forked from sinara-hw/datasheets
712 lines
29 KiB
TeX
712 lines
29 KiB
TeX
\documentclass[10pt]{datasheet}
|
|
\usepackage{palatino}
|
|
\usepackage{textgreek}
|
|
\usepackage{minted}
|
|
\usepackage{tcolorbox}
|
|
\usepackage{etoolbox}
|
|
|
|
\usepackage[justification=centering]{caption}
|
|
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage[english]{babel}
|
|
\usepackage[english]{isodate}
|
|
|
|
\usepackage{graphicx}
|
|
\usepackage{subfigure}
|
|
|
|
\usepackage{tikz}
|
|
\usepackage{pgfplots}
|
|
\usepackage{circuitikz}
|
|
\usetikzlibrary{calc}
|
|
\usetikzlibrary{fit,backgrounds}
|
|
|
|
\title{5108 ADC Sampler}
|
|
\author{M-Labs Limited}
|
|
\date{January 2022}
|
|
\revision{Revision 1}
|
|
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
|
|
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
\section{Features}
|
|
|
|
\begin{itemize}
|
|
\item{8-channel ADC.}
|
|
\item{16-bits resolution.}
|
|
\item{1.5 MSPS simultaneously on all channels.}
|
|
\item{Full scale input voltage $\pm$10mV to $\pm$10V.}
|
|
\item{BNC connector.}
|
|
\item{SMA breakout with 5528 SMA-IDC adapter.}
|
|
\end{itemize}
|
|
|
|
\section{Applications}
|
|
|
|
\begin{itemize}
|
|
\item{Sample intermediate-frequency (IF) waveform.}
|
|
\item{Monitor laser power with a photodiode.}
|
|
\item{Synchronize laser frequencies with a phase frequency detector.}
|
|
\item{Form a laser intensity servo with 4410 Urukul.}
|
|
\end{itemize}
|
|
|
|
\section{General Description}
|
|
The 5108 ADC Sampler is a 8hp EEM module part of the ARTIQ Sinara family.
|
|
It adds analog-digital converting capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
|
|
|
|
It provides 8 analog-to-digital channels, each exposed by a BNC connector.
|
|
Each channel supports input voltage ranges from \textpm 10mV to \textpm 10V.
|
|
All channels can be sampled simultaneously.
|
|
Channels can broken out to SMA by adding a 5528 SMA-IDC card.
|
|
|
|
5108 ADC Sampler provides a sample rate of 1.5 MSPS.
|
|
However, the sample rate in practice is typically limited by the use of ARTIQ-Python kernel code.
|
|
|
|
% Switch to next column
|
|
\vfill\break
|
|
|
|
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
|
|
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
|
|
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
|
|
\newcommand{\inputcolorboxminted}[2]{%
|
|
\begin{tcolorbox}[colback=white]
|
|
\inputminted[#1, gobble=4]{python}{#2}
|
|
\end{tcolorbox}
|
|
}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\scalebox{1}{
|
|
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
|
|
|
|
% Node to pin-point the locations of BNC symbols
|
|
\draw[color=white, text=black] (-0.1, 1.225) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc0) {};
|
|
\draw[color=white, text=black] (-0.1, 0.875) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc1) {};
|
|
\draw[color=white, text=black] (-0.1, 0.525) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc2) {};
|
|
\draw[color=white, text=black] (-0.1, 0.175) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc3) {};
|
|
|
|
\draw[color=white, text=black] (-0.1, -0.175) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc4) {};
|
|
\draw[color=white, text=black] (-0.1, -0.525) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc5) {};
|
|
\draw[color=white, text=black] (-0.1, -0.875) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc6) {};
|
|
\draw[color=white, text=black] (-0.1, -1.225) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (bnc7) {};
|
|
|
|
% Labels for BNC 0-7
|
|
\node [label=left:\tiny{IN 0}] at (0.35, 1.225) {};
|
|
\node [label=left:\tiny{IN 1}] at (0.35, 0.875) {};
|
|
\node [label=left:\tiny{IN 2}] at (0.35, 0.525) {};
|
|
\node [label=left:\tiny{IN 3}] at (0.35, 0.175) {};
|
|
\node [label=left:\tiny{IN 4}] at (0.35, -0.175) {};
|
|
\node [label=left:\tiny{IN 5}] at (0.35, -0.525) {};
|
|
\node [label=left:\tiny{IN 6}] at (0.35, -0.875) {};
|
|
