nac3/nac3core/src/toplevel/builtins.rs
David Mak ff1fed112c core: Rework gamma/gammaln to match SciPy behavior
Matches behavior for infinities and NaNs.
2023-11-01 18:03:29 +08:00

1828 lines
69 KiB
Rust

use super::*;
use crate::{
codegen::{
expr::destructure_range,
irrt::{calculate_len_for_slice_range, call_isinf, call_isnan},
stmt::exn_constructor,
},
symbol_resolver::SymbolValue,
};
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicType, BasicMetadataTypeEnum},
values::BasicMetadataValueEnum,
FloatPredicate,
IntPredicate
};
type BuiltinInfo = (Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>, &'static [&'static str]);
pub fn get_exn_constructor(
name: &str,
class_id: usize,
cons_id: usize,
unifier: &mut Unifier,
primitives: &PrimitiveStore
)-> (TopLevelDef, TopLevelDef, Type, Type) {
let int32 = primitives.int32;
let int64 = primitives.int64;
let string = primitives.str;
let exception_fields = vec![
("__name__".into(), int32, true),
("__file__".into(), string, true),
("__line__".into(), int32, true),
("__col__".into(), int32, true),
("__func__".into(), string, true),
("__message__".into(), string, true),
("__param0__".into(), int64, true),
("__param1__".into(), int64, true),
("__param2__".into(), int64, true),
];
let exn_cons_args = vec![
FuncArg {
name: "msg".into(),
ty: string,
default_value: Some(SymbolValue::Str("".into())),
},
FuncArg { name: "param0".into(), ty: int64, default_value: Some(SymbolValue::I64(0)) },
FuncArg { name: "param1".into(), ty: int64, default_value: Some(SymbolValue::I64(0)) },
FuncArg { name: "param2".into(), ty: int64, default_value: Some(SymbolValue::I64(0)) },
];
let exn_type = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(class_id),
fields: exception_fields.iter().map(|(a, b, c)| (*a, (*b, *c))).collect(),
params: Default::default(),
});
let signature = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: exn_cons_args,
ret: exn_type,
vars: Default::default(),
}));
let fun_def = TopLevelDef::Function {
name: format!("{}.__init__", name),
simple_name: "__init__".into(),
signature,
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(exn_constructor)))),
loc: None,
};
let class_def = TopLevelDef::Class {
name: name.into(),
object_id: DefinitionId(class_id),
type_vars: Default::default(),
fields: exception_fields,
methods: vec![("__init__".into(), signature, DefinitionId(cons_id))],
ancestors: vec![
TypeAnnotation::CustomClass { id: DefinitionId(class_id), params: Default::default() },
TypeAnnotation::CustomClass { id: DefinitionId(7), params: Default::default() },
],
constructor: Some(signature),
resolver: None,
loc: None,
};
(fun_def, class_def, signature, exn_type)
}
/// Creates a NumPy [TopLevelDef] function by code generation.
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `codegen_callback`: A lambda generating LLVM IR for the implementation of this function.
fn create_fn_by_codegen(
primitives: &mut (PrimitiveStore, Unifier),
var_map: &HashMap<u32, Type>,
name: &'static str,
ret_ty: Type,
param_ty: &[(Type, &'static str)],
codegen_callback: GenCallCallback,
) -> Arc<RwLock<TopLevelDef>> {
Arc::new(RwLock::new(TopLevelDef::Function {
name: name.into(),
simple_name: name.into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: param_ty.iter().map(|p| FuncArg {
name: p.1.into(),
ty: p.0,
default_value: None,
}).collect(),
ret: ret_ty.clone(),
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(codegen_callback))),
loc: None,
}))
}
/// Creates a NumPy [TopLevelDef] function using an LLVM intrinsic.
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `intrinsic_fn`: The fully-qualified name of the LLVM intrinsic function.
fn create_fn_by_intrinsic(
primitives: &mut (PrimitiveStore, Unifier),
var_map: &HashMap<u32, Type>,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
intrinsic_fn: &'static str,
) -> Arc<RwLock<TopLevelDef>> {
let param_tys = params.iter()
.map(|p| p.0)
.collect_vec();
create_fn_by_codegen(
primitives,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys.iter().zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty.iter().zip_eq(args.iter())
.map(|(ty, arg)| {
arg.1.clone()
.to_basic_value_enum(ctx, generator, ty.clone())
.unwrap()
})
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(intrinsic_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty.clone());
let param_llvm_ty = param_tys.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
ctx.module.add_function(intrinsic_fn, fn_type, None)
});
let call = ctx.builder
.build_call(intrinsic_fn, args_val.as_slice(), name);
let val = call.try_as_basic_value()
.left()
.unwrap();
Ok(val.into())
}),
)
}
/// Creates a unary NumPy [TopLevelDef] function using an extern function (e.g. from `libc` or
/// `libm`).
