forked from M-Labs/nac3
1
0
Fork 0

Compare commits

..

2 Commits

Author SHA1 Message Date
David Mak affa19e88d flake: Remove standalone execution of test cases
This is now executed as part of cargo test.
2023-12-12 19:56:05 +08:00
David Mak ea121673d3 standalone: Add cargo test cases for demos 2023-12-12 19:56:05 +08:00
111 changed files with 8325 additions and 26353 deletions

View File

@ -1,32 +0,0 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

View File

@ -1 +0,0 @@
doc-valid-idents = ["CPython", "NumPy", ".."]

1
.gitignore vendored
View File

@ -1,4 +1,3 @@
__pycache__
/target
/nac3standalone/demo/linalg/target
nix/windows/msys2

View File

@ -1,24 +0,0 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
default_stages: [commit]
repos:
- repo: local
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [fmt]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [clippy, --tests]

768
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -51,12 +51,3 @@ Use ``nix develop`` in this repository to enter a development shell.
If you are using a different shell than bash you can use e.g. ``nix develop --command fish``.
Build NAC3 with ``cargo build --release``. See the demonstrations in ``nac3artiq`` and ``nac3standalone``.
### Pre-Commit Hooks
You are strongly recommended to use the provided pre-commit hooks to automatically reformat files and check for non-optimal Rust practices using Clippy. Run `pre-commit install` to install the hook and `pre-commit` will automatically run `cargo fmt` and `cargo clippy` for you.
Several things to note:
- If `cargo fmt` or `cargo clippy` returns an error, the pre-commit hook will fail. You should fix all errors before trying to commit again.
- If `cargo fmt` reformats some files, the pre-commit hook will also fail. You should review the changes and, if satisfied, try to commit again.

View File

@ -2,16 +2,16 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1724819573,
"narHash": "sha256-GnR7/ibgIH1vhoy8cYdmXE6iyZqKqFxQSVkFgosBh6w=",
"lastModified": 1701389149,
"narHash": "sha256-rU1suTIEd5DGCaAXKW6yHoCfR1mnYjOXQFOaH7M23js=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "71e91c409d1e654808b2621f28a327acfdad8dc2",
"rev": "5de0b32be6e85dc1a9404c75131316e4ffbc634c",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-unstable",
"ref": "nixos-23.11",
"repo": "nixpkgs",
"type": "github"
}

View File

@ -1,12 +1,11 @@
{
description = "The third-generation ARTIQ compiler";
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-unstable;
inputs.nixpkgs.url = github:NixOS/nixpkgs/nixos-23.11;
outputs = { self, nixpkgs }:
let
pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec {
packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
@ -16,22 +15,6 @@
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
'';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq";
@ -41,19 +24,15 @@
lockFile = ./Cargo.lock;
};
passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase =
''
echo "Checking nac3standalone demos..."
echo "Running Cargo tests..."
pushd nac3standalone/demo
patchShebangs .
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd
echo "Running Cargo tests..."
cargoCheckHook
'';
installPhase =
@ -113,8 +92,8 @@
(pkgs.fetchFromGitHub {
owner = "m-labs";
repo = "artiq";
rev = "923ca3377d42c815f979983134ec549dc39d3ca0";
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw=";
rev = "8b4572f9cad34ac0c2b6f6bba9382e7b59b2f93b";
sha256 = "sha256-O/0sUSxxXU1AL9cmT9qdzCkzdOKREBNftz22/8ouQcc=";
})
];
buildInputs = [
@ -168,7 +147,7 @@
buildInputs = with pkgs; [
# build dependencies
packages.x86_64-linux.llvm-nac3
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
llvmPackages_14.clang # demo
packages.x86_64-linux.llvm-tools-irrt
cargo
rustc
@ -178,14 +157,8 @@
# development tools
cargo-insta
clippy
pre-commit
rustfmt
];
shellHook =
''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";

View File

@ -9,19 +9,18 @@ name = "nac3artiq"
crate-type = ["cdylib"]
[dependencies]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
itertools = "0.12"
pyo3 = { version = "0.20", features = ["extension-module"] }
parking_lot = "0.12"
tempfile = "3.10"
tempfile = "3.8"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
version = "0.2"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -1,24 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

View File

@ -1,26 +0,0 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

View File

@ -1,24 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
core: KernelInvariant[Core]
attr1: KernelInvariant[str]
attr2: KernelInvariant[int32]
def __init__(self):
self.core = Core()
self.attr2 = 32
self.attr1 = "SAMPLE"
@kernel
def run(self):
print_int32(self.attr2)
self.attr1
if __name__ == "__main__":
Demo().run()

View File

@ -1,40 +0,0 @@
from min_artiq import *
from numpy import int32
@nac3
class Demo:
attr1: KernelInvariant[int32] = 2
attr2: int32 = 4
attr3: Kernel[int32]
@kernel
def __init__(self):
self.attr3 = 8
@nac3
class NAC3Devices:
core: KernelInvariant[Core]
attr4: KernelInvariant[int32] = 16
def __init__(self):
self.core = Core()
@kernel
def run(self):
Demo.attr1 # Supported
# Demo.attr2 # Field not accessible on Kernel
# Demo.attr3 # Only attributes can be accessed in this way
# Demo.attr1 = 2 # Attributes are immutable
self.attr4 # Attributes can be accessed within class
obj = Demo()
obj.attr1 # Attributes can be accessed by class objects
NAC3Devices.attr4 # Attributes accessible for classes without __init__
if __name__ == "__main__":
NAC3Devices().run()

File diff suppressed because it is too large Load Diff

View File

@ -1,21 +1,3 @@
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
unsafe_op_in_unsafe_fn,
clippy::cast_possible_truncation,
clippy::cast_sign_loss,
clippy::enum_glob_use,
clippy::similar_names,
clippy::too_many_lines,
clippy::wildcard_imports
)]
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io::Write;
@ -24,7 +6,6 @@ use std::rc::Rc;
use std::sync::Arc;
use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
@ -33,16 +14,16 @@ use inkwell::{
OptimizationLevel,
};
use itertools::Itertools;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::codegen::{CodeGenLLVMOptions, CodeGenTargetMachineOptions, gen_func_impl};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
use nac3core::typecheck::typedef::{TypeEnum, Unifier};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use pyo3::create_exception;
use parking_lot::{Mutex, RwLock};
@ -51,7 +32,7 @@ use nac3core::{
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver,
toplevel::{
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::typedef::{FunSignature, FuncArg},
@ -60,14 +41,14 @@ use nac3core::{
use nac3ld::Linker;
use crate::{
codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
};
use tempfile::{self, TempDir};
use crate::codegen::attributes_writeback;
use crate::{
codegen::{rpc_codegen_callback, ArtiqCodeGenerator},
symbol_resolver::{InnerResolver, PythonHelper, Resolver, DeferredEvaluationStore},
};
mod codegen;
mod symbol_resolver;
mod timeline;
@ -82,17 +63,6 @@ enum Isa {
CortexA9,
}
impl Isa {
/// Returns the number of bits in `size_t` for the [`Isa`].
fn get_size_type(self) -> u32 {
if self == Isa::Host {
64u32
} else {
32u32
}
}
}
#[derive(Clone)]
pub struct PrimitivePythonId {
int: u64,
@ -103,11 +73,7 @@ pub struct PrimitivePythonId {
float: u64,
float64: u64,
bool: u64,
np_bool_: u64,
string: u64,
np_str_: u64,
list: u64,
ndarray: u64,
tuple: u64,
typevar: u64,
const_generic_marker: u64,
@ -127,7 +93,7 @@ struct Nac3 {
isa: Isa,
time_fns: &'static (dyn TimeFns + Sync),
primitive: PrimitiveStore,
builtins: Vec<BuiltinFuncSpec>,
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>,
pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
primitive_ids: PrimitivePythonId,
working_directory: TempDir,
@ -160,7 +126,9 @@ impl Nac3 {
for mut stmt in parser_result {
let include = match stmt.node {
StmtKind::ClassDef { ref decorator_list, ref mut body, ref mut bases, .. } => {
StmtKind::ClassDef {
ref decorator_list, ref mut body, ref mut bases, ..
} => {
let nac3_class = decorator_list.iter().any(|decorator| {
if let ExprKind::Name { id, .. } = decorator.node {
id.to_string() == "nac3"
@ -180,8 +148,7 @@ impl Nac3 {
if *id == "Exception".into() {
Ok(true)
} else {
let base_obj =
module.getattr(py, id.to_string().as_str())?;
let base_obj = module.getattr(py, id.to_string().as_str())?;
let base_id = id_fn.call1((base_obj,))?.extract()?;
Ok(registered_class_ids.contains(&base_id))
}
@ -265,7 +232,7 @@ impl Nac3 {
arg_names.len(),
));
}
for (i, FuncArg { ty, default_value, name, .. }) in args.iter().enumerate() {
for (i, FuncArg { ty, default_value, name }) in args.iter().enumerate() {
let in_name = match arg_names.get(i) {
Some(n) => n,
None if default_value.is_none() => {
@ -301,64 +268,6 @@ impl Nac3 {
None
}
/// Returns a [`Vec`] of builtins that needs to be initialized during method compilation time.
fn get_lateinit_builtins() -> Vec<Box<BuiltinFuncCreator>> {
vec![
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"core_log".into(),
FunSignature {
args: vec![FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
}],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"rtio_log".into(),
FunSignature {
args: vec![
FuncArg {
name: "channel".into(),
ty: primitives.str,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
},
],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
]
}
fn compile_method<T>(
&self,
obj: &PyAny,
@ -368,12 +277,9 @@ impl Nac3 {
py: Python,
link_fn: &dyn Fn(&Module) -> PyResult<T>,
) -> PyResult<T> {
let size_t = self.isa.get_size_type();
let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new(
self.builtins.clone(),
Self::get_lateinit_builtins(),
ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" },
size_t,
);
let builtins = PyModule::import(py, "builtins")?;
@ -421,9 +327,8 @@ impl Nac3 {
let class_obj;
if let StmtKind::ClassDef { name, .. } = &stmt.node {
let class = py_module.getattr(name.to_string().as_str()).unwrap();
if issubclass.call1((class, exn_class)).unwrap().extract().unwrap()
&& class.getattr("artiq_builtin").is_err()
{
if issubclass.call1((class, exn_class)).unwrap().extract().unwrap() &&
class.getattr("artiq_builtin").is_err() {
class_obj = Some(class);
} else {
class_obj = None;
@ -448,6 +353,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -468,12 +374,12 @@ impl Nac3 {
let (name, def_id, ty) = composer
.register_top_level(stmt.clone(), Some(resolver.clone()), path, false)
.map_err(|e| {
CompileError::new_err(format!("compilation failed\n----------\n{e}"))
CompileError::new_err(format!(
"compilation failed\n----------\n{e}"
))
})?;
if let Some(class_obj) = class_obj {
self.exception_ids
.write()
.insert(def_id.0, store_obj.call1(py, (class_obj,))?.extract(py)?);
self.exception_ids.write().insert(def_id.0, store_obj.call1(py, (class_obj, ))?.extract(py)?);
}
match &stmt.node {
@ -539,6 +445,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
@ -549,26 +456,17 @@ impl Nac3 {
exception_ids: self.exception_ids.clone(),
deferred_eval_store: self.deferred_eval_store.clone(),
});
let resolver =
Arc::new(Resolver(inner_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
let resolver = Arc::new(Resolver(inner_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
let (_, def_id, _) = composer
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
.unwrap();
// Process IRRT
let context = inkwell::context::Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
FunSignature { args: vec![], ret: self.primitive.none, vars: HashMap::new() };
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature =
store.from_signature(&mut composer.unifier, &self.primitive, &fun_signature, &mut cache);
let signature = store.add_cty(signature);
if let Err(e) = composer.start_analysis(true) {
@ -587,11 +485,13 @@ impl Nac3 {
msg.unwrap_or(e.iter().sorted().join("\n----------\n"))
)))
} else {
Err(CompileError::new_err(format!(
"compilation failed\n----------\n{}",
e.iter().sorted().join("\n----------\n"),
)))
};
Err(CompileError::new_err(
format!(
"compilation failed\n----------\n{}",
e.iter().sorted().join("\n----------\n"),
),
))
}
}
let top_level = Arc::new(composer.make_top_level_context());
@ -619,9 +519,7 @@ impl Nac3 {
py,
(
id.0.into_py(py),
class_def
.getattr(py, name.to_string().as_str())
.unwrap(),
class_def.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
@ -636,8 +534,7 @@ impl Nac3 {
let defs = top_level.definitions.read();
let mut definition = defs[def_id.0].write();
let TopLevelDef::Function { instance_to_stmt, instance_to_symbol, .. } =
&mut *definition
else {
&mut *definition else {
unreachable!()
};
@ -659,12 +556,8 @@ impl Nac3 {
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let signature = store.from_signature(
&mut composer.unifier,
&self.primitive,
&fun_signature,
&mut cache,
);
let signature =
store.from_signature(&mut composer.unifier, &self.primitive, &fun_signature, &mut cache);
let signature = store.add_cty(signature);
let attributes_writeback_task = CodeGenTask {
subst: Vec::default(),
@ -687,9 +580,7 @@ impl Nac3 {
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
})));
let size_t = Context::create()
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let size_t = if self.isa == Isa::Host { 64 } else { 32 };
let num_threads = if is_multithreaded() { 4 } else { 1 };
let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect();
let threads: Vec<_> = thread_names
@ -699,37 +590,29 @@ impl Nac3 {
let membuffer = membuffers.clone();
py.allow_threads(|| {
let (registry, handles) =
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
let (registry, handles) = WorkerRegistry::create_workers(
threads,
top_level.clone(),
&self.llvm_options,
&f
);
registry.add_task(task);
registry.wait_tasks_complete(handles);
let mut generator =
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let mut generator = ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
let builder = context.create_builder();
let (_, module, _) = gen_func_impl(
&context,
&mut generator,
&registry,
builder,
module,
attributes_writeback_task,
|generator, ctx| {
let (_, module, _) = gen_func_impl(&context, &mut generator, &registry, builder, module,
attributes_writeback_task, |generator, ctx| {
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes)
},
)
.unwrap();
}).unwrap();
let buffer = module.write_bitcode_to_memory();
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
});
// Link all modules into `main`.
let context = inkwell::context::Context::create();
let buffers = membuffers.lock();
let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
@ -739,26 +622,16 @@ impl Nac3 {
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
.unwrap();
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
main.link_in_module(other)
.map_err(|err| CompileError::new_err(err.to_string()))?;
}
let builder = context.create_builder();
let modinit_return = main
.get_function("__modinit__")
.unwrap()
.get_last_basic_block()
.unwrap()
.get_terminator()
.unwrap();
let modinit_return = main.get_function("__modinit__").unwrap().get_last_basic_block().unwrap().get_terminator().unwrap();
builder.position_before(&modinit_return);
builder
.build_call(
main.get_function("attributes_writeback").unwrap(),
&[],
"attributes_writeback",
)
.unwrap();
builder.build_call(main.get_function("attributes_writeback").unwrap(), &[], "attributes_writeback");
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
main.link_in_module(load_irrt(&context))
.map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function();
while let Some(func) = function_iter {
@ -769,7 +642,10 @@ impl Nac3 {
}
// Demote all global variables that will not be referenced in the kernel to private
let preserved_symbols: Vec<&'static [u8]> = vec![b"typeinfo", b"now"];
let preserved_symbols: Vec<&'static [u8]> = vec![
b"typeinfo",
b"now",
];
let mut global_option = main.get_first_global();
while let Some(global) = global_option {
if !preserved_symbols.contains(&(global.get_name().to_bytes())) {
@ -778,9 +654,7 @@ impl Nac3 {
global_option = global.get_next_global();
}
let target_machine = self
.llvm_options
.target
let target_machine = self.llvm_options.target
.create_target_machine(self.llvm_options.opt_level)
.expect("couldn't create target machine");
@ -844,7 +718,10 @@ impl Nac3 {
}
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
fn link_with_lld(
elf_filename: String,
obj_filename: String,
) -> PyResult<()>{
let linker_args = vec![
"-shared".to_string(),
"--eh-frame-hdr".to_string(),
@ -863,7 +740,9 @@ fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
return Err(CompileError::new_err("failed to start linker"));
}
} else {
return Err(CompileError::new_err("linker returned non-zero status code"));
return Err(CompileError::new_err(
"linker returned non-zero status code",
));
}
Ok(())
@ -873,7 +752,7 @@ fn add_exceptions(
composer: &mut TopLevelComposer,
builtin_def: &mut HashMap<StrRef, DefinitionId>,
builtin_ty: &mut HashMap<StrRef, Type>,
error_names: &[&str],
error_names: &[&str]
) -> Vec<Type> {
let mut types = Vec::new();
// note: this is only for builtin exceptions, i.e. the exception name is "0:{exn}"
@ -886,7 +765,7 @@ fn add_exceptions(
// constructor id
def_id + 1,
&mut composer.unifier,
&composer.primitives_ty,
&composer.primitives_ty
);
composer.definition_ast_list.push((Arc::new(RwLock::new(exception_class)), None));
composer.definition_ast_list.push((Arc::new(RwLock::new(exception_fn)), None));
@ -913,11 +792,11 @@ impl Nac3 {
Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS,
Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS,
};
let (primitive, _) = TopLevelComposer::make_primitives(isa.get_size_type());
let primitive: PrimitiveStore = TopLevelComposer::make_primitives().0;
let builtins = vec![
(
"now_mu".into(),
FunSignature { args: vec![], ret: primitive.int64, vars: VarMap::new() },
FunSignature { args: vec![], ret: primitive.int64, vars: HashMap::new() },
Arc::new(GenCall::new(Box::new(move |ctx, _, _, _, _| {
Ok(Some(time_fns.emit_now_mu(ctx)))
}))),
@ -929,15 +808,13 @@ impl Nac3 {
name: "t".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),
vars: HashMap::new(),
},
Arc::new(GenCall::new(Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg =
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty).unwrap();
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty).unwrap();
time_fns.emit_at_mu(ctx, arg);
Ok(None)
}))),
@ -949,15 +826,13 @@ impl Nac3 {
name: "dt".into(),
ty: primitive.int64,
default_value: None,
is_vararg: false,
}],
ret: primitive.none,
vars: VarMap::new(),
vars: HashMap::new(),
},
Arc::new(GenCall::new(Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg =
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty).unwrap();
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty).unwrap();
time_fns.emit_delay_mu(ctx, arg);
Ok(None)
}))),
@ -971,9 +846,8 @@ impl Nac3 {
let types_mod = PyModule::import(py, "types").unwrap();
let get_id = |x: &PyAny| id_fn.call1((x,)).and_then(PyAny::extract).unwrap();
let get_attr_id = |obj: &PyModule, attr| {
id_fn.call1((obj.getattr(attr).unwrap(),)).unwrap().extract().unwrap()
};
let get_attr_id = |obj: &PyModule, attr| id_fn.call1((obj.getattr(attr).unwrap(),))
.unwrap().extract().unwrap();
let primitive_ids = PrimitivePythonId {
virtual_id: get_id(artiq_builtins.get_item("virtual").ok().flatten().unwrap()),
generic_alias: (
@ -982,22 +856,16 @@ impl Nac3 {
),
none: get_id(artiq_builtins.get_item("none").ok().flatten().unwrap()),
typevar: get_attr_id(typing_mod, "TypeVar"),
const_generic_marker: get_id(
artiq_builtins.get_item("_ConstGenericMarker").ok().flatten().unwrap(),
),
const_generic_marker: get_id(artiq_builtins.get_item("_ConstGenericMarker").ok().flatten().unwrap()),
int: get_attr_id(builtins_mod, "int"),
int32: get_attr_id(numpy_mod, "int32"),
int64: get_attr_id(numpy_mod, "int64"),
uint32: get_attr_id(numpy_mod, "uint32"),
uint64: get_attr_id(numpy_mod, "uint64"),
bool: get_attr_id(builtins_mod, "bool"),
np_bool_: get_attr_id(numpy_mod, "bool_"),
string: get_attr_id(builtins_mod, "str"),
np_str_: get_attr_id(numpy_mod, "str_"),
float: get_attr_id(builtins_mod, "float"),
float64: get_attr_id(numpy_mod, "float64"),
list: get_attr_id(builtins_mod, "list"),
ndarray: get_attr_id(numpy_mod, "ndarray"),
tuple: get_attr_id(builtins_mod, "tuple"),
exception: get_attr_id(builtins_mod, "Exception"),
option: get_id(artiq_builtins.get_item("Option").ok().flatten().unwrap()),
@ -1021,7 +889,7 @@ impl Nac3 {
llvm_options: CodeGenLLVMOptions {
opt_level: OptimizationLevel::Default,
target: Nac3::get_llvm_target_options(isa),
},
}
})
}
@ -1071,7 +939,7 @@ impl Nac3 {
.expect("couldn't write module to file");
link_with_lld(
filename.to_string(),
working_directory.join("module.o").to_string_lossy().to_string(),
working_directory.join("module.o").to_string_lossy().to_string()
)?;
Ok(())
};
@ -1119,7 +987,7 @@ impl Nac3 {
let filename = filename_path.to_str().unwrap();
link_with_lld(
filename.to_string(),
working_directory.join("module.o").to_string_lossy().to_string(),
working_directory.join("module.o").to_string_lossy().to_string()
)?;
Ok(PyBytes::new(py, &fs::read(filename).unwrap()).into())

