forked from M-Labs/nac3
core: Refactor generic constants to Literal
Better matches the syntax of `typing.Literal`.
This commit is contained in:
parent
5f692debd8
commit
457d3b6cd7
@ -60,9 +60,8 @@ pub enum ConcreteTypeEnum {
|
||||
ret: ConcreteType,
|
||||
vars: HashMap<u32, ConcreteType>,
|
||||
},
|
||||
TConstant {
|
||||
value: SymbolValue,
|
||||
ty: ConcreteType,
|
||||
TLiteral {
|
||||
values: Vec<SymbolValue>,
|
||||
},
|
||||
}
|
||||
|
||||
@ -202,9 +201,8 @@ impl ConcreteTypeStore {
|
||||
TypeEnum::TFunc(signature) => {
|
||||
self.from_signature(unifier, primitives, signature, cache)
|
||||
}
|
||||
TypeEnum::TConstant { value, ty, .. } => ConcreteTypeEnum::TConstant {
|
||||
value: value.clone(),
|
||||
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
|
||||
TypeEnum::TLiteral { values, .. } => ConcreteTypeEnum::TLiteral {
|
||||
values: values.clone(),
|
||||
},
|
||||
_ => unreachable!("{:?}", ty_enum.get_type_name()),
|
||||
};
|
||||
@ -293,9 +291,8 @@ impl ConcreteTypeStore {
|
||||
.map(|(id, cty)| (*id, self.to_unifier_type(unifier, primitives, *cty, cache)))
|
||||
.collect::<HashMap<_, _>>(),
|
||||
}),
|
||||
ConcreteTypeEnum::TConstant { value, ty } => TypeEnum::TConstant {
|
||||
value: value.clone(),
|
||||
ty: self.to_unifier_type(unifier, primitives, *ty, cache),
|
||||
ConcreteTypeEnum::TLiteral { values, .. } => TypeEnum::TLiteral {
|
||||
values: values.clone(),
|
||||
loc: None,
|
||||
}
|
||||
};
|
||||
|
@ -114,6 +114,41 @@ impl SymbolValue {
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a [`SymbolValue`] from a [`Constant`], with its type being inferred from the constant value.
|
||||
///
|
||||
/// * `constant` - The constant to create the value from.
|
||||
pub fn from_constant_inferred(
|
||||
constant: &Constant,
|
||||
unifier: &mut Unifier
|
||||
) -> Result<Self, String> {
|
||||
match constant {
|
||||
Constant::None => Ok(SymbolValue::OptionNone),
|
||||
Constant::Bool(b) => Ok(SymbolValue::Bool(*b)),
|
||||
Constant::Str(s) => Ok(SymbolValue::Str(s.to_string())),
|
||||
Constant::Int(i) => {
|
||||
let i = *i;
|
||||
if i >= 0 {
|
||||
i32::try_from(i).map(SymbolValue::I32)
|
||||
.or_else(|_| i64::try_from(i).map(SymbolValue::I64))
|
||||
.map_err(|_| format!("Literal cannot be expressed as any integral type: {i}"))
|
||||
} else {
|
||||
u32::try_from(i).map(SymbolValue::U32)
|
||||
.or_else(|_| u64::try_from(i).map(SymbolValue::U64))
|
||||
.map_err(|_| format!("Literal cannot be expressed as any integral type: {i}"))
|
||||
}
|
||||
}
|
||||
Constant::Tuple(t) => {
|
||||
let elems = t
|
||||
.iter()
|
||||
.map(|constant| Self::from_constant_inferred(constant, unifier))
|
||||
.collect::<Result<Vec<SymbolValue>, _>>()?;
|
||||
Ok(SymbolValue::Tuple(elems))
|
||||
}
|
||||
Constant::Float(f) => Ok(SymbolValue::Double(*f)),
|
||||
_ => Err(format!("Unsupported value type {constant:?}")),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the [`Type`] representing the data type of this value.
