Keep track of individual patches instead of patched source versions

This commit is contained in:
Jethro Beekman 2016-10-31 00:11:02 -07:00
parent 104b5b6f73
commit b358934c5c
266 changed files with 44874 additions and 137038 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
target
Cargo.lock
src/????????????????????????????????????????

View File

@ -14,6 +14,13 @@ selected automatically by the build script.
repository = "https://github.com/jethrogb/rust-core_io"
documentation = "https://doc.rust-lang.org/nightly/std/io/index.html"
keywords = ["core", "no_std", "io", "read", "write"]
include = [
"build.rs",
"Cargo.toml",
"LICENSE-*",
"mapping.rs",
"src/**/*.rs",
]
build = "build.rs"

View File

@ -8,43 +8,10 @@ First, make sure the commit you want to add is fetch in the git tree at
`/your/rust/dir/.git`. Then, import the right source files:
```
$ echo FULL_COMMIT_ID ...|GIT_DIR=/your/rust/dir/.git ./sync.sh
$ echo FULL_COMMIT_ID ...|GIT_DIR=/your/rust/dir/.git ./build-src.sh
```
Instead of echoing in the commit IDs, you might pipe in `rustc-commit-db
list-valid`.
Now look at the changes with `git status`. If nothing changed then the commit
you tried to add was already there. Otherwise commit all changes and new files
now. If only `mapping.rs` changed, the I/O code has not changed for this
particular commit. If a directory in `src/` was added, after committing, `cd`
into it to apply the patch.
Find out which previously-existing commit is closest to the new one and search
this git repository for a commit with the description `Patch COMMIT for core`.
For example, if you're adding dd56a6ad0845b76509c4f8967e8ca476471ab7e0, the
best closest commit is 80d733385aa2ff150a5d6f83ecfe55afc7e19e68.
```
$ git log --pretty=oneline --grep=80d733385aa2ff150a5d6f83ecfe55afc7e19e68
92fc0ad81c432b5fa3e848fc1892815ca2f55100 Patch 80d733385aa2ff150a5d6f83ecfe55afc7e19e68 for core
```
The commit ID at the start of the line is the patch we'll try to apply:
```sh
$ git show 92fc0ad81c432b5fa3e848fc1892815ca2f55100|patch -p3
$ cargo build
```
Now, fix any errors `cargo` reports. If `patch` also reported errors, you may
look at the rejects for inspiration ;).
Finally, commit this new version:
```
$ git commit -m "Patch dd56a6ad0845b76509c4f8967e8ca476471ab7e0 for core" .
```
Do not commit any files in different directories, this will break the patching
scheme.
The build-src script will prompt you to create patches for new commits.

131
build-src.sh Executable file
View File

@ -0,0 +1,131 @@
#!/bin/bash
# Recommended command-line:
#
# commit-db.rb list-valid nightly|GIT_DIR=/your/rust/dir/.git sync.sh
git_file_exists() {
[ "$(git ls-tree --name-only $IO_COMMIT -- $1)" = "$1" ]
}
git_extract() {
slashes=${1//[^\/]/}
git archive $IO_COMMIT $1|tar xf - -C src/$IO_COMMIT --strip-components=${#slashes}
}
git_commits_ordered() {
format=$1
shift
if [ $# -ge 1 ]; then
git log --topo-order --no-walk=sorted --date=iso-local --pretty=format:$format "$@"
fi
}
echo_lines() {
for i in "$@"; do
echo $i
done
}
get_io_commits() {
for COMPILER_COMMIT in $COMPILER_COMMITS; do
IO_COMMIT=$(git log -n1 --pretty=format:%H $COMPILER_COMMIT -- src/libstd/io)
if ! grep -q $COMPILER_COMMIT mapping.rs; then
echo "-Mapping(\"$COMPILER_COMMIT\",\"$IO_COMMIT\")" >> mapping.rs
fi
echo $IO_COMMIT
done
}
get_patch_commits() {
find $PATCH_DIR -type f -printf %f\\n|cut -d. -f1
}
prepare_version() {
mkdir src/$IO_COMMIT
git_extract src/libstd/io/
if git_file_exists src/libstd/sys/common/memchr.rs; then
git_extract src/libstd/sys/common/memchr.rs
else
git_extract src/libstd/memchr.rs
fi
rm -f src/$IO_COMMIT/stdio.rs src/$IO_COMMIT/lazy.rs
}
bold_arrow() {
echo -ne '\e[1;36m==> \e[0m'
}
prompt_changes() {
local MAIN_GIT_DIR="$GIT_DIR"
local GIT_DIR=./.git CORE_IO_COMMIT=$IO_COMMIT
git init > /dev/null
git add .
git commit -a -m "rust src import" > /dev/null
export CORE_IO_COMMIT
bold_arrow; echo 'No patch found for' $IO_COMMIT
bold_arrow; echo 'Nearby commit(s) with patches:'
echo
GIT_DIR="$MAIN_GIT_DIR" git_commits_ordered '%H %cd' $(get_patch_commits) $IO_COMMIT | \
grep --color=always -1 $IO_COMMIT | sed /$IO_COMMIT/'s/$/ <=== your commit/'
echo
bold_arrow; echo -e "Try applying one of those using: \e[1;36mpatch -p1 < ../../patches/COMMIT.patch\e[0m"
bold_arrow; echo -e "Remember to test your changes with: \e[1;36mcargo build\e[0m"
bold_arrow; echo -e "Make your changes now (\e[1;36mctrl-D\e[0m when finished)"
bash <> /dev/stderr
while git diff --exit-code > /dev/null; do
bold_arrow; echo "No changes were made"
while true; do
bold_arrow; echo -n "(T)ry again or (A)bort? "
read answer <> /dev/stderr
case "$answer" in
[tT])
break
;;
[aA])
bold_arrow; echo "Aborting..."
exit 1
;;
esac
done
bash <> /dev/stderr
done
bold_arrow; echo "Saving changes as $IO_COMMIT.patch"
git clean -f -x
git diff > ../../patches/$IO_COMMIT.patch
rm -rf .git
}
if [ ! -t 1 ] || [ ! -t 2 ]; then
echo "==> /dev/stdout or /dev/stderr is not attached to a terminal!"
echo "==> This script must be run interactively."
exit 1
fi
cd "$(dirname "$0")"
PATCH_DIR="$PWD/patches"
COMPILER_COMMITS=$(cat)
IO_COMMITS=$(get_io_commits|sort -u)
PATCH_COMMITS=$(get_patch_commits|sort -u)
NEW_COMMITS=$(comm -2 -3 <(echo_lines $IO_COMMITS) <(echo_lines $PATCH_COMMITS))
OLD_COMMITS=$(comm -1 -2 <(echo_lines $IO_COMMITS) <(echo_lines $PATCH_COMMITS))
find src -mindepth 1 -type d -prune -exec rm -rf {} \;
for IO_COMMIT in $OLD_COMMITS $(git_commits_ordered %H $NEW_COMMITS|tac); do
if ! [ -d src/$IO_COMMIT ]; then
prepare_version
if [ -f patches/$IO_COMMIT.patch ]; then
patch -s -p1 -d src/$IO_COMMIT < patches/$IO_COMMIT.patch
else
cd src/$IO_COMMIT
prompt_changes
cd ../..
fi
fi
done
chmod 000 .git
cargo package
chmod 755 .git