File diff suppressed because it is too large Load Diff

View File

@ -1,12 +1,9 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
};
use itertools::Either;
use inkwell::{values::BasicValueEnum, AddressSpace, AtomicOrdering};
use nac3core::codegen::CodeGenContext;
/// Functions for manipulating the timeline.
pub trait TimeFns {
/// Emits LLVM IR for `now_mu`.
fn emit_now_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx>;
@ -29,33 +26,32 @@ impl TimeFns for NowPinningTimeFns64 {
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_hiptr =
ctx.builder.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr");
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
unreachable!()
};
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
};
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let (BasicValueEnum::IntValue(now_hi), BasicValueEnum::IntValue(now_lo)) = (
ctx.builder.build_load(now_hiptr, "now.hi"),
ctx.builder.build_load(now_loptr, "now.lo"),
) else {
unreachable!()
};
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
ctx.builder.build_or(shifted_hi, zext_lo, "now_mu").map(Into::into).unwrap()
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "");
let shifted_hi = ctx.builder.build_left_shift(
zext_hi,
i64_type.const_int(32, false),
"",
);
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "");
ctx.builder.build_or(shifted_hi, zext_lo, "now_mu").into()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
@ -63,100 +59,105 @@ impl TimeFns for NowPinningTimeFns64 {
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let time = t.into_int_value();
let BasicValueEnum::IntValue(time) = t else {
unreachable!()
};
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type,
"",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let time_hi = ctx.builder.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi"),
i32_type,
"",
);
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo");
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_hiptr = ctx.builder.build_bitcast(
now,
i32_type.ptr_type(AddressSpace::default()),
"now.hi.addr",
);
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
unreachable!()
};
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
};
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
fn emit_delay_mu<'ctx>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
dt: BasicValueEnum<'ctx>,
) {
let i64_type = ctx.ctx.i64_type();
let i32_type = ctx.ctx.i32_type();
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_hiptr =
ctx.builder.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr");
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
unreachable!()
};
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(2, false)], "now.lo.addr")
}
.unwrap();
};
let now_hi = ctx
.builder
.build_load(now_hiptr, "now.hi")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_lo = ctx
.builder
.build_load(now_loptr, "now.lo")
.map(BasicValueEnum::into_int_value)
.unwrap();
let dt = dt.into_int_value();
let (
BasicValueEnum::IntValue(now_hi),
BasicValueEnum::IntValue(now_lo),
BasicValueEnum::IntValue(dt),
) = (
ctx.builder.build_load(now_hiptr, "now.hi"),
ctx.builder.build_load(now_loptr, "now.lo"),
dt,
) else {
unreachable!()
};
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "").unwrap();
let shifted_hi =
ctx.builder.build_left_shift(zext_hi, i64_type.const_int(32, false), "").unwrap();
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "").unwrap();
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now").unwrap();
let zext_hi = ctx.builder.build_int_z_extend(now_hi, i64_type, "");
let shifted_hi = ctx.builder.build_left_shift(
zext_hi,
i64_type.const_int(32, false),
"",
);
let zext_lo = ctx.builder.build_int_z_extend(now_lo, i64_type, "");
let now_val = ctx.builder.build_or(shifted_hi, zext_lo, "now");
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder
.build_right_shift(time, i64_type.const_int(32, false), false, "")
.unwrap(),
i32_type,
"time.hi",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time");
let time_hi = ctx.builder.build_int_truncate(
ctx.builder.build_right_shift(
time,
i64_type.const_int(32, false),
false,
"",
),
i32_type,
"time.hi",
);
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo");
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
@ -173,16 +174,16 @@ impl TimeFns for NowPinningTimeFns {
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx
.builder
.build_load(now.as_pointer_value(), "now")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_raw = ctx.builder.build_load(now.as_pointer_value(), "now");
let BasicValueEnum::IntValue(now_raw) = now_raw else {
unreachable!()
};
let i64_32 = i64_type.const_int(32, false);
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
ctx.builder.build_or(now_lo, now_hi, "now_mu").map(Into::into).unwrap()
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo");
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi");
ctx.builder.build_or(now_lo, now_hi, "now_mu").into()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
@ -190,44 +191,48 @@ impl TimeFns for NowPinningTimeFns {
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
let time = t.into_int_value();
let BasicValueEnum::IntValue(time) = t else {
unreachable!()
};
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "").unwrap(),
i32_type,
"time.hi",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc").unwrap();
let time_hi = ctx.builder.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, ""),
i32_type,
"time.hi",
);
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "now_trunc");
let now = ctx
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_hiptr = ctx.builder.build_bitcast(
now,
i32_type.ptr_type(AddressSpace::default()),
"now.hi.addr",
);
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
unreachable!()
};
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
}
.unwrap();
};
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
fn emit_delay_mu<'ctx>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
dt: BasicValueEnum<'ctx>,
) {
let i32_type = ctx.ctx.i32_type();
let i64_type = ctx.ctx.i64_type();
let i64_32 = i64_type.const_int(32, false);
@ -235,45 +240,41 @@ impl TimeFns for NowPinningTimeFns {
.module
.get_global("now")
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_raw = ctx
.builder
.build_load(now.as_pointer_value(), "")
.map(BasicValueEnum::into_int_value)
.unwrap();
let now_raw = ctx.builder.build_load(now.as_pointer_value(), "");
let dt = dt.into_int_value();
let (BasicValueEnum::IntValue(now_raw), BasicValueEnum::IntValue(dt)) = (now_raw, dt) else {
unreachable!()
};
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo").unwrap();
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi").unwrap();
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_val").unwrap();
let time = ctx.builder.build_int_add(now_val, dt, "time").unwrap();
let time_hi = ctx
.builder
.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi").unwrap(),
i32_type,
"now_trunc",
)
.unwrap();
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let now_lo = ctx.builder.build_left_shift(now_raw, i64_32, "now.lo");
let now_hi = ctx.builder.build_right_shift(now_raw, i64_32, false, "now.hi");
let now_val = ctx.builder.build_or(now_lo, now_hi, "now_val");
let time = ctx.builder.build_int_add(now_val, dt, "time");
let time_hi = ctx.builder.build_int_truncate(
ctx.builder.build_right_shift(time, i64_32, false, "time.hi"),
i32_type,
"now_trunc",
);
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo");
let now_hiptr = ctx.builder.build_bitcast(
now,
i32_type.ptr_type(AddressSpace::default()),
"now.hi.addr",
);
let BasicValueEnum::PointerValue(now_hiptr) = now_hiptr else {
unreachable!()
};
let now_loptr = unsafe {
ctx.builder.build_gep(now_hiptr, &[i32_type.const_int(1, false)], "now.lo.addr")
}
.unwrap();
};
ctx.builder
.build_store(now_hiptr, time_hi)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
ctx.builder
.build_store(now_loptr, time_lo)
.unwrap()
.set_atomic_ordering(AtomicOrdering::SequentiallyConsistent)
.unwrap();
}
@ -288,11 +289,7 @@ impl TimeFns for ExternTimeFns {
let now_mu = ctx.module.get_function("now_mu").unwrap_or_else(|| {
ctx.module.add_function("now_mu", ctx.ctx.i64_type().fn_type(&[], false), None)
});
ctx.builder
.build_call(now_mu, &[], "now_mu")
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap()
ctx.builder.build_call(now_mu, &[], "now_mu").try_as_basic_value().left().unwrap()
}
fn emit_at_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, t: BasicValueEnum<'ctx>) {
@ -303,10 +300,14 @@ impl TimeFns for ExternTimeFns {
None,
)
});
ctx.builder.build_call(at_mu, &[t.into()], "at_mu").unwrap();
ctx.builder.build_call(at_mu, &[t.into()], "at_mu");
}
fn emit_delay_mu<'ctx>(&self, ctx: &mut CodeGenContext<'ctx, '_>, dt: BasicValueEnum<'ctx>) {
fn emit_delay_mu<'ctx>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
dt: BasicValueEnum<'ctx>,
) {
let delay_mu = ctx.module.get_function("delay_mu").unwrap_or_else(|| {
ctx.module.add_function(
"delay_mu",
@ -314,7 +315,7 @@ impl TimeFns for ExternTimeFns {
None,
)
});
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu").unwrap();
ctx.builder.build_call(delay_mu, &[dt.into()], "delay_mu");
}
}

View File

@ -10,7 +10,7 @@ constant-optimization = ["fold"]
fold = []
[dependencies]
lazy_static = "1.5"
lazy_static = "1.4"
parking_lot = "0.12"
string-interner = "0.17"
string-interner = "0.14"
fxhash = "0.2"

File diff suppressed because it is too large Load Diff

View File

@ -28,12 +28,12 @@ impl From<bool> for Constant {
}
impl From<i32> for Constant {
fn from(i: i32) -> Constant {
Self::Int(i128::from(i))
Self::Int(i as i128)
}
}
impl From<i64> for Constant {
fn from(i: i64) -> Constant {
Self::Int(i128::from(i))
Self::Int(i as i128)
}
}
@ -50,7 +50,6 @@ pub enum ConversionFlag {
}
impl ConversionFlag {
#[must_use]
pub fn try_from_byte(b: u8) -> Option<Self> {
match b {
b's' => Some(Self::Str),
@ -70,7 +69,6 @@ pub struct ConstantOptimizer {
#[cfg(feature = "constant-optimization")]
impl ConstantOptimizer {
#[inline]
#[must_use]
pub fn new() -> Self {
Self { _priv: () }
}
@ -87,22 +85,33 @@ impl<U> crate::fold::Fold<U> for ConstantOptimizer {
fn fold_expr(&mut self, node: crate::Expr<U>) -> Result<crate::Expr<U>, Self::Error> {
match node.node {
crate::ExprKind::Tuple { elts, ctx } => {
let elts =
elts.into_iter().map(|x| self.fold_expr(x)).collect::<Result<Vec<_>, _>>()?;
let expr =
if elts.iter().all(|e| matches!(e.node, crate::ExprKind::Constant { .. })) {
let tuple = elts
.into_iter()
.map(|e| match e.node {
crate::ExprKind::Constant { value, .. } => value,
_ => unreachable!(),
})
.collect();
crate::ExprKind::Constant { value: Constant::Tuple(tuple), kind: None }
} else {
crate::ExprKind::Tuple { elts, ctx }
};
Ok(crate::Expr { node: expr, custom: node.custom, location: node.location })
let elts = elts
.into_iter()
.map(|x| self.fold_expr(x))
.collect::<Result<Vec<_>, _>>()?;
let expr = if elts
.iter()
.all(|e| matches!(e.node, crate::ExprKind::Constant { .. }))
{
let tuple = elts
.into_iter()
.map(|e| match e.node {
crate::ExprKind::Constant { value, .. } => value,
_ => unreachable!(),
})
.collect();
crate::ExprKind::Constant {
value: Constant::Tuple(tuple),
kind: None,
}
} else {
crate::ExprKind::Tuple { elts, ctx }
};
Ok(crate::Expr {
node: expr,
custom: node.custom,
location: node.location,
})
}
_ => crate::fold::fold_expr(self, node),
}
@ -118,7 +127,7 @@ mod tests {
use crate::fold::Fold;
use crate::*;
let location = Location::new(0, 0, FileName::default());
let location = Location::new(0, 0, Default::default());
let custom = ();
let ast = Located {
location,
@ -129,12 +138,18 @@ mod tests {
Located {
location,
custom,
node: ExprKind::Constant { value: 1.into(), kind: None },
node: ExprKind::Constant {
value: 1.into(),
kind: None,
},
},
Located {
location,
custom,
node: ExprKind::Constant { value: 2.into(), kind: None },
node: ExprKind::Constant {
value: 2.into(),
kind: None,
},
},
Located {
location,
@ -145,17 +160,26 @@ mod tests {
Located {
location,
custom,
node: ExprKind::Constant { value: 3.into(), kind: None },
node: ExprKind::Constant {
value: 3.into(),
kind: None,
},
},
Located {
location,
custom,
node: ExprKind::Constant { value: 4.into(), kind: None },
node: ExprKind::Constant {
value: 4.into(),
kind: None,
},
},
Located {
location,
custom,
node: ExprKind::Constant { value: 5.into(), kind: None },
node: ExprKind::Constant {
value: 5.into(),
kind: None,
},
},
],
},
@ -163,7 +187,9 @@ mod tests {
],
},
};
let new_ast = ConstantOptimizer::new().fold_expr(ast).unwrap_or_else(|e| match e {});
let new_ast = ConstantOptimizer::new()
.fold_expr(ast)
.unwrap_or_else(|e| match e {});
assert_eq!(
new_ast,
Located {
@ -173,7 +199,11 @@ mod tests {
value: Constant::Tuple(vec![
1.into(),
2.into(),
Constant::Tuple(vec![3.into(), 4.into(), 5.into(),])
Constant::Tuple(vec![
3.into(),
4.into(),
5.into(),
])
]),
kind: None
},

View File

@ -64,4 +64,11 @@ macro_rules! simple_fold {
};
}
simple_fold!(usize, String, bool, StrRef, constant::Constant, constant::ConversionFlag);
simple_fold!(
usize,
String,
bool,
StrRef,
constant::Constant,
constant::ConversionFlag
);

View File

@ -2,7 +2,6 @@ use crate::{Constant, ExprKind};
impl<U> ExprKind<U> {
/// Returns a short name for the node suitable for use in error messages.
#[must_use]
pub fn name(&self) -> &'static str {
match self {
ExprKind::BoolOp { .. } | ExprKind::BinOp { .. } | ExprKind::UnaryOp { .. } => {
@ -35,7 +34,10 @@ impl<U> ExprKind<U> {
ExprKind::Starred { .. } => "starred",
ExprKind::Slice { .. } => "slice",
ExprKind::JoinedStr { values } => {
if values.iter().any(|e| matches!(e.node, ExprKind::JoinedStr { .. })) {
if values
.iter()
.any(|e| matches!(e.node, ExprKind::JoinedStr { .. }))
{
"f-string expression"
} else {
"literal"

View File

@ -1,19 +1,3 @@
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::too_many_lines,
clippy::wildcard_imports
)]
#[macro_use]
extern crate lazy_static;
@ -25,6 +9,6 @@ mod impls;
mod location;
pub use ast_gen::*;
pub use location::{FileName, Location};
pub use location::{Location, FileName};
pub type Suite<U = ()> = Vec<Stmt<U>>;

View File

@ -1,6 +1,6 @@
//! Datatypes to support source location information.
use crate::ast_gen::StrRef;
use std::cmp::Ordering;
use crate::ast_gen::StrRef;
use std::fmt;
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
@ -22,7 +22,7 @@ impl From<String> for FileName {
pub struct Location {
pub row: usize,
pub column: usize,
pub file: FileName,
pub file: FileName
}
impl fmt::Display for Location {
@ -35,12 +35,12 @@ impl Ord for Location {
fn cmp(&self, other: &Self) -> Ordering {
let file_cmp = self.file.0.to_string().cmp(&other.file.0.to_string());
if file_cmp != Ordering::Equal {
return file_cmp;
return file_cmp
}
let row_cmp = self.row.cmp(&other.row);
if row_cmp != Ordering::Equal {
return row_cmp;
return row_cmp
}
self.column.cmp(&other.column)
@ -76,22 +76,23 @@ impl Location {
)
}
}
Visualize { loc: *self, line, desc }
Visualize {
loc: *self,
line,
desc,
}
}
}
impl Location {
#[must_use]
pub fn new(row: usize, column: usize, file: FileName) -> Self {
Location { row, column, file }
}
#[must_use]
pub fn row(&self) -> usize {
self.row
}
#[must_use]
pub fn column(&self) -> usize {
self.column
}

View File

@ -4,21 +4,15 @@ version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[features]
no-escape-analysis = []
[dependencies]
itertools = "0.13"
itertools = "0.12"
crossbeam = "0.8"
indexmap = "2.2"
parking_lot = "0.12"
rayon = "1.8"
rayon = "1.5"
nac3parser = { path = "../nac3parser" }
strum = "0.26"
strum_macros = "0.26"
[dependencies.inkwell]
version = "0.4"
version = "0.2"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]

View File

@ -8,52 +8,30 @@ use std::{
};
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
const FILE: &str = "src/codegen/irrt/irrt.c";
/*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/
let mut flags: Vec<&str> = vec![
const FLAG: &[&str] = &[
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
FILE,
"-O3",
"-emit-llvm",
"-S",
"-Wall",
"-Wextra",
"-o",
"-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
];
match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
println!("cargo:rerun-if-changed={FILE}");
let out_dir = env::var("OUT_DIR").unwrap();
let out_path = Path::new(&out_dir);
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt")
.args(flags)
.args(FLAG)
.output()
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
@ -65,17 +43,7 @@ fn main() {
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len());
// Filter out irrelevant IR
//
// Regex:
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]);
@ -86,22 +54,18 @@ fn main() {
.unwrap()
.replace_all(&filtered_output, "");
// For debugging
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
if env::var("DEBUG_DUMP_IRRT").is_ok() {
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap();
}
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")
.arg(out_dir.join("irrt.bc"))
.arg(out_path.join("irrt.bc"))
.spawn()
.unwrap();
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();

View File

@ -1,6 +0,0 @@
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"

View File

@ -1,9 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
template<typename SizeT>
struct CSlice {
uint8_t* base;
SizeT len;
};

View File

@ -1,25 +0,0 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,82 +0,0 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
*/
typedef int32_t ExceptionId;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
namespace {
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<const uint8_t*>(filename), .len = __builtin_strlen(filename)},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<const uint8_t*>(function), .len = __builtin_strlen(function)},
.msg = {.base = reinterpret_cast<const uint8_t*>(msg), .len = __builtin_strlen(msg)},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
} // namespace

View File

@ -1,13 +0,0 @@
#pragma once
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,75 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -1,93 +0,0 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
}

View File

@ -1,13 +0,0 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -1,144 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
}

View File

@ -1,28 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -3,13 +3,10 @@ use crate::{
toplevel::DefinitionId,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{
into_var_map, FunSignature, FuncArg, Type, TypeEnum, TypeVar, TypeVarId, Unifier,
},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
},
};
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
@ -25,7 +22,6 @@ pub struct ConcreteFuncArg {
pub name: StrRef,
pub ty: ConcreteType,
pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
}
#[derive(Clone, Debug)]
@ -47,12 +43,14 @@ pub enum ConcreteTypeEnum {
TPrimitive(Primitive),
TTuple {
ty: Vec<ConcreteType>,
is_vararg_ctx: bool,
},
TList {
ty: ConcreteType,
},
TObj {
obj_id: DefinitionId,
fields: HashMap<StrRef, (ConcreteType, bool)>,
params: IndexMap<TypeVarId, ConcreteType>,
params: HashMap<u32, ConcreteType>,
},
TVirtual {
ty: ConcreteType,
@ -60,10 +58,11 @@ pub enum ConcreteTypeEnum {
TFunc {
args: Vec<ConcreteFuncArg>,
ret: ConcreteType,
vars: HashMap<TypeVarId, ConcreteType>,
vars: HashMap<u32, ConcreteType>,
},
TLiteral {
values: Vec<SymbolValue>,
TConstant {
value: SymbolValue,
ty: ConcreteType,
},
}
@ -104,16 +103,8 @@ impl ConcreteTypeStore {
.iter()
.map(|arg| ConcreteFuncArg {
name: arg.name,
ty: if arg.is_vararg {
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
@ -168,12 +159,14 @@ impl ConcreteTypeStore {
cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
ty: ty
.iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
TypeEnum::TList { ty } => ConcreteTypeEnum::TList {
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
},
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id,
@ -209,9 +202,10 @@ impl ConcreteTypeStore {
TypeEnum::TFunc(signature) => {
self.from_signature(unifier, primitives, signature, cache)
}
TypeEnum::TLiteral { values, .. } => {
ConcreteTypeEnum::TLiteral { values: values.clone() }
}
TypeEnum::TConstant { value, ty, .. } => ConcreteTypeEnum::TConstant {
value: value.clone(),
ty: self.from_unifier_type(unifier, primitives, *ty, cache),
},
_ => unreachable!("{:?}", ty_enum.get_type_name()),
};
let index = if let Some(ConcreteType(index)) = cache.get(&ty).unwrap() {
@ -237,7 +231,7 @@ impl ConcreteTypeStore {
return if let Some(ty) = ty {
*ty
} else {
*ty = Some(unifier.get_dummy_var().ty);
*ty = Some(unifier.get_dummy_var().0);
ty.unwrap()
};
}
@ -259,13 +253,15 @@ impl ConcreteTypeStore {
*cache.get_mut(&cty).unwrap() = Some(ty);
return ty;
}
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
ty: ty
.iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(),
is_vararg_ctx: *is_vararg_ctx,
},
ConcreteTypeEnum::TList { ty } => {
TypeEnum::TList { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
}
@ -277,10 +273,10 @@ impl ConcreteTypeStore {
(*name, (self.to_unifier_type(unifier, primitives, cty.0, cache), cty.1))
})
.collect::<HashMap<_, _>>(),
params: into_var_map(params.iter().map(|(&id, cty)| {
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
TypeVar { id, ty }
})),
params: params
.iter()
.map(|(id, cty)| (*id, self.to_unifier_type(unifier, primitives, *cty, cache)))
.collect::<HashMap<_, _>>(),
},
ConcreteTypeEnum::TFunc { args, ret, vars } => TypeEnum::TFunc(FunSignature {
args: args
@ -289,17 +285,18 @@ impl ConcreteTypeStore {
name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(),
is_vararg: false,
})
.collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache),
vars: into_var_map(vars.iter().map(|(&id, cty)| {
let ty = self.to_unifier_type(unifier, primitives, *cty, cache);
TypeVar { id, ty }
})),
vars: vars
.iter()
.map(|(id, cty)| (*id, self.to_unifier_type(unifier, primitives, *cty, cache)))
.collect::<HashMap<_, _>>(),
}),
ConcreteTypeEnum::TLiteral { values, .. } => {
TypeEnum::TLiteral { values: values.clone(), loc: None }
ConcreteTypeEnum::TConstant { value, ty } => TypeEnum::TConstant {
value: value.clone(),
ty: self.to_unifier_type(unifier, primitives, *ty, cache),
loc: None,
}
};
let result = unifier.add_ty(result);

