datasheets/5432.tex

315 lines
12 KiB
TeX
Raw Normal View History

2024-10-23 02:34:00 +08:00
\include{preamble.tex}
\graphicspath{{images/5432}{images}}
2021-12-09 12:33:42 +08:00
2022-02-04 13:49:06 +08:00
\title{5432 DAC Zotino}
2021-12-09 12:33:42 +08:00
\author{M-Labs Limited}
2022-01-19 15:34:54 +08:00
\date{January 2022}
\revision{Revision 2}
2021-12-09 12:33:42 +08:00
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
\begin{itemize}
2022-01-18 16:02:01 +08:00
\item{32-channel DAC.}
2021-12-09 12:33:42 +08:00
\item{16-bits resolution.}
\item{1 MSPS shared between all channels.}
\item{Output voltage $\pm$10V.}
\item{HD68 connector.}
\item{Can be broken out to BNC/SMA/MCX.}
\end{itemize}
\section{Applications}
\begin{itemize}
2021-12-30 14:33:04 +08:00
\item{Controlling setpoints of PID controllers for laser power stabilization.}
\item{Low-frequency arbitrary waveform generation.}
2021-12-30 14:33:04 +08:00
\item{Driving DC electrodes in ion traps.}
2021-12-09 12:33:42 +08:00
\end{itemize}
\section{General Description}
The 5432 Zotino is a 4hp EEM module part of the ARTIQ Sinara family.
It adds digital-analog converting capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 4 groups of 8 analog channels each, exposed by 1 HD68 connector.
Each channel supports output voltage from -10 V to 10 V.
All channels can be updated simultaneously.
Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528 SMA-IDC or 5538 MCX-IDC cards.
2021-12-09 12:33:42 +08:00
% Switch to next column
\vfill\break
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\inputcolorboxminted}[2]{%
\begin{tcolorbox}[colback=white]
\inputminted[#1, gobble=4]{python}{#2}
\end{tcolorbox}
}
2021-12-09 12:33:42 +08:00
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
% HD68 Connector
\draw (0, 0) node[muxdemux, muxdemux def={Lh=6.5, Rh=8, w=2, NL=0, NB=0, NR=0}, circuitikz/bipoles/twoport/width=3.2, scale=0.7] (hd68) {HD68};
% IDC Connectors to IDC cards
\draw (2.2, 1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 16-23}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem2) {};
\draw (1.4, 1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 24-31}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem3) {};
\draw (2.2, -1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 8-15}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem1) {};
\draw (1.4, -1.2) node[twoportshape, t={\MyLabel{IDC}{DAC 0-7}}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (eem0) {};
2021-12-09 12:33:42 +08:00
% Op-amp x32
\draw (3, 0) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=-0.5] (amp) {};
2021-12-09 12:33:42 +08:00
% DAC AD5372
2022-01-18 16:03:07 +08:00
\draw (4.6, 0.2) node[twoportshape, t=\MyLabel{32-CH}{DAC}, circuitikz/bipoles/twoport/width=1.2, circuitikz/bipoles/twoport/height=1.2, scale=0.7] (dac) {};
2021-12-09 12:33:42 +08:00
% LVDS Transceivers
\draw (6.6, 0) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (lvds0) {};
2021-12-09 12:33:42 +08:00
\draw (6.6, -1.6) node[twoportshape, t=\MymyLabel{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5, rotate=-90] (lvds1) {};
% Aesthetic EEPROM
\draw (6.6, 1.6) node[twoportshape, t={EEPROM}, circuitikz/bipoles/twoport/width=1.6, scale=0.5, rotate=-90] (eeprom) {};
2021-12-09 12:33:42 +08:00
% EEMs from core device / controllers
\draw (8.2, 0.0) node[twoportshape, t={EEM Port}, circuitikz/bipoles/twoport/width=3.6, scale=0.7, rotate=-90] (eem_in) {};
% Connect EEM IN to LVDS & EEMPROM
\draw [latexslim-latexslim] (eeprom.north) -- (7.85, 1.6);
\draw [latexslim-latexslim] (lvds0.north) -- (7.85, 0);
2021-12-09 12:33:42 +08:00
\draw [latexslim-latexslim] (lvds1.north) -- (7.85, -1.6);
% Connect LVDS to DAC
2022-01-14 17:41:57 +08:00
\draw [latexslim-latexslim] (lvds0.south) -- (5.2, 0);
\draw [latexslim-latexslim] (lvds1.south) -- (4.6, -1.6) -- (dac.south);
2021-12-09 12:33:42 +08:00
% Connect DAC to Op-amp, label op-amp width x32
2022-01-14 17:41:57 +08:00
\draw [-latexslim] (4, 0) -- (amp.west);
\node [label=below:\tiny{Op-amp x32}] at (3.2, -0.2) {};
\node [label=below:\tiny{1 per ch.}] at (3.2, -0.45) {};
2021-12-09 12:33:42 +08:00
% Connect Op-amp to EEM OUT and HD68
\draw [-latexslim] (amp.east) -- (hd68.east);
\draw [-latexslim] (2.2, 0) -- (eem2.east);
\draw [-latexslim] (1.4, 0) -- (eem3.east);
\draw [-latexslim] (2.2, 0) -- (eem1.west);
\draw [-latexslim] (1.4, 0) -- (eem0.west);