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,570 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
use vec::Vec;
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,314 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// `ErrorKind`.
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// Any I/O error not part of this list.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use super::{Error, ErrorKind};
use error;
use error::Error as error_Error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,289 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
use core::cmp;
use io::{self, SeekFrom, Read, Write, Seek, Error, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
use core::fmt;
use core::mem;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(feature="collections")] use collections::vec::Vec;
// =============================================================================
// Forwarding implementations
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="alloc")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[cfg(feature="collections")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use vec::Vec;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,297 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
pub use self::fallback::{memchr,memrchr};
#[allow(dead_code)]
mod fallback {
use core::cmp;
use core::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// use truncation
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep = rep << 32 | rep;
rep
}
/// Return the first index matching the byte `a` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let align = (ptr as usize) & (usize_bytes- 1);
let mut offset;
if align > 0 {
offset = cmp::min(usize_bytes - align, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
} else {
offset = 0;
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize) as *const usize);
let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// find the byte after the point the body loop stopped
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Return the last index matching the byte `a` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned tail, after the last word aligned address in text
// - body, scan by 2 words at a time
// - the first remaining bytes, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search to an aligned boundary
let end_align = (ptr as usize + len) & (usize_bytes - 1);
let mut offset;
if end_align > 0 {
offset = len - cmp::min(usize_bytes - end_align, len);
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
} else {
offset = len;
}
// search the body of the text
let repeated_x = repeat_byte(x);
while offset >= 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * usize_bytes;
}
// find the byte before the point the body loop stopped
text[..offset].iter().rposition(|elt| *elt == x)
}
// test fallback implementations on all plattforms
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Write, Seek};
#[cfg(feature="collections")] pub use super::BufRead;
#[cfg(feature="collections")] pub use alloc::boxed::Box;
#[cfg(feature="collections")] pub use collections::vec::Vec;