\node [label=left:\tiny{IN 7}] at (0.35, -1.225) {};
|
|
|
|
% draw BNC 0-7
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=2.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=7.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=12.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=17.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=-2.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=-7.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=-12.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
\begin{scope}[scale=0.07 , rotate=-90, xshift=-17.5cm, yshift=2cm]
|
|
\draw (0,0.65) -- (0,3);
|
|
\clip (-1.5,0) rectangle (1.5,1.5);
|
|
\draw (0,0) circle(1.5);
|
|
\clip (-0.8,0) rectangle (0.8,0.8);
|
|
\draw (0,0) circle(0.8);
|
|
\end{scope}
|
|
|
|
% Draw termination switches
|
|
\draw (1.0, 1.925) node[twoportshape,t=\MymyLabel{100k/50\textOmega}{Switch \phantom{s} x8}, circuitikz/bipoles/twoport/width=1.5, scale=0.5] (termswitch) {};
|
|
\begin{scope}[xshift=1.2cm, yshift=1.925cm, scale=0.12, every node/.style={scale=0.1}, rotate=-90 ]
|
|
\draw (0.4,0) to[short,-o](0.75,0);
|
|
\draw (0.78,0)-- +(30:0.46);
|
|
\draw (1.25,0)to[short,o-](1.6,0) ;
|
|
\end{scope}
|
|
|
|
% Dwar IDC Port (ADC IN)
|
|
\draw (0.8, -1.925) node[twoportshape,t={IDC Port}, circuitikz/bipoles/twoport/width=1.5, scale=0.5] (idc) {};
|
|
|
|
% Draw PGIAs
|
|
% The connections are too complicated for the usual buffer/op-amp symbol
|
|
\draw (3, 2.45) node[twoportshape,t=\MymyLabel{CH 0}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia0) {};
|
|
\draw (3, 1.75) node[twoportshape,t=\MymyLabel{CH 1}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia1) {};
|
|
\draw (3, 1.05) node[twoportshape,t=\MymyLabel{CH 2}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia2) {};
|
|
\draw (3, 0.35) node[twoportshape,t=\MymyLabel{CH 3}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia3) {};
|
|
\draw (3, -0.35) node[twoportshape,t=\MymyLabel{CH 4}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia4) {};
|
|
\draw (3, -1.05) node[twoportshape,t=\MymyLabel{CH 5}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia5) {};
|
|
\draw (3, -1.75) node[twoportshape,t=\MymyLabel{CH 6}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia6) {};
|
|
\draw (3, -2.45) node[twoportshape,t=\MymyLabel{CH 7}{PGIA}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (pgia7) {};
|
|
|
|
% Draw termination connection to input lines
|
|
\draw [-] (0.65, 1.675) -- (0.65, 1.225);
|
|
\draw [-] (0.75, 1.675) -- (0.75, 0.875);
|
|
\draw [-] (0.85, 1.675) -- (0.85, 0.525);
|
|
\draw [-] (0.95, 1.675) -- (0.95, 0.175);
|
|
\draw [-] (1.05, 1.675) -- (1.05, -0.175);
|
|
\draw [-] (1.15, 1.675) -- (1.15, -0.525);
|
|
\draw [-] (1.25, 1.675) -- (1.25, -0.875);
|
|
\draw [-] (1.35, 1.675) -- (1.35, -1.225);
|
|
|
|
% Draw IDC port (ADC IN) connection to input lines
|
|
\draw [-] (0.45, -1.675) -- (0.45, 1.225);
|
|
\draw [-] (0.55, -1.675) -- (0.55, 0.875);
|
|
\draw [-] (0.65, -1.675) -- (0.65, 0.525);
|
|
\draw [-] (0.75, -1.675) -- (0.75, 0.175);
|
|
\draw [-] (0.85, -1.675) -- (0.85, -0.175);
|
|
\draw [-] (0.95, -1.675) -- (0.95, -0.525);
|
|
\draw [-] (1.05, -1.675) -- (1.05, -0.875);
|
|
\draw [-] (1.15, -1.675) -- (1.15, -1.225);
|
|
|
|
% Connect BNC to PGIA, with termination line
|
|
\draw [-latexslim] (bnc0.east) -- (1.9, 1.225) -- (1.9, 2.45) -- (pgia0.west);
|
|
\draw [-latexslim] (bnc1.east) -- (2, 0.875) -- (2, 1.75) -- (pgia1.west);
|
|
\draw [-latexslim] (bnc2.east) -- (2.1, 0.525) -- (2.1, 1.05) -- (pgia2.west);
|
|
\draw [-latexslim] (bnc3.east) -- (2.2, 0.175) -- (2.2, 0.35) -- (pgia3.west);
|
|
\draw [-latexslim] (bnc4.east) -- (2.2, -0.175) -- (2.2, -0.35) -- (pgia4.west);
|
|
\draw [-latexslim] (bnc5.east) -- (2.1, -0.525) -- (2.1, -1.05) -- (pgia5.west);
|
|
\draw [-latexslim] (bnc6.east) -- (2, -0.875) -- (2, -1.75) -- (pgia6.west);
|
|
\draw [-latexslim] (bnc7.east) -- (1.9, -1.225) -- (1.9, -2.45) -- (pgia7.west);