File diff suppressed because it is too large Load Diff

View File

@ -1,191 +0,0 @@
use inkwell::attributes::{Attribute, AttributeLoc};
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
use itertools::Either;
use crate::codegen::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`
///
/// Arguments:
/// * `unary/binary`: Whether the extern function requires one (unary) or two (binary) operands
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
///
/// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue`
///
macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("unary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg $(,$attributes)*);
};
("binary", $fn_name:ident, $extern_fn:literal) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2, "mustprogress", "nofree", "nounwind", "willreturn", "writeonly");
};
("binary", $fn_name:ident, $extern_fn:literal $(,$attributes:literal)*) => {
generate_extern_fn!($fn_name, $extern_fn, arg1, arg2 $(,$attributes)*);
};
($fn_name:ident, $extern_fn:literal $(,$args:ident)* $(,$attributes:literal)*) => {
#[doc = concat!("Invokes the [`", stringify!($extern_fn), "`](https://en.cppreference.com/w/c/numeric/math/", stringify!($llvm_name), ") function." )]
pub fn $fn_name<'ctx>(
ctx: &CodeGenContext<'ctx, '_>
$(,$args: FloatValue<'ctx>)*,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = $extern_fn;
let llvm_f64 = ctx.ctx.f64_type();
$(debug_assert_eq!($args.get_type(), llvm_f64);)*
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[$($args.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in [$($attributes),*] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[$($args.into()),*], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
};
}
generate_extern_fn!("unary", call_tan, "tan");
generate_extern_fn!("unary", call_asin, "asin");
generate_extern_fn!("unary", call_acos, "acos");
generate_extern_fn!("unary", call_atan, "atan");
generate_extern_fn!("unary", call_sinh, "sinh");
generate_extern_fn!("unary", call_cosh, "cosh");
generate_extern_fn!("unary", call_tanh, "tanh");
generate_extern_fn!("unary", call_asinh, "asinh");
generate_extern_fn!("unary", call_acosh, "acosh");
generate_extern_fn!("unary", call_atanh, "atanh");
generate_extern_fn!("unary", call_expm1, "expm1");
generate_extern_fn!(
"unary",
call_cbrt,
"cbrt",
"mustprogress",
"nofree",
"nosync",
"nounwind",
"readonly",
"willreturn"
);
generate_extern_fn!("unary", call_erf, "erf", "nounwind");
generate_extern_fn!("unary", call_erfc, "erfc", "nounwind");
generate_extern_fn!("unary", call_j1, "j1", "nounwind");
generate_extern_fn!("binary", call_atan2, "atan2");
generate_extern_fn!("binary", call_hypot, "hypot", "nounwind");
generate_extern_fn!("binary", call_nextafter, "nextafter", "nounwind");
/// Invokes the [`ldexp`](https://en.cppreference.com/w/c/numeric/math/ldexp) function.
pub fn call_ldexp<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
arg: FloatValue<'ctx>,
exp: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "ldexp";
let llvm_f64 = ctx.ctx.f64_type();
let llvm_i32 = ctx.ctx.i32_type();
debug_assert_eq!(arg.get_type(), llvm_f64);
debug_assert_eq!(exp.get_type(), llvm_i32);
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into(), llvm_i32.into()], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder
.build_call(extern_fn, &[arg.into(), exp.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -1,5 +1,5 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
codegen::{expr::*, stmt::*, bool_to_i1, bool_to_i8, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
@ -57,7 +57,6 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>(
@ -93,18 +92,6 @@ pub trait CodeGenerator {
gen_var(ctx, ty, name)
}
/// Allocate memory for a variable and return a pointer pointing to it.
/// The default implementation places the allocations at the start of the function.
fn gen_array_var_alloc<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<ArraySliceValue<'ctx>, String> {
gen_array_var(ctx, ty, size, name)
}
/// Return a pointer pointing to the target of the expression.
fn gen_store_target<'ctx>(
&mut self,
@ -124,45 +111,11 @@ pub trait CodeGenerator {
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
gen_assign(self, ctx, target, value)
}
/// Generate code for a while expression.
@ -178,8 +131,8 @@ pub trait CodeGenerator {
gen_while(self, ctx, stmt)
}
/// Generate code for a for expression.
/// Return true if the for loop must early return
/// Generate code for a while expression.
/// Return true if the while loop must early return
fn gen_for(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
@ -245,7 +198,7 @@ pub trait CodeGenerator {
fn bool_to_i1<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
bool_value: IntValue<'ctx>
) -> IntValue<'ctx> {
bool_to_i1(&ctx.builder, bool_value)
}
@ -254,7 +207,7 @@ pub trait CodeGenerator {
fn bool_to_i8<'ctx>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
bool_value: IntValue<'ctx>,
bool_value: IntValue<'ctx>
) -> IntValue<'ctx> {
bool_to_i8(&ctx.builder, ctx.ctx, bool_value)
}
@ -274,6 +227,7 @@ impl DefaultCodeGenerator {
}
impl CodeGenerator for DefaultCodeGenerator {
/// Returns the name for this [`CodeGenerator`].
fn get_name(&self) -> &str {
&self.name

View File

@ -0,0 +1,199 @@
typedef _BitInt(8) int8_t;
typedef unsigned _BitInt(8) uint8_t;
typedef _BitInt(32) int32_t;
typedef unsigned _BitInt(32) uint32_t;
typedef _BitInt(64) int64_t;
typedef unsigned _BitInt(64) uint64_t;
# define MAX(a, b) (a > b ? a : b)
# define MIN(a, b) (a > b ? b : a)
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
#define DEF_INT_EXP(T) T __nac3_int_exp_##T( \
T base, \
T exp \
) { \
T res = (T)1; \
/* repeated squaring method */ \
do { \
if (exp & 1) res *= base; /* for n odd */ \
exp >>= 1; \
base *= base; \
} while (exp); \
return res; \
} \
DEF_INT_EXP(int32_t)
DEF_INT_EXP(int64_t)
DEF_INT_EXP(uint32_t)
DEF_INT_EXP(uint64_t)
int32_t __nac3_slice_index_bound(int32_t i, const int32_t len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
int32_t __nac3_range_slice_len(const int32_t start, const int32_t end, const int32_t step) {
int32_t diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
int32_t __nac3_list_slice_assign_var_size(
int32_t dest_start,
int32_t dest_end,
int32_t dest_step,
uint8_t *dest_arr,
int32_t dest_arr_len,
int32_t src_start,
int32_t src_end,
int32_t src_step,
uint8_t *src_arr,
int32_t src_arr_len,
const int32_t size
) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const int32_t src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const int32_t dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(
dest_arr + dest_start * size,
src_arr + src_start * size,
src_len * size
);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(
dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr)
&& !(
MAX(dest_start, dest_end) < MIN(src_start, src_end)
|| MAX(src_start, src_end) < MIN(dest_start, dest_end)
);
if (need_alloca) {
uint8_t *tmp = __builtin_alloca(src_arr_len * size);
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
int32_t src_ind = src_start;
int32_t dest_ind = dest_start;
for (;
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step
) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}

View File

@ -1,29 +1,19 @@
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
use crate::typecheck::typedef::Type;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use super::{CodeGenContext, CodeGenerator};
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
types::{BasicTypeEnum, IntType},
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
types::BasicTypeEnum,
values::{FloatValue, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
pub fn load_irrt(ctx: &Context) -> Module {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
@ -39,32 +29,13 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
// repeated squaring method adapted from GNU Scientific Library:
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
pub fn integer_power<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
base: IntValue<'ctx>,
exp: IntValue<'ctx>,
@ -75,7 +46,7 @@ pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
@ -83,15 +54,12 @@ pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
ctx.module.add_function(symbol, fn_type, None)
});
// throw exception when exp < 0
let ge_zero = ctx
.builder
.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
)
.unwrap();
let ge_zero = ctx.builder.build_int_compare(
IntPredicate::SGE,
exp,
exp.get_type().const_zero(),
"assert_int_pow_ge_0",
);
ctx.make_assert(
generator,
ge_zero,
@ -102,14 +70,13 @@ pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
);
ctx.builder
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
.try_as_basic_value()
.unwrap_left()
.into_int_value()
}
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
pub fn calculate_len_for_slice_range<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
@ -123,10 +90,12 @@ pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
let not_zero = ctx.builder.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
);
ctx.make_assert(
generator,
not_zero,
@ -137,10 +106,10 @@ pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.try_as_basic_value()
.left()
.unwrap()
.into_int_value()
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***,
@ -189,12 +158,13 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
step: &Option<Box<Expr<Option<Type>>>>,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
length: IntValue<'ctx>,
list: PointerValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap();
let length = ctx.build_gep_and_load(list, &[zero, one], Some("length")).into_int_value();
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32");
Ok(Some(match (start, end, step) {
(s, e, None) => (
if let Some(s) = s.as_ref() {
@ -214,7 +184,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
} else {
length
};
ctx.builder.build_int_sub(e, one, "final_end").unwrap()
ctx.builder.build_int_sub(e, one, "final_end")
},
one,
),
@ -222,18 +192,15 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
let step = if let Some(v) = generator.gen_expr(ctx, step)? {
v.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?.into_int_value()
} else {
return Ok(None);
return Ok(None)
};
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
)
.unwrap();
let not_zero = ctx.builder.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
);
ctx.make_assert(
generator,
not_zero,
@ -242,66 +209,49 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
[None, None, None],
ctx.current_loc,
);
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1").unwrap();
let neg = ctx
.builder
.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg")
.unwrap();
let len_id = ctx.builder.build_int_sub(length, one, "lenmin1");
let neg = ctx.builder.build_int_compare(IntPredicate::SLT, step, zero, "step_is_neg");
(
match s {
Some(s) => {
let Some(s) = handle_slice_index_bound(s, ctx, generator, length)? else {
return Ok(None);
return Ok(None)
};
ctx.builder
.build_select(
ctx.builder
.build_and(
ctx.builder
.build_int_compare(
IntPredicate::EQ,
s,
length,
"s_eq_len",
)
.unwrap(),
neg,
"should_minus_one",
)
.unwrap(),
ctx.builder.build_int_sub(s, one, "s_min").unwrap(),
ctx.builder.build_and(
ctx.builder.build_int_compare(
IntPredicate::EQ,
s,
length,
"s_eq_len",
),
neg,
"should_minus_one",
),
ctx.builder.build_int_sub(s, one, "s_min"),
s,
"final_start",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
.into_int_value()
}
None => ctx
.builder
.build_select(neg, len_id, zero, "stt")
.map(BasicValueEnum::into_int_value)
.unwrap(),
None => ctx.builder.build_select(neg, len_id, zero, "stt").into_int_value(),
},
match e {
Some(e) => {
let Some(e) = handle_slice_index_bound(e, ctx, generator, length)? else {
return Ok(None);
return Ok(None)
};
ctx.builder
.build_select(
neg,
ctx.builder.build_int_add(e, one, "end_add_one").unwrap(),
ctx.builder.build_int_sub(e, one, "end_sub_one").unwrap(),
ctx.builder.build_int_add(e, one, "end_add_one"),
ctx.builder.build_int_sub(e, one, "end_sub_one"),
"final_end",
)
.map(BasicValueEnum::into_int_value)
.unwrap()
.into_int_value()
}
None => ctx
.builder
.build_select(neg, zero, len_id, "end")
.map(BasicValueEnum::into_int_value)
.unwrap(),
None => ctx.builder.build_select(neg, zero, len_id, "end").into_int_value(),
},
step,
)
@ -327,28 +277,27 @@ pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
} else {
return Ok(None);
return Ok(None)
};
Ok(Some(
ctx.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap(),
))
Ok(Some(ctx
.builder
.build_call(func, &[i.into(), length.into()], "bounded_ind")
.try_as_basic_value()
.left()
.unwrap()
.into_int_value()))
}
/// This function handles 'end' **inclusively**.
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
/// Negative index should be handled before entering this function
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
pub fn list_slice_assignment<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_arr: PointerValue<'ctx>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_arr: PointerValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
@ -377,63 +326,76 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
let dest_arr_ptr = ctx.build_gep_and_load(dest_arr, &[zero, zero], Some("dest.addr"));
let dest_arr_ptr = ctx.builder.build_pointer_cast(
dest_arr_ptr.into_pointer_value(),
elem_ptr_type,
"dest_arr_ptr_cast",
);
let dest_len = ctx.build_gep_and_load(dest_arr, &[zero, one], Some("dest.len")).into_int_value();
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32");
let src_arr_ptr = ctx.build_gep_and_load(src_arr, &[zero, zero], Some("src.addr"));
let src_arr_ptr = ctx.builder.build_pointer_cast(
src_arr_ptr.into_pointer_value(),
elem_ptr_type,
"src_arr_ptr_cast",
);
let src_len = ctx.build_gep_and_load(src_arr, &[zero, one], Some("src.len")).into_int_value();
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32");
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
// throw exception if not satisfied
let src_end = ctx
.builder
let src_end = ctx.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
ctx.builder.build_int_compare(
IntPredicate::SLT,
src_idx.2,
zero,
"is_neg",
),
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one"),
ctx.builder.build_int_add(src_idx.1, one, "e_add_one"),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let dest_end = ctx
.builder
.into_int_value();
let dest_end = ctx.builder
.build_select(
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
ctx.builder.build_int_compare(
IntPredicate::SLT,
dest_idx.2,
zero,
"is_neg",
),
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one"),
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one"),
"final_e",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
.into_int_value();
let src_slice_len =
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
let dest_slice_len =
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
let src_eq_dest = ctx
.builder
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
.unwrap();
let src_slt_dest = ctx
.builder
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
.unwrap();
let dest_step_eq_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
)
.unwrap();
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
let src_eq_dest = ctx.builder.build_int_compare(
IntPredicate::EQ,
src_slice_len,
dest_slice_len,
"slice_src_eq_dest",
);
let src_slt_dest = ctx.builder.build_int_compare(
IntPredicate::SLT,
src_slice_len,
dest_slice_len,
"slice_src_slt_dest",
);
let dest_step_eq_one = ctx.builder.build_int_compare(
IntPredicate::EQ,
dest_idx.2,
dest_idx.2.get_type().const_int(1, false),
"slice_dest_step_eq_one",
);
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1");
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond");
ctx.make_assert(
generator,
cond,
@ -461,36 +423,36 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size")
}
.into(),
];
ctx.builder
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
.try_as_basic_value()
.unwrap_left()
.into_int_value()
};
// update length
let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update");
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let update_bb = ctx.ctx.append_basic_block(current, "update");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb);
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
let dest_len_ptr = unsafe { ctx.builder.build_gep(dest_arr, &[zero, one], "dest_len_ptr") };
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len");
ctx.builder.build_store(dest_len_ptr, new_len);
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(cont_bb);
}
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
pub fn call_isinf<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
@ -499,20 +461,18 @@ pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
ctx.module.add_function("__nac3_isinf", fn_type, None)
});
let ret = ctx
.builder
let ret = ctx.builder
.build_call(intrinsic_fn, &[v.into()], "isinf")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
.try_as_basic_value()
.unwrap_left()
.into_int_value();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
pub fn call_isnan<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> IntValue<'ctx> {
@ -521,19 +481,20 @@ pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
ctx.module.add_function("__nac3_isnan", fn_type, None)
});
let ret = ctx
.builder
let ret = ctx.builder
.build_call(intrinsic_fn, &[v.into()], "isnan")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
.try_as_basic_value()
.unwrap_left()
.into_int_value();
generator.bool_to_i1(ctx, ret)
}
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
pub fn call_gamma<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
@ -543,14 +504,16 @@ pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) ->
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gamma")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
.try_as_basic_value()
.unwrap_left()
.into_float_value()
}
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
pub fn call_gammaln<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
@ -560,14 +523,16 @@ pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "gammaln")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
.try_as_basic_value()
.unwrap_left()
.into_float_value()
}
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
pub fn call_j0<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>,
) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type();
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
@ -577,375 +542,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
ctx.builder
.build_call(intrinsic_fn, &[v.into()], "j0")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
.try_as_basic_value()
.unwrap_left()
.into_float_value()
}

