Compare commits

..

5 Commits

Author SHA1 Message Date
7fd9719953 fix typo 2025-02-07 22:52:50 +08:00
1a11e3035a 2118-2128: revise noise/jitter note 2025-01-29 19:58:29 +01:00
ca0d2bc33b ttls: bump revision number 2025-01-24 15:57:30 +01:00
b42fbc9b76 ttls: add sysdesc section 2025-01-24 15:45:08 +01:00
8e54d54b17 ttls: formatting 2025-01-24 15:45:08 +01:00
15 changed files with 840 additions and 874 deletions

View File

@ -4,7 +4,7 @@
\title{2118 BNC-TTL / 2128 SMA-TTL} \title{2118 BNC-TTL / 2128 SMA-TTL}
\author{M-Labs Limited} \author{M-Labs Limited}
\date{January 2022} \date{January 2022}
\revision{Revision 2} \revision{Revision 3}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}} \companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document} \begin{document}
@ -36,7 +36,7 @@ Each card provides two banks of four digital channels, for a total of eight digi
Each channel supports 50\textOmega~terminations, individually controllable using DIP switches. Outputs tolerate short circuits indefinitely. Both cards are capable of a minimum pulse width of 3ns. Each channel supports 50\textOmega~terminations, individually controllable using DIP switches. Outputs tolerate short circuits indefinitely. Both cards are capable of a minimum pulse width of 3ns.
Note that isolated TTL cards are less suited to low-noise applications as the isolator itself injects noise between primary and secondary sides. Cable shields may also radiate EMI from the isolated grounds. For low-noise applications, use non-isolated cards such as 2238 MCX-TTL or 2245 LVDS-TTL. Isolated TTL cards are not well suited to low-noise or low-jitter applications due to interference from isolation components. For low-noise applications, use non-isolated cards such as 2238 MCX-TTL or 2245 LVDS-TTL.
% Switch to next column % Switch to next column
\vfill\break \vfill\break
@ -295,11 +295,11 @@ Note that isolated TTL cards are less suited to low-noise applications as the is
\begin{figure}[hbt!] \begin{figure}[hbt!]
\centering \centering
\includegraphics[height=1.8in]{photo2118-2128.jpg } \includegraphics[height=1.8in]{photo2118-2128.jpg }
\caption{BNC-TTL and SMA-TTL cards}% \caption{BNC-TTL and SMA-TTL cards}
\includegraphics[angle=90, height=0.7in]{DIO_BNC_FP.jpg} \includegraphics[angle=90, height=0.7in]{fp2118.jpg}
\includegraphics[angle=90, height=0.4in]{DIO_SMA_FP.jpg} \includegraphics[angle=90, height=0.4in]{fp2128.jpg}
\caption{BNC-TTL and SMA-TTL front panels}% \caption{BNC-TTL and SMA-TTL front panels}
\label{fig:example}% \label{fig:example}
\end{figure} \end{figure}
\onecolumn \onecolumn
@ -359,6 +359,8 @@ Specifications were derived based on the datasheets of the bus transceiver IC (S
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
Low-jitter applications should note carefully the jitter introduced by the signal isolator. Noise is also introduced between the primary and secondary domains by the DC/DC converter. Where noise or jitter are crucial, it is instead recommended to use non-isolated cards such as 2238 MCX-TTL or 2245 LVDS-TTL.
Minimum pulse width was measured by generating pulses of progressively longer duration through a DDS generator and using them as input for a BNC-TTL card. The input BNC-TTL card was connected to another BNC-TTL card as output. The output signal is measured and shown in Figure \ref{fig:pulsewidth}. Minimum pulse width was measured by generating pulses of progressively longer duration through a DDS generator and using them as input for a BNC-TTL card. The input BNC-TTL card was connected to another BNC-TTL card as output. The output signal is measured and shown in Figure \ref{fig:pulsewidth}.
\begin{figure}[ht] \begin{figure}[ht]
@ -395,7 +397,25 @@ IO direction and termination must be configured by setting physical switches on
\caption{Position of switches}% \caption{Position of switches}%
\end{figure} \end{figure}
\newpage \sysdescsection
2118 BNC-TTL and 2128 SMA-TTL should be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
"name" : {
"type": "dio",
"board": "DIO_BNC", // or "DIO_SMA", optional
"ports": [0],
"edge_counter": true, // optional
"bank_direction_low": "input", // or "output"
"bank_direction_high": "output" // or "input"
}
\end{minted}
\end{tcolorbox}
Replace 0 with the EEM port number used on the core device. Any port can be used. The \texttt{edge\_counter} field is boolean and may be specified true or false; a setting \texttt{true} will make a corresponding ARTIQ \texttt{edge\_counter} module available and consume a corresponding amount of additonal gateware resources. If not included, its default value is false.
\codesection{2118 BNC-TTL/2128 SMA-TTL cards} \codesection{2118 BNC-TTL/2128 SMA-TTL cards}
Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure. Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure.
@ -404,21 +424,25 @@ Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTI
The channel should be configured as output in both the gateware and hardware. The channel should be configured as output in both the gateware and hardware.
\inputcolorboxminted{firstline=9,lastline=14}{examples/ttl.py} \inputcolorboxminted{firstline=9,lastline=14}{examples/ttl.py}
\newpage
\subsection{Morse code} \subsection{Morse code}
This example demonstrates some basic algorithmic features of the ARTIQ-Python language. This example demonstrates some basic algorithmic features of the ARTIQ-Python language.
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py} \inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
\newpage
\subsection{Sub-coarse-RTIO-cycle pulse} \subsection{Sub-coarse-RTIO-cycle pulse}