View File

@ -1,191 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io;
/// use std::io::Read;
///
/// # fn foo() -> io::Result<String> {
/// let mut buffer = String::new();
/// try!(io::empty().read_to_string(&mut buffer));
/// # Ok(buffer)
/// # }
/// ```
pub fn empty() -> Empty { Empty { _priv: () } }
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[cfg(feature="collections")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
pub fn sink() -> Sink { Sink { _priv: () } }
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,571 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,480 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// [`ErrorKind`].
///
/// [`ErrorKind`]: enum.ErrorKind.html
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
///
/// It is used with the [`io::Error`] type.
///
/// [`io::Error`]: struct.Error.html
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// A marker variant that tells the compiler that users of this enum cannot
/// match it exhaustively.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
///
/// # Examples
///
/// On Linux:
///
/// ```
/// # if cfg!(target_os = "linux") {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(98);
/// assert_eq!(error.kind(), io::ErrorKind::AddrInUse);
/// # }
/// ```
///
/// On Windows:
///
/// ```
/// # if cfg!(windows) {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(10048);
/// assert_eq!(error.kind(), io::ErrorKind::AddrInUse);
/// # }
/// ```
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_os_error(err: &Error) {
/// if let Some(raw_os_err) = err.raw_os_error() {
/// println!("raw OS error: {:?}", raw_os_err);
/// } else {
/// println!("Not an OS error");
/// }
/// }
///
/// fn main() {
/// // Will print "raw OS error: ...".
/// print_os_error(&Error::last_os_error());
/// // Will print "Not an OS error".
/// print_os_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {:?}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
/// use std::{error, fmt};
/// use std::fmt::Display;
///
/// #[derive(Debug)]
/// struct MyError {
/// v: String,
/// }
///
/// impl MyError {
/// fn new() -> MyError {
/// MyError {
/// v: "oh no!".to_owned()
/// }
/// }
///
/// fn change_message(&mut self, new_message: &str) {
/// self.v = new_message.to_owned();
/// }
/// }
///
/// impl error::Error for MyError {
/// fn description(&self) -> &str { &self.v }
/// }
///
/// impl Display for MyError {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// write!(f, "MyError: {}", &self.v)
/// }
/// }
///
/// fn change_error(mut err: Error) -> Error {
/// if let Some(inner_err) = err.get_mut() {
/// inner_err.downcast_mut::<MyError>().unwrap().change_message("I've been changed!");
/// }
/// err
/// }
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&change_error(Error::last_os_error()));
/// // Will print "Inner error: ...".
/// print_error(&change_error(Error::new(ErrorKind::Other, MyError::new())));
/// }
/// ```
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// if let Some(inner_err) = err.into_inner() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// println!("{:?}", err.kind());
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::AddrInUse, "oh no!"));
/// }
/// ```
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use super::{Error, ErrorKind};
use error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,288 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
use core::cmp;
use io::{self, SeekFrom, Read, Write, Seek, Error, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
use core::fmt;
use core::mem;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(feature="collections")] use collections::vec::Vec;
// =============================================================================
// Forwarding implementations
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="alloc")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[cfg(feature="collections")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,319 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
pub use self::fallback::{memchr,memrchr};
#[allow(dead_code)]
mod fallback {
use core::cmp;
use core::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// use truncation
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep = rep << 32 | rep;
rep
}
/// Return the first index matching the byte `a` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let align = (ptr as usize) & (usize_bytes- 1);
let mut offset;
if align > 0 {
offset = cmp::min(usize_bytes - align, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
} else {
offset = 0;
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize) as *const usize);
let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// find the byte after the point the body loop stopped
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Return the last index matching the byte `a` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned tail, after the last word aligned address in text
// - body, scan by 2 words at a time
// - the first remaining bytes, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search to an aligned boundary
let end_align = (ptr as usize + len) & (usize_bytes - 1);
let mut offset;
if end_align > 0 {
offset = if end_align >= len { 0 } else { len - end_align };
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
} else {
offset = len;
}
// search the body of the text
let repeated_x = repeat_byte(x);
while offset >= 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * usize_bytes;
}
// find the byte before the point the body loop stopped
text[..offset].iter().rposition(|elt| *elt == x)
}
// test fallback implementations on all platforms
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
#[test]
fn each_alignment_reversed() {
let mut data = [1u8; 64];
let needle = 2;
let pos = 40;
data[pos] = needle;
for start in 0..16 {
assert_eq!(Some(pos - start), memrchr(needle, &data[start..]));
}
}
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
#[test]
fn each_alignment() {
let mut data = [1u8; 64];
let needle = 2;
let pos = 40;
data[pos] = needle;
for start in 0..16 {
assert_eq!(Some(pos - start), memchr(needle, &data[start..]));
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Write, Seek};
#[cfg(feature="collections")] pub use super::BufRead;
#[cfg(feature="collections")] pub use alloc::boxed::Box;
#[cfg(feature="collections")] pub use collections::vec::Vec;

View File

@ -1,206 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = String::new();
/// io::empty().read_to_string(&mut buffer).unwrap();
/// assert!(buffer.is_empty());
/// ```
pub fn empty() -> Empty { Empty { _priv: () } }
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[cfg(feature="collections")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = [0; 3];
/// io::repeat(0b101).read_exact(&mut buffer).unwrap();
/// assert_eq!(buffer, [0b101, 0b101, 0b101]);
/// ```
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
///
/// # Examples
///
/// ```rust
/// use std::io::{self, Write};
///
/// let buffer = vec![1, 2, 3, 5, 8];
/// let num_bytes = io::sink().write(&buffer).unwrap();
/// assert_eq!(num_bytes, 5);
/// ```
pub fn sink() -> Sink { Sink { _priv: () } }
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,570 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
use vec::Vec;
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,314 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// `ErrorKind`.
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// Any I/O error not part of this list.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use super::{Error, ErrorKind};
use error;
use error::Error as error_Error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,289 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
use core::cmp;
use io::{self, SeekFrom, Read, Write, Seek, Error, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
use core::fmt;
use core::mem;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(feature="collections")] use collections::vec::Vec;
// =============================================================================
// Forwarding implementations
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="alloc")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[cfg(feature="collections")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use vec::Vec;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,297 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
pub use self::fallback::{memchr,memrchr};
#[allow(dead_code)]
mod fallback {
use core::cmp;
use core::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// use truncation
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep = rep << 32 | rep;
rep
}
/// Return the first index matching the byte `a` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let align = (ptr as usize) & (usize_bytes- 1);
let mut offset;
if align > 0 {
offset = cmp::min(usize_bytes - align, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
} else {
offset = 0;
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize) as *const usize);
let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// find the byte after the point the body loop stopped
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Return the last index matching the byte `a` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned tail, after the last word aligned address in text
// - body, scan by 2 words at a time
// - the first remaining bytes, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search to an aligned boundary
let end_align = (ptr as usize + len) & (usize_bytes - 1);
let mut offset;
if end_align > 0 {
offset = len - cmp::min(usize_bytes - end_align, len);
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
} else {
offset = len;
}
// search the body of the text
let repeated_x = repeat_byte(x);
while offset >= 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * usize_bytes;
}
// find the byte before the point the body loop stopped
text[..offset].iter().rposition(|elt| *elt == x)
}
// test fallback implementations on all plattforms
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Write, Seek};
#[cfg(feature="collections")] pub use super::BufRead;
#[cfg(feature="collections")] pub use alloc::boxed::Box;
#[cfg(feature="collections")] pub use collections::vec::Vec;

