humpback-dds/src/urukul.rs

339 lines
10 KiB
Rust

extern crate embedded_hal;
use embedded_hal::{
blocking::spi::Transfer,
};
use crate::config_register::ConfigRegister;
use crate::config_register::CFGMask;
use crate::config_register::StatusMask;
use crate::attenuator::Attenuator;
use crate::dds::DDS;
/*
* Enum for structuring error
*/
#[derive(Debug)]
pub enum Error<E> {
SPI(E),
CSError,
GetRefMutDataError,
AttenuatorError,
IOUpdateError,
DDSError,
ConfigRegisterError,
DDSCLKError,
DDSRAMError,
ParameterError,
MqttTopicError,
MqttCommandError,
}
#[derive(Debug, Clone)]
pub enum ClockSource {
OSC,
SMA,
MMCX,
}
/*
* Struct for Urukul master device
*/
pub struct Urukul<SPI> {
config_register: ConfigRegister<SPI>,
attenuator: Attenuator<SPI>,
multi_dds: DDS<SPI>,
dds: [DDS<SPI>; 4],
f_master_clk: f64,
}
impl<SPI, E> Urukul<SPI>
where
SPI: Transfer<u8, Error = E>,
{
/*
* Master constructor for the entire Urukul device
* Supply 7 SPI channels to Urukul and 4 reference clock frequencies
*/
pub fn new(spi1: SPI, spi2: SPI, spi3: SPI, spi4: SPI, spi5: SPI, spi6: SPI, spi7: SPI) -> Self {
// Construct Urukul
Urukul {
config_register: ConfigRegister::new(spi1),
attenuator: Attenuator::new(spi2),
// Create a multi-channel DDS with predefined 25MHz clock
multi_dds: DDS::new(spi3, 25_000_000.0),
// Create 4 DDS instances with predefined 25MHz clock
// Counter-intuitive to assign urukul clock before having a urukul
dds: [
DDS::new(spi4, 25_000_000.0),
DDS::new(spi5, 25_000_000.0),
DDS::new(spi6, 25_000_000.0),
DDS::new(spi7, 25_000_000.0),
],
// Default clock selection: OSC, predefined 100MHz speed
f_master_clk: 100_000_000.0,
}
}
/*
* Reset method. To be invoked by initialization and manual reset.
* Only Urukul struct provides reset method.
* DDS reset is controlled by Urukul (RST).
* Attenuators only have shift register reset, which does not affect its data
* CPLD only has a "all-zero" default state.
*/
pub fn reset(&mut self) -> Result<(), Error<E>> {
// Reset DDS and attenuators
self.config_register.set_configurations(&mut [
(CFGMask::RST, 1),
(CFGMask::IO_RST, 1),
(CFGMask::IO_UPDATE, 0)
])?;
// Set 0 to all fields on configuration register.
self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, 0),
(CFGMask::LED, 0),
(CFGMask::PROFILE, 0),
(CFGMask::IO_UPDATE, 0),
(CFGMask::MASK_NU, 0),
(CFGMask::CLK_SEL0, 0),
(CFGMask::SYNC_SEL, 0),
(CFGMask::RST, 0),
(CFGMask::IO_RST, 0),
(CFGMask::CLK_SEL1, 0),
(CFGMask::DIV, 0),
])?;
// Init all DDS chips. Configure SDIO as input only.
for chip_no in 0..4 {
self.dds[chip_no].init()?;
}
// Clock tree reset. OSC clock source by default
self.f_master_clk = 100_000_000.0;
// CPLD divides clock frequency by 4 by default.