With the use of ARTIQ RTIO, only one event can be enqueued per \textit{coarse RTIO cycle}, which typically corresponds to 8ns. To emit pulses of less than 8ns, careful timing is needed to ensure that the \texttt{ttl.on()} \& \texttt{ttl.off()} event are submitted during different coarse RTIO cycles. With the use of ARTIQ RTIO, only one event can be enqueued per \textit{coarse RTIO cycle}, which typically corresponds to 8ns. To emit pulses of less than 8ns, careful timing is needed to ensure that the \texttt{ttl.on()} \& \texttt{ttl.off()} event are submitted during different coarse RTIO cycles.
\inputcolorboxminted{firstline=60,lastline=64}{examples/ttl.py} \inputcolorboxminted{firstline=60,lastline=64}{examples/ttl.py}
\newpage
\subsection{Edge counting in a 1ms window} \subsection{Edge counting in a 1ms window}
The \texttt{TTLInOut} class implements \texttt{gate\char`_rising()}, \texttt{gate\char`_falling()} \& \texttt{gate\char`_both()} for rising edge, falling edge, both rising edge \& falling edge detection respectively. The \texttt{TTLInOut} class implements \texttt{gate\char`_rising()}, \texttt{gate\char`_falling()} \& \texttt{gate\char`_both()} for rising edge, falling edge, both rising edge \& falling edge detection respectively.
The channel should be configured as input in both gateware and hardware. Invoke one of the 3 methods to start edge detection. The channel should be configured as input in both gateware and hardware. Invoke one of the 3 methods to start edge detection.
\inputcolorboxminted{firstline=14,lastline=15}{examples/ttl_in.py} \inputcolorboxminted{firstline=14,lastline=15}{examples/ttl_in.py}
Input signal can generated from another TTL channel or from other sources. Manipulate the timeline cursor to generate TTL pulses using the same kernel. Input signal can generated from another TTL channel or from other sources. Manipulate the timeline cursor to generate TTL pulses using the same kernel.
\inputcolorboxminted{firstline=10,lastline=22}{examples/ttl_in.py} \inputcolorboxminted{firstline=10,lastline=22}{examples/ttl_in.py}
The detected edges are registered to the RTIO input FIFO. By default, the FIFO can hold 64 events. The FIFO depth is defined by the \texttt{ififo\char`_depth} parameter for \texttt{Channel} class in \texttt{rtio/channel.py}. The detected edges are registered to the RTIO input FIFO. By default, the FIFO can hold 64 events. The FIFO depth is defined by the \texttt{ififo\char`_depth} parameter for \texttt{Channel} class in \texttt{rtio/channel.py}.
Once the threshold is exceeded, an \texttt{RTIOOverflow} exception will be triggered when the input events are read by the kernel CPU. Once the threshold is exceeded, an \texttt{RTIOOverflow} exception will be triggered when the input events are read by the kernel CPU.
@ -427,6 +451,7 @@ Finally, invoke \texttt{count()} to retrieve the edge count from the input gate.
The RTIO system can report at most one edge detection event for every coarse RTIO cycle. In principle, to guarantee all rising edges are counted (with \texttt{gate\char`_rising()} invoked), the theoretical minimum separation between rising edges is one coarse RTIO cycle (typically 8 ns). However, both the electrical specifications and the possibility of triggering \texttt{RTIOOverflow} exceptions should also be considered. The RTIO system can report at most one edge detection event for every coarse RTIO cycle. In principle, to guarantee all rising edges are counted (with \texttt{gate\char`_rising()} invoked), the theoretical minimum separation between rising edges is one coarse RTIO cycle (typically 8 ns). However, both the electrical specifications and the possibility of triggering \texttt{RTIOOverflow} exceptions should also be considered.
\newpage \newpage
\subsection{Edge counting using \texttt{EdgeCounter}} \subsection{Edge counting using \texttt{EdgeCounter}}
This example code uses a gateware counter to substitute the software counter, which has a maximum count rate of approximately 1 million events per second. If a gateware counter is enabled on the TTL channel, it can typically count up to 125 million events per second: This example code uses a gateware counter to substitute the software counter, which has a maximum count rate of approximately 1 million events per second. If a gateware counter is enabled on the TTL channel, it can typically count up to 125 million events per second:
\inputcolorboxminted{firstline=31,lastline=36}{examples/ttl_in.py} \inputcolorboxminted{firstline=31,lastline=36}{examples/ttl_in.py}
@ -444,6 +469,7 @@ Typically, with the coarse RTIO clock at 125 MHz, a \texttt{ClockGen} channel ca
\inputcolorboxminted{firstline=72,lastline=75}{examples/ttl.py} \inputcolorboxminted{firstline=72,lastline=75}{examples/ttl.py}
\newpage \newpage
\subsection{Minimum sustained event separation} \subsection{Minimum sustained event separation}
The minimum sustained event separation is the least time separation between input gated events for which all gated edges can be continuously \& reliabily timestamped by the RTIO system without causing \texttt{RTIOOverflow} exceptions. The following \texttt{run()} function finds the separation by approximating the time of running \texttt{timestamp\char`_mu()} as a constant. Import the \texttt{time} library to use \texttt{time.sleep()}. The minimum sustained event separation is the least time separation between input gated events for which all gated edges can be continuously \& reliabily timestamped by the RTIO system without causing \texttt{RTIOOverflow} exceptions. The following \texttt{run()} function finds the separation by approximating the time of running \texttt{timestamp\char`_mu()} as a constant. Import the \texttt{time} library to use \texttt{time.sleep()}.