View File

@ -1,191 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io;
/// use std::io::Read;
///
/// # fn foo() -> io::Result<String> {
/// let mut buffer = String::new();
/// try!(io::empty().read_to_string(&mut buffer));
/// # Ok(buffer)
/// # }
/// ```
pub fn empty() -> Empty { Empty { _priv: () } }
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[cfg(feature="collections")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
pub fn sink() -> Sink { Sink { _priv: () } }
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,594 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use io::prelude::*;
use core::convert::TryInto;
use cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Write for Cursor<&'a mut [u8]> {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos: usize = self.position().try_into().map_err(|_| {
Error::new(ErrorKind::InvalidInput,
"cursor position exceeds maximum possible vector length")
})?;
// Make sure the internal buffer is as least as big as where we
// currently are
let len = self.inner.len();
if len < pos {
// use `resize` so that the zero filling is as efficient as possible
self.inner.resize(pos, 0);
}
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position((pos + buf.len()) as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[stable(feature = "cursor_box_slice", since = "1.5.0")]
impl Write for Cursor<Box<[u8]>> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
#[cfg(target_pointer_width = "32")]
fn vec_seek_and_write_past_usize_max() {
let mut c = Cursor::new(Vec::new());
c.set_position(<usize>::max_value() as u64 + 1);
assert!(c.write_all(&[1, 2, 3]).is_err());
}
}

View File

@ -1,562 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use error;
use fmt;
use result;
use sys;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// [`ErrorKind`].
///
/// [`ErrorKind`]: enum.ErrorKind.html
#[derive(Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
Custom(Box<Custom>),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: Box<error::Error+Send+Sync>,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
///
/// It is used with the [`io::Error`] type.
///
/// [`io::Error`]: struct.Error.html
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
#[stable(feature = "rust1", since = "1.0.0")]
NotFound,
/// The operation lacked the necessary privileges to complete.
#[stable(feature = "rust1", since = "1.0.0")]
PermissionDenied,
/// The connection was refused by the remote server.
#[stable(feature = "rust1", since = "1.0.0")]
ConnectionRefused,
/// The connection was reset by the remote server.
#[stable(feature = "rust1", since = "1.0.0")]
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
#[stable(feature = "rust1", since = "1.0.0")]
ConnectionAborted,
/// The network operation failed because it was not connected yet.
#[stable(feature = "rust1", since = "1.0.0")]
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
#[stable(feature = "rust1", since = "1.0.0")]
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
#[stable(feature = "rust1", since = "1.0.0")]
AddrNotAvailable,
/// The operation failed because a pipe was closed.
#[stable(feature = "rust1", since = "1.0.0")]
BrokenPipe,
/// An entity already exists, often a file.
#[stable(feature = "rust1", since = "1.0.0")]
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
#[stable(feature = "rust1", since = "1.0.0")]
WouldBlock,
/// A parameter was incorrect.
#[stable(feature = "rust1", since = "1.0.0")]
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
#[stable(feature = "io_invalid_data", since = "1.2.0")]
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
#[stable(feature = "rust1", since = "1.0.0")]
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
#[stable(feature = "rust1", since = "1.0.0")]
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
#[stable(feature = "rust1", since = "1.0.0")]
Interrupted,
/// Any I/O error not part of this list.
#[stable(feature = "rust1", since = "1.0.0")]
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
#[stable(feature = "read_exact", since = "1.6.0")]
UnexpectedEof,
/// A marker variant that tells the compiler that users of this enum cannot
/// match it exhaustively.
#[unstable(feature = "io_error_internals",
reason = "better expressed through extensible enums that this \
enum cannot be exhaustively matched against",
issue = "0")]
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<Box<error::Error+Send+Sync>>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: Box<error::Error+Send+Sync>) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Returns an error representing the last OS error which occurred.
///
/// This function reads the value of `errno` for the target platform (e.g.
/// `GetLastError` on Windows) and will return a corresponding instance of
/// `Error` for the error code.
///
/// # Examples
///
/// ```
/// use std::io::Error;
///
/// println!("last OS error: {:?}", Error::last_os_error());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn last_os_error() -> Error {
Error::from_raw_os_error(sys::os::errno() as i32)
}
/// Creates a new instance of an `Error` from a particular OS error code.
///
/// # Examples
///
/// On Linux:
///
/// ```
/// # if cfg!(target_os = "linux") {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(98);
/// assert_eq!(error.kind(), io::ErrorKind::AddrInUse);
/// # }
/// ```
///
/// On Windows:
///
/// ```
/// # if cfg!(windows) {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(10048);
/// assert_eq!(error.kind(), io::ErrorKind::AddrInUse);
/// # }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_os_error(err: &Error) {
/// if let Some(raw_os_err) = err.raw_os_error() {
/// println!("raw OS error: {:?}", raw_os_err);
/// } else {
/// println!("Not an OS error");
/// }
/// }
///
/// fn main() {