for chip_no in 0..4 {
self.dds[chip_no].set_ref_clk_frequency(self.f_master_clk / 4.0)?;
}
Ok(())
}
/*
* Test method fo Urukul.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
let mut count = self.config_register.test()?;
count += self.attenuator.test()?;
for chip_no in 0..4 {
count += self.dds[chip_no].test()?;
}
Ok(count)
}
}
impl<SPI, E> Urukul<SPI>
where
SPI: Transfer<u8, Error = E>
{
pub fn get_channel_switch_status(&mut self, channel: u32) -> Result<bool, Error<E>> {
if channel < 4 {
self.config_register.get_status(StatusMask::RF_SW).map(|val| (val & (1 << channel)) != 0)
} else {
Err(Error::ParameterError)
}
}
pub fn set_channel_switch(&mut self, channel: u32, status: bool) -> Result<(), Error<E>> {
if channel < 4 {
let prev = u32::from(self.config_register.get_status(StatusMask::RF_SW)?);
let next = {
if status {
prev | (1 << channel)
} else {
prev & (!(1 << channel))
}
};
self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, next),
]).map(|_| ())
} else {
Err(Error::ParameterError)
}
}
pub fn set_clock(&mut self, source: ClockSource, frequency: f64, division: u8) -> Result<(), Error<E>> {
// Change clock source through configuration register
self.set_clock_source(source)?;
// Modify the master clock frequency
// Prevent redundunt call to change f_ref_clk
self.f_master_clk = frequency;
self.set_clock_division(division)
}
pub fn set_clock_source(&mut self, source: ClockSource) -> Result<(), Error<E>> {
// Change clock source through configuration register
match source {
ClockSource::OSC => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 0),
]),
ClockSource::MMCX => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 1),
]),
ClockSource::SMA => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 1),
]),
}.map(|_| ())
}
pub fn set_clock_frequency(&mut self, frequency: f64) -> Result<(), Error<E>> {
// Update master clock frequency
self.f_master_clk = frequency;
// Update all DDS f_ref_clk
self.set_dds_ref_clk()
}
pub fn set_clock_division(&mut self, division: u8) -> Result<(), Error<E>> {
match division {
1 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 1),
]),
2 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 2),
]),
4 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 3),
]),
_ => Err(Error::ParameterError),
}?;
self.set_dds_ref_clk()
}
fn set_dds_ref_clk(&mut self) -> Result<(), Error<E>> {
// Calculate reference clock frequency after clock division from configuration register
let f_ref_clk = self.f_master_clk / (self.get_master_clock_division() as f64);
// Update all DDS chips on reference clock frequency
for dds_channel in 0..4 {
self.dds[dds_channel].set_ref_clk_frequency(f_ref_clk)?;
}
Ok(())
}
fn get_master_clock_division(&mut self) -> u8 {
match self.config_register.get_configuration(CFGMask::DIV) {
0 | 3 => 4,
1 => 1,
2 => 2,
_ => panic!("Divisor out of range, when reading configuration register (CPLD)."),
}
}
pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> {
if channel >= 4 || attenuation < 0.0 || attenuation > 31.5 {
return Err(Error::ParameterError);
}
self.attenuator.set_channel_attenuation(channel, attenuation)
}
pub fn set_profile(&mut self, profile: u8) -> Result<(), Error<E>> {
if profile >= 8 {
return Err(Error::ParameterError);
}
self.config_register.set_configurations(&mut [
(CFGMask::PROFILE, profile.into())
]).map(|_| ())
}
pub fn set_channel_single_tone_profile(&mut self, channel: u8, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile(profile, frequency, phase, amplitude)
}
pub fn set_channel_single_tone_profile_frequency(&mut self, channel: u8, profile: u8, frequency: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_frequency(profile, frequency)
}
pub fn set_channel_single_tone_profile_phase(&mut self, channel: u8, profile: u8, phase: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || phase >= 360.0 || phase < 0.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_phase(profile, phase)
}
pub fn set_channel_single_tone_profile_amplitude(&mut self, channel: u8, profile: u8, amplitude: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_amplitude(profile, amplitude)
}
pub fn set_channel_sys_clk(&mut self, channel: u8, f_sys_clk: f64) -> Result<(), Error<E>> {
self.dds[usize::from(channel)].set_sys_clk_frequency(f_sys_clk).map(|_| ())
}
// Multi-dds channel functions
// Do not allow reading of DDS registers
// Make sure only 1 SPI transaction is compelted per function call
// Setup NU_MASK in configuration register
// This selects the DDS channels that will be covered by multi_channel DDS (spi3)
// Note: If a channel is masked, io_update must be completed through configuration register (IO_UPDATE bit-field)
// Implication: Deselect such channel if individual communication is needed.
pub fn set_multi_channel_coverage(&mut self, channel: u8) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::MASK_NU, channel.into())
]).map(|_| ())
}
// Difference from individual single tone setup function:
// - Remove the need of passing channel
// All selected channels must share the same f_sys_clk
pub fn set_multi_channel_single_tone_profile(&mut self, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
// Check f_sys_clk of all selected channels
let selected_channels = self.config_register.get_configuration(CFGMask::MASK_NU);
let mut found_a_selected_channel = false;
let mut reported_f_sys_clk: f64 = 0.0;
for channel_bit in 0..4 {
if (selected_channels & (1 << (channel_bit as u8))) != 0 {
if !found_a_selected_channel {
found_a_selected_channel = true;
reported_f_sys_clk = self.dds[channel_bit].get_f_sys_clk();
} else if reported_f_sys_clk != self.dds[channel_bit].get_f_sys_clk() {
return Err(Error::DDSError);
}
}
}
self.multi_dds.set_sys_clk_frequency(reported_f_sys_clk);
self.multi_dds.set_single_tone_profile(profile, frequency, phase, amplitude)?;
self.invoke_io_update()?;
Ok(())
}
// Generate a pulse for io_update bit in configuration register
// This acts like io_update in CPLD struct, but for multi-dds channel
fn invoke_io_update(&mut self) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 1)
])?;
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 0)
]).map(|_| ())
}
}