|
||||
pub fn get_type(&self, primitives: &PrimitiveStore, unifier: &mut Unifier) -> Type {
|
||||
match self {
|
||||
|
@ -1,5 +1,6 @@
|
||||
use crate::symbol_resolver::SymbolValue;
|
||||
use super::*;
|
||||
use nac3parser::ast::Constant;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum TypeAnnotation {
|
||||
@ -13,16 +14,8 @@ pub enum TypeAnnotation {
|
||||
// can only be CustomClassKind
|
||||
Virtual(Box<TypeAnnotation>),
|
||||
TypeVar(Type),
|
||||
/// A constant used in the context of a const-generic variable.
|
||||
Constant {
|
||||
/// The non-type variable associated with this constant.
|
||||
///
|
||||
/// Invoking [Unifier::get_ty] on this type will return a [TypeEnum::TVar] representing the
|
||||
/// const generic variable of which this constant is associated with.
|
||||
ty: Type,
|
||||
/// The constant value of this constant.
|
||||
value: SymbolValue
|
||||
},
|
||||
/// A `Literal` allowing a subset of literals.
|
||||
Literal(Vec<Constant>),
|
||||
List(Box<TypeAnnotation>),
|
||||
Tuple(Vec<TypeAnnotation>),
|
||||
}
|
||||
@ -57,7 +50,7 @@ impl TypeAnnotation {
|
||||
}
|
||||
)
|
||||
}
|
||||
Constant { value, .. } => format!("Const({value})"),
|
||||
Literal(values) => format!("Literal({})", values.iter().map(|v| format!("{v:?}")).join(", ")),
|
||||
Virtual(ty) => format!("virtual[{}]", ty.stringify(unifier)),
|
||||
List(ty) => format!("list[{}]", ty.stringify(unifier)),
|
||||
Tuple(types) => {
|
||||
@ -191,8 +184,7 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
}
|
||||
let result = params_ast
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, x)| {
|
||||
.map(|x| {
|
||||
parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
@ -203,7 +195,7 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
locked.insert(obj_id, type_vars.clone());
|
||||
locked.clone()
|
||||
},
|
||||
Some(type_vars[idx]),
|
||||
None,
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
@ -319,6 +311,46 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
Ok(TypeAnnotation::Tuple(type_annotations))
|
||||
}
|
||||
|
||||
// Literal
|
||||
ast::ExprKind::Subscript { value, slice, .. }
|
||||
if {
|
||||
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"Literal".into())
|
||||
} => {
|
||||
let tup_elts = {
|
||||
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||
elts.as_slice()
|
||||
} else {
|
||||
std::slice::from_ref(slice.as_ref())
|
||||
}
|
||||
};
|
||||
let type_annotations = tup_elts
|
||||
.iter()
|
||||
.map(|e| {
|
||||
match &e.node {
|
||||
ast::ExprKind::Constant { value, .. } => Ok(
|
||||
TypeAnnotation::Literal(vec![value.clone()]),
|
||||
),
|
||||
_ => parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
e,
|
||||
locked.clone(),
|
||||
None,
|
||||
),
|
||||
}
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
.into_iter()
|
||||
.flat_map(|type_ann| match type_ann {
|
||||
TypeAnnotation::Literal(values) => values,
|
||||
_ => unreachable!(),
|
||||
})
|
||||
.collect_vec();
|
||||
Ok(TypeAnnotation::Literal(type_annotations))
|
||||
}
|
||||
|
||||
// custom class
|
||||
ast::ExprKind::Subscript { value, slice, .. } => {
|
||||
if let ast::ExprKind::Name { id, .. } = &value.node {
|
||||
@ -331,30 +363,7 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
|
||||
}
|
||||
|
||||
ast::ExprKind::Constant { value, .. } => {
