Compare commits
5 Commits
Author | SHA1 | Date | |
---|---|---|---|
7fd9719953 | |||
1a11e3035a | |||
ca0d2bc33b | |||
b42fbc9b76 | |||
8e54d54b17 |
1
.gitignore
vendored
@ -7,4 +7,3 @@ build
|
|||||||
result
|
result
|
||||||
|
|
||||||
images/unsorted
|
images/unsorted
|
||||||
examples/unsorted
|
|
||||||
|
163
1550.tex
@ -1,163 +0,0 @@
|
|||||||
\input{preamble.tex}
|
|
||||||
\graphicspath{{images}, {images/1550}}
|
|
||||||
|
|
||||||
\title{1550 Laser Diode Driver Kirdy}
|
|
||||||
\author{M-Labs Limited}
|
|
||||||
\date{January 2025}
|
|
||||||
\revision{Revision 0}
|
|
||||||
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
\maketitle
|
|
||||||
|
|
||||||
\section{Features}
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item{300mA max output current, 20-bit resolution}
|
|
||||||
\item{Low noise current source}
|
|
||||||
\item{18MHz-bandwidth modulation input}
|
|
||||||
\item{Monitor photodiode and LD protection}
|
|
||||||
\item{Built-in sub-mK stability temperature controller}
|
|
||||||
\item{Full digital control over Ethernet}
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\section{Applications}
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item{High-precision laser driver}
|
|
||||||
\item{Suitable for use with adapter and preinstalled laser assembly or with external laser heads}
|
|
||||||
\item{Spectroscopy and other atomic physics applications}
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\section{General Description}
|
|
||||||
|
|
||||||
The 1550 Laser Diode Driver Kirdy is a 8hp EEM form factor module, and part of the Sinara open hardware family. It serves as a precision laser diode driver, featuring a low-noise current source, low- and high-frequency modulation inputs, and full digital control over Ethernet. Soft turn-on, laser power monitoring with a user-defined trip point, overtemperature protection, and a protection relay minimize the risk of damage to the laser diode.
|
|
||||||
|
|
||||||
1550 Kirdy supports both low-frequency modulation, suitable for laser locks and linewidth reduction, as well as RF modulation injected directly into the diode, typically to inject sidebands into the beam and implement stabilization schemes such as Pound-Drever-Hall and modulation transfer spectroscopy.
|
|
||||||
|
|
||||||
% Switch to next column
|
|
||||||
\vfill\break
|
|
||||||
|
|
||||||
%\begin{figure}[h]
|
|
||||||
% \centering
|
|
||||||
% \scalebox{1.15}{
|
|
||||||
% \begin{circuitikz}[european, every label/.append style={align=center}]
|
|
||||||
% \begin{scope}[]
|
|
||||||
% % if applicable
|
|
||||||
% \end{scope}
|
|
||||||
% \end{circuitikz}
|
|
||||||
% }
|
|
||||||
%
|
|
||||||
% \caption{Simplified Block Diagram}
|
|
||||||
%\end{figure}
|
|
||||||
|
|
||||||
\begin{figure}[hbt!]
|
|
||||||
\centering
|
|
||||||
\includegraphics[height=2.5in]{photo1550.jpg}
|
|
||||||
\caption{Kirdy card photo}
|
|
||||||
\includegraphics[height=3in, angle=90]{fp1550.pdf}
|
|
||||||
\caption{Kirdy front panel}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
% For wide tables, a single column layout is better. It can be switched
|
|
||||||
% page-by-page.
|
|
||||||
\onecolumn
|
|
||||||
|
|
||||||
\sourcesection{1550 Laser Diode Driver Kirdy}{https://git.m-labs.hk/sinara-hw/kirdy} The associated adapter can be found at the repository /url{https://git.m-labs.hk/sinara-hw/kirdyAdapter/src/branch/master}.
|
|
||||||
|
|
||||||
\section{Technical Specifications}
|
|
||||||
|
|
||||||
% microcontroller datasheet: \url{https://www.st.com/resource/en/datasheet/DM00037051.pdf}
|
|
||||||
|
|
||||||
% Numbers currently taken unquestioned from the repo https://git.m-labs.hk/sinara-hw/kirdy/
|
|
||||||
|
|
||||||
\begin{table}[h]
|
|
||||||
\centering
|
|
||||||
\begin{threeparttable}
|
|
||||||
\caption{Technical Specifications}
|
|
||||||
\begin{tabularx}{0.75\textwidth}{l | c c c | c | X}
|
|
||||||
\thickhline
|
|
||||||
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
|
|
||||||
\textbf{Unit} & \textbf{Conditions} \\
|
|
||||||
\hline
|
|
||||||
Output power & & & 300 & mA & \\
|
|
||||||
\hline
|
|
||||||
Compliance & & 4 & & V & \\
|
|
||||||
\hline
|
|
||||||
Bandwidth & & 50 & & Hz & \\
|
|
||||||
\hline
|
|
||||||
Current noise & & 300 & & pA/$\sqrt{}$Hz & @ 1kHz \\
|
|
||||||
RMS noise & & 300 & & nA & over 10Hz - 1MHz \\
|
|
||||||
\hline
|
|
||||||
Photodiode current & 0 & & 2.5 & mA & \\
|
|
||||||
\hline
|
|
||||||
TEC controller & & & & & \\
|
|
||||||
\hspace{3mm} Output power & & & 1 & A & \\
|
|
||||||
\hspace{3mm} Compliance & & 5 & & V & \\
|
|
||||||
\hspace{3mm} Stability & & +/- 1 & & mK & \\
|
|
||||||
\thickhline
|
|
||||||
\end{tabularx}
|
|
||||||
\end{threeparttable}
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
1550 Kirdy supports Power-over-Ethernet. Alternatively, power can be provided via 12V DC input in front panel.
|
|
||||||
|
|
||||||
\section{Modulation inputs}
|
|
||||||
|
|
||||||
1550 Kirdy supports two additional modulation inputs via SMA in the front panel, respectively \texttt{HF MOD} for high-frequency and \texttt{LF MOD} for low-frequency. Modulation input may be DC to 10MHz (+/- 1V max), with gain adjustable by DIP switch in top right of board.