|
|
|
|
% Draw shift register & ADC
|
|
\draw (4.7, 1) node[twoportshape,t=\MymyLabel{Shift}{Registers}, circuitikz/bipoles/twoport/width=1.6, scale=0.6, rotate=-90] (sr) {};
|
|
\draw (4.7, -1) node[twoportshape,t={ADC}, circuitikz/bipoles/twoport/width=1.6, scale=0.6, rotate=-90] (adc) {};
|
|
|
|
% Connect PGIA -> ADC paths
|
|
\draw [-] (3.45, 2.55) -- (4, 2.55) -- (4, -1);
|
|
\draw [-] (3.45, -2.35) -- (4, -2.35) -- (4, -1);
|
|
\draw [-] (3.45, 1.85) -- ++ (0.55, 0);
|
|
\draw [-] (3.45, 1.15) -- ++ (0.55, 0);
|
|
\draw [-] (3.45, 0.45) -- ++ (0.55, 0);
|
|
\draw [-] (3.45, -0.25) -- ++ (0.55, 0);
|
|
\draw [-latexslim] (3.45, -0.95) -- ++ (0.95, 0);
|
|
\draw [-] (3.45, -1.65) -- ++ (0.55, 0);
|
|
|
|
% Connect SR -> PGIA paths
|
|
\draw [latexslim-] (3.45, 2.35) -- (3.8, 2.35) -- (3.8, 1);
|
|
\draw [latexslim-] (3.45, -2.55) -- (3.8, -2.55) -- (3.8, 1);
|
|
\draw [latexslim-] (3.45, 1.65) -- ++ (0.35, 0);
|
|
\draw [latexslim-] (3.45, 0.95) -- ++ (0.95, 0);
|
|
\draw [latexslim-] (3.45, 0.25) -- ++ (0.35, 0);
|
|
\draw [latexslim-] (3.45, -0.45) -- ++ (0.35, 0);
|
|
\draw [latexslim-] (3.45, -1.15) -- ++ (0.35, 0);
|
|
\draw [latexslim-] (3.45, -1.85) -- ++ (0.35, 0);
|
|
|
|
% Draw LVDS transceivers & repeaters
|
|
\draw (6.3, 1) node[twoportshape,t=\MymyLabel{LVDS}{Transceivers}, circuitikz/bipoles/twoport/width=1.8, scale=0.6, rotate=-90] (lvds) {};
|
|
\draw (6.3, -1) node[twoportshape,t={Repeaters}, circuitikz/bipoles/twoport/width=1.8, scale=0.6, rotate=-90] (rep) {};
|
|
|
|
% ADC & SR connection lines
|
|
% Note: MISO line from shift register ignored, the repeater is omiited in some versions
|
|
% Also, that MISO line does not do anything useful. The ARTIQ driver implementation is just a huge data integrity check.
|
|
\draw [-latexslim] (6, 1.2) -- (5, 1.2);
|
|
\draw [-latexslim] (6, 0.8) -- (5.5, 0.8) -- (5.5, -0.8) -- (5, -0.8);
|
|
% Data comes out of the ADC, the only signal that goes in is the clock
|
|
\draw [-latexslim] (5, -1.2) -- (6, -1.2);
|
|
|
|
% Draw EEPROMs
|
|
\draw (6, 2.35) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=1.4, scale=0.6] (eeprom0) {};
|
|
\draw (6.3, -2.6) node[twoportshape,t={EEPROM}, circuitikz/bipoles/twoport/width=1.4, scale=0.6, rotate=-90] (eeprom1) {};
|
|
|
|
% Draw EEM 0 & 1
|
|
\draw (7.9, 1.9) node[twoportshape,t={EEM Port 0}, circuitikz/bipoles/twoport/width=3.4, scale=0.6, rotate=-90] (eem0) {};
|
|
\draw (7.9, -1.9) node[twoportshape,t={EEM Port 1}, circuitikz/bipoles/twoport/width=2.6, scale=0.6, rotate=-90] (eem1) {};
|
|
|
|
% Connect EEM Port 1
|
|
\draw [-latexslim] (6.6, -1.2) -- (7.6, -1.2);
|
|
\draw [latexslim-latexslim] (eeprom1.north) -- (7.6, -2.6);
|
|
|
|
% Connect EEM Port 0
|
|
\draw [-latexslim] (6.6, -0.8) -- (7.1, -0.8) -- (7.1, 0.8) -- (7.6, 0.8);
|
|
\draw [latexslim-] (6.6, 1.2) -- (7.6, 1.2);
|
|
\draw [latexslim-latexslim] (eeprom0.east) -- (7.6, 2.35);
|
|
|
|
% Draw IO Expander
|
|
\draw (3, 3.15) node[twoportshape,t={IO Expander}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (i2c) {};
|
|
|
|
% Connect IO Expander
|
|
\draw [-latexslim] (termswitch.north) -- (1, 3.15) -- (i2c.west);
|
|
\draw [-latexslim] (i2c.east) -- (7.6, 3.15);
|
|
|
|
% Stress that the termination status I2C interface is read-only
|
|
\node [label=center:\tiny{Read Only}] at (1.6, 3.25) {};
|
|
|
|
% State that PGIA stands for "Programmable Gain Instrumentation Amplifier"
|
|
% The name is too long, and there isn't any good places to mention this
|
|
\node [label=center:\tiny{Note: PGIA = Programmable Gain Instrumentation Amplifier}] at (3, -3) {};
|
|
|
|
\end{circuitikz}
|
|
}
|
|
|
|
\caption{Simplified Block Diagram}
|
|
\end{figure}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[height=1.9in]{Sampler_FP.jpg}
|
|
\includegraphics[height=1.9in]{photo5108.jpg}
|
|
\caption{Sampler Card photo}
|
|
\end{figure}
|
|
|
|
% For wide tables, a single column layout is better. It can be switched
|
|
% page-by-page.
