nac3/nac3core/src/codegen/irrt/mod.rs

327 lines
13 KiB
Rust

use crate::typecheck::typedef::Type;
use super::{CodeGenContext, CodeGenerator};
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
types::{BasicTypeEnum, IntType},
values::{IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use nac3parser::ast::Expr;
pub fn load_irrt(ctx: &Context) -> Module {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
);
let irrt_mod = Module::parse_bitcode_from_buffer(&bitcode_buf, ctx).unwrap();
let inline_attr = Attribute::get_named_enum_kind_id("alwaysinline");
for symbol in &[
"__nac3_int_exp_int32_t",
"__nac3_int_exp_int64_t",
"__nac3_range_slice_len",
"__nac3_slice_index_bound",
] {
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
irrt_mod
}
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
) -> IntValue<'ctx> {
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width()) {
(32, 32) => "__nac3_int_exp_int32_t",
(64, 64) => "__nac3_int_exp_int64_t",
_ => unreachable!(),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
ctx.module.add_function(symbol, fn_type, None)
});
// TODO: throw exception when exp < 0
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.try_as_basic_value()
.unwrap_left()
.into_int_value()
}
pub fn calculate_len_for_slice_range<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// TODO: assert step != 0, throw exception if not
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.try_as_basic_value()
.left()
.unwrap()
.into_int_value()
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python.
///
/// equivalent code:
/// ```pseudo_code
/// match (start, end, step):
/// case (s, e, None | Some(step)) if step > 0:
/// return (
/// match s:
/// case None:
/// 0
/// case Some(s):
/// handle_in_bound(s)
/// ,match e:
/// case None:
/// length - 1
/// case Some(e):
/// handle_in_bound(e) - 1
/// ,step == None ? 1 : step
/// )
/// case (s, e, Some(step)) if step < 0:
/// return (
/// match s:
/// case None:
/// length - 1
/// case Some(s):
/// s = handle_in_bound(s)
/// if s == length:
/// s - 1
/// else:
/// s
/// ,match e:
/// case None:
/// 0
/// case Some(e):
/// handle_in_bound(e) + 1
/// ,step
/// )
/// ```
pub fn handle_slice_indices<'a, 'ctx, G: CodeGenerator>(
start: &Option<Box<Expr<Option<Type>>>>,
end: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut G,
list: PointerValue<'ctx>,
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
// TODO: throw exception when step is 0
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let length = ctx.build_gep_and_load(list, &[zero, one]).into_int_value();
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32");
match (start, end, step) {
(s, e, None) => (
s.as_ref().map_or_else(
|| int32.const_zero(),
|s| handle_slice_index_bound(s, ctx, generator, length),
),
{
let e = e.as_ref().map_or_else(
|| length,
|e| handle_slice_index_bound(e, ctx, generator, length),
);
ctx.builder.build_int_sub(e, one, "final_end")
},
one,
),
(s, e, Some(step)) => {
let step = generator
.gen_expr(ctx, step)
.unwrap()
.to_basic_value_enum(ctx, generator)
.into_int_value();
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1");
let neg = ctx.builder.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg");
(
match s {
Some(s) => {
let s = handle_slice_index_bound(s, ctx, generator, length);
ctx.builder
.build_select(
ctx.builder.build_and(
ctx.builder.build_int_compare(
IntPredicate::EQ,
s,
length,
"s_eq_len",
),
neg,
"should_minus_one",
),
ctx.builder.build_int_sub(s, one, "s_min"),
s,
"final_start",
)
.into_int_value()
}
None => ctx.builder.build_select(neg, len_id, zero, "stt").into_int_value(),
},
match e {
Some(e) => {
let e = handle_slice_index_bound(e, ctx, generator, length);
ctx.builder
.build_select(
neg,
ctx.builder.build_int_add(e, one, "end_add_one"),
ctx.builder.build_int_sub(e, one, "end_sub_one"),
"final_end",
)
.into_int_value()
}
None => ctx.builder.build_select(neg, zero, len_id, "end").into_int_value(),
},
step,
)
}
}
}
/// this function allows index out of range, since python
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
pub fn handle_slice_index_bound<'a, 'ctx, G: CodeGenerator>(
i: &Expr<Option<Type>>,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut G,
length: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_slice_index_bound";
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
let i = generator.gen_expr(ctx, i).unwrap().to_basic_value_enum(ctx, generator);
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.try_as_basic_value()
.left()
.unwrap()
.into_int_value()
}
/// This function handles 'end' **inclusively**.
/// Order of tuples assign_idx and value_idx is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
size_ty: IntType<'ctx>,
ty: BasicTypeEnum<'ctx>,
dest_arr: PointerValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: PointerValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::Generic);
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
let slice_assign_fun = {
let ty_vec = vec![
int32.into(), // dest start idx
int32.into(), // dest end idx
int32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len
int32.into(), // src start idx
int32.into(), // src end idx
int32.into(), // src step
elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len
int32.into(), // size
];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None)
})
};
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = ctx.build_gep_and_load(dest_arr, &[zero, zero]);
let dest_arr_ptr = ctx.builder.build_pointer_cast(
dest_arr_ptr.into_pointer_value(),
elem_ptr_type,
"dest_arr_ptr_cast",
);
let dest_len = ctx.build_gep_and_load(dest_arr, &[zero, one]).into_int_value();
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32");
let src_arr_ptr = ctx.build_gep_and_load(src_arr, &[zero, zero]);
let src_arr_ptr = ctx.builder.build_pointer_cast(
src_arr_ptr.into_pointer_value(),
elem_ptr_type,
"src_arr_ptr_cast",
);
let src_len = ctx.build_gep_and_load(src_arr, &[zero, one]).into_int_value();
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32");
// index in bound and positive should be done
// TODO: assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let new_len = {
let args = vec![
dest_idx.0.into(), // dest start idx
dest_idx.1.into(), // dest end idx
dest_idx.2.into(), // dest step
dest_arr_ptr.into(), // dest arr ptr
dest_len.into(), // dest arr len
src_idx.0.into(), // src start idx
src_idx.1.into(), // src end idx
src_idx.2.into(), // src step
src_arr_ptr.into(), // src arr ptr
src_len.into(), // src arr len
{
let s = match ty {
BasicTypeEnum::FloatType(t) => t.size_of(),
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size")
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.try_as_basic_value()
.unwrap_left()
.into_int_value()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update");
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb);
ctx.builder.position_at_end(update_bb);
let dest_len_ptr = unsafe { ctx.builder.build_gep(dest_arr, &[zero, one], "dest_len_ptr") };
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len");
ctx.builder.build_store(dest_len_ptr, new_len);
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(cont_bb);
}