|
|
||||||
|
|
||||||
\begin{multicols}{2}
|
|
||||||
|
|
||||||
\begin{center}
|
|
||||||
\captionof{table}{DIP switch configurations}
|
|
||||||
\begin{tabular}{|l|c|}
|
|
||||||
\hline
|
|
||||||
\textbf{Switch} & \textbf{Setting} \\
|
|
||||||
\thickhline
|
|
||||||
3 & 0.25 mA/V \\
|
|
||||||
2 & 2.5 mA/V \\
|
|
||||||
1 & 25 mA/V \\
|
|
||||||
\thickhline
|
|
||||||
\end{tabular}
|
|
||||||
\end{center}
|
|
||||||
|
|
||||||
\columnbreak
|
|
||||||
|
|
||||||
\begin{center}
|
|
||||||
\centering
|
|
||||||
\includegraphics[height=1.5in]{kirdy_mod_switch.jpg}
|
|
||||||
\captionof{figure}{Position of DIP switch}
|
|
||||||
\end{center}
|
|
||||||
|
|
||||||
\end{multicols}
|
|
||||||
|
|
||||||
\newpage
|
|
||||||
\section{Adapter and Laser Options}
|
|
||||||
|
|
||||||
An optional adapter allows compact lasers in butterfly packages to be mounted directly onto 1550 Kirdy, with a fibre-optic output in the front panel. Multiple single-frequency narrow-linewidth lasers are currently available as preinstalled options for order.
|
|
||||||
|
|
||||||
Alternatively, Kirdy accepts laser signals broken out to the front panel and is suitable for use in driving external laser heads, including commercial or custom ECDLs (with additional piezo driver) or injection-locked Fabry-Perot diodes.
|
|
||||||
|
|
||||||
\section{Firmware and driver}
|
|
||||||
|
|
||||||
1550 Kirdy features front panel Ethernet and USB-C. Either DFU or OpenOCD can be used to flash firmware; OpenOCD however requires a JTAG adapter.
|
|
||||||
|
|
||||||
Using M-Labs firmware, communication with a host system is performed over Ethernet/TCP in the form of predefined JSON objects. A Python driver implementing these can be found in the Kirdy firmware repo, hosted at \url{https://git.m-labs.hk/M-Labs/kirdy/}, under \texttt{pykirdy/driver}. See inline documentation for descriptions of particular functions and implemented capabilities.
|
|
||||||
|
|
||||||
This driver may be used directly or through the Kirdy GUI, hosted in the same repo. To start the GUI, run the file \texttt{pykirdy/kirdy\_qt.py}. Users familiar with the Nix package manager through ARTIQ or for other reasons may note that the root of the repository includes a \texttt{flake.nix} with an appropriate development shell (e.g. \texttt{nix develop}) including all dependencies.
|
|
||||||
|
|
||||||
\begin{figure}[hbt!]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=\textwidth]{kirdy_gui.jpg}
|
|
||||||
\caption{Kirdy driver GUI}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
To first connect to Kirdy, use the "Connect" button in the lower right corner and the IP address and port number assigned to Kirdy. By default, these are generally \texttt{192.168.1.128} and \texttt{1550} respectively; they can also be changed using commands supplied by the Python driver.
|
|
||||||
|
|
||||||
\ordersection{1550 Laser Diode Driver Kirdy}
|
|
||||||
|
|
||||||
Kirdy can ship with single-frequency narrow-linewidth laser pre-mounted. Current options include 1270-1610nm and 633-1064nm. See hardware selection tool or contact M-Labs for prices and details.
|
|
||||||
|
|
||||||
\finalfootnote
|
|
||||||
|
|
||||||
\end{document}
|
|
@ -4,7 +4,7 @@
|
|||||||
\title{2118 BNC-TTL / 2128 SMA-TTL}
|
\title{2118 BNC-TTL / 2128 SMA-TTL}
|
||||||
\author{M-Labs Limited}
|
\author{M-Labs Limited}
|
||||||
\date{January 2022}
|
\date{January 2022}
|
||||||
\revision{Revision 2}
|
\revision{Revision 3}
|
||||||
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
@ -36,7 +36,7 @@ Each card provides two banks of four digital channels, for a total of eight digi
|
|||||||
|
|
||||||
Each channel supports 50\textOmega~terminations, individually controllable using DIP switches. Outputs tolerate short circuits indefinitely. Both cards are capable of a minimum pulse width of 3ns.
|
Each channel supports 50\textOmega~terminations, individually controllable using DIP switches. Outputs tolerate short circuits indefinitely. Both cards are capable of a minimum pulse width of 3ns.
|
||||||
|
|
||||||
Note that isolated TTL cards are less suited to low-noise applications as the isolator itself injects noise between primary and secondary sides. Cable shields may also radiate EMI from the isolated grounds. For low-noise applications, use non-isolated cards such as 2238 MCX-TTL or 2245 LVDS-TTL.
|
Isolated TTL cards are not well suited to low-noise or low-jitter applications due to interference from isolation components. For low-noise applications, use non-isolated cards such as 2238 MCX-TTL or 2245 LVDS-TTL.
|
||||||
|
|
||||||
% Switch to next column
|
% Switch to next column
|
||||||
\vfill\break
|
\vfill\break
|
||||||
@ -295,11 +295,11 @@ Note that isolated TTL cards are less suited to low-noise applications as the is
|
|||||||
\begin{figure}[hbt!]