% TEC Cooler on top of the DAC
% To make it more obvious that it is cooling the DAC
2022-01-14 17:41:57 +08:00
\draw (4.6, 1.45) node[twoportshape, t=\MymyLabel{TEC}{Cooler}, circuitikz/bipoles/twoport/width=1.2, circuitikz/bipoles/twoport/height=1.2, scale=0.7] (tec_cooler) {};
% TEC Controller lined up with EEM IN
\draw (8.2, 3.5) node[twoportshape, t=\MymyLabel{TEC Controller}{Connector}, circuitikz/bipoles/twoport/width=2.6, scale=0.7, rotate=-90] (tec_conn) {};
% Thermistor for TEC controller
2022-01-14 17:41:57 +08:00
\draw (6.6, 3.3) node[thermistorshape, scale=0.7, rotate=-90] (thermistor) {};
\draw [latexslim-] (7.85, 3.3) -- (6.75, 3.3);
% Connect the controller to the cooler
2022-01-14 17:47:19 +08:00
\draw [-latexslim] (7.85, 4.2) -- (4.6, 4.2) -- (tec_cooler.north);
2022-01-14 17:41:57 +08:00
% Thermal connection between DAC and thermistor
\draw [densely dotted] (thermistor.south) -- (5.6, 3.3) -- (5.6, 0.5) -- (5.2, 0.5);
2022-01-14 14:33:39 +08:00
2021-12-09 12:33:42 +08:00
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[height=2in]{Zotino_FP.jpg}
2022-01-07 10:33:14 +08:00
\includegraphics[height=2in]{photo5432.jpg}
2021-12-09 12:33:42 +08:00
\caption{Zotino Card photo}
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section{Electrical Specifications}
% \hypersetup{hidelinks}
% \urlstyle{same}
The specifications are based on the datasheet of the DAC IC
(AD5372BCPZ\footnote{\label{dac}https://www.analog.com/media/en/technical-documentation/data-sheets/AD5372\_5373.pdf}),
and various information from Sinara wiki\footnote{\label{zotino_wiki}https://github.com/sinara-hw/Zotino/wiki}.
2021-12-09 12:33:42 +08:00
\begin{table}[h]
\centering
2021-12-09 12:33:42 +08:00
\begin{threeparttable}
\caption{Output Specifications}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
2021-12-09 12:33:42 +08:00
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
2021-12-09 12:33:42 +08:00
\textbf{Unit} & \textbf{Conditions} \\
\hline
Output voltage & -10 & & 10 & V & \\
2021-12-09 12:33:42 +08:00
\hline
Output impedance\repeatfootnote{zotino_wiki} & \multicolumn{4}{c|}{470 $\Omega$ $||$ 2.2nF} & \\
2021-12-09 12:33:42 +08:00
\hline
Resolution\repeatfootnote{dac} & & 16 & & bits & \\
2021-12-09 12:33:42 +08:00
\hline
3dB bandwidth\repeatfootnote{zotino_wiki} & & 75 & & kHz & \\
2021-12-09 12:33:42 +08:00
\hline
Power consumption\repeatfootnote{zotino_wiki} & 3 & & 8.7 & W & \\
2021-12-09 12:33:42 +08:00
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
The following are cross-talk and transient behavior of Zotino\footnote{\label{zotino21}https://github.com/sinara-hw/Zotino/issues/21}.
In terms of output noise, it was measured after 15 cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50 pF), and 500 k$\Omega$ $||$ 150 pF\footnote{\label{zotino27}https://github.com/sinara-hw/Zotino/issues/27}.
The DAC output during noise measurement is 3.5 V.
2021-12-09 12:33:42 +08:00
\begin{table}[h]
\centering
2021-12-09 12:33:42 +08:00
\begin{threeparttable}
\caption{Electrical Characteristics}
\begin{tabularx}{0.8\textwidth}{l | c c c | c | X}
2021-12-09 12:33:42 +08:00
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
2021-12-09 12:33:42 +08:00
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline
DC cross-talk\repeatfootnote{zotino21} & & -116 & & dB & \\
2021-12-09 12:33:42 +08:00
\hline
Fall-time\repeatfootnote{zotino21} & & 18.5 & & $\mu$s & 10\% to 90\% fall-time \\
& & 25 & & $\mu$s & 1\% to 99\% fall-time \\
2021-12-09 12:33:42 +08:00
\hline
Negative overshoot\repeatfootnote{zotino21} & & 0.5\% & & - & \\
2021-12-09 12:33:42 +08:00
\hline
Rise-time\repeatfootnote{zotino21} & & 30 & & $\mu$s & 1\% to 99\% rise-time \\
2021-12-09 12:33:42 +08:00
\hline
Positive overshoot\repeatfootnote{zotino21} & & 0.65\% & & - & \\
2021-12-09 12:33:42 +08:00
\hline
Output noise\repeatfootnote{zotino27} & & & & & \\
\hspace{18mm} @ 100 Hz & & 500 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 300 Hz & & 300 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 50 kHz & & 210 & & nV/rtHz & 6.9 kHz bandwidth \\
\hspace{18mm} @ 1 MHz & & 4.6 & & nV/rtHz & 6.9 kHz bandwidth \\
\hspace{18mm} $>$ 4 MHz & & & 1 & nV/rtHz & 6.9 kHz bandwidth \\
2021-12-09 12:33:42 +08:00
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
Step response are found by setting the DAC register to 0x0000 (-10V) or 0xFFFF (10V) and observe the waveform\repeatfootnote{zotino21}.