|
||||
let type_var = type_var.expect("Expect type variable to be present");
|
||||
|
||||
let ntv_ty_enum = unifier.get_ty_immutable(type_var);
|
||||
let TypeEnum::TVar { range: underlying_ty, .. } = ntv_ty_enum.as_ref() else {
|
||||
unreachable!()
|
||||
};
|
||||
let underlying_ty = underlying_ty[0];
|
||||
|
||||
let value = SymbolValue::from_constant(value, underlying_ty, primitives, unifier)
|
||||
.map_err(|err| HashSet::from([err]))?;
|
||||
|
||||
if matches!(value, SymbolValue::Str(_) | SymbolValue::Tuple(_) | SymbolValue::OptionSome(_)) {
|
||||
return Err(HashSet::from([
|
||||
format!(
|
||||
"expression {value} is not allowed for constant type annotation (at {})",
|
||||
expr.location
|
||||
),
|
||||
]))
|
||||
}
|
||||
|
||||
Ok(TypeAnnotation::Constant {
|
||||
ty: type_var,
|
||||
value,
|
||||
})
|
||||
Ok(TypeAnnotation::Literal(vec![value.clone()]))
|
||||
}
|
||||
|
||||
_ => Err(HashSet::from([
|
||||
@ -495,14 +504,13 @@ pub fn get_type_from_type_annotation_kinds(
|
||||
Ok(ty)
|
||||
}
|
||||
TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty),
|
||||
TypeAnnotation::Constant { ty, value, .. } => {
|
||||
let ty_enum = unifier.get_ty(*ty);
|
||||
let TypeEnum::TVar { range: ntv_underlying_ty, loc, is_const_generic: true, .. } = &*ty_enum else {
|
||||
unreachable!("{} ({})", unifier.stringify(*ty), ty_enum.get_type_name());
|
||||
};
|
||||
TypeAnnotation::Literal(values) => {
|
||||
let values = values.iter()
|
||||
.map(|v| SymbolValue::from_constant_inferred(v, unifier))
|
||||
.collect::<Result<Vec<_>, _>>()
|
||||
.map_err(|err| HashSet::from([err]))?;
|
||||
|
||||
let ty = ntv_underlying_ty[0];
|
||||
let var = unifier.get_fresh_constant(value.clone(), ty, *loc);
|
||||
let var = unifier.get_fresh_literal(values, None);
|
||||
Ok(var)
|
||||
}
|
||||
TypeAnnotation::Virtual(ty) => {
|
||||
@ -576,7 +584,7 @@ pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<Ty
|
||||
result.extend(get_type_var_contained_in_type_annotation(a));
|
||||
}
|
||||
}
|
||||
TypeAnnotation::Primitive(..) | TypeAnnotation::Constant { .. } => {}
|
||||
TypeAnnotation::Primitive(..) | TypeAnnotation::Literal { .. } => {}
|
||||
}
|
||||
result
|
||||
}
|
||||
|
@ -140,12 +140,10 @@ pub enum TypeEnum {
|
||||
is_const_generic: bool,
|
||||
},
|
||||
|
||||
/// A constant for substitution into a const generic variable.
|
||||
TConstant {
|
||||
/// A literal generic type matching `typing.Literal`.
|
||||
TLiteral {
|
||||
/// The value of the constant.
|
||||
value: SymbolValue,
|
||||
/// The underlying type of the value.
|
||||
ty: Type,
|
||||
values: Vec<SymbolValue>,
|
||||
loc: Option<Location>,
|
||||
},
|
||||
|
||||
@ -192,7 +190,7 @@ impl TypeEnum {
|
||||
match self {
|
||||
TypeEnum::TRigidVar { .. } => "TRigidVar",
|
||||
TypeEnum::TVar { .. } => "TVar",
|
||||
TypeEnum::TConstant { .. } => "TConstant",
|
||||
TypeEnum::TLiteral { .. } => "TConstant",
|
||||
TypeEnum::TTuple { .. } => "TTuple",
|
||||
TypeEnum::TList { .. } => "TList",
|
||||
TypeEnum::TObj { .. } => "TObj",
|
||||
@ -371,8 +369,7 @@ impl Unifier {
|
||||
(self.add_ty(TypeEnum::TVar { id, range, fields: None, name, loc, is_const_generic: false }), id)
|
||||
}
|
||||
|
||||
/// Returns a fresh type representing a constant generic variable with the given underlying type
|
||||
/// `ty`.