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `extern_fn`: The fully-qualified name of the extern function used as the implementation.
/// * `attrs`: The list of attributes to apply to this function declaration. Note that `nounwind` is
/// already implied by the C ABI.
fn create_fn_by_extern(
primitives: &mut (PrimitiveStore, Unifier),
var_map: &HashMap<u32, Type>,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
extern_fn: &'static str,
attrs: &'static [&str],
) -> Arc<RwLock<TopLevelDef>> {
let param_tys = params.iter()
.map(|p| p.0)
.collect_vec();
create_fn_by_codegen(
primitives,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys.iter().zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty.iter().zip_eq(args.iter())
.map(|(ty, arg)| {
arg.1.clone()
.to_basic_value_enum(ctx, generator, ty.clone())
.unwrap()
})
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(extern_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty.clone());
let param_llvm_ty = param_tys.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
let func = ctx.module.add_function(extern_fn, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0)
);
for attr in attrs {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0)
);
}
func
});
let call = ctx.builder
.build_call(intrinsic_fn, &args_val, name);
let val = call.try_as_basic_value()
.left()
.unwrap();
Ok(val.into())
}),
)
}
pub fn get_builtins(primitives: &mut (PrimitiveStore, Unifier)) -> BuiltinInfo {
let int32 = primitives.0.int32;
let int64 = primitives.0.int64;
let uint32 = primitives.0.uint32;
let uint64 = primitives.0.uint64;
let float = primitives.0.float;
let boolean = primitives.0.bool;
let range = primitives.0.range;
let string = primitives.0.str;
let num_ty = primitives.1.get_fresh_var_with_range(
&[int32, int64, float, boolean, uint32, uint64],
Some("N".into()),
None,
);
let var_map: HashMap<_, _> = vec![(num_ty.1, num_ty.0)].into_iter().collect();
let exception_fields = vec![
("__name__".into(), int32, true),
("__file__".into(), string, true),
("__line__".into(), int32, true),
("__col__".into(), int32, true),
("__func__".into(), string, true),
("__message__".into(), string, true),
("__param0__".into(), int64, true),
("__param1__".into(), int64, true),
("__param2__".into(), int64, true),
];
// for Option, is_some and is_none share the same type: () -> bool,
// and they are methods under the same class `Option`
let (is_some_ty, unwrap_ty, (option_ty_var, option_ty_var_id)) =
if let TypeEnum::TObj { fields, params, .. } =
primitives.1.get_ty(primitives.0.option).as_ref()
{
(
*fields.get(&"is_some".into()).unwrap(),
*fields.get(&"unwrap".into()).unwrap(),
(*params.iter().next().unwrap().1, *params.iter().next().unwrap().0),
)
} else {
unreachable!()
};
let top_level_def_list = vec![
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
0,
None,
"int32".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
1,
None,
"int64".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
2,
None,
"float".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
3,
None,
"bool".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
4,
None,
"none".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
5,
None,
"range".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
6,
None,
"str".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelDef::Class {
name: "Exception".into(),
object_id: DefinitionId(7),
type_vars: Default::default(),
fields: exception_fields,
methods: Default::default(),
ancestors: vec![],
constructor: None,
resolver: None,
loc: None,
})),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
8,
None,
"uint32".into(),
None,
None,
))),
Arc::new(RwLock::new(TopLevelComposer::make_top_level_class_def(
9,
None,
"uint64".into(),
None,
None,
))),
Arc::new(RwLock::new({
TopLevelDef::Class {
name: "Option".into(),
object_id: DefinitionId(10),
type_vars: vec![option_ty_var],
fields: vec![],
methods: vec![
("is_some".into(), is_some_ty.0, DefinitionId(11)),
("is_none".into(), is_some_ty.0, DefinitionId(12)),
("unwrap".into(), unwrap_ty.0, DefinitionId(13)),
],
ancestors: vec![TypeAnnotation::CustomClass {
id: DefinitionId(10),
params: Default::default(),
}],
constructor: None,
resolver: None,
loc: None,
}
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "Option.is_some".into(),
simple_name: "is_some".into(),
signature: is_some_ty.0,
var_id: vec![option_ty_var_id],
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, obj, _, _, generator| {