|
\begin{figure}[hbt!]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[height=1.8in]{photo2118-2128.jpg }
|
\includegraphics[height=1.8in]{photo2118-2128.jpg }
|
||||||
\caption{BNC-TTL and SMA-TTL cards}%
|
\caption{BNC-TTL and SMA-TTL cards}
|
||||||
\includegraphics[angle=90, height=0.7in]{DIO_BNC_FP.jpg}
|
\includegraphics[angle=90, height=0.7in]{fp2118.jpg}
|
||||||
\includegraphics[angle=90, height=0.4in]{DIO_SMA_FP.jpg}
|
\includegraphics[angle=90, height=0.4in]{fp2128.jpg}
|
||||||
\caption{BNC-TTL and SMA-TTL front panels}%
|
\caption{BNC-TTL and SMA-TTL front panels}
|
||||||
\label{fig:example}%
|
\label{fig:example}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\onecolumn
|
\onecolumn
|
||||||
@ -359,6 +359,8 @@ Specifications were derived based on the datasheets of the bus transceiver IC (S
|
|||||||
\end{threeparttable}
|
\end{threeparttable}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
|
Low-jitter applications should note carefully the jitter introduced by the signal isolator. Noise is also introduced between the primary and secondary domains by the DC/DC converter. Where noise or jitter are crucial, it is instead recommended to use non-isolated cards such as 2238 MCX-TTL or 2245 LVDS-TTL.
|
||||||
|
|
||||||
Minimum pulse width was measured by generating pulses of progressively longer duration through a DDS generator and using them as input for a BNC-TTL card. The input BNC-TTL card was connected to another BNC-TTL card as output. The output signal is measured and shown in Figure \ref{fig:pulsewidth}.
|
Minimum pulse width was measured by generating pulses of progressively longer duration through a DDS generator and using them as input for a BNC-TTL card. The input BNC-TTL card was connected to another BNC-TTL card as output. The output signal is measured and shown in Figure \ref{fig:pulsewidth}.
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[ht]
|
||||||
@ -395,7 +397,25 @@ IO direction and termination must be configured by setting physical switches on
|
|||||||
\caption{Position of switches}%
|
\caption{Position of switches}%
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\newpage
|
\sysdescsection
|
||||||
|
|
||||||
|
2118 BNC-TTL and 2128 SMA-TTL should be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
|
||||||
|
|
||||||
|
\begin{tcolorbox}[colback=white]
|
||||||
|
\begin{minted}{json}
|
||||||
|
"name" : {
|
||||||
|
"type": "dio",
|
||||||
|
"board": "DIO_BNC", // or "DIO_SMA", optional
|
||||||
|
"ports": [0],
|
||||||
|
"edge_counter": true, // optional
|
||||||
|
"bank_direction_low": "input", // or "output"
|
||||||
|
"bank_direction_high": "output" // or "input"
|
||||||
|
}
|
||||||
|
\end{minted}
|
||||||
|
\end{tcolorbox}
|
||||||
|
|
||||||
|
Replace 0 with the EEM port number used on the core device. Any port can be used. The \texttt{edge\_counter} field is boolean and may be specified true or false; a setting \texttt{true} will make a corresponding ARTIQ \texttt{edge\_counter} module available and consume a corresponding amount of additonal gateware resources. If not included, its default value is false.
|
||||||
|
|
||||||
\codesection{2118 BNC-TTL/2128 SMA-TTL cards}
|
\codesection{2118 BNC-TTL/2128 SMA-TTL cards}
|
||||||
|
|
||||||
Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure.
|
Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure.
|
||||||
@ -404,21 +424,25 @@ Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTI
|
|||||||
The channel should be configured as output in both the gateware and hardware.
|
The channel should be configured as output in both the gateware and hardware.
|
||||||
\inputcolorboxminted{firstline=9,lastline=14}{examples/ttl.py}
|
\inputcolorboxminted{firstline=9,lastline=14}{examples/ttl.py}
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
\subsection{Morse code}
|
\subsection{Morse code}
|
||||||
This example demonstrates some basic algorithmic features of the ARTIQ-Python language.
|
This example demonstrates some basic algorithmic features of the ARTIQ-Python language.
|
||||||
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
|
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
|
||||||
|
|
||||||
\newpage
|
|
||||||
\subsection{Sub-coarse-RTIO-cycle pulse}
|
\subsection{Sub-coarse-RTIO-cycle pulse}
|
||||||
With the use of ARTIQ RTIO, only one event can be enqueued per \textit{coarse RTIO cycle}, which typically corresponds to 8ns. To emit pulses of less than 8ns, careful timing is needed to ensure that the \texttt{ttl.on()} \& \texttt{ttl.off()} event are submitted during different coarse RTIO cycles.
|
With the use of ARTIQ RTIO, only one event can be enqueued per \textit{coarse RTIO cycle}, which typically corresponds to 8ns. To emit pulses of less than 8ns, careful timing is needed to ensure that the \texttt{ttl.on()} \& \texttt{ttl.off()} event are submitted during different coarse RTIO cycles.
|
||||||
|
|
||||||
\inputcolorboxminted{firstline=60,lastline=64}{examples/ttl.py}
|
\inputcolorboxminted{firstline=60,lastline=64}{examples/ttl.py}
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
\subsection{Edge counting in a 1ms window}
|
\subsection{Edge counting in a 1ms window}
|
||||||
The \texttt{TTLInOut} class implements \texttt{gate\char`_rising()}, \texttt{gate\char`_falling()} \& \texttt{gate\char`_both()} for rising edge, falling edge, both rising edge \& falling edge detection respectively.