|
||||
/// Returns a fresh type representing a constant generic variable with the given underlying type `ty`.
|
||||
pub fn get_fresh_const_generic_var(
|
||||
&mut self,
|
||||
ty: Type,
|
||||
@ -384,17 +381,17 @@ impl Unifier {
|
||||
(self.add_ty(TypeEnum::TVar { id, range: vec![ty], fields: None, name, loc, is_const_generic: true }), id)
|
||||
}
|
||||
|
||||
/// Returns a fresh type representing a [fresh constant][TypeEnum::TConstant] with the given
|
||||
/// `value` and type `ty`.
|
||||
pub fn get_fresh_constant(
|
||||
/// Returns a fresh type representing a [literal][TypeEnum::TConstant] with the given `values`.
|
||||
pub fn get_fresh_literal(
|
||||
&mut self,
|
||||
value: SymbolValue,
|
||||
ty: Type,
|
||||
values: Vec<SymbolValue>,
|
||||
loc: Option<Location>,
|
||||
) -> Type {
|
||||
assert!(matches!(self.get_ty(ty).as_ref(), TypeEnum::TObj { .. }));
|
||||
|
||||
self.add_ty(TypeEnum::TConstant { ty, value, loc })
|
||||
let ty_enum = TypeEnum::TLiteral {
|
||||
values: values.clone(),
|
||||
loc
|
||||
};
|
||||
self.add_ty(ty_enum)
|
||||
}
|
||||
|
||||
/// Unification would not unify rigid variables with other types, but we want to do this for
|
||||
@ -469,7 +466,7 @@ impl Unifier {
|
||||
pub fn is_concrete(&mut self, a: Type, allowed_typevars: &[Type]) -> bool {
|
||||
use TypeEnum::*;
|
||||
match &*self.get_ty(a) {
|
||||
TRigidVar { .. } | TConstant { .. } => true,
|
||||
TRigidVar { .. } | TLiteral { .. } => true,
|
||||
TVar { .. } => allowed_typevars.iter().any(|b| self.unification_table.unioned(a, *b)),
|
||||
TCall { .. } => false,
|
||||
TList { ty } | TVirtual { ty } => self.is_concrete(*ty, allowed_typevars),
|
||||
@ -747,18 +744,54 @@ impl Unifier {
|
||||
self.set_a_to_b(a, b);
|
||||
}
|
||||
|
||||
(TVar { range: ty1, is_const_generic: true, .. }, TConstant { ty: ty2, .. }) => {
|
||||
let ty1 = ty1[0];
|
||||
(TVar { range: tys, is_const_generic: true, .. }, TLiteral { values, .. }) => {
|
||||
assert_eq!(tys.len(), 1);
|
||||
assert_eq!(values.len(), 1);
|
||||
|
||||
let primitives = &self.primitive_store
|
||||
.expect("Expected PrimitiveStore to be present");
|
||||
|
||||
let ty = tys[0];
|
||||
let value= &values[0];
|
||||
let value_ty = value.get_type(primitives, self);
|
||||
|
||||
// If the types don't match, try to implicitly promote integers
|
||||
if !self.unioned(ty, value_ty) {
|
||||
|
||||
let num_val = match *value {
|
||||
SymbolValue::I32(v) => v as i128,
|
||||
SymbolValue::I64(v) => v as i128,
|
||||
SymbolValue::U32(v) => v as i128,
|
||||
SymbolValue::U64(v) => v as i128,
|
||||
_ => return self.incompatible_types(a, b),
|
||||
};
|
||||
|
||||
let can_convert = if self.unioned(ty, primitives.int32) {
|
||||
i32::try_from(num_val).is_ok()
|
||||
} else if self.unioned(ty, primitives.int64) {
|
||||
i64::try_from(num_val).is_ok()