|
|
\onecolumn
|
|
|
|
\section{Electrical Specifications}
|
|
|
|
\begin{table}[h]
|
|
\centering
|
|
\begin{threeparttable}
|
|
\caption{Input Specifications}
|
|
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
|
|
\thickhline
|
|
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
|
|
\textbf{Unit} & \textbf{Conditions} \\
|
|
\hline
|
|
Input voltage & -10 & & 10 & V & 1x gain, termination off* \\
|
|
& -1 & & 1 & V & 10x gain\\
|
|
& -100 & & 100 & mV & 100x gain\\
|
|
& -10 & & 10 & mV & 1000x gain\\
|
|
\hline
|
|
DC Input signal impedance & \multicolumn{4}{c|}{100 k$\Omega$} & Termination off\\
|
|
& \multicolumn{4}{c|}{50 $\Omega$} & Termination on\\
|
|
\hline
|
|
Resolution &\multicolumn{4}{c|}{16 bits}& \\
|
|
\thickhline
|
|
\multicolumn{6}{l}{*With the 50\textOmega~termination enabled, the input voltage magnitude must not exceed 5V.}
|
|
\end{tabularx}
|
|
\end{threeparttable}
|
|
\end{table}
|
|
|
|
|
|
The electrical characteristics are based on various test results\footnote{\label{sinara226}https://github.com/sinara-hw/sinara/issues/226}\textsuperscript{,}
|
|
\footnote{\label{sinara489}https://github.com/sinara-hw/sinara/issues/489}\textsuperscript{,}
|
|
\footnote{\label{sampler2}https://github.com/sinara-hw/Sampler/issues/2}.
|
|
|
|
\begin{table}[hbt!]
|
|
\centering
|
|
\begin{threeparttable}
|
|
\caption{Electrical Characteristics}
|
|
\begin{tabularx}{\textwidth}{l | c c c | c | X}
|
|
\thickhline
|
|
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
|
|
\textbf{Unit} & \textbf{Conditions / Comments} \\
|
|
\hline
|
|
% Github wiki page info regarding BW is outdated, so only coarse estimate here
|
|
% There is an updated plot for this. See the plots.
|
|
-6dB bandwidth\repeatfootnote{sampler2} & & & & & See bandwidth plots \\
|
|
& & 200 & & kHz & 1x/10x/100x gain \\
|
|
& & 90 & & kHz & 1000x gain \\
|
|
\hline
|
|
Noise\repeatfootnote{sampler2} & & & & & 83.33 kHz sampling rate \\
|
|
\hspace{18mm} 1x gain & & 1.78 & & LSB RMS & Termination on \\
|
|
& & 1.75 & & LSB RMS & Termination off \\
|
|
\hspace{18mm} 10x gain & & 1.84 & & LSB RMS & Termination on \\
|
|
& & 3.09 & & LSB RMS & Termination off \\
|
|
\hspace{18mm} 100x gain & & 3.47 & & LSB RMS & Termination on \\
|
|
& & 26.02 & & LSB RMS & Termination off \\
|
|
\hspace{18mm} 1000x gain & & 13.87 & & LSB RMS & Termination on \\
|
|
& & 206.3 & & LSB RMS & Termination off \\
|
|
% \hline
|
|
DC cross-talk\repeatfootnote{sinara226} & & & -96 & dB & 1x gain\\
|
|
\hline
|
|
% AC cross-talk data on wiki is also outdated (when it was still novo)
|
|
% sinara-hw/sinara #489 is a better source of info
|
|
% But it seems that AC-XT is not channel-invariant
|
|
% So it is tabulated instead.