View File

@ -1,343 +0,0 @@
use crate::codegen::CodeGenContext;
use inkwell::context::Context;
use inkwell::intrinsics::Intrinsic;
use inkwell::types::AnyTypeEnum::IntType;
use inkwell::types::FloatType;
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
use inkwell::AddressSpace;
use itertools::Either;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
// Standard LLVM floating-point types
if ft == ctx.f16_type() {
return "f16";
}
if ft == ctx.f32_type() {
return "f32";
}
if ft == ctx.f64_type() {
return "f64";
}
if ft == ctx.f128_type() {
return "f128";
}
// Non-standard floating-point types
if ft == ctx.x86_f80_type() {
return "f80";
}
if ft == ctx.ppc_f128_type() {
return "ppcf128";
}
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic.
pub fn call_stacksave<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> PointerValue<'ctx> {
const FN_NAME: &str = "llvm.stacksave";
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_pointer_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Invokes the
/// [`llvm.stackrestore`](https://llvm.org/docs/LangRef.html#llvm-stackrestore-intrinsic) intrinsic.
///
/// - `ptr`: The pointer storing the address to restore the stack to.
pub fn call_stackrestore<'ctx>(ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.stackrestore";
/*
SEE https://github.com/TheDan64/inkwell/issues/496
We want `llvm.stackrestore`, but the following would generate `llvm.stackrestore.p0i8`.
```ignore
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_p0i8.into()]))
.unwrap();
```
Temp workaround by manually declaring the intrinsic with the correct function name instead.
*/
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[ptr.into()], "").unwrap();
}
/// Invokes the [`llvm.memcpy`](https://llvm.org/docs/LangRef.html#llvm-memcpy-intrinsic) intrinsic.
///
/// * `dest` - The pointer to the destination. Must be a pointer to an integer type.
/// * `src` - The pointer to the source. Must be a pointer to an integer type.
/// * `len` - The number of bytes to copy.
/// * `is_volatile` - Whether the `memcpy` operation should be `volatile`.
pub fn call_memcpy<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
const FN_NAME: &str = "llvm.memcpy";
debug_assert!(dest.get_type().get_element_type().is_int_type());
debug_assert!(src.get_type().get_element_type().is_int_type());
debug_assert_eq!(
dest.get_type().get_element_type().into_int_type().get_bit_width(),
src.get_type().get_element_type().into_int_type().get_bit_width(),
);
debug_assert!(matches!(len.get_type().get_bit_width(), 32 | 64));
debug_assert_eq!(is_volatile.get_type().get_bit_width(), 1);
let llvm_dest_t = dest.get_type();
let llvm_src_t = src.get_type();
let llvm_len_t = len.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(
&ctx.module,
&[llvm_dest_t.into(), llvm_src_t.into(), llvm_len_t.into()],
)
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[dest.into(), src.into(), len.into(), is_volatile.into()], "")
.unwrap();
}
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
pub fn call_memcpy_generic<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bitcast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bitcast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
///
/// Arguments:
/// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body {
($ctx:ident, $name:ident, $llvm_name:literal, $map_fn:expr, $llvm_ty:ident $(,$val:ident)*) => {{
const FN_NAME: &str = concat!("llvm.", $llvm_name);
let intrinsic_fn = Intrinsic::find(FN_NAME).and_then(|intrinsic| intrinsic.get_declaration(&$ctx.module, &[$llvm_ty.into()])).unwrap();
$ctx.builder.build_call(intrinsic_fn, &[$($val.into()),*], $name.unwrap_or_default()).map(CallSiteValue::try_as_basic_value).map(|v| v.map_left($map_fn)).map(Either::unwrap_left).unwrap()
}};
}
/// Macro to generate the llvm intrinsic function using [`generate_llvm_intrinsic_fn_body`].
///
/// Arguments:
/// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn {
("float", $fn_name:ident, $llvm_name:literal, $val:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
let llvm_ty = $val.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val)
}
};
("float", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: FloatValue<'ctx>,
$val2: FloatValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
debug_assert_eq!($val1.get_type(), $val2.get_type());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_float_value, llvm_ty, $val1, $val2)
}
};
("int", $fn_name:ident, $llvm_name:literal, $val1:ident, $val2:ident) => {
#[doc = concat!("Invokes the [`", stringify!($llvm_name), "`](https://llvm.org/docs/LangRef.html#llvm-", stringify!($llvm_name), "-intrinsic) intrinsic." )]
pub fn $fn_name<'ctx> (
ctx: &CodeGenContext<'ctx, '_>,
$val1: IntValue<'ctx>,
$val2: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!($val1.get_type().get_bit_width(), $val2.get_type().get_bit_width());
let llvm_ty = $val1.get_type();
generate_llvm_intrinsic_fn_body!(ctx, name, $llvm_name, BasicValueEnum::into_int_value, llvm_ty, $val1, $val2)
}
};
}
/// Invokes the [`llvm.abs`](https://llvm.org/docs/LangRef.html#llvm-abs-intrinsic) intrinsic.
///
/// * `src` - The value for which the absolute value is to be returned.
/// * `is_int_min_poison` - Whether `poison` is to be returned if `src` is `INT_MIN`.
pub fn call_int_abs<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
is_int_min_poison: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
debug_assert_eq!(is_int_min_poison.get_type().get_bit_width(), 1);
debug_assert!(is_int_min_poison.is_const());
let src_type = src.get_type();
generate_llvm_intrinsic_fn_body!(
ctx,
name,
"abs",
BasicValueEnum::into_int_value,
src_type,
src,
is_int_min_poison
)
}
generate_llvm_intrinsic_fn!("int", call_int_smax, "smax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_smin, "smin", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umax, "umax", a, b);
generate_llvm_intrinsic_fn!("int", call_int_umin, "umin", a, b);
generate_llvm_intrinsic_fn!("int", call_expect, "expect", val, expected_val);
generate_llvm_intrinsic_fn!("float", call_float_sqrt, "sqrt", val);
generate_llvm_intrinsic_fn!("float", call_float_sin, "sin", val);
generate_llvm_intrinsic_fn!("float", call_float_cos, "cos", val);
generate_llvm_intrinsic_fn!("float", call_float_pow, "pow", val, power);
generate_llvm_intrinsic_fn!("float", call_float_exp, "exp", val);
generate_llvm_intrinsic_fn!("float", call_float_exp2, "exp2", val);
generate_llvm_intrinsic_fn!("float", call_float_log, "log", val);
generate_llvm_intrinsic_fn!("float", call_float_log10, "log10", val);
generate_llvm_intrinsic_fn!("float", call_float_log2, "log2", val);
generate_llvm_intrinsic_fn!("float", call_float_fabs, "fabs", src);
generate_llvm_intrinsic_fn!("float", call_float_minnum, "minnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_maxnum, "maxnum", val, power);
generate_llvm_intrinsic_fn!("float", call_float_copysign, "copysign", mag, sgn);
generate_llvm_intrinsic_fn!("float", call_float_floor, "floor", val);
generate_llvm_intrinsic_fn!("float", call_float_ceil, "ceil", val);
generate_llvm_intrinsic_fn!("float", call_float_round, "round", val);
generate_llvm_intrinsic_fn!("float", call_float_rint, "rint", val);
/// Invokes the [`llvm.powi`](https://llvm.org/docs/LangRef.html#llvm-powi-intrinsic) intrinsic.
pub fn call_float_powi<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: FloatValue<'ctx>,
power: IntValue<'ctx>,
name: Option<&str>,
) -> FloatValue<'ctx> {
const FN_NAME: &str = "llvm.powi";
let llvm_val_t = val.get_type();
let llvm_power_t = power.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| {
intrinsic.get_declaration(&ctx.module, &[llvm_val_t.into(), llvm_power_t.into()])
})
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[val.into(), power.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_float_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,7 +1,6 @@
use crate::{
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
toplevel::{TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
@ -9,22 +8,24 @@ use crate::{
};
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
AddressSpace,
IntPredicate,
OptimizationLevel,
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
builder::Builder,
context::Context,
debug_info::{
AsDIScope, DICompileUnit, DIFlagsConstants, DIScope, DISubprogram, DebugInfoBuilder,
},
module::Module,
passes::PassBuilderOptions,
targets::{CodeModel, RelocMode, Target, TargetMachine, TargetTriple},
types::{AnyType, BasicType, BasicTypeEnum},
values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
debug_info::{
DebugInfoBuilder, DICompileUnit, DISubprogram, AsDIScope, DIFlagsConstants, DIScope
},
};
use itertools::Itertools;
use nac3parser::ast::{Location, Stmt, StrRef};
use nac3parser::ast::{Stmt, StrRef, Location};
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
@ -33,15 +34,10 @@ use std::sync::{
};
use std::thread;
pub mod builtin_fns;
pub mod classes;
pub mod concrete_type;
pub mod expr;
pub mod extern_fns;
mod generator;
pub mod irrt;
pub mod llvm_intrinsics;
pub mod numpy;
pub mod stmt;
#[cfg(test)]
@ -50,22 +46,6 @@ mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
#[derive(Default)]
pub struct StaticValueStore {
pub lookup: HashMap<Vec<(usize, u64)>, usize>,
@ -84,16 +64,6 @@ pub struct CodeGenLLVMOptions {
pub target: CodeGenTargetMachineOptions,
}
impl CodeGenLLVMOptions {
/// Creates a [`TargetMachine`] using the target options specified by this struct.
///
/// See [`Target::create_target_machine`].
#[must_use]
pub fn create_target_machine(&self) -> Option<TargetMachine> {
self.target.create_target_machine(self.opt_level)
}
}
/// Additional options for code generation for the target machine.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CodeGenTargetMachineOptions {
@ -110,6 +80,7 @@ pub struct CodeGenTargetMachineOptions {
}
impl CodeGenTargetMachineOptions {
/// Creates an instance of [`CodeGenTargetMachineOptions`] using the triple of the host machine.
/// Other options are set to defaults.
#[must_use]
@ -138,11 +109,13 @@ impl CodeGenTargetMachineOptions {
///
/// See [`Target::create_target_machine`].
#[must_use]
pub fn create_target_machine(&self, level: OptimizationLevel) -> Option<TargetMachine> {
pub fn create_target_machine(
&self,
level: OptimizationLevel,
) -> Option<TargetMachine> {
let triple = TargetTriple::create(self.triple.as_str());
let target = Target::from_triple(&triple).unwrap_or_else(|_| {
panic!("could not create target from target triple {}", self.triple)
});
let target = Target::from_triple(&triple)
.unwrap_or_else(|_| panic!("could not create target from target triple {}", self.triple));
target.create_target_machine(
&triple,
@ -150,7 +123,7 @@ impl CodeGenTargetMachineOptions {
self.features.as_str(),
level,
self.reloc_mode,
self.code_model,
self.code_model
)
}
}
@ -161,23 +134,24 @@ pub struct CodeGenContext<'ctx, 'a> {
/// The [Builder] instance for creating LLVM IR statements.
pub builder: Builder<'ctx>,
/// The [`DebugInfoBuilder`], [compilation unit information][DICompileUnit], and
/// The [DebugInfoBuilder], [compilation unit information][DICompileUnit], and
/// [scope information][DIScope] of this context.
pub debug_info: (DebugInfoBuilder<'ctx>, DICompileUnit<'ctx>, DIScope<'ctx>),
/// The module for which [this context][CodeGenContext] is generating into.
pub module: Module<'ctx>,
/// The [`TopLevelContext`] associated with [this context][CodeGenContext].
/// The [TopLevelContext] associated with [this context][CodeGenContext].
pub top_level: &'a TopLevelContext,
pub unifier: Unifier,
pub resolver: Arc<dyn SymbolResolver + Send + Sync>,
pub static_value_store: Arc<Mutex<StaticValueStore>>,
/// A [`HashMap`] containing the mapping between the names of variables currently in-scope and
/// A [HashMap] containing the mapping between the names of variables currently in-scope and
/// its value information.
pub var_assignment: HashMap<StrRef, VarValue<'ctx>>,
///
pub type_cache: HashMap<Type, BasicTypeEnum<'ctx>>,
pub primitives: PrimitiveStore,
pub calls: Arc<HashMap<CodeLocation, CallId>>,
@ -186,24 +160,24 @@ pub struct CodeGenContext<'ctx, 'a> {
/// Cache for constant strings.
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>,
/// [`BasicBlock`] containing all `alloca` statements for the current function.
/// [BasicBlock] containing all `alloca` statements for the current function.
pub init_bb: BasicBlock<'ctx>,
pub exception_val: Option<PointerValue<'ctx>>,
/// The header and exit basic blocks of a loop in this context. See
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
/// https://llvm.org/docs/LoopTerminology.html for explanation of these terminology.
pub loop_target: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>,
/// The target [`BasicBlock`] to jump to when performing stack unwind.
/// The target [BasicBlock] to jump to when performing stack unwind.
pub unwind_target: Option<BasicBlock<'ctx>>,
/// The target [`BasicBlock`] to jump to before returning from the function.
/// The target [BasicBlock] to jump to before returning from the function.
///
/// If this field is [None] when generating a return from a function, `ret` with no argument can
/// be emitted.
pub return_target: Option<BasicBlock<'ctx>>,
/// The [`PointerValue`] containing the return value of the function.
/// The [PointerValue] containing the return value of the function.
pub return_buffer: Option<PointerValue<'ctx>>,
// outer catch clauses
@ -212,7 +186,7 @@ pub struct CodeGenContext<'ctx, 'a> {
/// Whether `sret` is needed for the first parameter of the function.
///
/// See [`need_sret`].
/// See [need_sret].
pub need_sret: bool,
/// The current source location.
@ -220,6 +194,7 @@ pub struct CodeGenContext<'ctx, 'a> {
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
/// Whether the [current basic block][Builder::get_insert_block] referenced by `builder`
/// contains a [terminator statement][BasicBlock::get_terminator].
pub fn is_terminated(&self) -> bool {
@ -261,10 +236,11 @@ pub struct WorkerRegistry {
static_value_store: Arc<Mutex<StaticValueStore>>,
/// LLVM-related options for code generation.
pub llvm_options: CodeGenLLVMOptions,
llvm_options: CodeGenLLVMOptions,
}
impl WorkerRegistry {
/// Creates workers for this registry.
#[must_use]
pub fn create_workers<G: CodeGenerator + Send + 'static>(
@ -299,15 +275,9 @@ impl WorkerRegistry {
let registry = registry.clone();
let registry2 = registry.clone();
let f = f.clone();
let worker_thread_name =
format!("codegen-worker-{worker_id}", worker_id = generator.get_name());
let handle = thread::Builder::new()
.name(worker_thread_name)
.spawn(move || {
registry.worker_thread(generator.as_mut(), &f);
})
.unwrap();
let handle = thread::spawn(move || {
registry.worker_thread(generator.as_mut(), &f);
});
let handle = thread::spawn(move || {
if let Err(e) = handle.join() {
if let Some(e) = e.downcast_ref::<&'static str>() {
@ -364,10 +334,6 @@ impl WorkerRegistry {
let mut builder = context.create_builder();
let mut module = context.create_module(generator.get_name());
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag(
"Debug Info Version",
inkwell::module::FlagBehavior::Warning,
@ -391,20 +357,12 @@ impl WorkerRegistry {
errors.insert(e);
// create a new empty module just to continue codegen and collect errors
module = context.create_module(&format!("{}_recover", generator.get_name()));
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
}
}
*self.task_count.lock() -= 1;
self.wait_condvar.notify_all();
}
assert!(
errors.is_empty(),
"Codegen error: {}",
errors.into_iter().sorted().join("\n----------\n")
);
assert!(errors.is_empty(), "Codegen error: {}", errors.into_iter().sorted().join("\n----------\n"));
let result = module.verify();
if let Err(err) = result {
@ -417,20 +375,13 @@ impl WorkerRegistry {
.llvm_options
.target
.create_target_machine(self.llvm_options.opt_level)
.unwrap_or_else(|| {
panic!(
"could not create target machine from properties {:?}",
self.llvm_options.target
)
});
.unwrap_or_else(|| panic!("could not create target machine from properties {:?}", self.llvm_options.target));
let passes = format!("default<O{}>", self.llvm_options.opt_level as u32);
let result = module.run_passes(passes.as_str(), &target_machine, pass_options);
if let Err(err) = result {
panic!(
"Failed to run optimization for module `{}`: {}",
module.get_name().to_str().unwrap(),
err.to_string()
);
panic!("Failed to run optimization for module `{}`: {}",
module.get_name().to_str().unwrap(),
err.to_string());
}
f.run(&module);
@ -456,14 +407,14 @@ pub struct CodeGenTask {
///
/// This function is used to obtain the in-memory representation of `ty`, e.g. a `bool` variable
/// would be represented by an `i8`.
#[allow(clippy::too_many_arguments)]
fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
fn get_llvm_type<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &G,
generator: &mut dyn CodeGenerator,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
primitives: &PrimitiveStore,
ty: Type,
) -> BasicTypeEnum<'ctx> {
use TypeEnum::*;
@ -473,51 +424,29 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum {
TObj { obj_id, fields, .. } => {
// check to avoid treating non-class primitives as classes
if PrimDef::contains_id(*obj_id) {
return match &*unifier.get_ty_immutable(ty) {
TObj { obj_id, params, .. } if *obj_id == PrimDef::Option.id() => {
get_llvm_type(
// check to avoid treating primitives other than Option as classes
if obj_id.0 <= 10 {
match (unifier.get_ty(ty).as_ref(), unifier.get_ty(primitives.option).as_ref())
{
(
TObj { obj_id, params, .. },
TObj { obj_id: opt_id, .. },
) if *obj_id == *opt_id => {
return get_llvm_type(
ctx,
module,
generator,
unifier,
top_level,
type_cache,
primitives,
*params.iter().next().unwrap().1,
)
.ptr_type(AddressSpace::default())
.into()
.into();
}
TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let element_type = get_llvm_type(
ctx,
module,
generator,
unifier,
top_level,
type_cache,
*params.iter().next().unwrap().1,
);
ListType::new(generator, ctx, element_type).as_base_type().into()
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
}
_ => unreachable!(
"LLVM type for primitive {} is missing",
unifier.stringify(ty)
),
};
_ => unreachable!("must be option type"),
}
}
// a struct with fields in the order of declaration
let top_level_defs = top_level.definitions.read();
@ -533,7 +462,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
let struct_type = ctx.opaque_struct_type(&name);
type_cache.insert(
unifier.get_representative(ty),
struct_type.ptr_type(AddressSpace::default()).into(),
struct_type.ptr_type(AddressSpace::default()).into()
);
let fields = fields_list
.iter()
@ -545,6 +474,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