View File

@ -4,7 +4,7 @@
\title{2238 MCX-TTL} \title{2238 MCX-TTL}
\author{M-Labs Limited} \author{M-Labs Limited}
\date{January 2022} \date{January 2022}
\revision{Revision 2} \revision{Revision 3}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}} \companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document} \begin{document}
@ -439,7 +439,7 @@ Each channel supports 50\textOmega~terminations individually controllable using
\centering \centering
\includegraphics[height=2in]{photo2238.jpg} \includegraphics[height=2in]{photo2238.jpg}
\caption{MCX-TTL card} \caption{MCX-TTL card}
\includegraphics[angle=90, height=0.6in]{DIO_MCX_FP.pdf} \includegraphics[angle=90, height=0.6in]{fp2238.pdf}
\caption{MCX-TTL front panel} \caption{MCX-TTL front panel}
\end{figure} \end{figure}
@ -505,8 +505,11 @@ All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherw
\newpage \newpage
\section{Configuring IO Direction \& Termination} \section{Configuring IO Direction \& Termination}
IO direction and termination must be configured by switches. The termination switches are found at the top and the IO direction switches at the middle of the card respectively. IO direction and termination must be configured by switches. The termination switches are found at the top and the IO direction switches at the middle of the card respectively.
\begin{multicols}{2} \begin{multicols}{2}
Termination switches between high impedence (OFF) and 50\textOmega~(ON). Note that termination switches are by-channel but IO direction switches are by-bank. Termination switches between high impedence (OFF) and 50\textOmega~(ON). Note that termination switches are by-channel but IO direction switches are by-bank.
\begin{itemize} \begin{itemize}
@ -516,15 +519,49 @@ Termination switches between high impedence (OFF) and 50\textOmega~(ON). Note th
\item IO direction switch open (OFF) \\ \item IO direction switch open (OFF) \\
The corresponding bank is set to input by default. IO direction \textit{can} be changed by I\textsuperscript{2}C. The corresponding bank is set to input by default. IO direction \textit{can} be changed by I\textsuperscript{2}C.
\end{itemize} \end{itemize}
\columnbreak \columnbreak
\begin{center} \begin{center}
\centering \centering
\includegraphics[height=1.7in]{mcx_ttl_switches.jpg} \includegraphics[height=1.7in]{mcx_ttl_switches.jpg}
\captionof{figure}{Position of switches} \captionof{figure}{Position of switches}
\end{center} \end{center}
\end{multicols} \end{multicols}
\sysdescsection
2238 MCX-TTL should be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "dio",
"board": "DIO_MCX", // optional
"ports": [0],
"edge_counter": true, // optional
"bank_direction_low": "input", // or "output"
"bank_direction_high": "output" // or "input"
},
{
"type": "dio",
"board": "DIO_MCX",
"ports": [1],
"bank_direction_low": "output",
"bank_direction_high": "output"
}
\end{minted}
\end{tcolorbox}
Note that due to its high channel account and double EEM connections 2238 MCX-TTL is entered into a system description as two peripheral entries, each representing two banks.
The \texttt{edge\_counter} field is boolean and may be specified true or false; a setting \texttt{true} will make a corresponding ARTIQ \texttt{edge\_counter} module available and consume a corresponding amount of additonal gateware resources. If not included, its default value is false. Both \texttt{edge\_counter} and IO direction can be specified separately for each entry.
For single-EEM operation, use only one of two peripheral entries.
\newpage \newpage
\codesection{2238 MCX-TTL card} \codesection{2238 MCX-TTL card}
Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure. Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure.
@ -538,6 +575,7 @@ This example demonstrates some basic algorithmic features of the ARTIQ-Python la
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py} \inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
\newpage \newpage
\subsection{Edge counting in an 1ms window} \subsection{Edge counting in an 1ms window}
The channel should be configured as input in both gateware and hardware. The channel should be configured as input in both gateware and hardware.
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py} \inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}