|
|
Second-order harmonics\repeatfootnote{sinara226} & & & & & 25 kHz input, termination on, 1x gain \\
|
|
& & -51 & & dBc & 0.1 V\textsubscript{pp} (-48dBFS), limited by ADC (-100dBFS) \\
|
|
& & -69 & & dBc & 1 V\textsubscript{pp} (-28dBFS) \\
|
|
& & -58.8 & & dBc & 10 V\textsubscript{pp} (-8dBFS) \\
|
|
\thickhline
|
|
\end{tabularx}
|
|
\end{threeparttable}
|
|
\end{table}
|
|
|
|
\newpage
|
|
|
|
\begin{table}[h]
|
|
\begin{threeparttable}
|
|
\caption{Electrical Characteristics (cont.)}
|
|
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
|
|
\thickhline
|
|
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
|
|
\textbf{Unit} & \textbf{Conditions / Comments} \\
|
|
\hline
|
|
Common-mode rejection ratio\repeatfootnote{sinara226} & CMRR & & & & & 2 V\textsubscript{pp} sine wave as CM input, termination on\\
|
|
\hspace{12mm} 1x gain & & & & -98 & dB & $f=0.01,0.1,1$ kHz \\
|
|
& & & -87 & & dB & $f=10$ kHz \\
|
|
& & & -55 & & dB & $f=100$ kHz \\
|
|
& & & -83 & & dB & $f=1$ MHz \\
|
|
& & & -85 & & dB & $f=10$ MHz \\
|
|
\cline{3-7}
|
|
\hspace{12mm} 100x gain & & & & -118 & dB & $f=0.01$ kHz \\
|
|
& & & -98 & & dB & $f=0.1$ kHz \\
|
|
& & & -88 & & dB & $f=1$ kHz \\
|
|
& & & -70 & & dB & $f=10$ kHz \\
|
|
& & & -50 & & dB & $f=100$ kHz \\
|
|
& & & -80 & & dB & $f=1$ MHz \\
|
|
& & & & -118 & dB & $f=10$ MHz \\
|
|
\thickhline
|
|
\end{tabularx}
|
|
\end{threeparttable}
|
|
\end{table}
|
|
|
|
\newpage
|
|
|
|
Crosstalk between ADC channels of 5108 ADC Sampler is shown below\repeatfootnote{sinara489}.
|
|
|
|
A 10 V\textsubscript{pp} signal is the input.
|
|
The aggressor channel always has 1x gain.
|
|
All channels have 50 \textOmega~termination enabled.
|
|
|
|
Data is acquired by taking 512 samples at 80 kHz sampling rate 20 times to average out the FFT.
|
|
|
|
\newcolumntype{Y}{>{\centering\arraybackslash}X}
|
|
|
|
\begin{table}[h]
|
|
\begin{threeparttable}
|
|
\caption{Crosstalk with 35 kHz input frequency, 1000x gain on victim}
|
|
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y |}
|
|
\thickhline
|
|
\multirow{2}{*}{\textbf{Aggressor}} &
|
|
\multicolumn{8}{c|}{\textbf{Crosstalk (dB) on Victim Channels}}\\
|
|
\cline{2-9} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
|
|
\hline
|
|
Channel 0 & 0.00 & -114.90 & -129.35 & -131.54 & -132.19 & -142.56 & -145.39 & -159.98 \\
|
|
\thickhline
|
|
\end{tabularx}
|
|
\end{threeparttable}
|
|
\end{table}
|
|
|
|
\begin{figure}[hbt!]
|
|
\centering
|
|
\includegraphics[width=\textwidth]{sampler_xt_35khz.png}
|
|
\caption{Crosstalk with 35 kHz input frequency, 1000x gain on victim, channel 0 as the aggressor}
|
|
\end{figure}
|
|
|
|
\begin{table}[hbt!]