unifier,
top_level,
type_cache,
primitives,
fields[&f.0].0,
)
})
@ -552,20 +482,31 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
struct_type.set_body(&fields, false);
struct_type.ptr_type(AddressSpace::default()).into()
};
return ty;
return ty
}
TTuple { ty, is_vararg_ctx } => {
TTuple { ty } => {
// a struct with fields in the order present in the tuple
assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type");
let fields = ty
.iter()
.map(|ty| {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty)
get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, primitives, *ty,
)
})
.collect_vec();
ctx.struct_type(&fields, false).into()
}
TList { ty } => {
// a struct with an integer and a pointer to an array
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, primitives, *ty,
);
let fields = [
element_type.ptr_type(AddressSpace::default()).into(),
generator.get_size_type(ctx).into(),
];
ctx.struct_type(&fields, false).ptr_type(AddressSpace::default()).into()
}
TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()),
};
@ -583,11 +524,10 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
/// ABI representation is that the in-memory representation must be at least byte-sized and must
/// be byte-aligned for the variable to be addressable in memory, whereas there is no such
/// restriction for ABI representations.
#[allow(clippy::too_many_arguments)]
fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
fn get_llvm_abi_type<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
generator: &G,
generator: &mut dyn CodeGenerator,
unifier: &mut Unifier,
top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -596,10 +536,10 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency.
if unifier.unioned(ty, primitives.bool) {
return if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into()
} else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, primitives, ty)
}
}
@ -616,62 +556,23 @@ fn need_sret(ty: BasicTypeEnum) -> bool {
match ty {
BasicTypeEnum::IntType(_) | BasicTypeEnum::PointerType(_) => false,
BasicTypeEnum::FloatType(_) if maybe_large => false,
BasicTypeEnum::StructType(ty) if maybe_large && ty.count_fields() <= 2 => {
ty.get_field_types().iter().any(|ty| need_sret_impl(*ty, false))
}
BasicTypeEnum::StructType(ty) if maybe_large && ty.count_fields() <= 2 =>
ty.get_field_types().iter().any(|ty| need_sret_impl(*ty, false)),
_ => true,
}
}
need_sret_impl(ty, true)
}
/// Returns the [`BasicTypeEnum`] representing a `va_list` struct for variadic arguments.
fn get_llvm_valist_type<'ctx>(ctx: &'ctx Context, triple: &TargetTriple) -> BasicTypeEnum<'ctx> {
let triple = TargetMachine::normalize_triple(triple);
let triple = triple.as_str().to_str().unwrap();
let arch = triple.split('-').next().unwrap();
let llvm_pi8 = ctx.i8_type().ptr_type(AddressSpace::default());
// Referenced from parseArch() in llvm/lib/Support/Triple.cpp
match arch {
"i386" | "i486" | "i586" | "i686" | "riscv32" => {
ctx.i8_type().ptr_type(AddressSpace::default()).into()
}
"amd64" | "x86_64" | "x86_64h" => {
let llvm_i32 = ctx.i32_type();
let va_list_tag = ctx.opaque_struct_type("struct.__va_list_tag");
va_list_tag.set_body(
&[llvm_i32.into(), llvm_i32.into(), llvm_pi8.into(), llvm_pi8.into()],
false,
);
va_list_tag.into()
}
"armv7" => {
let va_list = ctx.opaque_struct_type("struct.__va_list");
va_list.set_body(&[llvm_pi8.into()], false);
va_list.into()
}
triple => {
todo!("Unsupported platform for varargs: {triple}")
}
}
}
/// Implementation for generating LLVM IR for a function.
pub fn gen_func_impl<
'ctx,
G: CodeGenerator,
F: FnOnce(&mut G, &mut CodeGenContext) -> Result<(), String>,
>(
pub fn gen_func_impl<'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenContext) -> Result<(), String>> (
context: &'ctx Context,
generator: &mut G,
registry: &WorkerRegistry,
builder: Builder<'ctx>,
module: Module<'ctx>,
task: CodeGenTask,
codegen_function: F,
codegen_function: F
) -> Result<(Builder<'ctx>, Module<'ctx>, FunctionValue<'ctx>), (Builder<'ctx>, String)> {
let top_level_ctx = registry.top_level_ctx.clone();
let static_value_store = registry.static_value_store.clone();
@ -679,7 +580,6 @@ pub fn gen_func_impl<
let (unifier, primitives) = &top_level_ctx.unifiers.read()[task.unifier_index];
(Unifier::from_shared_unifier(unifier), *primitives)
};
unifier.put_primitive_store(&primitives);
unifier.top_level = Some(top_level_ctx.clone());
let mut cache = HashMap::new();
@ -713,7 +613,6 @@ pub fn gen_func_impl<
str: unifier.get_representative(primitives.str),
exception: unifier.get_representative(primitives.exception),
option: unifier.get_representative(primitives.option),
..primitives
};
let mut type_cache: HashMap<_, _> = [
@ -735,10 +634,10 @@ pub fn gen_func_impl<
str_type.set_body(&fields, false);
str_type.into()
}
Some(t) => t.as_basic_type_enum(),
Some(t) => t.as_basic_type_enum()
}
}),
(primitives.range, RangeType::new(context).as_base_type().into()),
(primitives.range, context.i32_type().array_type(3).ptr_type(AddressSpace::default()).into()),
(primitives.exception, {
let name = "Exception";
if let Some(t) = module.get_struct_type(name) {
@ -752,7 +651,7 @@ pub fn gen_func_impl<
exception.set_body(&fields, false);
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
}
}),
})
]
.iter()
.copied()
@ -760,7 +659,8 @@ pub fn gen_func_impl<
// NOTE: special handling of option cannot use this type cache since it contains type var,
// handled inside get_llvm_type instead
let ConcreteTypeEnum::TFunc { args, ret, .. } = task.store.get(task.signature) else {
let ConcreteTypeEnum::TFunc { args, ret, .. } =
task.store.get(task.signature) else {
unreachable!()
};
@ -770,7 +670,6 @@ pub fn gen_func_impl<
name: arg.name,
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
})
.collect_vec(),
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
@ -778,25 +677,13 @@ pub fn gen_func_impl<
let ret_type = if unifier.unioned(ret, primitives.none) {
None
} else {
Some(get_llvm_abi_type(
context,
&module,
generator,
&mut unifier,
top_level_ctx.as_ref(),
&mut type_cache,
&primitives,
ret,
))
Some(get_llvm_abi_type(context, &module, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, &primitives, ret))
};
let has_sret = ret_type.map_or(false, |ty| need_sret(ty));
let mut params = args
.iter()
.filter(|arg| !arg.is_vararg)
.map(|arg| {
debug_assert!(!arg.is_vararg);
get_llvm_abi_type(
context,
&module,
@ -815,12 +702,9 @@ pub fn gen_func_impl<
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
}
debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1));
let vararg_arg = args.iter().find(|arg| arg.is_vararg);
let fn_type = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, vararg_arg.is_some()),
_ => context.void_type().fn_type(&params, vararg_arg.is_some()),
Some(ret_type) if !has_sret => ret_type.fn_type(&params, false),
_ => context.void_type().fn_type(&params, false)
};
let symbol = &task.symbol_name;
@ -835,13 +719,9 @@ pub fn gen_func_impl<
fn_val.set_personality_function(personality);
}
if has_sret {
fn_val.add_attribute(
AttributeLoc::Param(0),
context.create_type_attribute(
Attribute::get_named_enum_kind_id("sret"),
ret_type.unwrap().as_any_type_enum(),
),
);
fn_val.add_attribute(AttributeLoc::Param(0),
context.create_type_attribute(Attribute::get_named_enum_kind_id("sret"),
ret_type.unwrap().as_any_type_enum()));
}
let init_bb = context.append_basic_block(fn_val, "init");
@ -850,9 +730,7 @@ pub fn gen_func_impl<
let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret);
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
for (n, arg) in args.iter().enumerate() {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(
context,
@ -861,10 +739,13 @@ pub fn gen_func_impl<
&mut unifier,
top_level_ctx.as_ref(),
&mut type_cache,
&primitives,
arg.ty,
);
let alloca =
builder.build_alloca(local_type, &format!("{}.addr", &arg.name.to_string())).unwrap();
let alloca = builder.build_alloca(
local_type,
&format!("{}.addr", &arg.name.to_string()),
);
// Remap boolean parameters into i8
let param = if local_type.is_int_type() && param.is_int_value() {
@ -875,22 +756,19 @@ pub fn gen_func_impl<
bool_to_i8(&builder, context, param_val)
} else {
param_val
}
.into()
}.into()
} else {
param
};
builder.build_store(alloca, param).unwrap();
builder.build_store(alloca, param);
var_assignment.insert(arg.name, (alloca, None, 0));
}
// TODO: Save vararg parameters as list
let return_buffer = if has_sret {
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
} else {
fn_type.get_return_type().map(|v| builder.build_alloca(v, "$ret").unwrap())
fn_type.get_return_type().map(|v| builder.build_alloca(v, "$ret"))
};
let static_values = {
@ -902,7 +780,7 @@ pub fn gen_func_impl<
*static_val = Some(v);
}
builder.build_unconditional_branch(body_bb).unwrap();
builder.build_unconditional_branch(body_bb);
builder.position_at_end(body_bb);
let (dibuilder, compile_unit) = module.create_debug_info_builder(
@ -911,8 +789,11 @@ pub fn gen_func_impl<
/* filename */
&task
.body
.first()
.map_or_else(|| "<nac3_internal>".to_string(), |f| f.location.file.0.to_string()),
.get(0)
.map_or_else(
|| "<nac3_internal>".to_string(),
|f| f.location.file.0.to_string(),
),
/* directory */ "",
/* producer */ "NAC3",
/* is_optimized */ registry.llvm_options.opt_level != OptimizationLevel::None,
@ -938,7 +819,7 @@ pub fn gen_func_impl<
inkwell::debug_info::DIFlags::PUBLIC,
);
let (row, col) =
task.body.first().map_or_else(|| (0, 0), |b| (b.location.row, b.location.column));
task.body.get(0).map_or_else(|| (0, 0), |b| (b.location.row, b.location.column));
let func_scope: DISubprogram<'_> = dibuilder.create_function(
/* scope */ compile_unit.as_debug_info_scope(),
/* func name */ symbol,
@ -985,7 +866,7 @@ pub fn gen_func_impl<
row as u32,
col as u32,
func_scope.as_debug_info_scope(),
None,
None
);
code_gen_context.builder.set_current_debug_location(loc);
@ -993,7 +874,7 @@ pub fn gen_func_impl<
// after static analysis, only void functions can have no return at the end.
if !code_gen_context.is_terminated() {
code_gen_context.builder.build_return(None).unwrap();
code_gen_context.builder.build_return(None);
}
code_gen_context.builder.unset_current_debug_location();
@ -1035,14 +916,12 @@ fn bool_to_i1<'ctx>(builder: &Builder<'ctx>, bool_value: IntValue<'ctx>) -> IntV
if bool_value.get_type().get_bit_width() == 1 {
bool_value
} else {
builder
.build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
"tobool",
)
.unwrap()
builder.build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
"tobool"
)
}
}
@ -1050,23 +929,21 @@ fn bool_to_i1<'ctx>(builder: &Builder<'ctx>, bool_value: IntValue<'ctx>) -> IntV
fn bool_to_i8<'ctx>(
builder: &Builder<'ctx>,
ctx: &'ctx Context,
bool_value: IntValue<'ctx>,
bool_value: IntValue<'ctx>
) -> IntValue<'ctx> {
let value_bits = bool_value.get_type().get_bit_width();
match value_bits {
8 => bool_value,
1 => builder.build_int_z_extend(bool_value, ctx.i8_type(), "frombool").unwrap(),
1 => builder.build_int_z_extend(bool_value, ctx.i8_type(), "frombool"),
_ => bool_to_i8(
builder,
ctx,
builder
.build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
"",
)
.unwrap(),
builder.build_int_compare(
IntPredicate::NE,
bool_value,
bool_value.get_type().const_zero(),
""
)
),
}
}
@ -1092,26 +969,9 @@ fn gen_in_range_check<'ctx>(
stop: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
let sign = ctx
.builder
.build_int_compare(IntPredicate::SGT, step, ctx.ctx.i32_type().const_zero(), "")
.unwrap();
let lo = ctx
.builder
.build_select(sign, value, stop, "")
.map(BasicValueEnum::into_int_value)
.unwrap();
let hi = ctx
.builder
.build_select(sign, stop, value, "")
.map(BasicValueEnum::into_int_value)
.unwrap();
let sign = ctx.builder.build_int_compare(IntPredicate::SGT, step, ctx.ctx.i32_type().const_zero(), "");
let lo = ctx.builder.build_select(sign, value, stop, "").into_int_value();
let hi = ctx.builder.build_select(sign, stop, value, "").into_int_value();
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap()
}
/// Returns the internal name for the `va_count` argument, used to indicate the number of arguments
/// passed to the variadic function.
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into()
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp")
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,27 +1,22 @@
use crate::{
codegen::{
classes::{ListType, NDArrayType, ProxyType, RangeType},
concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
concrete_type::ConcreteTypeStore, CodeGenContext, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, DefaultCodeGenerator, WithCall, WorkerRegistry,
},
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
composer::TopLevelComposer, DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
},
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
OptimizationLevel
};
use nac3parser::ast::FileName;
use nac3parser::{
ast::{fold::Fold, StrRef},
parser::parse_program,
@ -57,13 +52,13 @@ impl SymbolResolver for Resolver {
_: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String> {
self.id_to_type.get(&str).copied().ok_or_else(|| format!("cannot find symbol `{str}`"))
self.id_to_type.get(&str).cloned().ok_or_else(|| format!("cannot find symbol `{}`", str))
}
fn get_symbol_value<'ctx>(
fn get_symbol_value<'ctx, 'a>(
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -72,8 +67,10 @@ impl SymbolResolver for Resolver {
self.id_to_def
.read()
.get(&id)
.copied()
.ok_or_else(|| HashSet::from([format!("cannot find symbol `{id}`")]))
.cloned()
.ok_or_else(|| HashSet::from([
format!("cannot find symbol `{}`", id),
]))
}
fn get_string_id(&self, _: &str) -> i32 {
@ -92,9 +89,9 @@ fn test_primitives() {
d = a if c == 1 else 0
return d
"};
let statements = parse_program(source, FileName::default()).unwrap();
let statements = parse_program(source, Default::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let composer: TopLevelComposer = Default::default();
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
@ -103,27 +100,17 @@ fn test_primitives() {
let resolver = Arc::new(Resolver {
id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(),
class_names: Default::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>;
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature {
args: vec![
FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg { name: "a".into(), ty: primitives.int32, default_value: None },
FuncArg { name: "b".into(), ty: primitives.int32, default_value: None },
],
ret: primitives.int32,
vars: VarMap::new(),
vars: HashMap::new(),
};
let mut store = ConcreteTypeStore::new();
@ -138,12 +125,12 @@ fn test_primitives() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into();
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].iter().cloned().collect();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
unifier: &mut unifier,
variable_mapping: HashMap::default(),
variable_mapping: Default::default(),
primitives: &primitives,
virtual_checks: &mut virtual_checks,
calls: &mut calls,
@ -167,7 +154,7 @@ fn test_primitives() {
});
let task = CodeGenTask {
subst: Vec::default(),
subst: Default::default(),
symbol_name: "testing".into(),
body: Arc::new(statements),
unifier_index: 0,
@ -199,8 +186,6 @@ fn test_primitives() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
@ -240,7 +225,12 @@ fn test_primitives() {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
let (registry, handles) = WorkerRegistry::create_workers(
threads,
top_level,
&llvm_options,
&f
);
registry.add_task(task);
registry.wait_tasks_complete(handles);
}
@ -251,28 +241,23 @@ fn test_simple_call() {
a = foo(a)
return a * 2
"};
let statements_1 = parse_program(source_1, FileName::default()).unwrap();
let statements_1 = parse_program(source_1, Default::default()).unwrap();
let source_2 = indoc! { "
return a + 1
"};
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
let statements_2 = parse_program(source_2, Default::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let composer: TopLevelComposer = Default::default();
let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone());
let signature = FunSignature {
args: vec![FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }],
ret: primitives.int32,
vars: VarMap::new(),
vars: HashMap::new(),
};
let fun_ty = unifier.add_ty(TypeEnum::TFunc(signature.clone()));
let mut store = ConcreteTypeStore::new();
@ -296,7 +281,7 @@ fn test_simple_call() {
let resolver = Resolver {
id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(),
class_names: Default::default(),
};
resolver.add_id_def("foo".into(), DefinitionId(foo_id));
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
@ -317,12 +302,12 @@ fn test_simple_call() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into();
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].iter().cloned().collect();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
unifier: &mut unifier,
variable_mapping: HashMap::default(),
variable_mapping: Default::default(),
primitives: &primitives,
virtual_checks: &mut virtual_checks,
calls: &mut calls,
@ -351,11 +336,11 @@ fn test_simple_call() {
&mut *top_level.definitions.read()[foo_id].write()
{
instance_to_stmt.insert(
String::new(),
"".to_string(),
FunInstance {
body: Arc::new(statements_2),
calls: Arc::new(inferencer.calls.clone()),
subst: IndexMap::default(),
subst: Default::default(),
unifier_id: 0,
},
);
@ -371,7 +356,7 @@ fn test_simple_call() {
});
let task = CodeGenTask {
subst: Vec::default(),
subst: Default::default(),
symbol_name: "testing".to_string(),
body: Arc::new(statements_1),
calls: Arc::new(calls1),
@ -385,8 +370,6 @@ fn test_simple_call() {
let expected = indoc! {"
; ModuleID = 'test'
source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
@ -432,39 +415,12 @@ fn test_simple_call() {
opt_level: OptimizationLevel::Default,
target: CodeGenTargetMachineOptions::from_host_triple(),
};
let (registry, handles) = WorkerRegistry::create_workers(threads, top_level, &llvm_options, &f);
let (registry, handles) = WorkerRegistry::create_workers(
threads,
top_level,
&llvm_options,
&f
);
registry.add_task(task);
registry.wait_tasks_complete(handles);
}
#[test]
fn test_classes_list_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
}
#[test]
fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
}
#[test]
fn test_classes_ndarray_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -1,23 +1,5 @@
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
dead_code,
clippy::cast_possible_truncation,
clippy::cast_sign_loss,
clippy::enum_glob_use,
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::similar_names,
clippy::too_many_lines,
clippy::wildcard_imports
)]
#![warn(clippy::all)]
#![allow(dead_code)]
pub mod codegen;
pub mod symbol_resolver;

