forked from M-Labs/nac3
standalone: add linalg methods and tests
This commit is contained in:
parent
2242c5af43
commit
d6a4d0a634
@ -5,6 +5,7 @@ import importlib.util
|
||||
import importlib.machinery
|
||||
import math
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
import numpy.typing as npt
|
||||
import pathlib
|
||||
|
||||
@ -226,6 +227,19 @@ def patch(module):
|
||||
module.sp_spec_j0 = special.j0
|
||||
module.sp_spec_j1 = special.j1
|
||||
|
||||
# Linalg functions
|
||||
module.np_dot = np.dot
|
||||
module.np_linalg_matmul = np.matmul
|
||||
module.np_linalg_cholesky = np.linalg.cholesky
|
||||
module.np_linalg_qr = np.linalg.qr
|
||||
module.np_linalg_svd = np.linalg.svd
|
||||
module.np_linalg_inv = np.linalg.inv
|
||||
module.np_linalg_pinv = np.linalg.pinv
|
||||
|
||||
module.sp_linalg_lu = lambda x: sp.linalg.lu(x, True)
|
||||
module.sp_linalg_schur = sp.linalg.schur
|
||||
module.sp_linalg_hessenberg = lambda x: sp.linalg.hessenberg(x, True)
|
||||
|
||||
def file_import(filename, prefix="file_import_"):
|
||||
filename = pathlib.Path(filename)
|
||||
modname = prefix + filename.stem
|
||||
|
@ -1429,6 +1429,104 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
|
||||
output_ndarray_float_2(nextafter_x_zeros)
|
||||
output_ndarray_float_2(nextafter_x_ones)
|
||||
|
||||
def test_ndarray_dot():
|
||||
x: ndarray[float, 1] = np_array([5.0, 1.0])
|
||||
y: ndarray[float, 1] = np_array([5.0, 1.0])
|
||||
z = np_dot(x, y)
|
||||
|
||||
output_ndarray_float_1(x)
|
||||
output_ndarray_float_1(y)
|
||||
output_float64(z)
|
||||
|
||||
def test_ndarray_linalg_matmul():
|
||||
x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
|
||||
y: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
|
||||
z = np_linalg_matmul(x, y)
|
||||
|
||||
m = np_argmax(z)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
output_ndarray_float_2(y)
|
||||
output_ndarray_float_2(z)
|
||||
output_int64(m)
|
||||
|
||||
def test_ndarray_cholesky():
|
||||
x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]])
|
||||
y = np_linalg_cholesky(x)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
output_ndarray_float_2(y)
|
||||
|
||||
def test_ndarray_qr():
|
||||
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
|
||||
y, z = np_linalg_qr(x)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
|
||||
# QR Factorization is not unique and gives different results in numpy and nalgebra
|
||||
# Reverting the decomposition to compare the initial arrays
|
||||
a = np_linalg_matmul(y, z)
|
||||
output_ndarray_float_2(a)
|
||||
|
||||
def test_ndarray_linalg_inv():
|
||||
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
|
||||
y = np_linalg_inv(x)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
output_ndarray_float_2(y)
|
||||
|
||||
def test_ndarray_pinv():
|
||||
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
|
||||
y = np_linalg_pinv(x)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
output_ndarray_float_2(y)
|
||||
|
||||
def test_ndarray_schur():
|
||||
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
|
||||
t, z = sp_linalg_schur(x)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
|
||||
# Schur Factorization is not unique and gives different results in scipy and nalgebra
|
||||
# Reverting the decomposition to compare the initial arrays
|
||||
a = np_linalg_matmul(np_linalg_matmul(z, t), np_linalg_inv(z))
|
||||
output_ndarray_float_2(a)
|
||||
|
||||
def test_ndarray_hessenberg():
|
||||
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 5.0, 8.5]])
|
||||
h, q = sp_linalg_hessenberg(x)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
|
||||
# Hessenberg Factorization is not unique and gives different results in scipy and nalgebra
|
||||
# Reverting the decomposition to compare the initial arrays
|
||||
a = np_linalg_matmul(np_linalg_matmul(q, h), np_linalg_inv(q))
|
||||
output_ndarray_float_2(a)
|
||||
|
||||
|
||||
def test_ndarray_lu():
|
||||
x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]])
|
||||
l, u = sp_linalg_lu(x)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
output_ndarray_float_2(l)
|
||||
output_ndarray_float_2(u)
|
||||
|
||||
|
||||
def test_ndarray_svd():
|
||||
w: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]])
|
||||
x, y, z = np_linalg_svd(w)
|
||||
|
||||
output_ndarray_float_2(w)
|
||||
|
||||
# SVD Factorization is not unique and gives different results in numpy and nalgebra
|
||||
# Reverting the decomposition to compare the initial arrays
|
||||
a = np_linalg_matmul(x, z)
|
||||
output_ndarray_float_2(a)
|
||||
output_ndarray_float_1(y)
|
||||
|
||||
|
||||
def run() -> int32:
|
||||
test_ndarray_ctor()
|
||||
test_ndarray_empty()
|
||||
@ -1608,4 +1706,14 @@ def run() -> int32:
|
||||
test_ndarray_nextafter_broadcast_lhs_scalar()
|
||||
test_ndarray_nextafter_broadcast_rhs_scalar()
|
||||
|
||||
test_ndarray_dot()
|
||||
test_ndarray_linalg_matmul()
|
||||
test_ndarray_cholesky()
|
||||
test_ndarray_qr()
|
||||
test_ndarray_svd()
|
||||
test_ndarray_linalg_inv()
|
||||
test_ndarray_pinv()
|
||||
test_ndarray_lu()
|
||||
test_ndarray_schur()
|
||||
test_ndarray_hessenberg()
|
||||
return 0
|
||||
|
Loading…
Reference in New Issue
Block a user