/// // Will print "raw OS error: ...".
/// print_os_error(&Error::last_os_error());
/// // Will print "Not an OS error".
/// print_os_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {:?}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
#[stable(feature = "io_error_inner", since = "1.3.0")]
pub fn get_ref(&self) -> Option<&(error::Error+Send+Sync+'static)> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&*c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
/// use std::{error, fmt};
/// use std::fmt::Display;
///
/// #[derive(Debug)]
/// struct MyError {
/// v: String,
/// }
///
/// impl MyError {
/// fn new() -> MyError {
/// MyError {
/// v: "oh no!".to_owned()
/// }
/// }
///
/// fn change_message(&mut self, new_message: &str) {
/// self.v = new_message.to_owned();
/// }
/// }
///
/// impl error::Error for MyError {
/// fn description(&self) -> &str { &self.v }
/// }
///
/// impl Display for MyError {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// write!(f, "MyError: {}", &self.v)
/// }
/// }
///
/// fn change_error(mut err: Error) -> Error {
/// if let Some(inner_err) = err.get_mut() {
/// inner_err.downcast_mut::<MyError>().unwrap().change_message("I've been changed!");
/// }
/// err
/// }
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&change_error(Error::last_os_error()));
/// // Will print "Inner error: ...".
/// print_error(&change_error(Error::new(ErrorKind::Other, MyError::new())));
/// }
/// ```
#[stable(feature = "io_error_inner", since = "1.3.0")]
pub fn get_mut(&mut self) -> Option<&mut (error::Error+Send+Sync+'static)> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut *c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// if let Some(inner_err) = err.into_inner() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
#[stable(feature = "io_error_inner", since = "1.3.0")]
pub fn into_inner(self) -> Option<Box<error::Error+Send+Sync>> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// println!("{:?}", err.kind());
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::AddrInUse, "oh no!"));
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(code) => sys::decode_error_kind(code),
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code)
.field("message", &sys::os::error_string(*code)).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
let detail = sys::os::error_string(code);
write!(fmt, "{} (os error {})", detail, code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for Error {
fn description(&self) -> &str {
match self.repr {
Repr::Os(..) => match self.kind() {
ErrorKind::NotFound => "entity not found",
ErrorKind::PermissionDenied => "permission denied",
ErrorKind::ConnectionRefused => "connection refused",
ErrorKind::ConnectionReset => "connection reset",
ErrorKind::ConnectionAborted => "connection aborted",
ErrorKind::NotConnected => "not connected",
ErrorKind::AddrInUse => "address in use",
ErrorKind::AddrNotAvailable => "address not available",
ErrorKind::BrokenPipe => "broken pipe",
ErrorKind::AlreadyExists => "entity already exists",
ErrorKind::WouldBlock => "operation would block",
ErrorKind::InvalidInput => "invalid input parameter",
ErrorKind::InvalidData => "invalid data",
ErrorKind::TimedOut => "timed out",
ErrorKind::WriteZero => "write zero",
ErrorKind::Interrupted => "operation interrupted",
ErrorKind::Other => "other os error",
ErrorKind::UnexpectedEof => "unexpected end of file",
ErrorKind::__Nonexhaustive => unreachable!()
},
Repr::Custom(ref c) => c.error.description(),
}
}
fn cause(&self) -> Option<&error::Error> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => c.error.cause(),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use super::{Error, ErrorKind};
use error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,285 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use cmp;
use io::{self, SeekFrom, Read, Write, Seek, BufRead, Error, ErrorKind};
use fmt;
use mem;
// =============================================================================
// Forwarding implementations
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,143 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
/// A safe interface to `memchr`.
///
/// Returns the index corresponding to the first occurrence of `needle` in
/// `haystack`, or `None` if one is not found.
///
/// memchr reduces to super-optimized machine code at around an order of
/// magnitude faster than `haystack.iter().position(|&b| b == needle)`.
/// (See benchmarks.)
///
/// # Example
///
/// This shows how to find the first position of a byte in a byte string.
///
/// ```rust,ignore
/// use memchr::memchr;
///
/// let haystack = b"the quick brown fox";
/// assert_eq!(memchr(b'k', haystack), Some(8));
/// ```
#[inline]
pub fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
::sys::memchr::memchr(needle, haystack)
}
/// A safe interface to `memrchr`.
///
/// Returns the index corresponding to the last occurrence of `needle` in
/// `haystack`, or `None` if one is not found.
///
/// # Example
///
/// This shows how to find the last position of a byte in a byte string.
///
/// ```rust,ignore
/// use memchr::memrchr;
///
/// let haystack = b"the quick brown fox";
/// assert_eq!(memrchr(b'o', haystack), Some(17));
/// ```
#[inline]
pub fn memrchr(needle: u8, haystack: &[u8]) -> Option<usize> {
::sys::memchr::memrchr(needle, haystack)
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
#[test]
fn each_alignment() {
let mut data = [1u8; 64];
let needle = 2;
let pos = 40;
data[pos] = needle;
for start in 0..16 {
assert_eq!(Some(pos - start), memchr(needle, &data[start..]));
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,24 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
#[stable(feature = "rust1", since = "1.0.0")]
pub use super::{Read, Write, BufRead, Seek};