|
The \texttt{TTLInOut} class implements \texttt{gate\char`_rising()}, \texttt{gate\char`_falling()} \& \texttt{gate\char`_both()} for rising edge, falling edge, both rising edge \& falling edge detection respectively.
|
||||||
The channel should be configured as input in both gateware and hardware. Invoke one of the 3 methods to start edge detection.
|
The channel should be configured as input in both gateware and hardware. Invoke one of the 3 methods to start edge detection.
|
||||||
\inputcolorboxminted{firstline=14,lastline=15}{examples/ttl_in.py}
|
\inputcolorboxminted{firstline=14,lastline=15}{examples/ttl_in.py}
|
||||||
Input signal can generated from another TTL channel or from other sources. Manipulate the timeline cursor to generate TTL pulses using the same kernel.
|
Input signal can generated from another TTL channel or from other sources. Manipulate the timeline cursor to generate TTL pulses using the same kernel.
|
||||||
|
|
||||||
\inputcolorboxminted{firstline=10,lastline=22}{examples/ttl_in.py}
|
\inputcolorboxminted{firstline=10,lastline=22}{examples/ttl_in.py}
|
||||||
The detected edges are registered to the RTIO input FIFO. By default, the FIFO can hold 64 events. The FIFO depth is defined by the \texttt{ififo\char`_depth} parameter for \texttt{Channel} class in \texttt{rtio/channel.py}.
|
The detected edges are registered to the RTIO input FIFO. By default, the FIFO can hold 64 events. The FIFO depth is defined by the \texttt{ififo\char`_depth} parameter for \texttt{Channel} class in \texttt{rtio/channel.py}.
|
||||||
Once the threshold is exceeded, an \texttt{RTIOOverflow} exception will be triggered when the input events are read by the kernel CPU.
|
Once the threshold is exceeded, an \texttt{RTIOOverflow} exception will be triggered when the input events are read by the kernel CPU.
|
||||||
@ -427,6 +451,7 @@ Finally, invoke \texttt{count()} to retrieve the edge count from the input gate.
|
|||||||
The RTIO system can report at most one edge detection event for every coarse RTIO cycle. In principle, to guarantee all rising edges are counted (with \texttt{gate\char`_rising()} invoked), the theoretical minimum separation between rising edges is one coarse RTIO cycle (typically 8 ns). However, both the electrical specifications and the possibility of triggering \texttt{RTIOOverflow} exceptions should also be considered.
|
The RTIO system can report at most one edge detection event for every coarse RTIO cycle. In principle, to guarantee all rising edges are counted (with \texttt{gate\char`_rising()} invoked), the theoretical minimum separation between rising edges is one coarse RTIO cycle (typically 8 ns). However, both the electrical specifications and the possibility of triggering \texttt{RTIOOverflow} exceptions should also be considered.
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
\subsection{Edge counting using \texttt{EdgeCounter}}
|
\subsection{Edge counting using \texttt{EdgeCounter}}
|
||||||
This example code uses a gateware counter to substitute the software counter, which has a maximum count rate of approximately 1 million events per second. If a gateware counter is enabled on the TTL channel, it can typically count up to 125 million events per second:
|
This example code uses a gateware counter to substitute the software counter, which has a maximum count rate of approximately 1 million events per second. If a gateware counter is enabled on the TTL channel, it can typically count up to 125 million events per second:
|
||||||
\inputcolorboxminted{firstline=31,lastline=36}{examples/ttl_in.py}
|
\inputcolorboxminted{firstline=31,lastline=36}{examples/ttl_in.py}
|
||||||
@ -444,6 +469,7 @@ Typically, with the coarse RTIO clock at 125 MHz, a \texttt{ClockGen} channel ca
|
|||||||
\inputcolorboxminted{firstline=72,lastline=75}{examples/ttl.py}
|
\inputcolorboxminted{firstline=72,lastline=75}{examples/ttl.py}
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
\subsection{Minimum sustained event separation}
|
\subsection{Minimum sustained event separation}
|
||||||
The minimum sustained event separation is the least time separation between input gated events for which all gated edges can be continuously \& reliabily timestamped by the RTIO system without causing \texttt{RTIOOverflow} exceptions. The following \texttt{run()} function finds the separation by approximating the time of running \texttt{timestamp\char`_mu()} as a constant. Import the \texttt{time} library to use \texttt{time.sleep()}.
|
The minimum sustained event separation is the least time separation between input gated events for which all gated edges can be continuously \& reliabily timestamped by the RTIO system without causing \texttt{RTIOOverflow} exceptions. The following \texttt{run()} function finds the separation by approximating the time of running \texttt{timestamp\char`_mu()} as a constant. Import the \texttt{time} library to use \texttt{time.sleep()}.
|
||||||
|
|
||||||
|
42
2238.tex
@ -4,7 +4,7 @@
|
|||||||
\title{2238 MCX-TTL}
|
\title{2238 MCX-TTL}
|
||||||
\author{M-Labs Limited}
|
\author{M-Labs Limited}
|
||||||
\date{January 2022}
|
\date{January 2022}
|
||||||
\revision{Revision 2}
|
\revision{Revision 3}
|
||||||
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
@ -439,7 +439,7 @@ Each channel supports 50\textOmega~terminations individually controllable using
|
|||||||
\centering
|
\centering
|
||||||
\includegraphics[height=2in]{photo2238.jpg}
|
\includegraphics[height=2in]{photo2238.jpg}
|
||||||
\caption{MCX-TTL card}
|
\caption{MCX-TTL card}
|
||||||
\includegraphics[angle=90, height=0.6in]{DIO_MCX_FP.pdf}
|
\includegraphics[angle=90, height=0.6in]{fp2238.pdf}
|
||||||
\caption{MCX-TTL front panel}
|
\caption{MCX-TTL front panel}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
@ -505,8 +505,11 @@ All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherw
|
|||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
\section{Configuring IO Direction \& Termination}
|
\section{Configuring IO Direction \& Termination}
|
||||||
|
|
||||||
IO direction and termination must be configured by switches. The termination switches are found at the top and the IO direction switches at the middle of the card respectively.
|
IO direction and termination must be configured by switches. The termination switches are found at the top and the IO direction switches at the middle of the card respectively.
|
||||||
|
|
||||||
\begin{multicols}{2}
|
\begin{multicols}{2}
|
||||||
|
|
||||||
Termination switches between high impedence (OFF) and 50\textOmega~(ON). Note that termination switches are by-channel but IO direction switches are by-bank.
|
Termination switches between high impedence (OFF) and 50\textOmega~(ON). Note that termination switches are by-channel but IO direction switches are by-bank.