View File

@ -1,18 +1,22 @@
use std::fmt::Debug;
use std::rc::Rc;
use std::sync::Arc;
use std::{collections::HashMap, collections::HashSet, fmt::Display};
use std::rc::Rc;
use crate::typecheck::typedef::TypeEnum;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
toplevel::{type_annotation::TypeAnnotation, DefinitionId, TopLevelDef},
codegen::CodeGenContext,
toplevel::{DefinitionId, TopLevelDef, type_annotation::TypeAnnotation},
};
use crate::{
codegen::CodeGenerator,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, Unifier, VarMap},
typedef::{Type, Unifier},
},
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use itertools::{chain, izip};
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use parking_lot::RwLock;
@ -39,7 +43,7 @@ impl SymbolValue {
constant: &Constant,
expected_ty: Type,
primitives: &PrimitiveStore,
unifier: &mut Unifier,
unifier: &mut Unifier
) -> Result<Self, String> {
match constant {
Constant::None => {
@ -62,30 +66,35 @@ impl SymbolValue {
} else {
Err(format!("Expected {expected_ty:?}, but got str"))
}
}
},
Constant::Int(i) => {
if unifier.unioned(expected_ty, primitives.int32) {
i32::try_from(*i).map(SymbolValue::I32).map_err(|e| e.to_string())
i32::try_from(*i)
.map(SymbolValue::I32)
.map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.int64) {
i64::try_from(*i).map(SymbolValue::I64).map_err(|e| e.to_string())
i64::try_from(*i)
.map(SymbolValue::I64)
.map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.uint32) {
u32::try_from(*i).map(SymbolValue::U32).map_err(|e| e.to_string())
u32::try_from(*i)
.map(SymbolValue::U32)
.map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.uint64) {
u64::try_from(*i).map(SymbolValue::U64).map_err(|e| e.to_string())
u64::try_from(*i)
.map(SymbolValue::U64)
.map_err(|e| e.to_string())
} else {
Err(format!("Expected {}, but got int", unifier.stringify(expected_ty)))
}
}
Constant::Tuple(t) => {
let expected_ty = unifier.get_ty(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx } = expected_ty.as_ref() else {
return Err(format!(
"Expected {:?}, but got Tuple",
expected_ty.get_type_name()
));
let TypeEnum::TTuple { ty } = expected_ty.as_ref() else {
return Err(format!("Expected {:?}, but got Tuple", expected_ty.get_type_name()))
};
assert!(*is_vararg_ctx || ty.len() == t.len());
assert_eq!(ty.len(), t.len());
let elems = t
.iter()
@ -100,45 +109,7 @@ impl SymbolValue {
} else {
Err(format!("Expected {expected_ty:?}, but got float"))
}
}
_ => Err(format!("Unsupported value type {constant:?}")),
}
}
/// Creates a [`SymbolValue`] from a [`Constant`], with its type being inferred from the constant value.
///
/// * `constant` - The constant to create the value from.
pub fn from_constant_inferred(constant: &Constant) -> Result<Self, String> {
match constant {
Constant::None => Ok(SymbolValue::OptionNone),
Constant::Bool(b) => Ok(SymbolValue::Bool(*b)),
Constant::Str(s) => Ok(SymbolValue::Str(s.to_string())),
Constant::Int(i) => {
let i = *i;
if i >= 0 {
i32::try_from(i)
.map(SymbolValue::I32)
.or_else(|_| i64::try_from(i).map(SymbolValue::I64))
.map_err(|_| {
format!("Literal cannot be expressed as any integral type: {i}")
})
} else {
u32::try_from(i)
.map(SymbolValue::U32)
.or_else(|_| u64::try_from(i).map(SymbolValue::U64))
.map_err(|_| {
format!("Literal cannot be expressed as any integral type: {i}")
})
}
}
Constant::Tuple(t) => {
let elems = t
.iter()
.map(Self::from_constant_inferred)
.collect::<Result<Vec<SymbolValue>, _>>()?;
Ok(SymbolValue::Tuple(elems))
}
Constant::Float(f) => Ok(SymbolValue::Double(*f)),
},
_ => Err(format!("Unsupported value type {constant:?}")),
}
}
@ -154,27 +125,28 @@ impl SymbolValue {
SymbolValue::Double(_) => primitives.float,
SymbolValue::Bool(_) => primitives.bool,
SymbolValue::Tuple(vs) => {
let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys, is_vararg_ctx: false })
let vs_tys = vs
.iter()
.map(|v| v.get_type(primitives, unifier))
.collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple {
ty: vs_tys,
})
}
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option,
}
}
/// Returns the [`TypeAnnotation`] representing the data type of this value.
pub fn get_type_annotation(
&self,
primitives: &PrimitiveStore,
unifier: &mut Unifier,
) -> TypeAnnotation {
pub fn get_type_annotation(&self, primitives: &PrimitiveStore, unifier: &mut Unifier) -> TypeAnnotation {
match self {
SymbolValue::Bool(..)
| SymbolValue::Double(..)
| SymbolValue::I32(..)
| SymbolValue::I64(..)
| SymbolValue::U32(..)
| SymbolValue::U64(..)
| SymbolValue::Str(..) => TypeAnnotation::Primitive(self.get_type(primitives, unifier)),
SymbolValue::Bool(..) => TypeAnnotation::Primitive(primitives.bool),
SymbolValue::Double(..) => TypeAnnotation::Primitive(primitives.float),
SymbolValue::I32(..) => TypeAnnotation::Primitive(primitives.int32),
SymbolValue::I64(..) => TypeAnnotation::Primitive(primitives.int64),
SymbolValue::U32(..) => TypeAnnotation::Primitive(primitives.uint32),
SymbolValue::U64(..) => TypeAnnotation::Primitive(primitives.uint64),
SymbolValue::Str(..) => TypeAnnotation::Primitive(primitives.str),
SymbolValue::Tuple(vs) => {
let vs_tys = vs
.iter()
@ -183,13 +155,13 @@ impl SymbolValue {
TypeAnnotation::Tuple(vs_tys)
}
SymbolValue::OptionNone => TypeAnnotation::CustomClass {
id: primitives.option.obj_id(unifier).unwrap(),
id: primitives.option.get_obj_id(unifier),
params: Vec::default(),
},
SymbolValue::OptionSome(v) => {
let ty = v.get_type_annotation(primitives, unifier);
TypeAnnotation::CustomClass {
id: primitives.option.obj_id(unifier).unwrap(),
id: primitives.option.get_obj_id(unifier),
params: vec![ty],
}
}
@ -197,11 +169,7 @@ impl SymbolValue {
}
/// Returns the [`TypeEnum`] representing the data type of this value.
pub fn get_type_enum(
&self,
primitives: &PrimitiveStore,
unifier: &mut Unifier,
) -> Rc<TypeEnum> {
pub fn get_type_enum(&self, primitives: &PrimitiveStore, unifier: &mut Unifier) -> Rc<TypeEnum> {
let ty = self.get_type(primitives, unifier);
unifier.get_ty(ty)
}
@ -232,38 +200,6 @@ impl Display for SymbolValue {
}
}
impl TryFrom<SymbolValue> for u64 {
type Error = ();
/// Tries to convert a [`SymbolValue`] into a [`u64`], returning [`Err`] if the value is not
/// numeric or if the value cannot be converted into a `u64` without overflow.
fn try_from(value: SymbolValue) -> Result<Self, Self::Error> {
match value {
SymbolValue::I32(v) => u64::try_from(v).map_err(|_| ()),
SymbolValue::I64(v) => u64::try_from(v).map_err(|_| ()),
SymbolValue::U32(v) => Ok(u64::from(v)),
SymbolValue::U64(v) => Ok(v),
_ => Err(()),
}
}
}
impl TryFrom<SymbolValue> for i128 {
type Error = ();
/// Tries to convert a [`SymbolValue`] into a [`i128`], returning [`Err`] if the value is not
/// numeric.
fn try_from(value: SymbolValue) -> Result<Self, Self::Error> {
match value {
SymbolValue::I32(v) => Ok(i128::from(v)),
SymbolValue::I64(v) => Ok(i128::from(v)),
SymbolValue::U32(v) => Ok(i128::from(v)),
SymbolValue::U64(v) => Ok(i128::from(v)),
_ => Err(()),
}
}
}
pub trait StaticValue {
/// Returns a unique identifier for this value.
fn get_unique_identifier(&self) -> u64;
@ -296,10 +232,10 @@ pub trait StaticValue {
#[derive(Clone)]
pub enum ValueEnum<'ctx> {
/// [`ValueEnum`] representing a static value.
/// [ValueEnum] representing a static value.
Static(Arc<dyn StaticValue + Send + Sync>),
/// [`ValueEnum`] representing a dynamic value.
/// [ValueEnum] representing a dynamic value.
Dynamic(BasicValueEnum<'ctx>),
}
@ -334,6 +270,7 @@ impl<'ctx> From<StructValue<'ctx>> for ValueEnum<'ctx> {
}
impl<'ctx> ValueEnum<'ctx> {
/// Converts this [`ValueEnum`] to a [`BasicValueEnum`].
pub fn to_basic_value_enum<'a>(
self,
@ -375,7 +312,7 @@ pub trait SymbolResolver {
&self,
_unifier: &mut Unifier,
_top_level_defs: &[Arc<RwLock<TopLevelDef>>],
_primitives: &PrimitiveStore,
_primitives: &PrimitiveStore
) -> Result<(), String> {
Ok(())
}
@ -388,12 +325,12 @@ thread_local! {
"float".into(),
"bool".into(),
"virtual".into(),
"list".into(),
"tuple".into(),
"str".into(),
"Exception".into(),
"uint32".into(),
"uint64".into(),
"Literal".into(),
];
}
@ -412,12 +349,12 @@ pub fn parse_type_annotation<T>(
let float_id = ids[2];
let bool_id = ids[3];
let virtual_id = ids[4];
let tuple_id = ids[5];
let str_id = ids[6];
let exn_id = ids[7];
let uint32_id = ids[8];
let uint64_id = ids[9];
let literal_id = ids[10];
let list_id = ids[5];
let tuple_id = ids[6];
let str_id = ids[7];
let exn_id = ids[8];
let uint32_id = ids[9];
let uint64_id = ids[10];
let name_handling = |id: &StrRef, loc: Location, unifier: &mut Unifier| {
if *id == int32_id {
@ -442,29 +379,40 @@ pub fn parse_type_annotation<T>(
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if !type_vars.is_empty() {
return Err(HashSet::from([format!(
"Unexpected number of type parameters: expected {} but got 0",
type_vars.len()
)]));
return Err(HashSet::from([
format!(
"Unexpected number of type parameters: expected {} but got 0",
type_vars.len()
),
]))
}
let fields = chain(
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
)
.collect();
Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: VarMap::default() }))
.collect();
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields,
params: HashMap::default(),
}))
} else {
Err(HashSet::from([format!("Cannot use function name as type at {loc}")]))
Err(HashSet::from([
format!("Cannot use function name as type at {loc}"),
]))
}
} else {
let ty =
resolver.get_symbol_type(unifier, top_level_defs, primitives, *id).map_err(
|e| HashSet::from([format!("Unknown type annotation at {loc}: {e}")]),
)?;
let ty = resolver
.get_symbol_type(unifier, top_level_defs, primitives, *id)
.map_err(|e| HashSet::from([
format!("Unknown type annotation at {loc}: {e}"),
]))?;
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
Ok(ty)
} else {
Err(HashSet::from([format!("Unknown type annotation {id} at {loc}")]))
Err(HashSet::from([
format!("Unknown type annotation {id} at {loc}"),
]))
}
}
}
@ -474,6 +422,9 @@ pub fn parse_type_annotation<T>(
if *id == virtual_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} else if *id == list_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
} else if *id == tuple_id {
if let Tuple { elts, .. } = &slice.node {
let ty = elts
@ -482,33 +433,12 @@ pub fn parse_type_annotation<T>(
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }))
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
} else {
Err(HashSet::from(["Expected multiple elements for tuple".into()]))
Err(HashSet::from([
"Expected multiple elements for tuple".into()
]))
}
} else if *id == literal_id {
let mut parse_literal = |elt: &Expr<T>| {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)?;
let ty_enum = &*unifier.get_ty_immutable(ty);
match ty_enum {
TypeEnum::TLiteral { values, .. } => Ok(values.clone()),
_ => Err(HashSet::from([format!(
"Expected literal in type argument for Literal at {}",
elt.location
)])),
}
};
let values = if let Tuple { elts, .. } = &slice.node {
elts.iter().map(&mut parse_literal).collect::<Result<Vec<_>, _>>()?
} else {
vec![parse_literal(slice)?]
}
.into_iter()
.flatten()
.collect_vec();
Ok(unifier.get_fresh_literal(values, Some(slice.location)))
} else {
let types = if let Tuple { elts, .. } = &slice.node {
elts.iter()
@ -524,13 +454,15 @@ pub fn parse_type_annotation<T>(
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if types.len() != type_vars.len() {
return Err(HashSet::from([format!(
"Unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
types.len()
)]));
return Err(HashSet::from([
format!(
"Unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
types.len()
),
]))
}
let mut subst = VarMap::new();
let mut subst = HashMap::new();
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
*id
@ -552,7 +484,9 @@ pub fn parse_type_annotation<T>(
}));
Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: subst }))
} else {
Err(HashSet::from(["Cannot use function name as type".into()]))
Err(HashSet::from([
"Cannot use function name as type".into(),
]))
}
}
};
@ -563,13 +497,14 @@ pub fn parse_type_annotation<T>(
if let Name { id, .. } = &value.node {
subscript_name_handle(id, slice, unifier)
} else {
Err(HashSet::from([format!("unsupported type expression at {}", expr.location)]))
Err(HashSet::from([
format!("unsupported type expression at {}", expr.location),
]))
}
}
Constant { value, .. } => SymbolValue::from_constant_inferred(value)
.map(|v| unifier.get_fresh_literal(vec![v], Some(expr.location)))
.map_err(|err| HashSet::from([err])),
_ => Err(HashSet::from([format!("unsupported type expression at {}", expr.location)])),
_ => Err(HashSet::from([
format!("unsupported type expression at {}", expr.location),
])),
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -8,19 +8,14 @@ use std::{
use super::codegen::CodeGenContext;
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{
FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier, VarMap,
};
use super::typecheck::typedef::{FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier};
use crate::{
codegen::CodeGenerator,
symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{
type_inferencer::CodeLocation,
typedef::{CallId, TypeVarId},
},
typecheck::{type_inferencer::CodeLocation, typedef::CallId},
};
use inkwell::values::BasicValueEnum;
use itertools::Itertools;
use itertools::{izip, Itertools};
use nac3parser::ast::{self, Location, Stmt, StrRef};
use parking_lot::RwLock;
@ -30,40 +25,34 @@ pub struct DefinitionId(pub usize);
pub mod builtins;
pub mod composer;
pub mod helper;
pub mod numpy;
pub mod type_annotation;
use composer::*;
use type_annotation::*;
#[cfg(test)]
mod test;
type GenCallCallback = dyn for<'ctx, 'a> Fn(
&mut CodeGenContext<'ctx, 'a>,
Option<(Type, ValueEnum<'ctx>)>,
(&FunSignature, DefinitionId),
Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
&mut dyn CodeGenerator,
) -> Result<Option<BasicValueEnum<'ctx>>, String>
+ Send
+ Sync;
type GenCallCallback = Box<
dyn for<'ctx, 'a> Fn(
&mut CodeGenContext<'ctx, 'a>,
Option<(Type, ValueEnum<'ctx>)>,
(&FunSignature, DefinitionId),
Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
&mut dyn CodeGenerator,
) -> Result<Option<BasicValueEnum<'ctx>>, String>
+ Send
+ Sync,
>;
pub struct GenCall {
fp: Box<GenCallCallback>,
fp: GenCallCallback,
}
impl GenCall {
#[must_use]
pub fn new(fp: Box<GenCallCallback>) -> GenCall {
pub fn new(fp: GenCallCallback) -> GenCall {
GenCall { fp }
}
/// Creates a dummy instance of [`GenCall`], which invokes [`unreachable!()`] with the given
/// `reason`.
#[must_use]
pub fn create_dummy(reason: String) -> GenCall {
Self::new(Box::new(move |_, _, _, _, _| unreachable!("{reason}")))
}
pub fn run<'ctx>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
@ -86,7 +75,7 @@ impl Debug for GenCall {
pub struct FunInstance {
pub body: Arc<Vec<Stmt<Option<Type>>>>,
pub calls: Arc<HashMap<CodeLocation, CallId>>,
pub subst: VarMap,
pub subst: HashMap<u32, Type>,
pub unifier_id: usize,
}
@ -95,7 +84,7 @@ pub enum TopLevelDef {
Class {
/// Name for error messages and symbols.
name: StrRef,
/// Object ID used for [`TypeEnum`].
/// Object ID used for [TypeEnum].
object_id: DefinitionId,
/// type variables bounded to the class.
type_vars: Vec<Type>,
@ -103,10 +92,6 @@ pub enum TopLevelDef {
///
/// Name and type is mutable.
fields: Vec<(StrRef, Type, bool)>,
/// Class Attributes.
///
/// Name, type, value.
attributes: Vec<(StrRef, Type, ast::Constant)>,
/// Class methods, pointing to the corresponding function definition.
methods: Vec<(StrRef, Type, DefinitionId)>,
/// Ancestor classes, including itself.
@ -126,18 +111,18 @@ pub enum TopLevelDef {
/// Function signature.
signature: Type,
/// Instantiated type variable IDs.
var_id: Vec<TypeVarId>,
var_id: Vec<u32>,
/// Function instance to symbol mapping
///
/// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// order, including type variables associated with the class.
/// * Value: Function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
///
/// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
///
/// Rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, FunInstance>,

View File

@ -1,85 +0,0 @@
use crate::{
toplevel::helper::PrimDef,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
};
use itertools::Itertools;
/// Creates a `ndarray` [`Type`] with the given type arguments.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn make_ndarray_ty(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
subst_ndarray_tvars(unifier, primitives.ndarray, dtype, ndims)
}
/// Substitutes type variables in `ndarray`.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn subst_ndarray_tvars(
unifier: &mut Unifier,
ndarray: Type,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PrimDef::NDArray.id());
if dtype.is_none() && ndims.is_none() {
return ndarray;
}
let tvar_ids = params.iter().map(|(obj_id, _)| *obj_id).collect_vec();
debug_assert_eq!(tvar_ids.len(), 2);
let mut tvar_subst = VarMap::new();
if let Some(dtype) = dtype {
tvar_subst.insert(tvar_ids[0], dtype);
}
if let Some(ndims) = ndims {
tvar_subst.insert(tvar_ids[1], ndims);
}
unifier.subst(ndarray, &tvar_subst).unwrap_or(ndarray)
}
fn unpack_ndarray_tvars(unifier: &mut Unifier, ndarray: Type) -> Vec<(TypeVarId, Type)> {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PrimDef::NDArray.id());
debug_assert_eq!(params.len(), 2);
params
.iter()
.sorted_by_key(|(obj_id, _)| *obj_id)
.map(|(var_id, ty)| (*var_id, *ty))
.collect_vec()
}
/// Unpacks the type variable IDs of `ndarray` into a tuple. The elements of the tuple corresponds
/// to `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray`
/// respectively.
pub fn unpack_ndarray_var_ids(unifier: &mut Unifier, ndarray: Type) -> (TypeVarId, TypeVarId) {
unpack_ndarray_tvars(unifier, ndarray).into_iter().map(|v| v.0).collect_tuple().unwrap()
}
/// Unpacks the type variables of `ndarray` into a tuple. The elements of the tuple corresponds to
/// `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray` respectively.
pub fn unpack_ndarray_var_tys(unifier: &mut Unifier, ndarray: Type) -> (Type, Type) {
unpack_ndarray_tvars(unifier, ndarray).into_iter().map(|v| v.1).collect_tuple().unwrap()
}

View File

@ -5,7 +5,7 @@ expression: res_vec
[
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(241)]\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [22]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar11]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar11\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,9 +5,9 @@ expression: res_vec
[
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [24]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [29]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[int32, list[float]]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
]

View File

@ -3,11 +3,11 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec
---
[
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[typevar10, typevar11]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[bool, float], b:B], none]\"), (\"fun\", \"fn[[a:A[bool, float]], A[bool, int32]]\")],\ntype_vars: [\"typevar10\", \"typevar11\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[bool, float], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[bool, float]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[bool, float]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[int32, list[B]]], tuple[A[bool, virtual[A[B, int32]]], B]]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:B], B]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.bar\",\nsig: \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.bar\",\nsig: \"fn[[a:A[int32, list[B]]], tuple[A[bool, virtual[A[B, int32]]], B]]\",\nvar_id: []\n}\n",
]

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [30]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [38]\n}\n",
]

View File

@ -1,6 +1,3 @@
use super::*;
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::into_var_map;
use crate::{
codegen::CodeGenContext,
symbol_resolver::{SymbolResolver, ValueEnum},
@ -11,12 +8,13 @@ use crate::{
},
};
use indoc::indoc;
use nac3parser::ast::FileName;
use nac3parser::{ast::fold::Fold, parser::parse_program};
use parking_lot::Mutex;
use std::{collections::HashMap, sync::Arc};
use test_case::test_case;
use super::*;
struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>,
id_to_def: Mutex<HashMap<StrRef, DefinitionId>>,
@ -54,24 +52,20 @@ impl SymbolResolver for Resolver {
.id_to_type
.lock()
.get(&str)
.copied()
.ok_or_else(|| format!("cannot find symbol `{str}`"))
.cloned()
.ok_or_else(|| format!("cannot find symbol `{}`", str))
}
fn get_symbol_value<'ctx>(
fn get_symbol_value<'ctx, 'a>(
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> {
self.0
.id_to_def
.lock()
.get(&id)
.copied()
self.0.id_to_def.lock().get(&id).cloned()
.ok_or_else(|| HashSet::from(["Unknown identifier".to_string()]))
}
@ -117,14 +111,13 @@ impl SymbolResolver for Resolver {
"register"
)]
fn test_simple_register(source: Vec<&str>) {
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let mut composer: TopLevelComposer = Default::default();
for s in source {
let ast = parse_program(s, FileName::default()).unwrap();
let ast = parse_program(s, Default::default()).unwrap();
let ast = ast[0].clone();
composer.register_top_level(ast, None, "", false).unwrap();
composer.register_top_level(ast, None, "".into(), false).unwrap();
}
}
@ -138,15 +131,14 @@ fn test_simple_register(source: Vec<&str>) {
"register"
)]
fn test_simple_register_without_constructor(source: &str) {
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let ast = parse_program(source, FileName::default()).unwrap();
let mut composer: TopLevelComposer = Default::default();
let ast = parse_program(source, Default::default()).unwrap();
let ast = ast[0].clone();
composer.register_top_level(ast, None, "", true).unwrap();
composer.register_top_level(ast, None, "".into(), true).unwrap();
}
#[test_case(
&[
vec![
indoc! {"
def fun(a: int32) -> int32:
return a
@ -160,36 +152,35 @@ fn test_simple_register_without_constructor(source: &str) {
return 3
"},
],
&[
vec![
"fn[[a:0], 0]",
"fn[[a:2], 4]",
"fn[[b:1], 0]",
],
&[
vec![
"fun",
"foo",
"f"
];
"function compose"
)]
fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
fn test_simple_function_analyze(source: Vec<&str>, tys: Vec<&str>, names: Vec<&str>) {
let mut composer: TopLevelComposer = Default::default();
let internal_resolver = Arc::new(ResolverInternal {
id_to_def: Mutex::default(),
id_to_type: Mutex::default(),
class_names: Mutex::default(),
id_to_def: Default::default(),
id_to_type: Default::default(),
class_names: Default::default(),
});
let resolver =
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
for s in source {
let ast = parse_program(s, FileName::default()).unwrap();
let ast = parse_program(s, Default::default()).unwrap();
let ast = ast[0].clone();
let (id, def_id, ty) =
composer.register_top_level(ast, Some(resolver.clone()), "", false).unwrap();
composer.register_top_level(ast, Some(resolver.clone()), "".into(), false).unwrap();
internal_resolver.add_id_def(id, def_id);
if let Some(ty) = ty {
internal_resolver.add_id_type(id, ty);
@ -215,7 +206,7 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
}
#[test_case(
&[
vec![
indoc! {"
class A():
a: int32
@ -248,11 +239,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&[];
vec![];
"simple class compose"
)]
#[test_case(
&[
vec![
indoc! {"
class Generic_A(Generic[V], B):
a: int64
@ -270,11 +261,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&[];
vec![];
"generic class"
)]
#[test_case(
&[
vec![
indoc! {"
def foo(a: list[int32], b: tuple[T, float]) -> A[B, bool]:
pass
@ -299,11 +290,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&[];
vec![];
"list tuple generic"
)]
#[test_case(
&[
vec![
indoc! {"
class A(Generic[T, V]):
a: A[float, bool]
@ -324,11 +315,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&[];
vec![];
"self1"
)]
#[test_case(
&[
vec![
indoc! {"
class A(Generic[T]):
a: int32
@ -358,11 +349,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&[];
vec![];
"inheritance_override"
)]
#[test_case(
&[
vec![
indoc! {"
class A(Generic[T]):
def __init__(self):
@ -371,11 +362,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&["application of type vars to generic class is not currently supported (at unknown:4:24)"];
vec!["application of type vars to generic class is not currently supported (at unknown:4:24)"];
"err no type var in generic app"
)]
#[test_case(
&[
vec![
indoc! {"
class A(B):
def __init__(self):
@ -387,11 +378,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&["cyclic inheritance detected"];
vec!["cyclic inheritance detected"];
"cyclic1"
)]
#[test_case(
&[
vec![
indoc! {"
class A(B[bool, int64]):
def __init__(self):
@ -408,30 +399,30 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"},
],
&["cyclic inheritance detected"];
vec!["cyclic inheritance detected"];
"cyclic2"
)]
#[test_case(
&[
vec![
indoc! {"
class A:
pass
"}
],
&["5: Class {\nname: \"A\",\ndef_id: DefinitionId(5),\nancestors: [CustomClassKind { id: DefinitionId(5), params: [] }],\nfields: [],\nmethods: [],\ntype_vars: []\n}"];
vec!["5: Class {\nname: \"A\",\ndef_id: DefinitionId(5),\nancestors: [CustomClassKind { id: DefinitionId(5), params: [] }],\nfields: [],\nmethods: [],\ntype_vars: []\n}"];
"simple pass in class"
)]
#[test_case(
&[indoc! {"
vec![indoc! {"
class A:
def __init__():
pass
"}],
&["__init__ method must have a `self` parameter (at unknown:2:5)"];
vec!["__init__ method must have a `self` parameter (at unknown:2:5)"];
"err no self_1"
)]
#[test_case(
&[
vec![
indoc! {"
class A(B, Generic[T], C):
def __init__(self):
@ -449,11 +440,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
"}
],
&["a class definition can only have at most one base class declaration and one generic declaration (at unknown:1:24)"];
vec!["a class definition can only have at most one base class declaration and one generic declaration (at unknown:1:24)"];
"err multiple inheritance"
)]
#[test_case(
&[
vec![
indoc! {"
class A(Generic[T]):
a: int32
@ -474,11 +465,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&["method fun has same name as ancestors' method, but incompatible type"];
vec!["method fun has same name as ancestors' method, but incompatible type"];
"err_incompatible_inheritance_method"
)]
#[test_case(
&[
vec![
indoc! {"
class A(Generic[T]):
a: int32
@ -500,11 +491,11 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&["field `a` has already declared in the ancestor classes"];
vec!["field `a` has already declared in the ancestor classes"];
"err_incompatible_inheritance_field"
)]
#[test_case(
&[
vec![
indoc! {"
class A:
def __init__(self):
@ -517,13 +508,12 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
pass
"}
],
&["duplicate definition of class `A` (at unknown:1:1)"];
vec!["duplicate definition of class `A` (at unknown:1:1)"];
"class same name"
)]
fn test_analyze(source: &[&str], res: &[&str]) {
fn test_analyze(source: Vec<&str>, res: Vec<&str>) {
let print = false;
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let mut composer: TopLevelComposer = Default::default();
let internal_resolver = make_internal_resolver_with_tvar(
vec![
@ -538,15 +528,15 @@ fn test_analyze(source: &[&str], res: &[&str]) {
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
for s in source {
let ast = parse_program(s, FileName::default()).unwrap();
let ast = parse_program(s, Default::default()).unwrap();
let ast = ast[0].clone();
let (id, def_id, ty) = {
match composer.register_top_level(ast, Some(resolver.clone()), "", false) {
match composer.register_top_level(ast, Some(resolver.clone()), "".into(), false) {
Ok(x) => x,
Err(msg) => {
if print {
println!("{msg}");
println!("{}", msg);
} else {
assert_eq!(res[0], msg);
}
@ -592,7 +582,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return fib(n - 1)
"}
],
&[];
vec![];
"simple function"
)]
#[test_case(
@ -625,7 +615,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return a.fun() + 2
"}
],
&[];
vec![];
"simple class body"
)]
#[test_case(
@ -650,7 +640,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return [a, b]
"}
],
&[];
vec![];
"type var fun"
)]
#[test_case(
@ -671,7 +661,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
return ret if self.b else self.fun(self.a)
"}
],
&[];
vec![];
"type var class"
)]
#[test_case(
@ -695,13 +685,12 @@ fn test_analyze(source: &[&str], res: &[&str]) {
self.b = True
"}
],
&[];
vec![];
"no_init_inst_check"
)]
fn test_inference(source: Vec<&str>, res: &[&str]) {
fn test_inference(source: Vec<&str>, res: Vec<&str>) {
let print = true;
let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let mut composer: TopLevelComposer = Default::default();
let internal_resolver = make_internal_resolver_with_tvar(
vec![
@ -723,15 +712,15 @@ fn test_inference(source: Vec<&str>, res: &[&str]) {
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
for s in source {
let ast = parse_program(s, FileName::default()).unwrap();
let ast = parse_program(s, Default::default()).unwrap();
let ast = ast[0].clone();
let (id, def_id, ty) = {
match composer.register_top_level(ast, Some(resolver.clone()), "", false) {
match composer.register_top_level(ast, Some(resolver.clone()), "".into(), false) {
Ok(x) => x,
Err(msg) => {
if print {
println!("{msg}");
println!("{}", msg);
} else {
assert_eq!(res[0], msg);
}
@ -754,7 +743,9 @@ fn test_inference(source: Vec<&str>, res: &[&str]) {
} else {
// skip 5 to skip primitives
let mut stringify_folder = TypeToStringFolder { unifier: &mut composer.unifier };
for (def, _) in composer.definition_ast_list.iter().skip(composer.builtin_num) {
for (_i, (def, _)) in
composer.definition_ast_list.iter().skip(composer.builtin_num).enumerate()
{
let def = &*def.read();
if let TopLevelDef::Function { instance_to_stmt, name, .. } = def {
@ -763,7 +754,7 @@ fn test_inference(source: Vec<&str>, res: &[&str]) {
name,
instance_to_stmt.len()
);
for inst in instance_to_stmt {
for inst in instance_to_stmt.iter() {
let ast = &inst.1.body;
for b in ast.iter() {
println!("{:?}", stringify_folder.fold_stmt(b.clone()).unwrap());
@ -781,29 +772,22 @@ fn make_internal_resolver_with_tvar(
unifier: &mut Unifier,
print: bool,
) -> Arc<ResolverInternal> {
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let res: Arc<ResolverInternal> = ResolverInternal {
id_to_def: Mutex::new(HashMap::from([("list".into(), PrimDef::List.id())])),
id_to_def: Default::default(),
id_to_type: tvars
.into_iter()
.map(|(name, range)| {
(name, {
let tvar = unifier.get_fresh_var_with_range(range.as_slice(), None, None);
let (ty, id) = unifier.get_fresh_var_with_range(range.as_slice(), None, None);
if print {
println!("{}: {:?}, typevar{}", name, tvar.ty, tvar.id);
println!("{}: {:?}, typevar{}", name, ty, id);
}
tvar.ty
ty
})
})
.collect::<HashMap<_, _>>()
.into(),
class_names: Mutex::new(HashMap::from([("list".into(), list)])),
class_names: Default::default(),
}
.into();
if print {
@ -823,8 +807,8 @@ impl<'a> Fold<Option<Type>> for TypeToStringFolder<'a> {
Ok(if let Some(ty) = user {
self.unifier.internal_stringify(
ty,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut |id| format!("class{}", id.to_string()),
&mut |id| format!("typevar{}", id.to_string()),
&mut None,
)
} else {