|
|
\begin{threeparttable}
|
|
\caption{Crosstalk with 300 kHz input frequency, 1000x gain on victim}
|
|
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y |}
|
|
\thickhline
|
|
\multirow{2}{*}{\textbf{Aggressor}} &
|
|
\multicolumn{8}{c|}{\textbf{Crosstalk (dB) on Victim Channels}}\\
|
|
\cline{2-9} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
|
|
\hline
|
|
Channel 0 & 0.00 & -109.18 & -123.94 & -128.46 & -131.11 & -134.45 & -135.62 & -158.51 \\
|
|
\hline
|
|
Channel 1 & -112.90 & 0.00 & -114.98 & -124.11 & -131.40 & -142.61 & -145.94 & -168.51 \\
|
|
\hline
|
|
Channel 2 & -123.27 & -112.58 & 0.00 & -111.17 & -121.46 & -129.97 & -137.31 & -163.77 \\
|
|
\hline
|
|
Channel 3 & -140.61 & -125.20 & -114.49 & 0.00 & -111.84 & -125.10 & -133.74 & -164.55 \\
|
|
\hline
|
|
Channel 4 & -140.12 & -131.07 & -124.30 & -112.65 & 0.00 & -109.22 & -124.71 & -160.22 \\
|
|
\hline
|
|
Channel 5 & -140.33 & -135.77 & -134.42 & -126.34 & -116.35 & 0.00 & -118.40 & -156.63 \\
|
|
\hline
|
|
Channel 6 & -142.39 & -139.25 & -138.51 & -134.73 & -125.00 & -108.91 & 0.00 & -146.29 \\
|
|
\hline
|
|
Channel 7 & -145.06 & -138.97 & -144.31 & -139.50 & -135.50 & -120.62 & -114.28 & 0.00 \\
|
|
\thickhline
|
|
\end{tabularx}
|
|
\end{threeparttable}
|
|
\end{table}
|
|
|
|
\newpage
|
|
|
|
% The plots are quite small given that it is 8-plots-in-1, but the numbers should give a better picture
|
|
\begin{figure}[hbt!]
|
|
\centering
|
|
\includegraphics[width=\textwidth]{sampler_xt_300khz.png}
|
|
\caption{Crosstalk with 300 kHz input frequency, 1000x gain on victim, channel 0 as the aggressor}
|
|
\end{figure}
|
|
|
|
\begin{table}[hbt!]
|
|
\begin{threeparttable}
|
|
\caption{Crosstalk with 300 kHz input frequency, 1x gain on victim}
|
|
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y |}
|
|
\thickhline
|
|
\multirow{2}{*}{\textbf{Aggressor}} &
|
|
\multicolumn{8}{c|}{\textbf{Crosstalk (dB) on Victim Channels}}\\
|
|
\cline{2-9} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
|
|
\hline
|
|
Channel 0 & 0.00 & -84.36 & -100.65 & -100.16 & -102.72 & -93.51 & -96.23 & -105.70 \\
|
|
\hline
|
|
Channel 1 & -91.95 & 0.00 & -87.47 & -104.87 & -115.80 & -99.91 & -101.55 & -106.71 \\
|
|
\hline
|
|
Channel 2 & -109.04 & -86.28 & 0.00 & -88.78 & -96.81 & -95.41 & -108.53 & -109.23 \\
|
|
\hline
|
|
Channel 3 & -101.31 & -97.47 & -92.72 & 0.00 & -88.65 & -96.58 & -100.80 & -97.46 \\
|
|
\hline
|
|
Channel 4 & -101.27 & -95.18 & -97.16 & -88.29 & 0.00 & -87.26 & -99.11 & -100.12 \\
|
|
\hline
|
|
Channel 5 & -103.41 & -102.10 & -101.54 & -104.59 & -99.87 & 0.00 & -89.34 & -102.49 \\
|
|
\hline
|
|
Channel 6 & -104.62 & -104.64 & -103.39 & -101.73 & -104.08 & -87.61 & 0.00 & -88.34 \\
|
|
\hline
|
|
Channel 7 & -100.67 & -99.20 & -97.34 & -95.48 & -102.93 & -113.76 & -92.80 & 0.00 \\
|
|
\thickhline
|
|
\end{tabularx}
|
|
\end{threeparttable}
|
|
\end{table}
|
|
|
|
\newpage
|
|
|
|
\begin{figure}[hbt!]
|
|
\centering
|
|
\includegraphics[width=\textwidth]{sampler_xt_300khz_1x_gain.png}
|
|
\caption{Crosstalk with 300 kHz input frequency, 1x gain on victim, channel 3 as the aggressor}
|
|
\end{figure}
|
|
|
|
Noise density is measured using the following configuration\repeatfootnote{sampler2}:
|
|
\begin{enumerate}
|
|
\item 1/12\textmu s sampling rate
|
|
\item 10k samples per measurement, averaging over 100 measurements
|
|
\item Measured at channels 6 \& 7. Channel 6 has the 50\textOmega~termination on, channel 7 has it off
|
|
\end{enumerate}
|
|
Noise density with respect to different gain settings with termination on/off are plotted below.
