Small fixes to the booster instruction

Signed-off-by: Egor Savkin <es@m-labs.hk>
This commit is contained in:
Egor Savkin 2023-04-11 17:41:57 +08:00
parent 556b4c2954
commit 16d362e116
1 changed files with 19 additions and 14 deletions

View File

@ -24,7 +24,7 @@ dfu-util -a 0 -s 0x08000000:leave --download booster.bin
### Basic setup via USB
1. `nix-shell -p cutecom mosquitto appimage-run`
2. Install and run `cutecom`: `nix-shell -p cutecom`
2. Run `cutecom`
3. Create mosquitto config `mosquitto.conf` with your bound address:
```
bind_address 192.168.1.123
@ -56,12 +56,13 @@ dfu-util -a 0 -s 0x08000000:leave --download booster.bin
4. Configure oscilloscope for 1M Ohm impedance
5. Attach attenuator to the Urukul's RF2
6. `cd py/`
7. Enable channels: `python -m booster --broker 192.168.1.123 --prefix dt/sinara/booster/xx-xx-xx-xx-xx-xx --channel N tune=0.1`
8. Use [online calculator](https://www.analog.com/en/design-center/interactive-design-tools/dbconvert.html) for Volts to dBm conversion
9. Using [booster_template](../extra/booster_template.ods) fill in `y0`, `y1`, `m`, `c`, values using instructions below
10. Update settings with the adjusted values
11. Save settings with `python -m booster --broker 192.168.1.123 --prefix dt/sinara/booster/xx-xx-xx-xx-xx-xx --channel N save`
12. Reboot and check settings are applied
7. You may also need to download or install python's `gmqtt` and `miniconf`
8. Enable channels: `python -m booster --broker 192.168.1.123 --prefix dt/sinara/booster/xx-xx-xx-xx-xx-xx --channel N tune=0.1`
9. Use [online calculator](https://www.analog.com/en/design-center/interactive-design-tools/dbconvert.html) for Volts to dBm conversion
10. Using [booster_template](../extra/booster_template.ods) fill in `y0`, `y1`, `m`, `c`, values using instructions below
11. Update settings with the adjusted values
12. Save settings with `python -m booster --broker 192.168.1.123 --prefix dt/sinara/booster/xx-xx-xx-xx-xx-xx --channel N save`
13. Reboot and check settings are applied
### Input power
@ -81,13 +82,17 @@ extrapolate them for all channels._
1. Connect Urukul's output (see booster template for exact ports) to the Booster's input
2. Connect Booster's output to the oscilloscope with load
3. Measure it's RMS, convert to dBm, put it to the measured cell
4. Get the output value from telemetry (see booster template for exact path)
5. Disconnect the Booster's output
6. Get the reflected value from telemetry
7. Do steps 1-6 for second Urukul's output
8. Fill in `slope` and `offset` from settings for output and reflected curves
9. Do steps 1-8 for every channel
3. Raise channel's `output_interlock_threshold` to 40
4. Turn channel's state to `Enabled`
5. Measure it's RMS, convert to dBm, put it to the measured cell
6. Get the output value from telemetry (see booster template for exact path)
7. Disconnect the Booster's output
8. Get the reflected value from telemetry
9. Do steps 1-6 for second Urukul's output
10. Fill in `slope` and `offset` from settings for output and reflected curves
11. Set channel's `output_interlock_threshold` to 0
12. Turn channel's state to `Off`
13. Do steps 1-10 for every channel
_Note: default setting values are usually the same across channels, so you can extrapolate them for all channels._