View File

@ -7,7 +7,7 @@
\title{2245 LVDS-TTL} \title{2245 LVDS-TTL}
\author{M-Labs Limited} \author{M-Labs Limited}
\date{January 2022} \date{January 2022}
\revision{Revision 2} \revision{Revision 3}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}} \companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document} \begin{document}
@ -297,7 +297,7 @@ Outputs are intended to drive 100\textOmega~loads and inputs are 100\textOmega~t
\begin{figure}[hbt!] \begin{figure}[hbt!]
\centering \centering
\includegraphics[angle=90, height=1.7in]{photo2245.jpg} \includegraphics[angle=90, height=1.7in]{photo2245.jpg}
\includegraphics[angle=90, height=0.4in]{DIO_RJ45_FP.pdf} \includegraphics[angle=90, height=0.4in]{fp2245.pdf}
\caption{LVDS-TTL card and front panel} \caption{LVDS-TTL card and front panel}
\end{figure} \end{figure}
@ -312,7 +312,7 @@ Outputs are intended to drive 100\textOmega~loads and inputs are 100\textOmega~t
All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherwise noted. Information in this section is based on the datasheet of the repeater IC (FIN1101K8X\footnote{\label{repeaters}\url{https://www.onsemi.com/pdf/datasheet/fin1101-d.pdf}}). All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherwise noted. Information in this section is based on the datasheet of the repeater IC (FIN1101K8X\footnote{\label{repeaters}\url{https://www.onsemi.com/pdf/datasheet/fin1101-d.pdf}}).
\begin{table}[h] \begin{table}[h!]
\begin{threeparttable} \begin{threeparttable}
\caption{Recommended Input Voltage} \caption{Recommended Input Voltage}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X} \begin{tabularx}{\textwidth}{l | c | c c c | c | X}
@ -334,7 +334,7 @@ All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherw
All typical values of DC specifications are at $T_A = 25\degree C$. All typical values of DC specifications are at $T_A = 25\degree C$.
\begin{table}[h] \begin{table}[h!]
\begin{threeparttable} \begin{threeparttable}
\caption{DC Specifications} \caption{DC Specifications}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X} \begin{tabularx}{\textwidth}{l | c | c c c | c | X}
@ -360,7 +360,7 @@ All typical values of DC specifications are at $T_A = 25\degree C$.
All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 300mV$, $V_{IC} = 1.3V$ unless otherwise given. All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 300mV$, $V_{IC} = 1.3V$ unless otherwise given.
\begin{table}[h] \begin{table}[h!]
\begin{threeparttable} \begin{threeparttable}
\caption{AC Specifications} \caption{AC Specifications}
\begin{tabularx}{\textwidth}{l | c c c | c | X} \begin{tabularx}{\textwidth}{l | c c c | c | X}
@ -379,6 +379,20 @@ All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 30
LVDS data jitter, & & \multirow{2}{*}{85} & \multirow{2}{*}{125} & \multirow{2}{*}{ps} & $PRBS=2^{23}-1$\\ LVDS data jitter, & & \multirow{2}{*}{85} & \multirow{2}{*}{125} & \multirow{2}{*}{ps} & $PRBS=2^{23}-1$\\
deterministic & & & & & 800 Mbps\\ deterministic & & & & & 800 Mbps\\
\hline \hline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{table}[h!]
\begin{threeparttable}
\caption{AC Specifications, cont.}
\begin{tabularx}{\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
LVDS clock jitter, & & \multirow{2}{*}{2.1} & \multirow{2}{*}{3.5} & \multirow{2}{*}{ps} & \multirow{2}{*}{400 MHz clock}\\ LVDS clock jitter, & & \multirow{2}{*}{2.1} & \multirow{2}{*}{3.5} & \multirow{2}{*}{ps} & \multirow{2}{*}{400 MHz clock}\\
random (RMS) & & & & & \\ random (RMS) & & & & & \\
\thickhline \thickhline
@ -386,10 +400,10 @@ All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 30
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
\newpage
\section{Configuring IO Direction \& Termination} \section{Configuring IO Direction \& Termination}
\begin{multicols}{2} \begin{multicols}{2}
The IO direction of each channel can be configured by DIP switches, which are found at the top of the card. The IO direction of each channel can be configured by DIP switches, which are found at the top of the card.
\begin{itemize} \begin{itemize}
\itemsep0em \itemsep0em
@ -400,13 +414,45 @@ The IO direction of each channel can be configured by DIP switches, which are fo
\end{itemize} \end{itemize}
\vspace*{\fill}\columnbreak \vspace*{\fill}\columnbreak
\begin{center} \begin{center}
\centering \centering
\includegraphics[height=1.5in]{lvds_ttl_switches.jpg} \includegraphics[height=1.5in]{lvds_ttl_switches.jpg}
\captionof{figure}{Position of switches} \captionof{figure}{Position of switches}
\end{center} \end{center}
\end{multicols} \end{multicols}
\sysdescsection
2245 LVDS-TTL should be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "dio",
"board": "DIO_LVDS", // optional
"ports": [0],
"edge_counter": true, // optional
"bank_direction_low": "input", // or "output"
"bank_direction_high": "output" // or "input"
},
{
"type": "dio",
"board": "DIO_LVDS",
"ports": [1],
"bank_direction_low": "output",
"bank_direction_high": "output"
}
\end{minted}
\end{tcolorbox}
Note that due to its high channel account and double EEM connections 2245 LVDS-TTL is entered into a system description as two peripheral entries, each representing two banks.