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -516,15 +519,49 @@ Termination switches between high impedence (OFF) and 50\textOmega~(ON). Note th
|
|||||||
\item IO direction switch open (OFF) \\
|
\item IO direction switch open (OFF) \\
|
||||||
The corresponding bank is set to input by default. IO direction \textit{can} be changed by I\textsuperscript{2}C.
|
The corresponding bank is set to input by default. IO direction \textit{can} be changed by I\textsuperscript{2}C.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\columnbreak
|
\columnbreak
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[height=1.7in]{mcx_ttl_switches.jpg}
|
\includegraphics[height=1.7in]{mcx_ttl_switches.jpg}
|
||||||
\captionof{figure}{Position of switches}
|
\captionof{figure}{Position of switches}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\end{multicols}
|
\end{multicols}
|
||||||
|
|
||||||
|
\sysdescsection
|
||||||
|
|
||||||
|
2238 MCX-TTL should be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
|
||||||
|
|
||||||
|
\begin{tcolorbox}[colback=white]
|
||||||
|
\begin{minted}{json}
|
||||||
|
{
|
||||||
|
"type": "dio",
|
||||||
|
"board": "DIO_MCX", // optional
|
||||||
|
"ports": [0],
|
||||||
|
"edge_counter": true, // optional
|
||||||
|
"bank_direction_low": "input", // or "output"
|
||||||
|
"bank_direction_high": "output" // or "input"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "dio",
|
||||||
|
"board": "DIO_MCX",
|
||||||
|
"ports": [1],
|
||||||
|
"bank_direction_low": "output",
|
||||||
|
"bank_direction_high": "output"
|
||||||
|
}
|
||||||
|
\end{minted}
|
||||||
|
\end{tcolorbox}
|
||||||
|
|
||||||
|
Note that due to its high channel account and double EEM connections 2238 MCX-TTL is entered into a system description as two peripheral entries, each representing two banks.
|
||||||
|
|
||||||
|
The \texttt{edge\_counter} field is boolean and may be specified true or false; a setting \texttt{true} will make a corresponding ARTIQ \texttt{edge\_counter} module available and consume a corresponding amount of additonal gateware resources. If not included, its default value is false. Both \texttt{edge\_counter} and IO direction can be specified separately for each entry.
|
||||||
|
|
||||||
|
For single-EEM operation, use only one of two peripheral entries.
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
\codesection{2238 MCX-TTL card}
|
\codesection{2238 MCX-TTL card}
|
||||||
|
|
||||||
Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure.
|
Timing accuracy in these examples is well under 1 nanosecond thanks to ARTIQ RTIO infrastructure.
|
||||||
@ -538,6 +575,7 @@ This example demonstrates some basic algorithmic features of the ARTIQ-Python la
|
|||||||
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
|
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
\subsection{Edge counting in an 1ms window}
|
\subsection{Edge counting in an 1ms window}
|
||||||
The channel should be configured as input in both gateware and hardware.
|
The channel should be configured as input in both gateware and hardware.
|
||||||
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}
|
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}
|
||||||
|
76
2245.tex
@ -7,7 +7,7 @@
|
|||||||
\title{2245 LVDS-TTL}
|
\title{2245 LVDS-TTL}
|
||||||
\author{M-Labs Limited}
|
\author{M-Labs Limited}
|
||||||
\date{January 2022}
|
\date{January 2022}
|
||||||
\revision{Revision 2}
|
\revision{Revision 3}
|
||||||
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
@ -297,7 +297,7 @@ Outputs are intended to drive 100\textOmega~loads and inputs are 100\textOmega~t
|
|||||||
\begin{figure}[hbt!]
|
\begin{figure}[hbt!]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[angle=90, height=1.7in]{photo2245.jpg}
|
\includegraphics[angle=90, height=1.7in]{photo2245.jpg}
|
||||||
\includegraphics[angle=90, height=0.4in]{DIO_RJ45_FP.pdf}
|
\includegraphics[angle=90, height=0.4in]{fp2245.pdf}
|
||||||
\caption{LVDS-TTL card and front panel}
|
\caption{LVDS-TTL card and front panel}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
@ -312,7 +312,7 @@ Outputs are intended to drive 100\textOmega~loads and inputs are 100\textOmega~t
|
|||||||
|
|
||||||
All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherwise noted. Information in this section is based on the datasheet of the repeater IC (FIN1101K8X\footnote{\label{repeaters}\url{https://www.onsemi.com/pdf/datasheet/fin1101-d.pdf}}).
|
All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherwise noted. Information in this section is based on the datasheet of the repeater IC (FIN1101K8X\footnote{\label{repeaters}\url{https://www.onsemi.com/pdf/datasheet/fin1101-d.pdf}}).
|
||||||
|
|
||||||
\begin{table}[h]
|
\begin{table}[h!]