View File

@ -1,215 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind, BufRead};
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = String::new();
/// io::empty().read_to_string(&mut buffer).unwrap();
/// assert!(buffer.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn empty() -> Empty { Empty { _priv: () } }
#[stable(feature = "rust1", since = "1.0.0")]
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = [0; 3];
/// io::repeat(0b101).read_exact(&mut buffer).unwrap();
/// assert_eq!(buffer, [0b101, 0b101, 0b101]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
#[stable(feature = "rust1", since = "1.0.0")]
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
///
/// # Examples
///
/// ```rust
/// use std::io::{self, Write};
///
/// let buffer = vec![1, 2, 3, 5, 8];
/// let num_bytes = io::sink().write(&buffer).unwrap();
/// assert_eq!(num_bytes, 5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn sink() -> Sink { Sink { _priv: () } }
#[stable(feature = "rust1", since = "1.0.0")]
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,571 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,480 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// [`ErrorKind`].
///
/// [`ErrorKind`]: enum.ErrorKind.html
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
///
/// It is used with the [`io::Error`] type.
///
/// [`io::Error`]: struct.Error.html
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// A marker variant that tells the compiler that users of this enum cannot
/// match it exhaustively.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
///
/// # Examples
///
/// On Linux:
///
/// ```
/// # if cfg!(target_os = "linux") {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(98);
/// assert_eq!(error.kind(), io::ErrorKind::AddrInUse);
/// # }
/// ```
///
/// On Windows:
///
/// ```
/// # if cfg!(windows) {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(10048);
/// assert_eq!(error.kind(), io::ErrorKind::AddrInUse);
/// # }
/// ```
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_os_error(err: &Error) {
/// if let Some(raw_os_err) = err.raw_os_error() {
/// println!("raw OS error: {:?}", raw_os_err);
/// } else {
/// println!("Not an OS error");
/// }
/// }
///
/// fn main() {
/// // Will print "raw OS error: ...".
/// print_os_error(&Error::last_os_error());
/// // Will print "Not an OS error".
/// print_os_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {:?}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
/// use std::{error, fmt};
/// use std::fmt::Display;
///
/// #[derive(Debug)]
/// struct MyError {
/// v: String,
/// }
///
/// impl MyError {
/// fn new() -> MyError {
/// MyError {
/// v: "oh no!".to_owned()
/// }
/// }
///
/// fn change_message(&mut self, new_message: &str) {
/// self.v = new_message.to_owned();
/// }
/// }
///
/// impl error::Error for MyError {
/// fn description(&self) -> &str { &self.v }
/// }
///
/// impl Display for MyError {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// write!(f, "MyError: {}", &self.v)
/// }
/// }
///
/// fn change_error(mut err: Error) -> Error {
/// if let Some(inner_err) = err.get_mut() {
/// inner_err.downcast_mut::<MyError>().unwrap().change_message("I've been changed!");
/// }
/// err
/// }
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&change_error(Error::last_os_error()));
/// // Will print "Inner error: ...".
/// print_error(&change_error(Error::new(ErrorKind::Other, MyError::new())));
/// }
/// ```
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// if let Some(inner_err) = err.into_inner() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// println!("{:?}", err.kind());
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::AddrInUse, "oh no!"));
/// }
/// ```
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use super::{Error, ErrorKind};
use error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,288 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
use core::cmp;
use io::{self, SeekFrom, Read, Write, Seek, Error, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
use core::fmt;
use core::mem;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(feature="collections")] use collections::vec::Vec;
// =============================================================================
// Forwarding implementations
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="alloc")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[cfg(feature="collections")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,319 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
pub use self::fallback::{memchr,memrchr};
#[allow(dead_code)]
mod fallback {
use core::cmp;
use core::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// use truncation
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep = rep << 32 | rep;
rep
}
/// Return the first index matching the byte `a` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let align = (ptr as usize) & (usize_bytes- 1);
let mut offset;
if align > 0 {
offset = cmp::min(usize_bytes - align, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
} else {
offset = 0;
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize) as *const usize);
let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// find the byte after the point the body loop stopped
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Return the last index matching the byte `a` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned tail, after the last word aligned address in text
// - body, scan by 2 words at a time
// - the first remaining bytes, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search to an aligned boundary
let end_align = (ptr as usize + len) & (usize_bytes - 1);
let mut offset;
if end_align > 0 {
offset = if end_align >= len { 0 } else { len - end_align };
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
} else {
offset = len;
}
// search the body of the text
let repeated_x = repeat_byte(x);
while offset >= 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * usize_bytes;
}
// find the byte before the point the body loop stopped
text[..offset].iter().rposition(|elt| *elt == x)
}
// test fallback implementations on all platforms
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
#[test]
fn each_alignment_reversed() {
let mut data = [1u8; 64];
let needle = 2;
let pos = 40;
data[pos] = needle;
for start in 0..16 {
assert_eq!(Some(pos - start), memrchr(needle, &data[start..]));
}
}
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
#[test]
fn each_alignment() {
let mut data = [1u8; 64];
let needle = 2;
let pos = 40;
data[pos] = needle;
for start in 0..16 {
assert_eq!(Some(pos - start), memchr(needle, &data[start..]));
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Write, Seek};
#[cfg(feature="collections")] pub use super::BufRead;
#[cfg(feature="collections")] pub use alloc::boxed::Box;
#[cfg(feature="collections")] pub use collections::vec::Vec;

View File

@ -1,206 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = String::new();
/// io::empty().read_to_string(&mut buffer).unwrap();
/// assert!(buffer.is_empty());
/// ```
pub fn empty() -> Empty { Empty { _priv: () } }
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[cfg(feature="collections")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = [0; 3];
/// io::repeat(0b101).read_exact(&mut buffer).unwrap();
/// assert_eq!(buffer, [0b101, 0b101, 0b101]);
/// ```
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
///
/// # Examples
///
/// ```rust
/// use std::io::{self, Write};
///
/// let buffer = vec![1, 2, 3, 5, 8];
/// let num_bytes = io::sink().write(&buffer).unwrap();
/// assert_eq!(num_bytes, 5);
/// ```
pub fn sink() -> Sink { Sink { _priv: () } }
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,570 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
use vec::Vec;
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,314 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// `ErrorKind`.
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// Any I/O error not part of this list.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use super::{Error, ErrorKind};
use error;
use error::Error as error_Error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,289 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
use core::cmp;
use io::{self, SeekFrom, Read, Write, Seek, Error, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
use core::fmt;
use core::mem;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(feature="collections")] use collections::vec::Vec;
// =============================================================================
// Forwarding implementations
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="alloc")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[cfg(feature="collections")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use vec::Vec;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,297 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
pub use self::fallback::{memchr,memrchr};
#[allow(dead_code)]
mod fallback {
use core::cmp;
use core::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// use truncation
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep = rep << 32 | rep;
rep
}
/// Return the first index matching the byte `a` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let align = (ptr as usize) & (usize_bytes- 1);
let mut offset;
if align > 0 {
offset = cmp::min(usize_bytes - align, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
} else {
offset = 0;
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize) as *const usize);
let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// find the byte after the point the body loop stopped
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Return the last index matching the byte `a` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned tail, after the last word aligned address in text
// - body, scan by 2 words at a time
// - the first remaining bytes, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search to an aligned boundary
let end_align = (ptr as usize + len) & (usize_bytes - 1);
let mut offset;
if end_align > 0 {
offset = len - cmp::min(usize_bytes - end_align, len);
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
} else {
offset = len;
}
// search the body of the text
let repeated_x = repeat_byte(x);
while offset >= 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * usize_bytes;
}
// find the byte before the point the body loop stopped
text[..offset].iter().rposition(|elt| *elt == x)
}
// test fallback implementations on all plattforms
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Write, Seek};
#[cfg(feature="collections")] pub use super::BufRead;
#[cfg(feature="collections")] pub use alloc::boxed::Box;
#[cfg(feature="collections")] pub use collections::vec::Vec;