The \texttt{edge\_counter} field is boolean and may be specified true or false; a setting \texttt{true} will make a corresponding ARTIQ \texttt{edge\_counter} module available and consume a corresponding amount of additonal gateware resources. If not included, its default value is false. Both \texttt{edge\_counter} and IO direction can be specified separately for each entry.
For single-EEM operation, use only one of two peripheral entries.
\newpage \newpage
\codesection{2245 LVDS-TTL card} \codesection{2245 LVDS-TTL card}
@ -422,6 +468,7 @@ This example demonstrates some basic algorithmic features of the ARTIQ-Python la
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py} \inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
\newpage \newpage
\subsection{Counting rising edges in a 1ms window} \subsection{Counting rising edges in a 1ms window}
The channel should be configured as input in both gateware and hardware. The channel should be configured as input in both gateware and hardware.
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py} \inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}
@ -447,7 +494,6 @@ One channel needs to be configured as input, and the other as output.
\noindent\strut\usebox0\par \noindent\strut\usebox0\par
\egroup} \egroup}
\newpage
\subsection{SPI Master Device} \subsection{SPI Master Device}
If one of the two card EEM ports is configured as \texttt{dio\char`_spi} instead of \texttt{dio}, its associated TTL channels can be configured as SPI master devices. Invocation of an SPI transfer follows this pattern: If one of the two card EEM ports is configured as \texttt{dio\char`_spi} instead of \texttt{dio}, its associated TTL channels can be configured as SPI master devices. Invocation of an SPI transfer follows this pattern:
\begin{enumerate} \begin{enumerate}
@ -482,8 +528,10 @@ The list of configurations supported in the gateware are listed as below:
\end{tabular} \end{tabular}
\end{table} \end{table}
The following ARTIQ example demonstrates the flow of an SPI transaction on a typical SPI setup with 3 homogeneous slaves. The following ARTIQ example demonstrates the flow of an SPI transaction on a typical SPI setup with 3 homogeneous slaves. The direction switches on the LVDS-TTL card should be set to the correct IO direction for all relevant channels before powering on.
The direction switches on the LVDS-TTL card should be set to the correct IO direction for all relevant channels before powering on.
\newpage
\begin{center} \begin{center}
\begin{circuitikz}[european, scale=1, every label/.append style={align=center}] \begin{circuitikz}[european, scale=1, every label/.append style={align=center}]
% SPI master % SPI master
@ -551,7 +599,6 @@ The direction switches on the LVDS-TTL card should be set to the correct IO dire
\end{circuitikz} \end{circuitikz}
\end{center} \end{center}
\newpage
\subsubsection{SPI Configuration} \subsubsection{SPI Configuration}
The following examples will assume the SPI communication has the following properties: The following examples will assume the SPI communication has the following properties:
\begin{itemize} \begin{itemize}
@ -561,6 +608,9 @@ The following examples will assume the SPI communication has the following prope
\item Most significant bit (MSB) first \item Most significant bit (MSB) first
\item Full duplex \item Full duplex
\end{itemize} \end{itemize}
\newpage
The baseline configuration for an \texttt{SPIMaster} instance can be defined as such: The baseline configuration for an \texttt{SPIMaster} instance can be defined as such:
\inputcolorboxminted[0]{firstline=2,lastline=8}{examples/spi.py} \inputcolorboxminted[0]{firstline=2,lastline=8}{examples/spi.py}
The \texttt{SPI\char`_END} \& \texttt{SPI\char`_INPUT} flags will be modified during runtime in the following example. The \texttt{SPI\char`_END} \& \texttt{SPI\char`_INPUT} flags will be modified during runtime in the following example.
@ -590,10 +640,11 @@ Typically, an SPI write operation involves sending an instruction and data to th
\end{tikztimingtable}% \end{tikztimingtable}%
\end{center} \end{center}
\newpage
Suppose the instruction is \texttt{0x13}, while the data is \texttt{0xDEADBEEF}. In addition, both slave 1 \& 2 are selected. This SPI transaction can be performed with the following code: Suppose the instruction is \texttt{0x13}, while the data is \texttt{0xDEADBEEF}. In addition, both slave 1 \& 2 are selected. This SPI transaction can be performed with the following code:
\inputcolorboxminted{firstline=18,lastline=27}{examples/spi.py} \inputcolorboxminted{firstline=18,lastline=27}{examples/spi.py}
\newpage
\subsubsection{SPI read} \subsubsection{SPI read}
A 32-bit read is represented by the following timing diagram: A 32-bit read is represented by the following timing diagram:
@ -619,7 +670,6 @@ A 32-bit read is represented by the following timing diagram:
Suppose the instruction is \texttt{0x81}, where only slave 0 is selected. This SPI transcation can be performed by the following code. Suppose the instruction is \texttt{0x81}, where only slave 0 is selected. This SPI transcation can be performed by the following code.
\inputcolorboxminted{firstline=35,lastline=49}{examples/spi.py} \inputcolorboxminted{firstline=35,lastline=49}{examples/spi.py}
\newpage
\ordersection{2245 LVDS-TTL} \ordersection{2245 LVDS-TTL}
\finalfootnote \finalfootnote