|
||||||
\begin{threeparttable}
|
\begin{threeparttable}
|
||||||
\caption{Recommended Input Voltage}
|
\caption{Recommended Input Voltage}
|
||||||
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
|
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
|
||||||
@ -334,7 +334,7 @@ All specifications are in $-40\degree C \leq T_A \leq 85\degree C$ unless otherw
|
|||||||
|
|
||||||
All typical values of DC specifications are at $T_A = 25\degree C$.
|
All typical values of DC specifications are at $T_A = 25\degree C$.
|
||||||
|
|
||||||
\begin{table}[h]
|
\begin{table}[h!]
|
||||||
\begin{threeparttable}
|
\begin{threeparttable}
|
||||||
\caption{DC Specifications}
|
\caption{DC Specifications}
|
||||||
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
|
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
|
||||||
@ -360,7 +360,7 @@ All typical values of DC specifications are at $T_A = 25\degree C$.
|
|||||||
|
|
||||||
All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 300mV$, $V_{IC} = 1.3V$ unless otherwise given.
|
All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 300mV$, $V_{IC} = 1.3V$ unless otherwise given.
|
||||||
|
|
||||||
\begin{table}[h]
|
\begin{table}[h!]
|
||||||
\begin{threeparttable}
|
\begin{threeparttable}
|
||||||
\caption{AC Specifications}
|
\caption{AC Specifications}
|
||||||
\begin{tabularx}{\textwidth}{l | c c c | c | X}
|
\begin{tabularx}{\textwidth}{l | c c c | c | X}
|
||||||
@ -379,6 +379,20 @@ All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 30
|
|||||||
LVDS data jitter, & & \multirow{2}{*}{85} & \multirow{2}{*}{125} & \multirow{2}{*}{ps} & $PRBS=2^{23}-1$\\
|
LVDS data jitter, & & \multirow{2}{*}{85} & \multirow{2}{*}{125} & \multirow{2}{*}{ps} & $PRBS=2^{23}-1$\\
|
||||||
deterministic & & & & & 800 Mbps\\
|
deterministic & & & & & 800 Mbps\\
|
||||||
\hline
|
\hline
|
||||||
|
\end{tabularx}
|
||||||
|
\end{threeparttable}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
|
\begin{table}[h!]
|
||||||
|
\begin{threeparttable}
|
||||||
|
\caption{AC Specifications, cont.}
|
||||||
|
\begin{tabularx}{\textwidth}{l | c c c | c | X}
|
||||||
|
\thickhline
|
||||||
|
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
|
||||||
|
\textbf{Unit} & \textbf{Conditions} \\
|
||||||
|
\hline
|
||||||
LVDS clock jitter, & & \multirow{2}{*}{2.1} & \multirow{2}{*}{3.5} & \multirow{2}{*}{ps} & \multirow{2}{*}{400 MHz clock}\\
|
LVDS clock jitter, & & \multirow{2}{*}{2.1} & \multirow{2}{*}{3.5} & \multirow{2}{*}{ps} & \multirow{2}{*}{400 MHz clock}\\
|
||||||
random (RMS) & & & & & \\
|
random (RMS) & & & & & \\
|
||||||
\thickhline
|
\thickhline
|
||||||
@ -386,10 +400,10 @@ All typical values of AC specifications are at $T_A = 25\degree C$, $V_{ID} = 30
|
|||||||
\end{threeparttable}
|
\end{threeparttable}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\newpage
|
|
||||||
|
|
||||||
\section{Configuring IO Direction \& Termination}
|
\section{Configuring IO Direction \& Termination}
|
||||||
|
|
||||||
\begin{multicols}{2}
|
\begin{multicols}{2}
|
||||||
|
|
||||||
The IO direction of each channel can be configured by DIP switches, which are found at the top of the card.
|
The IO direction of each channel can be configured by DIP switches, which are found at the top of the card.
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\itemsep0em
|
\itemsep0em
|
||||||
@ -400,13 +414,45 @@ The IO direction of each channel can be configured by DIP switches, which are fo
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\vspace*{\fill}\columnbreak
|
\vspace*{\fill}\columnbreak
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[height=1.5in]{lvds_ttl_switches.jpg}
|
\includegraphics[height=1.5in]{lvds_ttl_switches.jpg}
|
||||||
\captionof{figure}{Position of switches}
|
\captionof{figure}{Position of switches}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\end{multicols}
|
\end{multicols}
|
||||||
|
|
||||||
|
\sysdescsection
|
||||||
|
|
||||||
|
2245 LVDS-TTL should be entered in the \texttt{peripherals} list of the corresponding core device in the following format:
|
||||||
|
|
||||||
|
\begin{tcolorbox}[colback=white]
|
||||||
|
\begin{minted}{json}
|
||||||
|
{
|
||||||
|
"type": "dio",
|
||||||
|
"board": "DIO_LVDS", // optional
|
||||||
|
"ports": [0],
|
||||||
|
"edge_counter": true, // optional
|
||||||
|
"bank_direction_low": "input", // or "output"
|
||||||
|
"bank_direction_high": "output" // or "input"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "dio",
|
||||||
|
"board": "DIO_LVDS",
|
||||||
|
"ports": [1],
|
||||||
|
"bank_direction_low": "output",
|
||||||
|
"bank_direction_high": "output"
|
||||||
|
}
|
||||||
|
\end{minted}
|
||||||
|
\end{tcolorbox}
|
||||||
|
|
||||||
|
Note that due to its high channel account and double EEM connections 2245 LVDS-TTL is entered into a system description as two peripheral entries, each representing two banks.
|
||||||
|
|
||||||
|
The \texttt{edge\_counter} field is boolean and may be specified true or false; a setting \texttt{true} will make a corresponding ARTIQ \texttt{edge\_counter} module available and consume a corresponding amount of additonal gateware resources. If not included, its default value is false. Both \texttt{edge\_counter} and IO direction can be specified separately for each entry.
|
||||||
|
|
||||||
|
For single-EEM operation, use only one of two peripheral entries.