View File

@ -1,191 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io;
/// use std::io::Read;
///
/// # fn foo() -> io::Result<String> {
/// let mut buffer = String::new();
/// try!(io::empty().read_to_string(&mut buffer));
/// # Ok(buffer)
/// # }
/// ```
pub fn empty() -> Empty { Empty { _priv: () } }
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[cfg(feature="collections")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
pub fn sink() -> Sink { Sink { _priv: () } }
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,570 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
use vec::Vec;
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,313 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// `ErrorKind`.
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// Any I/O error not part of this list.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use super::{Error, ErrorKind};
use error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,289 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
use core::cmp;
use io::{self, SeekFrom, Read, Write, Seek, Error, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
use core::fmt;
use core::mem;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(feature="collections")] use collections::vec::Vec;
// =============================================================================
// Forwarding implementations
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="alloc")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[cfg(feature="collections")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use vec::Vec;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,297 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
pub use self::fallback::{memchr,memrchr};
#[allow(dead_code)]
mod fallback {
use core::cmp;
use core::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// use truncation
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep = rep << 32 | rep;
rep
}
/// Return the first index matching the byte `a` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let align = (ptr as usize) & (usize_bytes- 1);
let mut offset;
if align > 0 {
offset = cmp::min(usize_bytes - align, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
} else {
offset = 0;
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize) as *const usize);
let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// find the byte after the point the body loop stopped
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Return the last index matching the byte `a` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned tail, after the last word aligned address in text
// - body, scan by 2 words at a time
// - the first remaining bytes, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search to an aligned boundary
let end_align = (ptr as usize + len) & (usize_bytes - 1);
let mut offset;
if end_align > 0 {
offset = len - cmp::min(usize_bytes - end_align, len);
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
} else {
offset = len;
}
// search the body of the text
let repeated_x = repeat_byte(x);
while offset >= 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * usize_bytes;
}
// find the byte before the point the body loop stopped
text[..offset].iter().rposition(|elt| *elt == x)
}
// test fallback implementations on all plattforms
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Write, Seek};
#[cfg(feature="collections")] pub use super::BufRead;
#[cfg(feature="collections")] pub use alloc::boxed::Box;
#[cfg(feature="collections")] pub use collections::vec::Vec;

View File

@ -1,191 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io;
/// use std::io::Read;
///
/// # fn foo() -> io::Result<String> {
/// let mut buffer = String::new();
/// try!(io::empty().read_to_string(&mut buffer));
/// # Ok(buffer)
/// # }
/// ```
pub fn empty() -> Empty { Empty { _priv: () } }
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[cfg(feature="collections")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
pub fn sink() -> Sink { Sink { _priv: () } }
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,570 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
use vec::Vec;
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,314 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// `ErrorKind`.
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// Any I/O error not part of this list.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use super::{Error, ErrorKind};
use error;
use error::Error as error_Error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,289 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
use core::cmp;
use io::{self, SeekFrom, Read, Write, Seek, Error, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
use core::fmt;
use core::mem;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(feature="collections")] use collections::vec::Vec;
// =============================================================================
// Forwarding implementations
impl<'a, R: Read + ?Sized> Read for &'a mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<'a, W: Write + ?Sized> Write for &'a mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
#[inline]
fn flush(&mut self) -> io::Result<()> { (**self).flush() }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="alloc")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amt: usize) { (**self).consume(amt) }
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// =============================================================================
// In-memory buffer implementations
impl<'a> Read for &'a [u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
buf[..amt].copy_from_slice(a);
*self = b;
Ok(amt)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof,
"failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
buf.copy_from_slice(a);
*self = b;
Ok(())
}
}
#[cfg(feature="collections")]
impl<'a> BufRead for &'a [u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
#[inline]
fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
}
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use vec::Vec;
use test;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

View File

@ -1,297 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Original implementation taken from rust-memchr
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
pub use self::fallback::{memchr,memrchr};
#[allow(dead_code)]
mod fallback {
use core::cmp;
use core::mem;
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
// use truncation
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline]
fn contains_zero_byte(x: usize) -> bool {
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
#[cfg(target_pointer_width = "32")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn repeat_byte(b: u8) -> usize {
let mut rep = (b as usize) << 8 | b as usize;
rep = rep << 16 | rep;
rep = rep << 32 | rep;
rep
}
/// Return the first index matching the byte `a` in `text`.
pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned initial part, before the first word aligned address in text
// - body, scan by 2 words at a time
// - the last remaining part, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search up to an aligned boundary
let align = (ptr as usize) & (usize_bytes- 1);
let mut offset;
if align > 0 {
offset = cmp::min(usize_bytes - align, len);
if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
return Some(index);
}
} else {
offset = 0;
}
// search the body of the text
let repeated_x = repeat_byte(x);
if len >= 2 * usize_bytes {
while offset <= len - 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize) as *const usize);
let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset += usize_bytes * 2;
}
}
// find the byte after the point the body loop stopped
text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
}
/// Return the last index matching the byte `a` in `text`.
pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
// Scan for a single byte value by reading two `usize` words at a time.
//
// Split `text` in three parts
// - unaligned tail, after the last word aligned address in text
// - body, scan by 2 words at a time
// - the first remaining bytes, < 2 word size
let len = text.len();
let ptr = text.as_ptr();
let usize_bytes = mem::size_of::<usize>();
// search to an aligned boundary
let end_align = (ptr as usize + len) & (usize_bytes - 1);
let mut offset;
if end_align > 0 {
offset = len - cmp::min(usize_bytes - end_align, len);
if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
return Some(offset + index);
}
} else {
offset = len;
}
// search the body of the text
let repeated_x = repeat_byte(x);
while offset >= 2 * usize_bytes {
unsafe {
let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
// break if there is a matching byte
let zu = contains_zero_byte(u ^ repeated_x);
let zv = contains_zero_byte(v ^ repeated_x);
if zu || zv {
break;
}
}
offset -= 2 * usize_bytes;
}
// find the byte before the point the body loop stopped
text[..offset].iter().rposition(|elt| *elt == x)
}
// test fallback implementations on all plattforms
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}
#[cfg(test)]
mod tests {
// test the implementations for the current plattform
use super::{memchr, memrchr};
#[test]
fn matches_one() {
assert_eq!(Some(0), memchr(b'a', b"a"));
}
#[test]
fn matches_begin() {
assert_eq!(Some(0), memchr(b'a', b"aaaa"));
}
#[test]
fn matches_end() {
assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
}
#[test]
fn matches_nul() {
assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul() {
assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
}
#[test]
fn no_match_empty() {
assert_eq!(None, memchr(b'a', b""));
}
#[test]
fn no_match() {
assert_eq!(None, memchr(b'a', b"xyz"));
}
#[test]
fn matches_one_reversed() {
assert_eq!(Some(0), memrchr(b'a', b"a"));
}
#[test]
fn matches_begin_reversed() {
assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
}
#[test]
fn matches_end_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
}
#[test]
fn matches_nul_reversed() {
assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
}
#[test]
fn matches_past_nul_reversed() {
assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
}
#[test]
fn no_match_empty_reversed() {
assert_eq!(None, memrchr(b'a', b""));
}
#[test]
fn no_match_reversed() {
assert_eq!(None, memrchr(b'a', b"xyz"));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Write, Seek};
#[cfg(feature="collections")] pub use super::BufRead;
#[cfg(feature="collections")] pub use alloc::boxed::Box;
#[cfg(feature="collections")] pub use collections::vec::Vec;