View File

@ -1,11 +1,10 @@
\input{preamble.tex} \input{preamble.tex}
\input{shared/dactino.tex} \graphicspath{{images/5432}{images}}
\graphicspath{{images/5432}, {images}}
\title{5432 DAC Zotino} \title{5432 DAC Zotino}
\author{M-Labs Limited} \author{M-Labs Limited}
\date{January 2025} \date{January 2022}
\revision{Revision 3} \revision{Revision 2}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}} \companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document} \begin{document}
@ -15,7 +14,7 @@
\begin{itemize} \begin{itemize}
\item{32-channel DAC} \item{32-channel DAC}
\item{16-bit resolution} \item{16-bits resolution}
\item{1 MSPS shared between all channels} \item{1 MSPS shared between all channels}
\item{Output voltage $\pm$10V} \item{Output voltage $\pm$10V}
\item{HD68 connector} \item{HD68 connector}
@ -30,7 +29,10 @@
\item{Driving DC electrodes in ion traps} \item{Driving DC electrodes in ion traps}
\end{itemize} \end{itemize}
\generaldescription{5432 DAC Zotino}{high-speed 5632 DAC Fastino} \section{General Description}
The 5432 Zotino is a 4hp EEM module and part of the ARTIQ/Sinara family. It adds digital-analog conversion capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides four groups of eight analog channels each, exposed by one HD68 connector. Each channel supports output voltage from -10 V to 10 V. All channels can be updated simultaneously. Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528 SMA-IDC or 5538 MCX-IDC cards.
% Switch to next column % Switch to next column
\vfill\break \vfill\break
@ -222,28 +224,23 @@
\caption{Step crosstalk} \caption{Step crosstalk}
\end{figure} \end{figure}
\section{LEDs} \newpage
5432 DAC Zotino provides eight user LEDs in the front panel. These are directly accessible in ARTIQ RTIO. \codesection{5432 DAC Zotino}
\subsection{Setting output voltage}
The following example initializes the Zotino card, then emits 1.0 V, 2.0 V, 3.0 V and 4.0 V at channels 0, 1, 2, and 3 respectively. Voltages of all 4 channels are updated simultaneously with the use of \texttt{set\char`_dac()}.
\inputcolorboxminted{firstline=11,lastline=22}{examples/zotino.py}
\newpage \newpage
\sysdescsection \subsection{Triangular wave}
Generates a triangular waveform at 10 Hz, 16 V peak-to-peak. Timing accuracy of the RTIO system can be demonstrated by the precision of the frequency.
5432 DAC Zotino should be entered in the \texttt{peripherals} list of the corresponding core device in the following format: Import \texttt{scipy.signal} and \texttt{numpy} modules to run this example.
\begin{tcolorbox}[colback=white] \inputcolorboxminted{firstline=30,lastline=49}{examples/zotino.py}
\begin{minted}{json}
{
"type": "zotino",
"ports": [0]
}
\end{minted}
\end{tcolorbox}
Replace 0 with the EEM port used on the core device. Any port may be used.
\codesectiondactino{5432 DAC Zotino}{Zotino}{zotino.py}
\ordersection{5432 DAC Zotino} \ordersection{5432 DAC Zotino}