|
||||
} else if self.unioned(ty, primitives.uint32) {
|
||||
u32::try_from(num_val).is_ok()
|
||||
} else if self.unioned(ty, primitives.uint64) {
|
||||
u64::try_from(num_val).is_ok()
|
||||
} else {
|
||||
false
|
||||
};
|
||||
|
||||
if !can_convert {
|
||||
return self.incompatible_types(a, b)
|
||||
}
|
||||
}
|
||||
|
||||
self.unify_impl(ty1, *ty2, false)?;
|
||||
self.set_a_to_b(a, b);
|
||||
}
|
||||
|
||||
(TConstant { value: val1, ty: ty1, .. }, TConstant { value: val2, ty: ty2, .. }) => {
|
||||
if val1 != val2 {
|
||||
return self.incompatible_types(a, b)
|
||||
(TLiteral { values: val1, .. }, TLiteral { values: val2, .. }) => {
|
||||
for (v1, v2) in zip(val1, val2) {
|
||||
if v1 != v2 {
|
||||
return self.incompatible_types(a, b)
|
||||
}
|
||||
}
|
||||
self.unify_impl(*ty1, *ty2, false)?;
|
||||
|
||||
self.set_a_to_b(a, b);
|
||||
}
|
||||
@ -1016,8 +1049,8 @@ impl Unifier {
|
||||
};
|
||||
n
|
||||
}
|
||||
TypeEnum::TConstant { value, .. } => {
|
||||
format!("const({value})")
|
||||
TypeEnum::TLiteral { values, .. } => {
|
||||
format!("const({})", values.iter().map(|v| format!("{v:?}")).join(", "))
|
||||
}
|
||||
TypeEnum::TTuple { ty } => {
|
||||
let mut fields =
|
||||
|
@ -16,28 +16,28 @@ class HybridGenericClass2(Generic[A, T]):
|
||||
class HybridGenericClass3(Generic[T, A, B]):
|
||||
pass
|
||||
|
||||
def make_generic_2() -> ConstGenericClass[2]:
|
||||
def make_generic_2() -> ConstGenericClass[Literal[2]]:
|
||||
return ...
|
||||
|
||||
def make_generic2_1_2() -> ConstGeneric2Class[1, 2]:
|
||||
def make_generic2_1_2() -> ConstGeneric2Class[Literal[1], Literal[2]]:
|
||||
return ...
|
||||
|
||||
def make_hybrid_class_2_int32() -> HybridGenericClass2[2, int32]:
|
||||
def make_hybrid_class_2_int32() -> HybridGenericClass2[Literal[2], int32]:
|
||||
return ...
|
||||
|
||||
def make_hybrid_class_i32_0_1() -> HybridGenericClass3[int32, 0, 1]:
|
||||
def make_hybrid_class_i32_0_1() -> HybridGenericClass3[int32, Literal[0], Literal[1]]:
|
||||
return ...
|
||||
|
||||
def consume_generic_2(instance: ConstGenericClass[2]):
|
||||
def consume_generic_2(instance: ConstGenericClass[Literal[2]]):
|
||||
pass
|
||||
|
||||
def consume_generic2_1_2(instance: ConstGeneric2Class[1, 2]):
|
||||
def consume_generic2_1_2(instance: ConstGeneric2Class[Literal[1], Literal[2]]):
|
||||
pass
|
||||
|
||||
def consume_hybrid_class_2_i32(instance: HybridGenericClass2[2, int32]):
|
||||
def consume_hybrid_class_2_i32(instance: HybridGenericClass2[Literal[2], int32]):
|
||||
pass
|
||||
|
||||
def consume_hybrid_class_i32_0_1(instance: HybridGenericClass3[int32, 0, 1]):
|
||||
def consume_hybrid_class_i32_0_1(instance: HybridGenericClass3[int32, Literal[0], Literal[1]]):
|
||||
pass
|
||||
|
||||
def f():
|
||||
|
Loading…
Reference in New Issue
Block a user