|
|
|
|
\begin{multicols}{2}
|
|
|
|
\begin{figure}[H]
|
|
\includegraphics[width=3.3in]{sampler_noise_term.png}
|
|
\caption{Noise density with termination enabled}
|
|
\end{figure}
|
|
|
|
\columnbreak
|
|
|
|
\begin{figure}[H]
|
|
\includegraphics[width=3.3in]{sampler_noise_no_term.png}
|
|
\caption{Noise density with termination disabled}
|
|
\end{figure}
|
|
|
|
\end{multicols}
|
|
|
|
\newpage
|
|
|
|
Bandwidth of small signal and large signal input is shown below\repeatfootnote{sampler2}. The setup is as the following:
|
|
\begin{enumerate}
|
|
\itemsep0em
|
|
\item 10k samples, sampled at 79.37 kHz
|
|
\item Driven by sinusoid from Keysight 33500B generator; Sampled using channel 7 without termination
|
|
\item Small signal measured using 2V\textsubscript{pp}/gain; Large signal measured using 15V\textsubscript{pp}/gain
|
|
\end{enumerate}
|
|
\begin{multicols}{2}
|
|
|
|
\begin{figure}[H]
|
|
\includegraphics[width=3.3in]{sampler_small_signal_bw.png}
|
|
\caption{Small signal bandwidth}
|
|
\end{figure}
|
|
|
|
\columnbreak
|
|
|
|
\begin{figure}[H]
|
|
\includegraphics[width=3.3in]{sampler_large_signal_bw.png}
|
|
\caption{Large signal bandwidth}
|
|
\end{figure}
|
|
|
|
\end{multicols}
|
|
|
|
\newpage
|
|
|
|
\section{Front Panel Drawings}
|
|
\begin{multicols}{2}
|
|
|
|
\begin{center}
|
|
\centering
|
|
\includegraphics[height=2.7in]{sampler_drawings.pdf}
|
|
\captionof{figure}{5108 ADC Sampler front panel drawings}
|
|
\end{center}
|
|
|
|
\columnbreak
|
|
|
|
\begin{center}
|
|
\centering
|
|
\includegraphics[height=2.7in]{sampler_assembly.pdf}
|
|
\captionof{figure}{5108 ADC Sampler front panel assembly}
|
|
\end{center}
|
|
|
|
\end{multicols}
|
|
|
|
\begin{multicols}{2}
|
|
\begin{center}
|
|
\captionof{table}{Bill of Material (Standalone)}
|
|
\tiny
|
|
\begin{tabular}{|c|c|c|c|}
|
|
\hline
|
|
Index & Part No. & Qty & Description \\ \hline
|
|
1 & 90504202 & 1 & FP-FRONT PANEL, EXTRUDED, TYPE 2, STATIC, 3Ux8HP \\ \hline
|
|
2 & 3218843 & 2 & FP-ALIGNMENT PIN (LOCALIZATION) \\ \hline
|
|
3 & 3020716 & 0.04 & SLEEVE GREY PLAS.M2.5 (100PCS) \\ \hline
|
|
\end{tabular}
|
|
\end{center}
|
|
\columnbreak
|
|
\begin{center}
|
|
\captionof{table}{Bill of Material (Assembled)}
|
|
\tiny
|
|
\begin{tabular}{|c|c|c|c|}
|
|
\hline
|
|
Index & Part No. & Qty & Description \\ \hline
|
|
1 & 90504202 & 1 & FP-LYKJ 3U4HP PANEL \\ \hline
|
|
2 & 3033098 & 0.04 & SCREW COLLAR M2.5X12.3 (100X) \\ \hline
|
|
3 & 3040138 & 2 & PB HOLDER DIE-CAST \\ \hline
|
|
4 & 3001012 & 2 & SCR M2.5*6 PAN PHL NI DIN7985 \\ \hline
|
|
5 & 3010110 & 0.02 & WASHER PLN.M2.7 DIN125 (100X) \\ \hline
|
|
6 & 3201099 & 0.01 & SCR M2.5*8 OVL PHL ST NI 100EA \\ \hline
|
|
7 & 3040005 & 1 & HANDLE 8HP GREY PLASTIC \\ \hline
|
|
8 & 3207076 & 0.01 & SCR M2.5*12 PAN 100 21101-222 \\ \hline
|
|
9 & 3201130 & 0.01 & NUT M2.5 HEX ST NI KIT (100PCS) \\ \hline
|
|
10 & 3211232 & 1 & SCR M2.5*14 PAN PHL SS \\ \hline
|
|
\end{tabular}
|
|
\end{center}
|
|
\end{multicols}
|
|
|
|
\section{Configuring Termination}
|
|
\begin{multicols}{2}
|
|
The input termination can be configured by switches.
|
|
The per-channel termination switches are found at the middle left part of the card.
|
|
|
|
Switching on the termination switch adds a 50\textOmega~termination between the differential input signals.
|
|
|
|
Regardless of the switch configurations, the differential input signals are separately terminated with 100k\textOmega~to the PCB ground.