163
5632.tex
View File

@ -1,163 +0,0 @@
\input{preamble.tex}
\input{shared/dactino.tex}
\graphicspath{{images/5632}, {images}}
\title{5632 DAC Fastino}
\author{M-Labs Limited}
\date{January 2025}
\revision{Revision 1}
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
\item{32-channel fast DAC}
\item{16-bit resolution}
\item{2.55 MSPS per channel}
\item{Output voltage $\pm$10V}
\item{Gateware CIC interpolation}
\item{HD68 connector}
\item{Can be broken out to BNC/SMA/MCX}
\end{itemize}
\section{Applications}
\begin{itemize}
\item{Controlling setpoints of PID controllers for laser power stabilization}
\item{Low-frequency arbitrary waveform generation}
\item{Driving DC electrodes in ion traps}
\end{itemize}
\generaldescription{5632 DAC Fastino}{slower 5432 DAC Zotino}
% Switch to next column
\vfill\break
%\begin{figure}[h]
% \centering
% \scalebox{1.15}{
% \begin{circuitikz}[european, every label/.append style={align=center}]
% \begin{scope}[]
% % if applicable
% \end{scope}
% \end{circuitikz}
% }
% \caption{Simplified Block Diagram}
%\end{figure}
\begin{figure}[hbt!]
\centering
\includegraphics[height=2.25in]{photo5632.jpg}
\caption{Fastino card}
\includegraphics[height=3in, angle=90]{fp5632.pdf}
\caption{Fastino front panel}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\sourcesection{5632 DAC Fastino}{https://github.com/sinara-hw/Fastino}
\section{Electrical Specifications}
% \hypersetup{hidelinks}
% \urlstyle{same}
These specifications are based on the datasheet of the DAC IC
(AD5542ABCPZ\footnote{\label{dac}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/AD5512A_5542A.pdf}}),
and various information from the Sinara wiki\footnote{\label{fastino_wiki}\url{https://github.com/sinara-hw/Fastino/wiki}}.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Output Specifications}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Output voltage & -10 & & 10 & V & \\
% \hline is this accurate here?
% Output impedance\repeatfootnote{zotino_wiki} & \multicolumn{4}{c|}{470 $\Omega$ $||$ 2.2nF} & \\
\hline
Resolution\repeatfootnote{dac} & & 16 & & bits & \\
\hline
Settling time\repeatfootnote{dac} & & 1 & & \textmu s & \\
\hline
Temperature coefficient\repeatfootnote{fastino_wiki} & & & 7 & ppm & \\
%\hline is this accurate here?
%3dB bandwidth\repeatfootnote{zotino_wiki} & & 75 & & kHz & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
The following table records cross-talk and transient behavior by Fastino, collected in various Sinara issues, see spur analysis\footnote{\label{fastino56}\url{https://github.com/sinara-hw/Fastino/issues/56}}, cross-talk\footnote{\url{https://github.com/sinara-hw/Fastino/issues/85}}, and noise summary\footnote{\url{https://github.com/sinara-hw/Fastino/issues/51}}. DAC output during output noise measurement was 6.875 V, updating continuously, channel 27 used for recording.
\begin{table}[h]
\centering
\begin{threeparttable}
\caption{Electrical Characteristics}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline
DC cross-talk & & & -65 & dBmV & \\
\hline
% Is this the same measurement as 'Output noise'?
Broadband noise (??) & & & & & \\
\hspace{18mm} @ 100 kHz & & 14 & & nV/rtHz & \\
\hspace{18mm} @ 1 MHz & & 56 & & nV/rtHz & \\
\hline
Output noise & & & & & \\
\hspace{18mm} @ 500 kHz & & 60 & 80 & nV/rtHz & \\
\hspace{18mm} @ 2 MHz & & & 12 & nV/rtHz & \\
\hspace{18mm} @ 10 MHz & & & 4 & nV/rtHz & \\
\hline
Spur-free range & 0.1 & & 5 & MHz & Correctly configured\repeatfootnote{fastino56} \\
Digital update spurs & & 560 & & nVrm & @ 2.55MHz \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
% Is it worth recounting spur summary issue here?
\section{LEDs}
5632 DAC Fastino provides eight user LEDs in the front panel. These are directly accessible in the ARTIQ RTIO. Four additional LEDs indicate, respectively, power good (\texttt{PG}), ??? (\texttt{FD}), overtemperature (\texttt{OT}), and gateware or initialization error (\texttt{ERR}).
\sysdescsection
5632 DAC Fastino should be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "fastino",
"ports": [0],
"log2_width": 0 // select 0 to 5, default is 0
}
\end{minted}
\end{tcolorbox}
Replace 0 with the EEM port used on the core device. Any port may be used on the core device side. Despite providing two EEM ports, Fastino only requires one of two under ARTIQ control. This should always be \texttt{EEM0}. If connected, \texttt{EEM1} will be ignored.
The \texttt{log2\_width} field accepts a number from 0 to 5 inclusive and represents (in powers of two) the number of DAC channels packed into a single RTIO write (1 to 32). This allows and defines the use of \texttt{set\_group()} functions rather than \texttt{set\_dac()} as in examples given below.
\codesectiondactino{5632 DAC Fastino}{Fastino}{fastino.py}
\subsection{CIC interpolators}
Fastino gateware features dynamically configurable CIC (cubic B-spline) interpolators, defined individually by channel, with interpolation rates from 1 (2.55 MSPS) to 65536 (39 SPS). For more details, see manual documentation on ARTIQ driver functions \texttt{stage\_cic} and \texttt{apply\_cic}.
\ordersection{5632 DAC Fastino}
\finalfootnote
\end{document}

View File

@ -1,50 +0,0 @@
from artiq.experiment import *
from scipy import signal
import numpy
# duplicated from zotino.py with name replaced
class Voltage(EnvExperiment):
def build(self):
self.setattr_device("core")
self.fastino = self.get_device("fastino0")
def prepare(self):
self.channels = [0, 1, 2, 3]
self.voltages = [1.0, 2.0, 3.0, 4.0]
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.fastino.init()
delay(1*ms)
self.fastino.set_dac(self.voltages, self.channels)
# duplicated from zotino.py with name replaced
class TriangularWave(EnvExperiment):
def build(self):
self.setattr_device("core")
self.zotino = self.get_device("fastino0")
def prepare(self):
self.period = 0.1*s
self.sample = 128
t = numpy.linspace(0, 1, self.sample)
self.voltages = 8*signal.sawtooth(2*numpy.pi*t, 0.5)
self.interval = self.period/self.sample
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
self.fastino.init()
delay(1*ms)
counter = 0
while True:
self.fastino.set_dac([self.voltages[counter]], [0])
counter = (counter + 1) % self.sample
delay(self.interval)