\begin{figure}[hbt!]
\centering
\subfloat[\centering Switching from -10V to +10V]{{
\includegraphics[height=1.8in]{zotino_step_response_rising.png}
}}%
\subfloat[\centering Switching from +10V to -10V]{{
\includegraphics[height=1.8in]{zotino_step_response_falling.png}
}}%
\caption{Step response}%
\end{figure}
Far-end crosstalk is measured using the following setup\repeatfootnote{zotino21}.
\begin{enumerate}
\item CH1 as aggressor, CH0 as victim
\item CH0, 2-7 terminated, CH 8-31 open
\item Aggressor signal from BNC passed through 15cm IDC26, 2m HD68-HD68 SCSI-3 shielded twisted pair, 15cm IDC26, converted back to BNC with adapters between all different cables \& connectors.
\end{enumerate}
\begin{figure}[hbt!]
\centering
\includegraphics[width=3.3in]{zotino_fext.png}
\caption{Step crosstalk}
\end{figure}
\newpage
\section{Front Panel Drawings}
2022-01-21 13:49:01 +08:00
\begin{multicols}{2}
\begin{center}
\centering
\includegraphics[height=3in]{zotino_drawings.pdf}
2022-01-21 13:49:01 +08:00
\captionof{figure}{5432 DAC Zotino front panel drawings}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (Standalone)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90503572 & 1 & FRONT PANEL 3U 4HP PIU TYPE2 \\ \hline
2 & 3020716 & 0.02 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
3 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
\end{tabular}
\end{center}
\columnbreak
\begin{center}
\centering
\includegraphics[height=3in]{zotino_assembly.pdf}
2022-01-21 13:49:01 +08:00
\captionof{figure}{5432 DAC Zotino front panel assembly}
\end{center}
\begin{center}
\captionof{table}{Bill of Material (Assembled)}
\tiny
\begin{tabular}{|c|c|c|c|}
\hline
Index & Part No. & Qty & Description \\ \hline
1 & 90503572 & 1 & FP-LYKJ 3U4HP PANEL \\ \hline
2 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
3 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
4 & 3010124 & 0.1 & EMC GASKET FABRIC 3U (10PCS) \\ \hline
5 & 3033098 & 0.02 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
6 & 3040012 & 1 & HANDLE 4HP GREY PLASTIC \\ \hline
7 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
8 & 3207075 & 0.01 & SCR M2.5*12 PAN 100 21101-221 \\ \hline
9 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI 100EA \\ \hline
\end{tabular}
\end{center}
\end{multicols}
\newpage
2021-12-09 12:33:42 +08:00
\section{Example ARTIQ code}
2022-02-04 13:49:06 +08:00
The sections below demonstrate simple usage scenarios of the 5432 DAC Zotino card with the ARTIQ control system.
2021-12-09 12:33:42 +08:00
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
\subsection{Set output voltage}
The following example initializes the Zotino card, then emits 1.0 V, 2.0 V, 3.0 V and 4.0 V at channel 0, 1, 2, 3 respectively.
Voltages of all 4 channels are updated simultaneously with the use of \texttt{set\char`_dac()}.
\inputcolorboxminted{firstline=11,lastline=22}{examples/zotino.py}
2021-12-09 12:33:42 +08:00
\newpage
2021-12-09 12:33:42 +08:00
\subsection{Triangular Wave}
A triangular waveform at 10 Hz, 16 V peak-to-peak.
Timing accuracy of the RTIO system can be demonstrated by the precision of the frequency.
Import \texttt{scipy.signal} and \texttt{numpy} modules to run this example.
\inputcolorboxminted{firstline=30,lastline=49}{examples/zotino.py}
2021-12-09 12:33:42 +08:00
\section{Ordering Information}
2022-02-04 13:49:06 +08:00
To order, please visit \url{https://m-labs.hk} and select the 5432 DAC Zotino in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
2021-12-09 12:33:42 +08:00
\section*{}
\vspace*{\fill}
2024-10-23 02:34:00 +08:00
\input{footnote.tex}
2021-12-09 12:33:42 +08:00
\end{document}