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
\codesection{2245 LVDS-TTL card}
|
\codesection{2245 LVDS-TTL card}
|
||||||
@ -422,6 +468,7 @@ This example demonstrates some basic algorithmic features of the ARTIQ-Python la
|
|||||||
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
|
\inputcolorboxminted{firstline=22,lastline=39}{examples/ttl.py}
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
\subsection{Counting rising edges in a 1ms window}
|
\subsection{Counting rising edges in a 1ms window}
|
||||||
The channel should be configured as input in both gateware and hardware.
|
The channel should be configured as input in both gateware and hardware.
|
||||||
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}
|
\inputcolorboxminted{firstline=47,lastline=52}{examples/ttl.py}
|
||||||
@ -447,7 +494,6 @@ One channel needs to be configured as input, and the other as output.
|
|||||||
\noindent\strut\usebox0\par
|
\noindent\strut\usebox0\par
|
||||||
\egroup}
|
\egroup}
|
||||||
|
|
||||||
\newpage
|
|
||||||
\subsection{SPI Master Device}
|
\subsection{SPI Master Device}
|
||||||
If one of the two card EEM ports is configured as \texttt{dio\char`_spi} instead of \texttt{dio}, its associated TTL channels can be configured as SPI master devices. Invocation of an SPI transfer follows this pattern:
|
If one of the two card EEM ports is configured as \texttt{dio\char`_spi} instead of \texttt{dio}, its associated TTL channels can be configured as SPI master devices. Invocation of an SPI transfer follows this pattern:
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
@ -482,8 +528,10 @@ The list of configurations supported in the gateware are listed as below:
|
|||||||
\end{tabular}
|
\end{tabular}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
The following ARTIQ example demonstrates the flow of an SPI transaction on a typical SPI setup with 3 homogeneous slaves.
|
The following ARTIQ example demonstrates the flow of an SPI transaction on a typical SPI setup with 3 homogeneous slaves. The direction switches on the LVDS-TTL card should be set to the correct IO direction for all relevant channels before powering on.
|
||||||
The direction switches on the LVDS-TTL card should be set to the correct IO direction for all relevant channels before powering on.
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{circuitikz}[european, scale=1, every label/.append style={align=center}]
|
\begin{circuitikz}[european, scale=1, every label/.append style={align=center}]
|
||||||
% SPI master
|
% SPI master
|
||||||
@ -551,7 +599,6 @@ The direction switches on the LVDS-TTL card should be set to the correct IO dire
|
|||||||
\end{circuitikz}
|
\end{circuitikz}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\newpage
|
|
||||||
\subsubsection{SPI Configuration}
|
\subsubsection{SPI Configuration}
|
||||||
The following examples will assume the SPI communication has the following properties:
|
The following examples will assume the SPI communication has the following properties:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -561,6 +608,9 @@ The following examples will assume the SPI communication has the following prope
|
|||||||
\item Most significant bit (MSB) first
|
\item Most significant bit (MSB) first
|
||||||
\item Full duplex
|
\item Full duplex
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
The baseline configuration for an \texttt{SPIMaster} instance can be defined as such:
|
The baseline configuration for an \texttt{SPIMaster} instance can be defined as such:
|
||||||
\inputcolorboxminted[0]{firstline=2,lastline=8}{examples/spi.py}
|
\inputcolorboxminted[0]{firstline=2,lastline=8}{examples/spi.py}
|
||||||
The \texttt{SPI\char`_END} \& \texttt{SPI\char`_INPUT} flags will be modified during runtime in the following example.
|
The \texttt{SPI\char`_END} \& \texttt{SPI\char`_INPUT} flags will be modified during runtime in the following example.
|
||||||
@ -590,10 +640,11 @@ Typically, an SPI write operation involves sending an instruction and data to th
|
|||||||
\end{tikztimingtable}%
|
\end{tikztimingtable}%
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\newpage
|
|
||||||
Suppose the instruction is \texttt{0x13}, while the data is \texttt{0xDEADBEEF}. In addition, both slave 1 \& 2 are selected. This SPI transaction can be performed with the following code:
|
Suppose the instruction is \texttt{0x13}, while the data is \texttt{0xDEADBEEF}. In addition, both slave 1 \& 2 are selected. This SPI transaction can be performed with the following code:
|
||||||
\inputcolorboxminted{firstline=18,lastline=27}{examples/spi.py}
|
\inputcolorboxminted{firstline=18,lastline=27}{examples/spi.py}
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
\subsubsection{SPI read}
|
\subsubsection{SPI read}
|
||||||
A 32-bit read is represented by the following timing diagram:
|
A 32-bit read is represented by the following timing diagram:
|
||||||
|
|
||||||
@ -619,7 +670,6 @@ A 32-bit read is represented by the following timing diagram:
|
|||||||
Suppose the instruction is \texttt{0x81}, where only slave 0 is selected. This SPI transcation can be performed by the following code.
|
Suppose the instruction is \texttt{0x81}, where only slave 0 is selected. This SPI transcation can be performed by the following code.
