23.0]]]
|
|
||||||
])
|
|
||||||
c5 = a5 @ b5
|
|
||||||
output_int32(np_shape(c5)[0])
|
|
||||||
output_int32(np_shape(c5)[1])
|
|
||||||
output_int32(np_shape(c5)[2])
|
|
||||||
output_int32(np_shape(c5)[3])
|
|
||||||
output_ndarray_float_4(c5)
|
|
||||||
|
|
||||||
def test_ndarray_imatmul():
|
def test_ndarray_imatmul():
|
||||||
x = np_identity(2)
|
x = np_identity(2)
|
||||||
@ -1588,6 +1439,27 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
|
|||||||
output_ndarray_float_2(nextafter_x_zeros)
|
output_ndarray_float_2(nextafter_x_zeros)
|
||||||
output_ndarray_float_2(nextafter_x_ones)
|
output_ndarray_float_2(nextafter_x_ones)
|
||||||
|
|
||||||
|
def test_ndarray_transpose():
|
||||||
|
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
|
||||||
|
y = np_transpose(x)
|
||||||
|
z = np_transpose(y)
|
||||||
|
|
||||||
|
output_ndarray_float_2(x)
|
||||||
|
output_ndarray_float_2(y)
|
||||||
|
|
||||||
|
def test_ndarray_reshape():
|
||||||
|
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
|
||||||
|
x = np_reshape(w, (1, 2, 1, -1))
|
||||||
|
y = np_reshape(x, [2, -1])
|
||||||
|
z = np_reshape(y, 10)
|
||||||
|
|
||||||
|
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
|
||||||
|
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
|
||||||
|
|
||||||
|
output_ndarray_float_1(w)
|
||||||
|
output_ndarray_float_2(y)
|
||||||
|
output_ndarray_float_1(z)
|
||||||
|
|
||||||
def test_ndarray_dot():
|
def test_ndarray_dot():
|
||||||
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
|
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
|
||||||
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
|
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
|
||||||
@ -1719,11 +1591,6 @@ def run() -> int32:
|
|||||||
test_ndarray_slices()
|
test_ndarray_slices()
|
||||||
test_ndarray_nd_idx()
|
test_ndarray_nd_idx()
|
||||||
|
|
||||||
test_ndarray_transpose()
|
|
||||||
test_ndarray_reshape()
|
|
||||||
test_ndarray_broadcast_to()
|
|
||||||
test_ndarray_subscript_assignment()
|
|
||||||
|
|
||||||
test_ndarray_add()
|
test_ndarray_add()
|
||||||
test_ndarray_add_broadcast()
|
test_ndarray_add_broadcast()
|
||||||
test_ndarray_add_broadcast_lhs_scalar()
|
test_ndarray_add_broadcast_lhs_scalar()
|
||||||
@ -1887,6 +1754,8 @@ def run() -> int32:
|
|||||||
test_ndarray_nextafter_broadcast()
|
test_ndarray_nextafter_broadcast()
|
||||||
test_ndarray_nextafter_broadcast_lhs_scalar()
|
test_ndarray_nextafter_broadcast_lhs_scalar()
|
||||||
test_ndarray_nextafter_broadcast_rhs_scalar()
|
test_ndarray_nextafter_broadcast_rhs_scalar()
|
||||||
|
test_ndarray_transpose()
|
||||||
|
test_ndarray_reshape()
|
||||||
|
|
||||||
test_ndarray_dot()
|
test_ndarray_dot()
|
||||||
test_ndarray_cholesky()
|
test_ndarray_cholesky()
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user