let expect_ty = obj.clone().unwrap().0;
let obj_val = obj.unwrap().1.clone().to_basic_value_enum(
ctx,
generator,
expect_ty,
)?;
if let BasicValueEnum::PointerValue(ptr) = obj_val {
Ok(Some(ctx.builder.build_is_not_null(ptr, "is_some").into()))
} else {
unreachable!("option must be ptr")
}
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "Option.is_none".into(),
simple_name: "is_none".into(),
signature: is_some_ty.0,
var_id: vec![option_ty_var_id],
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, obj, _, _, generator| {
let expect_ty = obj.clone().unwrap().0;
let obj_val = obj.unwrap().1.clone().to_basic_value_enum(
ctx,
generator,
expect_ty,
)?;
if let BasicValueEnum::PointerValue(ptr) = obj_val {
Ok(Some(ctx.builder.build_is_null(ptr, "is_none").into()))
} else {
unreachable!("option must be ptr")
}
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "Option.unwrap".into(),
simple_name: "unwrap".into(),
signature: unwrap_ty.0,
var_id: vec![option_ty_var_id],
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|_, _, _, _, _| {
unreachable!("handled in gen_expr")
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "int32".into(),
simple_name: "int32".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: num_ty.0, default_value: None }],
ret: int32,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let boolean = ctx.primitives.bool;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(if ctx.unifier.unioned(arg_ty, boolean) {
Some(
ctx.builder
.build_int_z_extend(
arg.into_int_value(),
ctx.ctx.i32_type(),
"zext",
)
.into(),
)
} else if ctx.unifier.unioned(arg_ty, int32)
|| ctx.unifier.unioned(arg_ty, uint32)
{
Some(arg)
} else if ctx.unifier.unioned(arg_ty, int64)
|| ctx.unifier.unioned(arg_ty, uint64)
{
Some(
ctx.builder
.build_int_truncate(
arg.into_int_value(),
ctx.ctx.i32_type(),
"trunc",
)
.into(),
)
} else if ctx.unifier.unioned(arg_ty, float) {
let val = ctx
.builder
.build_float_to_signed_int(
arg.into_float_value(),
ctx.ctx.i32_type(),
"fptosi",
)
.into();
Some(val)
} else {
unreachable!()
})
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "int64".into(),
simple_name: "int64".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: num_ty.0, default_value: None }],
ret: int64,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let boolean = ctx.primitives.bool;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(
if ctx.unifier.unioned(arg_ty, boolean)
|| ctx.unifier.unioned(arg_ty, uint32)
{
Some(
ctx.builder
.build_int_z_extend(
arg.into_int_value(),
ctx.ctx.i64_type(),
"zext",
)
.into(),
)
} else if ctx.unifier.unioned(arg_ty, int32) {
Some(
ctx.builder
.build_int_s_extend(
arg.into_int_value(),
ctx.ctx.i64_type(),
"sext",
)
.into(),
)
} else if ctx.unifier.unioned(arg_ty, int64)
|| ctx.unifier.unioned(arg_ty, uint64)
{
Some(arg)
} else if ctx.unifier.unioned(arg_ty, float) {
let val = ctx
.builder
.build_float_to_signed_int(
arg.into_float_value(),
ctx.ctx.i64_type(),
"fptosi",
)
.into();
Some(val)
} else {
unreachable!()
},
)
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "uint32".into(),
simple_name: "uint32".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: num_ty.0, default_value: None }],
ret: uint32,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let boolean = ctx.primitives.bool;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let res = if ctx.unifier.unioned(arg_ty, boolean) {
ctx.builder
.build_int_z_extend(arg.into_int_value(), ctx.ctx.i64_type(), "zext")
.into()
} else if ctx.unifier.unioned(arg_ty, int32)
|| ctx.unifier.unioned(arg_ty, uint32)
{
arg
} else if ctx.unifier.unioned(arg_ty, int64)
|| ctx.unifier.unioned(arg_ty, uint64)
{
ctx.builder
.build_int_truncate(arg.into_int_value(), ctx.ctx.i32_type(), "trunc")
.into()
} else if ctx.unifier.unioned(arg_ty, float) {
ctx.builder
.build_float_to_unsigned_int(
arg.into_float_value(),
ctx.ctx.i32_type(),
"ftoi",
)
.into()
} else {
unreachable!();
};
Ok(Some(res))
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "uint64".into(),
simple_name: "uint64".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: num_ty.0, default_value: None }],
ret: uint64,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let boolean = ctx.primitives.bool;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let res = if ctx.unifier.unioned(arg_ty, int32)
|| ctx.unifier.unioned(arg_ty, uint32)
|| ctx.unifier.unioned(arg_ty, boolean)