99
examples/unsorted Normal file
View File

@ -0,0 +1,99 @@
from artiq.experiment import *
class SineWave(EnvExperiment):
def build(self):
self.setattr_device("core")
self.leds = dict()
self.ttl_outs = dict()
self.dacs_config = dict()
self.dac_volt = dict()
self.dac_dds = dict()
self.dac_trigger = dict()
ddb = self.get_device_db()
for name, desc in ddb.items():
if isinstance(desc, dict) and desc["type"] == "local":
module, cls = desc["module"], desc["class"]
if (module, cls) == ("artiq.coredevice.ttl", "TTLOut"):
dev = self.get_device(name)
if "led" in name:
self.leds[name] = dev
else:
self.ttl_outs[name] = dev
if (module, cls) == ("artiq.coredevice.shuttler", "Config"):
dev = self.get_device(name)
self.dacs_config[name] = dev
if (module, cls) == ("artiq.coredevice.shuttler", "Volt"):
dev = self.get_device(name)
self.dac_volt[name] = dev
if (module, cls) == ("artiq.coredevice.shuttler", "Dds"):
dev = self.get_device(name)
self.dac_dds[name] = dev
if (module, cls) == ("artiq.coredevice.shuttler", "Trigger"):
dev = self.get_device(name)
self.dac_trigger[name] = dev
self.leds = sorted(self.leds.items(), key=lambda x: x[1].channel)
self.ttl_outs = sorted(self.ttl_outs.items(), key=lambda x: x[1].channel)
self.dacs_config = sorted(self.dacs_config.items(), key=lambda x: x[1].channel)
self.dac_volt = sorted(self.dac_volt.items(), key=lambda x: x[1].channel)
self.dac_dds = sorted(self.dac_dds.items(), key=lambda x: x[1].channel)
self.dac_trigger = sorted(self.dac_trigger.items(), key=lambda x: x[1].channel)
@kernel
def set_dac_config(self, config):
config.set_config(0xFFFF)
@kernel
def set_test_dac_volt(self, volt):
a0 = 0
a1 = 0
a2 = 0
a3 = 0
volt.set_waveform(a0, a1, a2, a3)
@kernel
def set_test_dac_dds(self, dds):
b0 = 0x0FFF
b1 = 0
b2 = 0
b3 = 0
c0 = 0
c1 = 0x147AE148 # Frequency = 10MHz
c2 = 0
dds.set_waveform(b0, b1, b2, b3, c0, c1, c2)
@kernel
def set_dac_trigger(self, trigger):
trigger.trigger(0xFFFF)
@kernel
def run(self):
self.core.reset()
self.core.break_realtime()
t = now_mu() - self.core.seconds_to_mu(0.2)
while self.core.get_rtio_counter_mu() < t:
pass
for dac_config_name, dac_config_dev in self.dacs_config:
self.set_dac_config(dac_config_dev)
for dac_volt_name, dac_volt_dev in self.dac_volt:
self.set_test_dac_volt(dac_volt_dev)
for dac_dds_name, dac_dds_dev in self.dac_dds:
self.set_test_dac_dds(dac_dds_dev)
for dac_trigger_name, dac_trigger_dev in self.dac_trigger:
self.set_dac_trigger(dac_trigger_dev)

View File

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 60 KiB

View File

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 364 KiB

View File

@ -1,31 +0,0 @@
\newcommand{\generaldescription}[2] {
\section{General Description}
The #1 is a 4hp EEM module, part of the ARTIQ/Sinara family. It adds digital-analog conversion capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC. It is closely related to the #2 and the two cards share a compatible output interface.
It provides four groups of eight analog channels each, exposed by one HD68 connector. Each channel supports output voltage from -10 V to 10 V. All channels can be updated simultaneously. Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528 SMA-IDC or 5538 MCX-IDC cards.
}
\newcommand{\codesectiondactino}[3] {
\codesection{#1}
\subsection{Setting output voltage}
The following example initializes the #2 card, then emits 1.0 V, 2.0 V, 3.0 V and 4.0 V at channels 0, 1, 2, and 3 respectively. Voltage of all 4 channels is updated simultaneously with the use of \texttt{set\char`_dac()}.
\inputcolorboxminted{firstline=11,lastline=22}{examples/#3}
% this new page works for both datasheets, but may not if sections are added
\newpage
\subsection{Triangular wave}
The following example generates a triangular waveform at 10 Hz, 16 V peak-to-peak. Timing accuracy of the RTIO system can be demonstrated by the precision of the frequency.
Import \texttt{scipy.signal} and \texttt{numpy} modules to run this example.
\inputcolorboxminted{firstline=30,lastline=49}{examples/#3}
}