|
|
\columnbreak
|
|
\begin{center}
|
|
\centering
|
|
\includegraphics[height=1.7in]{sampler_switches.jpg}
|
|
\captionof{figure}{Position of switches}
|
|
\end{center}
|
|
\end{multicols}
|
|
|
|
\newpage
|
|
|
|
\section{Example ARTIQ code}
|
|
The sections below demonstrate simple usage scenarios of the 5108 ADC Sampler card with the ARTIQ control system.
|
|
They do not exhaustively demonstrate all the features of the ARTIQ system.
|
|
The full documentation for the ARTIQ software and gateware is available at \url{https://m-labs.hk}.
|
|
|
|
\subsection{Get input voltage}
|
|
The following example initializes the Sampler card with 1x gain on all ADC channels.
|
|
Sample all ADC channels at the end.
|
|
|
|
\inputcolorboxminted{firstline=9,lastline=21}{examples/sampler.py}
|
|
|
|
\subsection{Voltage-controlled DDS Amplitude (SU-Servo Only)}
|
|
The SU-Servo feature can be enabled by integrating the 5108 ADC Sampler with 4410 DDS Urukuls.
|
|
Amplitude of the DDS output can be controlled by the ADC input of the Sampler through PI control, characterised by the following transfer function.
|
|
\[H(s)=k_p+\frac{k_i}{s+\frac{k_i}{g}}\]
|
|
In the following example, the amplitude of DDS is proportional to the ADC input from Sampler.
|
|
First, initialize the RTIO, SU-Servo and its channel with 1x gain.
|
|
|
|
\inputcolorboxminted{firstline=10,lastline=17}{examples/suservo.py}
|
|
|
|
Next, setup the PI control as an IIR filter. It has -1 proportional gain $k_p$ and no integrator gain $k_i$.
|
|
|
|
\inputcolorboxminted{firstline=18,lastline=25}{examples/suservo.py}
|
|
|
|
Then, configure the DDS frequency to 10 MHz with 3V input offset.
|
|
When input voltage $\geq$ offset voltage, the DDS output amplitude is 0.
|
|
|
|
\inputcolorboxminted{firstline=26,lastline=30}{examples/suservo.py}
|
|
|
|
SU-Servo encodes the ADC voltage in a linear scale [-1, 1].
|
|
Therefore, 3V is converted to 0.3.
|
|
Note that the ASF of all DDS channels are capped at 1.0, the amplitude clips when ADC input $\leq -7V$ with the above IIR filter.
|
|
|
|
Finally, enable the SU-Servo channel with the IIR filter programmed beforehand.
|
|
|
|
\inputcolorboxminted{firstline=32,lastline=33}{examples/suservo.py}
|
|
|
|
A 10 MHz DDS signal is generated from the example above, with amplitude controllable by ADC.
|
|
The RMS voltage of the DDS channel against the ADC voltage is plotted.
|
|
The DDS channel is terminated with 50\textOmega.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[
|
|
declare function={
|
|
func(\x)= and(\x>=-10, \x<-7) * (160) +
|
|
and(\x>=-7, \x<3) * (16*(3-x)) +
|
|
and(\x>=3, \x<10) * (0);
|
|
}
|
|
]
|
|
\begin{axis}[
|
|
axis x line=middle, axis y line=middle,
|
|
every axis x label/.style={
|
|
at={(axis description cs:0.5,-0.1)},
|
|
anchor=north,
|
|
},
|
|
every axis y label/.style={
|
|
at={(ticklabel* cs:1.05)},
|
|
anchor=south,
|
|
},
|
|
minor x tick num=3,
|
|
grid=both,
|
|
height=8cm,
|
|
width=12cm,
|
|
ymin=-5, ymax=180, ytick={0,16,...,160}, ylabel=DDS RMS Voltage ($mV_{rms}$),
|
|
xmin=-10, xmax=10, xtick={-10,-8,...,10}, xlabel=Sampler Voltage ($V$),
|
|
]
|
|
|
|
\addplot[very thick, blue, samples=21, domain=-10:10]{func(x)};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
DDS signal should be attenuated.
|
|
High output power affects the linearity due to the 1 dB compression point of the amplifier at 13 dBm output power.
|
|
15 dB attenuation at the digital attenuator was applied in this example.
|
|
|
|
\section{Ordering Information}
|
|
To order, please visit \url{https://m-labs.hk} and select the 5108 ADC Sampler in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url{mailto:sales@m-labs.hk}.
|
|
|
|
\section*{}
|
|
\vspace*{\fill}
|
|
|
|
\begin{footnotesize}
|
|
Information furnished by M-Labs Limited is provided in good faith in the hope that it will be useful. However, no responsibility is assumed by M-Labs Limited for its use. Specifications may be subject to change without notice.
|
|
\end{footnotesize}
|
|
|
|
\end{document}
|