{
ctx.builder
.build_int_z_extend(arg.into_int_value(), ctx.ctx.i64_type(), "zext")
.into()
} else if ctx.unifier.unioned(arg_ty, int64)
|| ctx.unifier.unioned(arg_ty, uint64)
{
arg
} else if ctx.unifier.unioned(arg_ty, float) {
ctx.builder
.build_float_to_unsigned_int(
arg.into_float_value(),
ctx.ctx.i64_type(),
"ftoi",
)
.into()
} else {
unreachable!();
};
Ok(Some(res))
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "float".into(),
simple_name: "float".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: num_ty.0, default_value: None }],
ret: float,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let boolean = ctx.primitives.bool;
let float = ctx.primitives.float;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(
if ctx.unifier.unioned(arg_ty, boolean)
|| ctx.unifier.unioned(arg_ty, int32)
|| ctx.unifier.unioned(arg_ty, int64)
{
let arg = arg.into_int_value();
let val = ctx
.builder
.build_signed_int_to_float(arg, ctx.ctx.f64_type(), "sitofp")
.into();
Some(val)
} else if ctx.unifier.unioned(arg_ty, float) {
Some(arg)
} else {
unreachable!()
},
)
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "range".into(),
simple_name: "range".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg { name: "start".into(), ty: int32, default_value: None },
FuncArg {
name: "stop".into(),
ty: int32,
// placeholder
default_value: Some(SymbolValue::I32(0)),
},
FuncArg {
name: "step".into(),
ty: int32,
default_value: Some(SymbolValue::I32(1)),
},
],
ret: range,
vars: Default::default(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, _, args, generator| {
let mut start = None;
let mut stop = None;
let mut step = None;
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let ty_i32 = ctx.primitives.int32;
for (i, arg) in args.iter().enumerate() {
if arg.0 == Some("start".into()) {
start = Some(arg.1.clone().to_basic_value_enum(ctx, generator, ty_i32)?);
} else if arg.0 == Some("stop".into()) {
stop = Some(arg.1.clone().to_basic_value_enum(ctx, generator, ty_i32)?);
} else if arg.0 == Some("step".into()) {
step = Some(arg.1.clone().to_basic_value_enum(ctx, generator, ty_i32)?);
} else if i == 0 {
start = Some(arg.1.clone().to_basic_value_enum(ctx, generator, ty_i32)?);
} else if i == 1 {
stop = Some(arg.1.clone().to_basic_value_enum(ctx, generator, ty_i32)?);
} else if i == 2 {
step = Some(arg.1.clone().to_basic_value_enum(ctx, generator, ty_i32)?);
}
}
let step = match step {
Some(step) => {
let step = step.into_int_value();
// assert step != 0, throw exception if not
let not_zero = ctx.builder.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
);
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"range() step must not be zero",
[None, None, None],
ctx.current_loc,
);
step
}
None => int32.const_int(1, false),
};
let stop = stop.unwrap_or_else(|| {
let v = start.unwrap();
start = None;
v
});
let start = start.unwrap_or_else(|| int32.const_zero().into());
let ty = int32.array_type(3);
let ptr = generator.gen_var_alloc(ctx, ty.into(), Some("range")).unwrap();
unsafe {
let a = ctx.builder.build_in_bounds_gep(ptr, &[zero, zero], "start");
let b = ctx.builder.build_in_bounds_gep(
ptr,
&[zero, int32.const_int(1, false)],
"end",
);
let c = ctx.builder.build_in_bounds_gep(
ptr,
&[zero, int32.const_int(2, false)],
"step",
);
ctx.builder.build_store(a, start);
ctx.builder.build_store(b, stop);
ctx.builder.build_store(c, step);
}
Ok(Some(ptr.into()))
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "str".into(),
simple_name: "str".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "s".into(), ty: string, default_value: None }],
ret: string,
vars: Default::default(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
Ok(Some(args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?))
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "bool".into(),
simple_name: "bool".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: num_ty.0, default_value: None }],
ret: primitives.0.bool,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let float = ctx.primitives.float;
let boolean = ctx.primitives.bool;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(if ctx.unifier.unioned(arg_ty, boolean) {
Some(arg)
} else if ctx.unifier.unioned(arg_ty, int32) {
Some(
ctx.builder
.build_int_compare(
IntPredicate::NE,
ctx.ctx.i32_type().const_zero(),
arg.into_int_value(),
"bool",
)
.into(),
)
} else if ctx.unifier.unioned(arg_ty, int64) {
Some(
ctx.builder