View File

@ -1,9 +1,5 @@
use super::*;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::{PrimDef, PrimDefDetails};
use crate::typecheck::typedef::VarMap;
use nac3parser::ast::Constant;
use strum::IntoEnumIterator;
use super::*;
#[derive(Clone, Debug)]
pub enum TypeAnnotation {
@ -17,8 +13,17 @@ pub enum TypeAnnotation {
// can only be CustomClassKind
Virtual(Box<TypeAnnotation>),
TypeVar(Type),
/// A `Literal` allowing a subset of literals.
Literal(Vec<Constant>),
/// A constant used in the context of a const-generic variable.
Constant {
/// The non-type variable associated with this constant.
///
/// Invoking [Unifier::get_ty] on this type will return a [TypeEnum::TVar] representing the
/// const generic variable of which this constant is associated with.
ty: Type,
/// The constant value of this constant.
value: SymbolValue
},
List(Box<TypeAnnotation>),
Tuple(Vec<TypeAnnotation>),
}
@ -29,7 +34,9 @@ impl TypeAnnotation {
Primitive(ty) | TypeVar(ty) => unifier.stringify(*ty),
CustomClass { id, params } => {
let class_name = if let Some(ref top) = unifier.top_level {
if let TopLevelDef::Class { name, .. } = &*top.definitions.read()[id.0].read() {
if let TopLevelDef::Class { name, .. } =
&*top.definitions.read()[id.0].read()
{
(*name).into()
} else {
unreachable!()
@ -37,26 +44,25 @@ impl TypeAnnotation {
} else {
format!("class_def_{}", id.0)
};
format!("{}{}", class_name, {
let param_list =
params.iter().map(|p| p.stringify(unifier)).collect_vec().join(", ");
if param_list.is_empty() {
String::new()
} else {
format!("[{param_list}]")
}
})
}
Literal(values) => {
format!("Literal({})", values.iter().map(|v| format!("{v:?}")).join(", "))
}
Virtual(ty) => format!("virtual[{}]", ty.stringify(unifier)),
Tuple(types) => {
format!(
"tuple[{}]",
types.iter().map(|p| p.stringify(unifier)).collect_vec().join(", ")
"{}{}",
class_name,
{
let param_list = params.iter().map(|p| p.stringify(unifier)).collect_vec().join(", ");
if param_list.is_empty() {
String::new()
} else {
format!("[{param_list}]")
}
}
)
}
Constant { value, .. } => format!("Const({value})"),
Virtual(ty) => format!("virtual[{}]", ty.stringify(unifier)),
List(ty) => format!("list[{}]", ty.stringify(unifier)),
Tuple(types) => {
format!("tuple[{}]", types.iter().map(|p| p.stringify(unifier)).collect_vec().join(", "))
}
}
}
}
@ -64,21 +70,22 @@ impl TypeAnnotation {
/// Parses an AST expression `expr` into a [`TypeAnnotation`].
///
/// * `locked` - A [`HashMap`] containing the IDs of known definitions, mapped to a [`Vec`] of all
/// generic variables associated with the definition.
/// generic variables associated with the definition.
/// * `type_var` - The type variable associated with the type argument currently being parsed. Pass
/// [`None`] when this function is invoked externally.
pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
/// [`None`] when this function is invoked externally.
pub fn parse_ast_to_type_annotation_kinds<T>(
resolver: &(dyn SymbolResolver + Send + Sync),
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &ast::Expr<T>,
// the key stores the type_var of this topleveldef::class, we only need this field here
locked: HashMap<DefinitionId, Vec<Type>, S>,
locked: HashMap<DefinitionId, Vec<Type>>,
type_var: Option<Type>,
) -> Result<TypeAnnotation, HashSet<String>> {
let name_handle = |id: &StrRef,
unifier: &mut Unifier,
locked: HashMap<DefinitionId, Vec<Type>, S>| {
locked: HashMap<DefinitionId, Vec<Type>>| {
if id == &"int32".into() {
Ok(TypeAnnotation::Primitive(primitives.int32))
} else if id == &"int64".into() {
@ -94,7 +101,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
} else if id == &"str".into() {
Ok(TypeAnnotation::Primitive(primitives.str))
} else if id == &"Exception".into() {
Ok(TypeAnnotation::CustomClass { id: PrimDef::Exception.id(), params: Vec::default() })
Ok(TypeAnnotation::CustomClass { id: DefinitionId(7), params: Vec::default() })
} else if let Ok(obj_id) = resolver.get_identifier_def(*id) {
let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read();
@ -102,10 +109,12 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
type_vars.clone()
} else {
return Err(HashSet::from([format!(
"function cannot be used as a type (at {})",
expr.location
)]));
return Err(HashSet::from([
format!(
"function cannot be used as a type (at {})",
expr.location
),
]))
}
} else {
locked.get(&obj_id).unwrap().clone()
@ -113,29 +122,29 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
};
// check param number here
if !type_vars.is_empty() {
return Err(HashSet::from([format!(
"expect {} type variable parameter but got 0 (at {})",
type_vars.len(),
expr.location,
)]));
return Err(HashSet::from([
format!(
"expect {} type variable parameter but got 0 (at {})",
type_vars.len(),
expr.location,
),
]))
}
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
} else if let Ok(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
let var = unifier.get_fresh_var(Some(*id), Some(expr.location)).ty;
let var = unifier.get_fresh_var(Some(*id), Some(expr.location)).0;
unifier.unify(var, ty).unwrap();
Ok(TypeAnnotation::TypeVar(ty))
} else {
Err(HashSet::from([format!(
"`{}` is not a valid type annotation (at {})",
id, expr.location
)]))
Err(HashSet::from([
format!("`{}` is not a valid type annotation (at {})", id, expr.location),
]))
}
} else {
Err(HashSet::from([format!(
"`{}` is not a valid type annotation (at {})",
id, expr.location
)]))
Err(HashSet::from([
format!("`{}` is not a valid type annotation (at {})", id, expr.location),
]))
}
};
@ -143,12 +152,12 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
|id: &StrRef,
slice: &ast::Expr<T>,
unifier: &mut Unifier,
mut locked: HashMap<DefinitionId, Vec<Type>, S>| {
if ["virtual".into(), "Generic".into(), "tuple".into(), "Option".into()].contains(id) {
return Err(HashSet::from([format!(
"keywords cannot be class name (at {})",
expr.location
)]));
mut locked: HashMap<DefinitionId, Vec<Type>>| {
if ["virtual".into(), "Generic".into(), "list".into(), "tuple".into(), "Option".into()].contains(id)
{
return Err(HashSet::from([
format!("keywords cannot be class name (at {})", expr.location),
]))
}
let obj_id = resolver.get_identifier_def(*id)?;
let type_vars = {
@ -171,16 +180,19 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
vec![slice]
};
if type_vars.len() != params_ast.len() {
return Err(HashSet::from([format!(
"expect {} type parameters but got {} (at {})",
type_vars.len(),
params_ast.len(),
params_ast[0].location,
)]));
return Err(HashSet::from([
format!(
"expect {} type parameters but got {} (at {})",
type_vars.len(),
params_ast.len(),
params_ast[0].location,
),
]))
}
let result = params_ast
.iter()
.map(|x| {
.enumerate()
.map(|(idx, x)| {
parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
@ -191,6 +203,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
locked.insert(obj_id, type_vars.clone());
locked.clone()
},
Some(type_vars[idx]),
)
})
.collect::<Result<Vec<_>, _>>()?;
@ -205,7 +218,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
"application of type vars to generic class is not currently supported (at {})",
params_ast[0].location
),
]));
]))
}
};
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
@ -226,6 +239,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
primitives,
slice.as_ref(),
locked,
None,
)?;
if !matches!(def, TypeAnnotation::CustomClass { .. }) {
unreachable!("must be concretized custom class kind in the virtual")
@ -233,6 +247,24 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
Ok(TypeAnnotation::Virtual(def.into()))
}
// list
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"list".into())
} =>
{
let def_ann = parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
slice.as_ref(),
locked,
None,
)?;
Ok(TypeAnnotation::List(def_ann.into()))
}
// option
ast::ExprKind::Subscript { value, slice, .. }
if {
@ -246,6 +278,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
primitives,
slice.as_ref(),
locked,
None,
)?;
let id =
if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(primitives.option).as_ref() {
@ -279,76 +312,54 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
primitives,
e,
locked.clone(),
None,
)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(TypeAnnotation::Tuple(type_annotations))
}
// Literal
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == &"Literal".into())
} =>
{
let tup_elts = {
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.as_slice()
} else {
std::slice::from_ref(slice.as_ref())
}
};
let type_annotations = tup_elts
.iter()
.map(|e| match &e.node {
ast::ExprKind::Constant { value, .. } => {
Ok(TypeAnnotation::Literal(vec![value.clone()]))
}
_ => parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
e,
locked.clone(),
),
})
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.flat_map(|type_ann| match type_ann {
TypeAnnotation::Literal(values) => values,
_ => unreachable!(),
})
.collect_vec();
if type_annotations.len() == 1 {
Ok(TypeAnnotation::Literal(type_annotations))
} else {
Err(HashSet::from([format!(
"multiple literal bounds are currently unsupported (at {})",
value.location
)]))
}
}
// custom class
ast::ExprKind::Subscript { value, slice, .. } => {
if let ast::ExprKind::Name { id, .. } = &value.node {
class_name_handle(id, slice, unifier, locked)
} else {
Err(HashSet::from([format!(
"unsupported expression type for class name (at {})",
value.location
)]))
Err(HashSet::from([
format!("unsupported expression type for class name (at {})", value.location)
]))
}
}
ast::ExprKind::Constant { value, .. } => Ok(TypeAnnotation::Literal(vec![value.clone()])),
ast::ExprKind::Constant { value, .. } => {
let type_var = type_var.expect("Expect type variable to be present");
_ => Err(HashSet::from([format!(
"unsupported expression for type annotation (at {})",
expr.location
)])),
let ntv_ty_enum = unifier.get_ty_immutable(type_var);
let TypeEnum::TVar { range: underlying_ty, .. } = ntv_ty_enum.as_ref() else {
unreachable!()
};
let underlying_ty = underlying_ty[0];
let value = SymbolValue::from_constant(value, underlying_ty, primitives, unifier)
.map_err(|err| HashSet::from([err]))?;
if matches!(value, SymbolValue::Str(_) | SymbolValue::Tuple(_) | SymbolValue::OptionSome(_)) {
return Err(HashSet::from([
format!(
"expression {value} is not allowed for constant type annotation (at {})",
expr.location
),
]))
}
Ok(TypeAnnotation::Constant {
ty: type_var,
value,
})
}
_ => Err(HashSet::from([
format!("unsupported expression for type annotation (at {})", expr.location),
])),
}
}
@ -358,9 +369,8 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
pub fn get_type_from_type_annotation_kinds(
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
ann: &TypeAnnotation,
subst_list: &mut Option<Vec<Type>>,
subst_list: &mut Option<Vec<Type>>
) -> Result<Type, HashSet<String>> {
match ann {
TypeAnnotation::CustomClass { id: obj_id, params } => {
@ -371,82 +381,50 @@ pub fn get_type_from_type_annotation_kinds(
};
if type_vars.len() != params.len() {
return Err(HashSet::from([format!(
"unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
params.len()
)]));
return Err(HashSet::from([
format!(
"unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
params.len()
),
]))
}
let param_ty = params
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
})
.collect::<Result<Vec<_>, _>>()?;
let param_ty = params
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
x,
subst_list
)
})
.collect::<Result<Vec<_>, _>>()?;
let ty = if let Some(prim_def) = PrimDef::iter().find(|prim| prim.id() == *obj_id) {
// Primitive TopLevelDefs do not contain all fields that are present in their Type
// counterparts, so directly perform subst on the Type instead.
let PrimDefDetails::PrimClass { get_ty_fn, .. } = prim_def.details() else {
unreachable!()
};
let base_ty = get_ty_fn(primitives);
let params =
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty_immutable(base_ty) {
params.clone()
} else {
unreachable!()
};
unifier
.subst(
get_ty_fn(primitives),
&params
.iter()
.zip(param_ty)
.map(|(obj_tv, param)| (*obj_tv.0, param))
.collect(),
)
.unwrap_or(base_ty)
} else {
let subst = {
// check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result = VarMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar {
id,
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
let subst = {
// check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result: HashMap<u32, Type> = HashMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar { id, range, fields: None, name, loc, is_const_generic: false } => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.0, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([
format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
@ -455,104 +433,104 @@ pub fn get_type_from_type_annotation_kinds(
&mut None
),
*id
)]));
}
)
]))
}
}
TypeEnum::TVar {
id, range, name, loc, is_const_generic: true, ..
} => {
let ty = range[0];
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp =
unifier.get_fresh_const_generic_var(ty, *name, *loc);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
TypeEnum::TVar { id, range, name, loc, is_const_generic: true, .. } => {
let ty = range[0];
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_const_generic_var(
ty,
*name,
*loc,
);
unifier.unify(temp.0, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([
format!(
"cannot apply type {} to type variable {}",
unifier.stringify(p),
name.unwrap_or_else(|| format!("typevar{id}").into()),
)]));
}
),
]))
}
_ => unreachable!("must be generic type var"),
}
}
result
};
// Class Attributes keep a copy with Class Definition and are not added to objects
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
_ => unreachable!("must be generic type var"),
}
}
ty
result
};
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
}
}
Ok(ty)
}
TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty),
TypeAnnotation::Literal(values) => {
let values = values
.iter()
.map(SymbolValue::from_constant_inferred)
.collect::<Result<Vec<_>, _>>()
.map_err(|err| HashSet::from([err]))?;
TypeAnnotation::Constant { ty, value, .. } => {
let ty_enum = unifier.get_ty(*ty);
let TypeEnum::TVar { range: ntv_underlying_ty, loc, is_const_generic: true, .. } = &*ty_enum else {
unreachable!("{} ({})", unifier.stringify(*ty), ty_enum.get_type_name());
};
let var = unifier.get_fresh_literal(values, None);
let ty = ntv_underlying_ty[0];
let var = unifier.get_fresh_constant(value.clone(), ty, *loc);
Ok(var)
}
TypeAnnotation::Virtual(ty) => {
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
ty.as_ref(),
subst_list,
subst_list
)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
}
TypeAnnotation::List(ty) => {
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
ty.as_ref(),
subst_list
)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
}
TypeAnnotation::Tuple(tys) => {
let tys = tys
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys, is_vararg_ctx: false }))
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys }))
}
}
}
@ -585,7 +563,7 @@ pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<Ty
let mut result: Vec<TypeAnnotation> = Vec::new();
match ann {
TypeAnnotation::TypeVar(..) => result.push(ann.clone()),
TypeAnnotation::Virtual(ann) => {
TypeAnnotation::Virtual(ann) | TypeAnnotation::List(ann) => {
result.extend(get_type_var_contained_in_type_annotation(ann.as_ref()));
}
TypeAnnotation::CustomClass { params, .. } => {
@ -598,7 +576,7 @@ pub fn get_type_var_contained_in_type_annotation(ann: &TypeAnnotation) -> Vec<Ty
result.extend(get_type_var_contained_in_type_annotation(a));
}
}
TypeAnnotation::Primitive(..) | TypeAnnotation::Literal { .. } => {}
TypeAnnotation::Primitive(..) | TypeAnnotation::Constant { .. } => {}
}
result
}
@ -619,14 +597,14 @@ pub fn check_overload_type_annotation_compatible(
let (
TypeEnum::TVar { id: a, fields: None, .. },
TypeEnum::TVar { id: b, fields: None, .. },
) = (a, b)
else {
) = (a, b) else {
unreachable!("must be type var")
};
a == b
}
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b)) => {
(TypeAnnotation::Virtual(a), TypeAnnotation::Virtual(b))
| (TypeAnnotation::List(a), TypeAnnotation::List(b)) => {
check_overload_type_annotation_compatible(a.as_ref(), b.as_ref(), unifier)
}