View File

@ -1,191 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_copy_implementations)]
use io::{self, Read, Write, ErrorKind};
#[cfg(feature="collections")] use io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// # fn foo() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// try!(io::copy(&mut reader, &mut writer));
///
/// assert_eq!(reader, &writer[..]);
/// # Ok(())
/// # }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where R: Read, W: Write
{
let mut buf = [0; super::DEFAULT_BUF_SIZE];
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty()`][empty]. Please see
/// the documentation of `empty()` for more details.
///
/// [empty]: fn.empty.html
pub struct Empty { _priv: () }
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return `Ok(0)`.
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io;
/// use std::io::Read;
///
/// # fn foo() -> io::Result<String> {
/// let mut buffer = String::new();
/// try!(io::empty().read_to_string(&mut buffer));
/// # Ok(buffer)
/// # }
/// ```
pub fn empty() -> Empty { Empty { _priv: () } }
impl Read for Empty {
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
#[cfg(feature="collections")]
impl BufRead for Empty {
fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
fn consume(&mut self, _n: usize) {}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat()`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat { byte: u8 }
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
impl Read for Repeat {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink()`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink { _priv: () }
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
pub fn sink() -> Sink { Sink { _priv: () } }
impl Write for Sink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::prelude::*;
use io::{copy, sink, empty, repeat};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,572 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::v1::*;
use io::prelude::*;
use core::cmp;
use io::{self, SeekFrom, Error, ErrorKind};
/// A `Cursor` wraps another type and provides it with a
/// [`Seek`](trait.Seek.html) implementation.
///
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T { self.inner }
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T { &self.inner }
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 { self.pos }
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let pos = match style {
SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
SeekFrom::Current(n) => self.pos as i64 + n,
};
if pos < 0 {
Err(Error::new(ErrorKind::InvalidInput,
"invalid seek to a negative position"))
} else {
self.pos = pos as u64;
Ok(self.pos)
}
}
}
impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.fill_buf()?, buf)?;
self.pos += n as u64;
Ok(n)
}
}
impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
}
impl<'a> Write for Cursor<&'a mut [u8]> {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure the internal buffer is as least as big as where we
// currently are
let pos = self.position();
let amt = pos.saturating_sub(self.inner.len() as u64);
// use `resize` so that the zero filling is as efficient as possible
let len = self.inner.len();
self.inner.resize(len + amt as usize, 0);
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let pos = pos as usize;
let space = self.inner.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
self.inner[pos..pos + left.len()].copy_from_slice(left);
self.inner.extend_from_slice(right);
}
// Bump us forward
self.set_position(pos + buf.len() as u64);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Write for Cursor<Box<[u8]>> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(self.pos, self.inner.len() as u64);
let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
self.pos += amt as u64;
Ok(amt)
}
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
#[cfg(test)]
mod tests {
use io::prelude::*;
use io::{Cursor, SeekFrom};
use vec::Vec;
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_char() {
let b = &b"Vi\xE1\xBB\x87t"[..];
let mut c = Cursor::new(b).chars();
assert_eq!(c.next().unwrap().unwrap(), 'V');
assert_eq!(c.next().unwrap().unwrap(), 'i');
assert_eq!(c.next().unwrap().unwrap(), 'ệ');
assert_eq!(c.next().unwrap().unwrap(), 't');
assert!(c.next().is_none());
}
#[test]
fn test_read_bad_char() {
let b = &b"\x80"[..];
let mut c = Cursor::new(b).chars();
assert!(c.next().unwrap().is_err());
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec!(10));
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10));
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec!(10).into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
}

View File

@ -1,313 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// `ErrorKind`.
#[derive(Debug)]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[allow(deprecated)]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// Any I/O error not part of this list.
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<String>
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error,
}))
}
}
/// Creates a new instance of an `Error` from a particular OS error code.
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use super::{Error, ErrorKind};
use error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

Some files were not shown because too many files have changed in this diff Show More