.build_int_compare(
IntPredicate::NE,
ctx.ctx.i64_type().const_zero(),
arg.into_int_value(),
"bool",
)
.into(),
)
} else if ctx.unifier.unioned(arg_ty, float) {
let val = ctx
.builder
.build_float_compare(
// UEQ as bool(nan) is True
FloatPredicate::UEQ,
arg.into_float_value(),
ctx.ctx.f64_type().const_zero(),
"bool",
)
.into();
Some(val)
} else {
unreachable!()
})
},
)))),
loc: None,
})),
create_fn_by_intrinsic(
primitives,
&var_map,
"floor",
float,
&[(float, "x")],
"llvm.floor.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"ceil",
float,
&[(float, "x")],
"llvm.ceil.f64",
),
Arc::new(RwLock::new({
let list_var = primitives.1.get_fresh_var(Some("L".into()), None);
let list = primitives.1.add_ty(TypeEnum::TList { ty: list_var.0 });
let arg_ty = primitives.1.get_fresh_var_with_range(
&[list, primitives.0.range],
Some("I".into()),
None,
);
TopLevelDef::Function {
name: "len".into(),
simple_name: "len".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "ls".into(), ty: arg_ty.0, default_value: None }],
ret: int32,
vars: vec![(list_var.1, list_var.0), (arg_ty.1, arg_ty.0)]
.into_iter()
.collect(),
})),
var_id: vec![arg_ty.1],
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let range_ty = ctx.primitives.range;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(if ctx.unifier.unioned(arg_ty, range_ty) {
let arg = arg.into_pointer_value();
let (start, end, step) = destructure_range(ctx, arg);
Some(calculate_len_for_slice_range(generator, ctx, start, end, step).into())
} else {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let len = ctx
.build_gep_and_load(
arg.into_pointer_value(),
&[zero, int32.const_int(1, false)],
None,
)
.into_int_value();
if len.get_type().get_bit_width() != 32 {
Some(ctx.builder.build_int_truncate(len, int32, "len2i32").into())
} else {
Some(len.into())
}
})
},
)))),
loc: None,
}
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "min".into(),
simple_name: "min".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg { name: "m".into(), ty: num_ty.0, default_value: None },
FuncArg { name: "n".into(), ty: num_ty.0, default_value: None },
],
ret: num_ty.0,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let boolean = ctx.primitives.bool;
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let llvm_i8 = ctx.ctx.i8_type().as_basic_type_enum();
let llvm_i32 = ctx.ctx.i32_type().as_basic_type_enum();
let llvm_i64 = ctx.ctx.i64_type().as_basic_type_enum();
let llvm_f64 = ctx.ctx.f64_type().as_basic_type_enum();
let m_ty = fun.0.args[0].ty;
let n_ty = fun.0.args[1].ty;
let m_val = args[0].1.clone().to_basic_value_enum(ctx, generator, m_ty)?;
let n_val = args[1].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
let mut is_type = |a: Type, b: Type| ctx.unifier.unioned(a, b);
let (fun_name, arg_ty) = if is_type(m_ty, n_ty) && is_type(n_ty, boolean) {
("llvm.umin.i8", llvm_i8)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int32) {
("llvm.smin.i32", llvm_i32)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int64) {
("llvm.smin.i64", llvm_i64)
} else if is_type(m_ty, n_ty) && is_type(n_ty, uint32) {
("llvm.umin.i32", llvm_i32)
} else if is_type(m_ty, n_ty) && is_type(n_ty, uint64) {
("llvm.umin.i64", llvm_i64)
} else if is_type(m_ty, n_ty) && is_type(n_ty, float) {
("llvm.minnum.f64", llvm_f64)
} else {
unreachable!();
};
let intrinsic = ctx.module.get_function(fun_name).unwrap_or_else(|| {
let fn_type = arg_ty.fn_type(&[arg_ty.into(), arg_ty.into()], false);
ctx.module.add_function(fun_name, fn_type, None)
});
let val = ctx
.builder
.build_call(intrinsic, &[m_val.into(), n_val.into()], "min")
.try_as_basic_value()
.left()
.unwrap();
Ok(val.into())
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "max".into(),
simple_name: "max".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg { name: "m".into(), ty: num_ty.0, default_value: None },
FuncArg { name: "n".into(), ty: num_ty.0, default_value: None },
],
ret: num_ty.0,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let boolean = ctx.primitives.bool;
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let llvm_i8 = ctx.ctx.i8_type().as_basic_type_enum();
let llvm_i32 = ctx.ctx.i32_type().as_basic_type_enum();
let llvm_i64 = ctx.ctx.i64_type().as_basic_type_enum();
let llvm_f64 = ctx.ctx.f64_type().as_basic_type_enum();
let m_ty = fun.0.args[0].ty;
let n_ty = fun.0.args[1].ty;
let m_val = args[0].1.clone().to_basic_value_enum(ctx, generator, m_ty)?;