|
||||||
\inputcolorboxminted{firstline=35,lastline=49}{examples/spi.py}
|
\inputcolorboxminted{firstline=35,lastline=49}{examples/spi.py}
|
||||||
|
|
||||||
\newpage
|
|
||||||
\ordersection{2245 LVDS-TTL}
|
\ordersection{2245 LVDS-TTL}
|
||||||
|
|
||||||
\finalfootnote
|
\finalfootnote
|
||||||
|
2
Makefile
@ -1,4 +1,4 @@
|
|||||||
inputs = 1008 1106 1124 1550 2118-2128 2238 2245 4410-4412 4456-4457 4459 4624 5108 5432 5632 5633 5518-5528 5538 5568 6302 7210 8451-8453 8452-8462
|
inputs = 1124 1125 2118-2128 2238 2245 4410-4412 4456 5108 5432 5518-5528 5568 7210
|
||||||
dir = build
|
dir = build
|
||||||
|
|
||||||
all: $(inputs)
|
all: $(inputs)
|
||||||
|
99
examples/unsorted
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
from artiq.experiment import *
|
||||||
|
|
||||||
|
class SineWave(EnvExperiment):
|
||||||
|
def build(self):
|
||||||
|
self.setattr_device("core")
|
||||||
|
|
||||||
|
self.leds = dict()
|
||||||
|
self.ttl_outs = dict()
|
||||||
|
|
||||||
|
self.dacs_config = dict()
|
||||||
|
self.dac_volt = dict()
|
||||||
|
self.dac_dds = dict()
|
||||||
|
self.dac_trigger = dict()
|
||||||
|
|
||||||
|
ddb = self.get_device_db()
|
||||||
|
for name, desc in ddb.items():
|
||||||
|
if isinstance(desc, dict) and desc["type"] == "local":
|
||||||
|
module, cls = desc["module"], desc["class"]
|
||||||
|
if (module, cls) == ("artiq.coredevice.ttl", "TTLOut"):
|
||||||
|
dev = self.get_device(name)
|
||||||
|
if "led" in name:
|
||||||
|
self.leds[name] = dev
|
||||||
|
else:
|
||||||
|
self.ttl_outs[name] = dev
|
||||||
|
|
||||||
|
if (module, cls) == ("artiq.coredevice.shuttler", "Config"):
|
||||||
|
dev = self.get_device(name)
|
||||||
|
self.dacs_config[name] = dev
|
||||||
|
|
||||||
|
if (module, cls) == ("artiq.coredevice.shuttler", "Volt"):
|
||||||
|
dev = self.get_device(name)
|
||||||
|
self.dac_volt[name] = dev
|
||||||
|
|
||||||
|
if (module, cls) == ("artiq.coredevice.shuttler", "Dds"):
|
||||||
|
dev = self.get_device(name)
|
||||||
|
self.dac_dds[name] = dev
|
||||||
|
|
||||||
|
if (module, cls) == ("artiq.coredevice.shuttler", "Trigger"):
|
||||||
|
dev = self.get_device(name)
|
||||||
|
self.dac_trigger[name] = dev
|
||||||
|
|
||||||
|
|
||||||
|
self.leds = sorted(self.leds.items(), key=lambda x: x[1].channel)
|
||||||
|
self.ttl_outs = sorted(self.ttl_outs.items(), key=lambda x: x[1].channel)
|
||||||
|
|
||||||
|
self.dacs_config = sorted(self.dacs_config.items(), key=lambda x: x[1].channel)
|
||||||
|
self.dac_volt = sorted(self.dac_volt.items(), key=lambda x: x[1].channel)
|
||||||
|
self.dac_dds = sorted(self.dac_dds.items(), key=lambda x: x[1].channel)
|
||||||
|
self.dac_trigger = sorted(self.dac_trigger.items(), key=lambda x: x[1].channel)
|
||||||
|
|
||||||
|
|
||||||
|
@kernel
|
||||||
|
def set_dac_config(self, config):
|
||||||
|
config.set_config(0xFFFF)
|
||||||
|
|
||||||
|
@kernel
|
||||||
|
def set_test_dac_volt(self, volt):
|
||||||
|
a0 = 0
|
||||||
|
a1 = 0
|
||||||
|
a2 = 0
|
||||||
|
a3 = 0
|
||||||
|
volt.set_waveform(a0, a1, a2, a3)
|
||||||
|
|
||||||
|
|
||||||
|
@kernel
|
||||||
|
def set_test_dac_dds(self, dds):
|
||||||
|
b0 = 0x0FFF
|
||||||
|
b1 = 0
|
||||||
|
b2 = 0
|
||||||
|
b3 = 0
|
||||||
|
c0 = 0
|
||||||
|
c1 = 0x147AE148 # Frequency = 10MHz
|
||||||
|
c2 = 0
|
||||||
|
dds.set_waveform(b0, b1, b2, b3, c0, c1, c2)
|
||||||
|
|
||||||
|
@kernel
|
||||||
|
def set_dac_trigger(self, trigger):
|
||||||
|
trigger.trigger(0xFFFF)
|
||||||
|
|
||||||
|
@kernel
|
||||||
|
def run(self):
|
||||||
|
self.core.reset()
|
||||||
|
|
||||||
|
self.core.break_realtime()
|
||||||
|
t = now_mu() - self.core.seconds_to_mu(0.2)
|
||||||
|
while self.core.get_rtio_counter_mu() < t:
|
||||||
|
pass
|
||||||
|
|
||||||
|
for dac_config_name, dac_config_dev in self.dacs_config:
|
||||||
|
self.set_dac_config(dac_config_dev)
|
||||||
|
|
||||||
|
for dac_volt_name, dac_volt_dev in self.dac_volt:
|
||||||
|
self.set_test_dac_volt(dac_volt_dev)
|
||||||
|
|
||||||
|
for dac_dds_name, dac_dds_dev in self.dac_dds:
|
||||||
|
self.set_test_dac_dds(dac_dds_dev)
|
||||||
|
|
||||||
|
for dac_trigger_name, dac_trigger_dev in self.dac_trigger:
|
||||||
|
self.set_dac_trigger(dac_trigger_dev)
|
Before Width: | Height: | Size: 259 KiB |
Before Width: | Height: | Size: 54 KiB |
Before Width: | Height: | Size: 438 KiB |
Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 31 KiB After Width: | Height: | Size: 31 KiB |