let n_val = args[1].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
let mut is_type = |a: Type, b: Type| ctx.unifier.unioned(a, b);
let (fun_name, arg_ty) = if is_type(m_ty, n_ty) && is_type(n_ty, boolean) {
("llvm.umax.i8", llvm_i8)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int32) {
("llvm.smax.i32", llvm_i32)
} else if is_type(m_ty, n_ty) && is_type(n_ty, int64) {
("llvm.smax.i64", llvm_i64)
} else if is_type(m_ty, n_ty) && is_type(n_ty, uint32) {
("llvm.umax.i32", llvm_i32)
} else if is_type(m_ty, n_ty) && is_type(n_ty, uint64) {
("llvm.umax.i64", llvm_i64)
} else if is_type(m_ty, n_ty) && is_type(n_ty, float) {
("llvm.maxnum.f64", llvm_f64)
} else {
unreachable!();
};
let intrinsic = ctx.module.get_function(fun_name).unwrap_or_else(|| {
let fn_type = arg_ty.fn_type(&[arg_ty.into(), arg_ty.into()], false);
ctx.module.add_function(fun_name, fn_type, None)
});
let val = ctx
.builder
.build_call(intrinsic, &[m_val.into(), n_val.into()], "max")
.try_as_basic_value()
.left()
.unwrap();
Ok(val.into())
},
)))),
loc: None,
})),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "abs".into(),
simple_name: "abs".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: num_ty.0, default_value: None }],
ret: num_ty.0,
vars: var_map.clone(),
})),
var_id: Default::default(),
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let boolean = ctx.primitives.bool;
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let uint32 = ctx.primitives.uint32;
let uint64 = ctx.primitives.uint64;
let float = ctx.primitives.float;
let llvm_i1 = ctx.ctx.bool_type();
let llvm_i32 = ctx.ctx.i32_type().as_basic_type_enum();
let llvm_i64 = ctx.ctx.i64_type().as_basic_type_enum();
let llvm_f64 = ctx.ctx.f64_type().as_basic_type_enum();
let n_ty = fun.0.args[0].ty;
let n_val = args[0].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
let mut is_type = |a: Type, b: Type| ctx.unifier.unioned(a, b);
let mut is_float = false;
let (fun_name, arg_ty) =
if is_type(n_ty, boolean) || is_type(n_ty, uint32) || is_type(n_ty, uint64)
{
return Ok(n_val.into());
} else if is_type(n_ty, int32) {
("llvm.abs.i32", llvm_i32)
} else if is_type(n_ty, int64) {
("llvm.abs.i64", llvm_i64)
} else if is_type(n_ty, float) {
is_float = true;
("llvm.fabs.f64", llvm_f64)
} else {
unreachable!();
};
let intrinsic = ctx.module.get_function(fun_name).unwrap_or_else(|| {
let fn_type = if is_float {
arg_ty.fn_type(&[arg_ty.into()], false)
} else {
arg_ty.fn_type(&[arg_ty.into(), llvm_i1.into()], false)
};
ctx.module.add_function(fun_name, fn_type, None)
});
let val = ctx
.builder
.build_call(
intrinsic,
&if is_float {
vec![n_val.into()]
} else {
vec![n_val.into(), llvm_i1.const_int(0, false).into()]
},
"abs",
)
.try_as_basic_value()
.left()
.unwrap();
Ok(val.into())
},
)))),
loc: None,
})),
create_fn_by_codegen(
primitives,
&var_map,
"isnan",
boolean,
&[(float, "x")],
Box::new(|ctx, _, fun, args, generator| {
let float = ctx.primitives.float;
let x_ty = fun.0.args[0].ty;
let x_val = args[0].1.clone()
.to_basic_value_enum(ctx, generator, x_ty)?;
assert!(ctx.unifier.unioned(x_ty, float));
let val = call_isnan(generator, ctx, x_val.into_float_value());
Ok(Some(val.into()))
}),
),
create_fn_by_codegen(
primitives,
&var_map,
"isinf",
boolean,
&[(float, "x")],
Box::new(|ctx, _, fun, args, generator| {
let float = ctx.primitives.float;
let x_ty = fun.0.args[0].ty;
let x_val = args[0].1.clone()
.to_basic_value_enum(ctx, generator, x_ty)?;
assert!(ctx.unifier.unioned(x_ty, float));
let val = call_isinf(generator, ctx, x_val.into_float_value());
Ok(Some(val.into()))
}),
),
create_fn_by_intrinsic(
primitives,
&var_map,
"sin",
float,
&[(float, "x")],
"llvm.sin.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"cos",
float,
&[(float, "x")],
"llvm.cos.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"exp",
float,
&[(float, "x")],
"llvm.exp.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"exp2",
float,
&[(float, "x")],
"llvm.exp2.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"log",
float,
&[(float, "x")],
"llvm.log.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"log10",
float,
&[(float, "x")],
"llvm.log10.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"log2",
float,
&[(float, "x")],
"llvm.log2.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"fabs",
float,
&[(float, "x")],
"llvm.fabs.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"trunc",
float,
&[(float, "x")],
"llvm.trunc.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"sqrt",
float,
&[(float, "x")],
"llvm.sqrt.f64",
),
create_fn_by_codegen(
primitives,
&var_map,
"rint",
float,
&[(float, "x")],
Box::new(|ctx, _, fun, args, generator| {
let float = ctx.primitives.float;
let llvm_f64 = ctx.ctx.f64_type();
let x_ty = fun.0.args[0].ty;
let x_val = args[0].1.clone()
.to_basic_value_enum(ctx, generator, x_ty)?;
assert!(ctx.unifier.unioned(x_ty, float));
let intrinsic_fn = ctx.module.get_function("llvm.round.f64").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("llvm.round.f64", fn_type, None)
});
// rint(x) == round(x * 0.5) * 2.0
// %0 = fmul f64 %x, 0.5
let x_half = ctx.builder
.build_float_mul(x_val.into_float_value(), llvm_f64.const_float(0.5), "");
// %1 = call f64 @llvm.round.f64(f64 %0)
let round = ctx.builder
.build_call(
intrinsic_fn,
&vec![x_half.into()],
"",
)
.try_as_basic_value()
.left()
.unwrap();
// %2 = fmul f64 %1, 2.0
let val = ctx.builder
.build_float_mul(round.into_float_value(), llvm_f64.const_float(2.0).into(), "rint");
Ok(Some(val.into()))
}),
),
create_fn_by_extern(
primitives,
&var_map,
"tan",
float,
&[(float, "x")],
"tan",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"arcsin",
float,
&[(float, "x")],
"asin",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"arccos",
float,
&[(float, "x")],
"acos",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"arctan",
float,
&[(float, "x")],
"atan",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"sinh",
float,
&[(float, "x")],
"sinh",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"cosh",
float,
&[(float, "x")],
"cosh",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"tanh",
float,
&[(float, "x")],
"tanh",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"arcsinh",
float,
&[(float, "x")],
"asinh",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"arccosh",
float,
&[(float, "x")],
"acosh",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"arctanh",
float,
&[(float, "x")],
"atanh",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"expm1",
float,
&[(float, "x")],
"expm1",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"cbrt",
float,
&[(float, "x")],
"cbrt",
&["readnone", "willreturn"],
),
create_fn_by_extern(
primitives,
&var_map,
"erf",
float,
&[(float, "z")],
"erf",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"erfc",
float,
&[(float, "x")],
"erfc",
&[],
),
create_fn_by_codegen(
primitives,
&var_map,
"gamma",
float,
&[(float, "z")],
Box::new(|ctx, _, fun, args, generator| {
let float = ctx.primitives.float;
let llvm_f64 = ctx.ctx.f64_type();
let z_ty = fun.0.args[0].ty;
let z_val = args[0].1.clone()
.to_basic_value_enum(ctx, generator, z_ty)?;
assert!(ctx.unifier.unioned(z_ty, float));
let tgamma_fn = ctx.module.get_function("tgamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function("tgamma", fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0)
);
func
});
// %0 = call f64 @tgamma(f64 %z)
let call = ctx.builder
.build_call(tgamma_fn, &[z_val.into()], "gamma")
.try_as_basic_value()
.left()
.unwrap()
.into_float_value();
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
//
// Therefore, we remap to Python's denorm handling by:
//
// let v = tgamma(x);
// v = if isinf(v) || isnan(v) { f64::INFINITY } else { v } // Handles (4)-(5)
// v = if isinf(x) || isnan(x) { x } else { v } // Handles (1)-(3)
// %v.isinf = call i32 @__nac3_isinf(f64 %0)
// %v.isinf.tobool = icmp ne i32 %v.isinf, 0
let v_isinf = call_isinf(generator, ctx, call.into());
// %v.isnan = call i32 @__nac3_isnan(f64 %0)
// %v.isnan.tobool = icmp ne i32 %v.isnan, 0
let v_isnan = call_isnan(generator, ctx, call.into());
// %or = or i1 %v.isinf.tobool, %v.isnan.tobool
// %3 = select i1 %or, f64 inf, f64 %0
let v_is_nonnum = ctx.builder.build_or(v_isinf, v_isnan, "");
let val = ctx.builder.build_select(
v_is_nonnum,
llvm_f64.const_float(f64::INFINITY).into(),
call,
"",
).into_float_value();
// %z.isinf = call i32 @__nac3_isinf(f64 %z)
// %z.isinf.tobool = icmp ne i32 %z.isinf, 0
let z_isinf = call_isinf(generator, ctx, z_val.into_float_value());
// %z.isnan = call i32 @__nac3_isnan(f64 %z)
// %z.isnan.tobool = icmp ne i32 %z.isnan, 0
let z_isnan = call_isnan(generator, ctx, z_val.into_float_value());
// %or = or i1 %z.isinf.tobool, %z.isnan.tobool
// %val = select i1 %or, f64 %z, f64 %3
let z_is_nonnum = ctx.builder.build_or(z_isinf, z_isnan, "");
let val = ctx.builder.build_select(
z_is_nonnum,
z_val.into_float_value(),
val,
"",
);
Ok(val.into())
}),
),
create_fn_by_codegen(
primitives,
&var_map,
"gammaln",
float,
&[(float, "x")],
Box::new(|ctx, _, fun, args, generator| {
let float = ctx.primitives.float;
let llvm_f64 = ctx.ctx.f64_type();
let x_ty = fun.0.args[0].ty;
let x_val = args[0].1.clone()
.to_basic_value_enum(ctx, generator, x_ty)?;
assert!(ctx.unifier.unioned(x_ty, float));
let tgamma_fn = ctx.module.get_function("lgamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function("lgamma", fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0)
);
func
});
// %0 = call f64 @gamma(f64 %x)
let call = ctx.builder
.build_call(tgamma_fn, &[x_val.into()], "gammaln")
.try_as_basic_value()
.left()
.unwrap()
.into_float_value();
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
//
// Therefore we remap it by:
//
// let v = lgamma(x);
// v = if isinf(x) { x } else { v }
// %isinf = call i32 @__nac3_isinf(f64 %x)
// %tobool = icmp ne i32 %isinf, 0
// %val = select i1 %tobool, f64 %x, f64 %0
let v = ctx.builder.build_select(
call_isinf(generator, ctx, x_val.into_float_value()),
x_val,
call.into(),
""
);
Ok(v.into())
}),
),
create_fn_by_codegen(
primitives,
&var_map,
"j0",
float,
&[(float, "x")],
Box::new(|ctx, _, fun, args, generator| {
let float = ctx.primitives.float;
let llvm_f64 = ctx.ctx.f64_type();
let x_ty = fun.0.args[0].ty;
let x_val = args[0].1.clone()
.to_basic_value_enum(ctx, generator, x_ty)?;
assert!(ctx.unifier.unioned(x_ty, float));
let tgamma_fn = ctx.module.get_function("j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
let func = ctx.module.add_function("j0", fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0)
);
func
});
// %0 = call f64 @j0(f64 %x)
let call = ctx.builder
.build_call(tgamma_fn, &[x_val.into()], "j0")
.try_as_basic_value()
.left()
.unwrap()
.into_float_value();
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
//
// Therefore we remap it by:
//
// let v = j0(x);
// v = if isinf(x) { f64::NAN } else { v }
// %1 = call i32 @__nac3_isinf(f64 %x)
// %tobool = icmp ne i32 %isinf, 0
let arg_isinf = call_isinf(generator, ctx, x_val.into_float_value());
// %val = select i1 %tobool, f64 nan, f64 %0
let val = ctx.builder
.build_select(arg_isinf, llvm_f64.const_float(f64::NAN), call, "");
Ok(val.into())
}),
),
create_fn_by_extern(
primitives,
&var_map,
"j1",
float,
&[(float, "x")],
"j1",
&[],
),
// Not mapped: jv/yv, libm only supports integer orders.
create_fn_by_extern(
primitives,
&var_map,
"arctan2",
float,
&[(float, "x1"), (float, "x2")],
"atan2",
&[],
),
create_fn_by_intrinsic(
primitives,
&var_map,
"copysign",
float,
&[(float, "x1"), (float, "x2")],
"llvm.copysign.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"fmax",
float,
&[(float, "x1"), (float, "x2")],
"llvm.maxnum.f64",
),
create_fn_by_intrinsic(
primitives,
&var_map,
"fmin",
float,
&[(float, "x1"), (float, "x2")],
"llvm.minnum.f64",
),
create_fn_by_extern(
primitives,
&var_map,
"ldexp",
float,
&[(float, "x1"), (int32, "x2")],
"ldexp",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"hypot",
float,
&[(float, "x1"), (float, "x2")],
"hypot",
&[],
),
create_fn_by_extern(
primitives,
&var_map,
"nextafter",
float,
&[(float, "x1"), (float, "x2")],
"nextafter",
&[],
),
Arc::new(RwLock::new(TopLevelDef::Function {
name: "Some".into(),
simple_name: "Some".into(),
signature: primitives.1.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "n".into(), ty: option_ty_var, default_value: None }],
ret: primitives.0.option,
vars: HashMap::from([(option_ty_var_id, option_ty_var)]),
})),
var_id: vec![option_ty_var_id],
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let alloca = generator.gen_var_alloc(ctx, arg_val.get_type(), Some("alloca_some")).unwrap();
ctx.builder.build_store(alloca, arg_val);
Ok(Some(alloca.into()))
},
)))),
loc: None,
})),
];
let ast_list: Vec<Option<ast::Stmt<()>>> =
(0..top_level_def_list.len()).map(|_| None).collect();
(
izip!(top_level_def_list, ast_list).collect_vec(),
&[
"int32",
"int64",
"uint32",
"uint64",
"float",
"range",
"str",
"bool",
"floor",
"ceil",
"len",
"min",
"max",
"abs",
"isnan",
"isinf",
"sin",
"cos",
"exp",
"exp2",
"log",
"log10",
"log2",
"fabs",
"trunc",
"sqrt",
"rint",
"tan",
"arcsin",
"arccos",
"arctan",
"sinh",
"cosh",
"tanh",
"arcsinh",
"arccosh",
"arctanh",
"expm1",
"cbrt",
"erf",
"erfc",
"gamma",
"gammaln",
"j0",
"j1",
"arctan2",
"copysign",
"fmax",
"fmin",
"ldexp",
"hypot",
"nextafter",
"Some",
],
)
}