View File

@ -1,18 +1,16 @@
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::TypeEnum;
use super::type_inferencer::Inferencer;
use super::typedef::{Type, TypeEnum};
use nac3parser::ast::{
self, Constant, Expr, ExprKind,
Operator::{LShift, RShift},
Stmt, StmtKind, StrRef,
};
use super::typedef::Type;
use nac3parser::ast::{self, Constant, Expr, ExprKind, Operator::{LShift, RShift}, Stmt, StmtKind, StrRef};
use std::{collections::HashSet, iter::once};
impl<'a> Inferencer<'a> {
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
if matches!(expr.custom, Some(ty) if self.unifier.unioned(ty, self.primitives.none)) {
Err(HashSet::from([format!("Error at {}: cannot have value none", expr.location)]))
Err(HashSet::from([
format!("Error at {}: cannot have value none", expr.location),
]))
} else {
Ok(())
}
@ -24,9 +22,9 @@ impl<'a> Inferencer<'a> {
defined_identifiers: &mut HashSet<StrRef>,
) -> Result<(), HashSet<String>> {
match &pattern.node {
ExprKind::Name { id, .. } if id == &"none".into() => {
Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)]))
}
ExprKind::Name { id, .. } if id == &"none".into() => Err(HashSet::from([
format!("cannot assign to a `none` (at {})", pattern.location),
])),
ExprKind::Name { id, .. } => {
if !defined_identifiers.contains(id) {
defined_identifiers.insert(*id);
@ -34,34 +32,32 @@ impl<'a> Inferencer<'a> {
self.should_have_value(pattern)?;
Ok(())
}
ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
ExprKind::Tuple { elts, .. } => {
for elt in elts {
self.check_pattern(elt, defined_identifiers)?;
self.should_have_value(elt)?;
}
Ok(())
}
ExprKind::Starred { value, .. } => {
self.check_pattern(value, defined_identifiers)?;
self.should_have_value(value)?;
Ok(())
}
ExprKind::Subscript { value, slice, .. } => {
self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?;
self.check_expr(slice, defined_identifiers)?;
if let TypeEnum::TTuple { .. } = &*self.unifier.get_ty(value.custom.unwrap()) {
return Err(HashSet::from([format!(
"Error at {}: cannot assign to tuple element",
value.location
)]));
return Err(HashSet::from([
format!(
"Error at {}: cannot assign to tuple element",
value.location
),
]))
}
Ok(())
}
ExprKind::Constant { .. } => Err(HashSet::from([format!(
"cannot assign to a constant (at {})",
pattern.location
)])),
ExprKind::Constant { .. } => {
Err(HashSet::from([
format!("cannot assign to a constant (at {})", pattern.location),
]))
}
_ => self.check_expr(pattern, defined_identifiers),
}
}
@ -73,15 +69,14 @@ impl<'a> Inferencer<'a> {
) -> Result<(), HashSet<String>> {
// there are some cases where the custom field is None
if let Some(ty) = &expr.custom {
if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. })
&& !ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::List.id())
&& !self.unifier.is_concrete(*ty, &self.function_data.bound_variables)
{
return Err(HashSet::from([format!(
"expected concrete type at {} but got {}",
expr.location,
self.unifier.get_ty(*ty).get_type_name()
)]));
if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. }) && !self.unifier.is_concrete(*ty, &self.function_data.bound_variables) {
return Err(HashSet::from([
format!(
"expected concrete type at {} but got {}",
expr.location,
self.unifier.get_ty(*ty).get_type_name()
)
]))
}
}
match &expr.node {
@ -101,10 +96,12 @@ impl<'a> Inferencer<'a> {
self.defined_identifiers.insert(*id);
}
Err(e) => {
return Err(HashSet::from([format!(
"type error at identifier `{}` ({}) at {}",
id, e, expr.location
)]))
return Err(HashSet::from([
format!(
"type error at identifier `{}` ({}) at {}",
id, e, expr.location
)
]))
}
}
}
@ -130,13 +127,17 @@ impl<'a> Inferencer<'a> {
// Check whether a bitwise shift has a negative RHS constant value
if *op == LShift || *op == RShift {
if let ExprKind::Constant { value, .. } = &right.node {
let Constant::Int(rhs_val) = value else { unreachable!() };
let Constant::Int(rhs_val) = value else {
unreachable!()
};
if *rhs_val < 0 {
return Err(HashSet::from([format!(
"shift count is negative at {}",
right.location
)]));
return Err(HashSet::from([
format!(
"shift count is negative at {}",
right.location
),
]))
}
}
}
@ -207,31 +208,6 @@ impl<'a> Inferencer<'a> {
Ok(())
}
/// Check that the return value is a non-`alloca` type, effectively only allowing primitive types.
///
/// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which
/// is freed when the function returns.
fn check_return_value_ty(&mut self, ret_ty: Type) -> bool {
if cfg!(feature = "no-escape-analysis") {
true
} else {
match &*self.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { .. } => [
self.primitives.int32,
self.primitives.int64,
self.primitives.uint32,
self.primitives.uint64,
self.primitives.float,
self.primitives.bool,
]
.iter()
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)),
TypeEnum::TTuple { ty, .. } => ty.iter().all(|t| self.check_return_value_ty(*t)),
_ => false,
}
}
}
// check statements for proper identifier def-use and return on all paths
fn check_stmt(
&mut self,
@ -326,30 +302,6 @@ impl<'a> Inferencer<'a> {
if let Some(value) = value {
self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?;
// Check that the return value is a non-`alloca` type, effectively only allowing primitive types.
// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which
// is freed when the function returns.
if let Some(ret_ty) = value.custom {
// Explicitly allow ellipsis as a return value, as the type of the ellipsis is contextually
// inferred and just generates an unconditional assertion
if matches!(
value.node,
ExprKind::Constant { value: Constant::Ellipsis, .. }
) {
return Ok(true);
}
if !self.check_return_value_ty(ret_ty) {
return Err(HashSet::from([
format!(
"return value of type {} must be a primitive or a tuple of primitives at {}",
self.unifier.stringify(ret_ty),
value.location,
),
]));
}
}
}
Ok(true)
}
@ -372,7 +324,7 @@ impl<'a> Inferencer<'a> {
let mut ret = false;
for stmt in block {
if ret {
eprintln!("warning: dead code at {}\n", stmt.location);
eprintln!("warning: dead code at {:?}\n", stmt.location);
}
if self.check_stmt(stmt, defined_identifiers)? {
ret = true;

View File

@ -1,150 +1,73 @@
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::PrimDef;
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
use crate::typecheck::{
type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
};
use itertools::{iproduct, Itertools};
use nac3parser::ast::StrRef;
use nac3parser::ast::{Cmpop, Operator, Unaryop};
use std::cmp::max;
use std::collections::HashMap;
use std::rc::Rc;
use strum::IntoEnumIterator;
/// The variant of a binary operator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BinopVariant {
/// The normal variant.
/// For addition, it would be `+`.
Normal,
/// The "Augmented Assigning Operator" variant.
/// For addition, it would be `+=`.
AugAssign,
}
/// A binary operator with its variant.
#[derive(Debug, Clone, Copy)]
pub struct Binop {
/// The base [`Operator`] of this binary operator.
pub base: Operator,
/// The variant of this binary operator.
pub variant: BinopVariant,
}
impl Binop {
/// Make a [`Binop`] of the normal variant from an [`Operator`].
#[must_use]
pub fn normal(base: Operator) -> Self {
Binop { base, variant: BinopVariant::Normal }
}
/// Make a [`Binop`] of the aug assign variant from an [`Operator`].
#[must_use]
pub fn aug_assign(base: Operator) -> Self {
Binop { base, variant: BinopVariant::AugAssign }
}
}
/// Details about an operator (unary, binary, etc...) in Python
#[derive(Debug, Clone, Copy)]
pub struct OpInfo {
/// The method name of the binary operator.
/// For addition, this would be `__add__`, and `__iadd__` if
/// it is the augmented assigning variant.
pub method_name: &'static str,
/// The symbol of the binary operator.
/// For addition, this would be `+`, and `+=` if
/// it is the augmented assigning variant.
pub symbol: &'static str,
}
/// Helper macro to conveniently build an [`OpInfo`].
///
/// Example usage: `make_info("add", "+")` generates `OpInfo { name: "__add__", symbol: "+" }`
macro_rules! make_op_info {
($name:expr, $symbol:expr) => {
OpInfo { method_name: concat!("__", $name, "__"), symbol: $symbol }
};
}
pub trait HasOpInfo {
fn op_info(&self) -> OpInfo;
}
fn try_get_cmpop_info(op: Cmpop) -> Option<OpInfo> {
#[must_use]
pub fn binop_name(op: &Operator) -> &'static str {
match op {
Cmpop::Lt => Some(make_op_info!("lt", "<")),
Cmpop::LtE => Some(make_op_info!("le", "<=")),
Cmpop::Gt => Some(make_op_info!("gt", ">")),
Cmpop::GtE => Some(make_op_info!("ge", ">=")),
Cmpop::Eq => Some(make_op_info!("eq", "==")),
Cmpop::NotEq => Some(make_op_info!("ne", "!=")),
Operator::Add => "__add__",
Operator::Sub => "__sub__",
Operator::Div => "__truediv__",
Operator::Mod => "__mod__",
Operator::Mult => "__mul__",
Operator::Pow => "__pow__",
Operator::BitOr => "__or__",
Operator::BitXor => "__xor__",
Operator::BitAnd => "__and__",
Operator::LShift => "__lshift__",
Operator::RShift => "__rshift__",
Operator::FloorDiv => "__floordiv__",
Operator::MatMult => "__matmul__",
}
}
#[must_use]
pub fn binop_assign_name(op: &Operator) -> &'static str {
match op {
Operator::Add => "__iadd__",
Operator::Sub => "__isub__",
Operator::Div => "__itruediv__",
Operator::Mod => "__imod__",
Operator::Mult => "__imul__",
Operator::Pow => "__ipow__",
Operator::BitOr => "__ior__",
Operator::BitXor => "__ixor__",
Operator::BitAnd => "__iand__",
Operator::LShift => "__ilshift__",
Operator::RShift => "__irshift__",
Operator::FloorDiv => "__ifloordiv__",
Operator::MatMult => "__imatmul__",
}
}
#[must_use]
pub fn unaryop_name(op: &Unaryop) -> &'static str {
match op {
Unaryop::UAdd => "__pos__",
Unaryop::USub => "__neg__",
Unaryop::Not => "__not__",
Unaryop::Invert => "__inv__",
}
}
#[must_use]
pub fn comparison_name(op: &Cmpop) -> Option<&'static str> {
match op {
Cmpop::Lt => Some("__lt__"),
Cmpop::LtE => Some("__le__"),
Cmpop::Gt => Some("__gt__"),
Cmpop::GtE => Some("__ge__"),
Cmpop::Eq => Some("__eq__"),
Cmpop::NotEq => Some("__ne__"),
_ => None,
}
}
impl OpInfo {
#[must_use]
pub fn supports_cmpop(op: Cmpop) -> bool {
try_get_cmpop_info(op).is_some()
}
}
impl HasOpInfo for Cmpop {
fn op_info(&self) -> OpInfo {
try_get_cmpop_info(*self).expect("{self:?} is not supported")
}
}
impl HasOpInfo for Binop {
fn op_info(&self) -> OpInfo {
// Helper macro to generate both the normal variant [`OpInfo`] and the
// augmented assigning variant [`OpInfo`] for a binary operator conveniently.
macro_rules! info {
($name:literal, $symbol:literal) => {
(
make_op_info!($name, $symbol),
make_op_info!(concat!("i", $name), concat!($symbol, "=")),
)
};
}
let (normal_variant, aug_assign_variant) = match self.base {
Operator::Add => info!("add", "+"),
Operator::Sub => info!("sub", "-"),
Operator::Div => info!("truediv", "/"),
Operator::Mod => info!("mod", "%"),
Operator::Mult => info!("mul", "*"),
Operator::Pow => info!("pow", "**"),
Operator::BitOr => info!("or", "|"),
Operator::BitXor => info!("xor", "^"),
Operator::BitAnd => info!("and", "&"),
Operator::LShift => info!("lshift", "<<"),
Operator::RShift => info!("rshift", ">>"),
Operator::FloorDiv => info!("floordiv", "//"),
Operator::MatMult => info!("matmul", "@"),
};
match self.variant {
BinopVariant::Normal => normal_variant,
BinopVariant::AugAssign => aug_assign_variant,
}
}
}
impl HasOpInfo for Unaryop {
fn op_info(&self) -> OpInfo {
match self {
Unaryop::UAdd => make_op_info!("pos", "+"),
Unaryop::USub => make_op_info!("neg", "-"),
Unaryop::Not => make_op_info!("not", "not"), // i.e., `not False`, so the symbol is just `not`.
Unaryop::Invert => make_op_info!("inv", "~"),
}
}
}
pub(super) fn with_fields<F>(unifier: &mut Unifier, ty: Type, f: F)
where
F: FnOnce(&mut Unifier, &mut HashMap<StrRef, (Type, bool)>),
@ -167,28 +90,40 @@ pub fn impl_binop(
_store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
ret_ty: Type,
ops: &[Operator],
) {
with_fields(unifier, ty, |unifier, fields| {
let (other_ty, other_var_id) = if other_ty.len() == 1 {
(other_ty[0], None)
} else {
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
(tvar.ty, Some(tvar.id))
let (ty, var_id) = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
(ty, Some(var_id))
};
let function_vars = if let Some(var_id) = other_var_id {
vec![(var_id, other_ty)].into_iter().collect::<VarMap>()
vec![(var_id, other_ty)].into_iter().collect::<HashMap<_, _>>()
} else {
VarMap::new()
HashMap::new()
};
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
let op = Binop { base: *base_op, variant };
fields.insert(op.op_info().method_name.into(), {
for op in ops {
fields.insert(binop_name(op).into(), {
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
vars: function_vars.clone(),
args: vec![FuncArg {
ty: other_ty,
default_value: None,
name: "other".into(),
}],
})),
false,
)
});
fields.insert(binop_assign_name(op).into(), {
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
@ -197,7 +132,6 @@ pub fn impl_binop(
ty: other_ty,
default_value: None,
name: "other".into(),
is_vararg: false,
}],
})),
false,
@ -207,17 +141,15 @@ pub fn impl_binop(
});
}
pub fn impl_unaryop(unifier: &mut Unifier, ty: Type, ret_ty: Option<Type>, ops: &[Unaryop]) {
pub fn impl_unaryop(unifier: &mut Unifier, ty: Type, ret_ty: Type, ops: &[Unaryop]) {
with_fields(unifier, ty, |unifier, fields| {
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for op in ops {
fields.insert(
op.op_info().method_name.into(),
unaryop_name(op).into(),
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
vars: VarMap::new(),
vars: HashMap::new(),
args: vec![],
})),
false,
@ -229,40 +161,23 @@ pub fn impl_unaryop(unifier: &mut Unifier, ty: Type, ret_ty: Option<Type>, ops:
pub fn impl_cmpop(
unifier: &mut Unifier,
_store: &PrimitiveStore,
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
other_ty: Type,
ops: &[Cmpop],
ret_ty: Option<Type>,
) {
with_fields(unifier, ty, |unifier, fields| {
let (other_ty, other_var_id) = if other_ty.len() == 1 {
(other_ty[0], None)
} else {
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
(tvar.ty, Some(tvar.id))
};
let function_vars = if let Some(var_id) = other_var_id {
vec![(var_id, other_ty)].into_iter().collect::<VarMap>()
} else {
VarMap::new()
};
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for op in ops {
fields.insert(
op.op_info().method_name.into(),
comparison_name(op).unwrap().into(),
(
unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty,
vars: function_vars.clone(),
ret: store.bool,
vars: HashMap::new(),
args: vec![FuncArg {
ty: other_ty,
default_value: None,
name: "other".into(),
is_vararg: false,
}],
})),
false,
@ -278,7 +193,7 @@ pub fn impl_basic_arithmetic(
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
ret_ty: Type,
) {
impl_binop(
unifier,
@ -296,7 +211,7 @@ pub fn impl_pow(
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
ret_ty: Type,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::Pow]);
}
@ -308,32 +223,19 @@ pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty
store,
ty,
&[ty],
Some(ty),
ty,
&[Operator::BitAnd, Operator::BitOr, Operator::BitXor],
);
}
/// `LShift`, `RShift`
pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_binop(
unifier,
store,
ty,
&[store.int32, store.uint32],
Some(ty),
&[Operator::LShift, Operator::RShift],
);
impl_binop(unifier, store, ty, &[store.int32, store.uint32], ty, &[Operator::LShift, Operator::RShift]);
}
/// `Div`
pub fn impl_div(
unifier: &mut Unifier,
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::Div]);
pub fn impl_div(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type]) {
impl_binop(unifier, store, ty, other_ty, store.float, &[Operator::Div]);
}
/// `FloorDiv`
@ -342,7 +244,7 @@ pub fn impl_floordiv(
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
ret_ty: Type,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::FloorDiv]);
}
@ -353,340 +255,40 @@ pub fn impl_mod(
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
ret_ty: Type,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::Mod]);
}
/// [`Operator::MatMult`]
pub fn impl_matmul(
unifier: &mut Unifier,
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[Operator::MatMult]);
}
/// `UAdd`, `USub`
pub fn impl_sign(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Option<Type>) {
impl_unaryop(unifier, ty, ret_ty, &[Unaryop::UAdd, Unaryop::USub]);
pub fn impl_sign(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, ty, ty, &[Unaryop::UAdd, Unaryop::USub]);
}
/// `Invert`
pub fn impl_invert(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Option<Type>) {
impl_unaryop(unifier, ty, ret_ty, &[Unaryop::Invert]);
pub fn impl_invert(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, ty, ty, &[Unaryop::Invert]);
}
/// `Not`
pub fn impl_not(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Option<Type>) {
impl_unaryop(unifier, ty, ret_ty, &[Unaryop::Not]);
pub fn impl_not(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, ty, store.bool, &[Unaryop::Not]);
}
/// `Lt`, `LtE`, `Gt`, `GtE`
pub fn impl_comparison(
unifier: &mut Unifier,
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
pub fn impl_comparison(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type) {
impl_cmpop(
unifier,
store,
ty,
other_ty,
&[Cmpop::Lt, Cmpop::Gt, Cmpop::LtE, Cmpop::GtE],
ret_ty,
);
}
/// `Eq`, `NotEq`
pub fn impl_eq(
unifier: &mut Unifier,
store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Option<Type>,
) {
impl_cmpop(unifier, store, ty, other_ty, &[Cmpop::Eq, Cmpop::NotEq], ret_ty);
}
/// Returns the expected return type of binary operations with at least one `ndarray` operand.
pub fn typeof_ndarray_broadcast(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
left: Type,
right: Type,
) -> Result<Type, String> {
let is_left_ndarray = left.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = right.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
assert!(is_left_ndarray || is_right_ndarray);
if is_left_ndarray && is_right_ndarray {
// Perform broadcasting on two ndarray operands.
let (left_ty_dtype, left_ty_ndims) = unpack_ndarray_var_tys(unifier, left);
let (right_ty_dtype, right_ty_ndims) = unpack_ndarray_var_tys(unifier, right);
assert!(unifier.unioned(left_ty_dtype, right_ty_dtype));
let left_ty_ndims = match &*unifier.get_ty_immutable(left_ty_ndims) {
TypeEnum::TLiteral { values, .. } => values.clone(),
_ => unreachable!(),
};
let right_ty_ndims = match &*unifier.get_ty_immutable(right_ty_ndims) {
TypeEnum::TLiteral { values, .. } => values.clone(),
_ => unreachable!(),
};
let res_ndims = left_ty_ndims
.into_iter()
.cartesian_product(right_ty_ndims)
.map(|(left, right)| {
let left_val = u64::try_from(left).unwrap();
let right_val = u64::try_from(right).unwrap();
max(left_val, right_val)
})
.unique()
.map(SymbolValue::U64)
.collect_vec();
let res_ndims = unifier.get_fresh_literal(res_ndims, None);
Ok(make_ndarray_ty(unifier, primitives, Some(left_ty_dtype), Some(res_ndims)))
} else {
let (ndarray_ty, scalar_ty) = if is_left_ndarray { (left, right) } else { (right, left) };
let (ndarray_ty_dtype, _) = unpack_ndarray_var_tys(unifier, ndarray_ty);
if unifier.unioned(ndarray_ty_dtype, scalar_ty) {
Ok(ndarray_ty)
} else {
let (expected_ty, actual_ty) = if is_left_ndarray {
(ndarray_ty_dtype, scalar_ty)
} else {
(scalar_ty, ndarray_ty_dtype)
};
Err(format!(
"Expected right-hand side operand to be {}, got {}",
unifier.stringify(expected_ty),
unifier.stringify(actual_ty),
))
}
}
}
/// Returns the return type given a binary operator and its primitive operands.
pub fn typeof_binop(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
op: Operator,
lhs: Type,
rhs: Type,
) -> Result<Option<Type>, String> {
let op = Binop { base: op, variant: BinopVariant::Normal };
let is_left_list = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_right_list = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::List.id());
let is_left_ndarray = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
Ok(Some(match op.base {
Operator::Add | Operator::Sub | Operator::Mult | Operator::Mod | Operator::FloorDiv => {
if is_left_list || is_right_list {
if ![Operator::Add, Operator::Mult].contains(&op.base) {
return Err(format!(
"Binary operator {} not supported for list",
op.op_info().symbol
));
}
if is_left_list {
lhs
} else {
rhs
}
} else if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if unifier.unioned(lhs, rhs) {
lhs
} else {
return Ok(None);
}
}
Operator::MatMult => {
// NOTE: NumPy matmul's LHS and RHS must both be ndarrays. Scalars are not allowed.
match (&*unifier.get_ty(lhs), &*unifier.get_ty(rhs)) {
(
TypeEnum::TObj { obj_id: lhs_obj_id, .. },
TypeEnum::TObj { obj_id: rhs_obj_id, .. },
) if *lhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap()
&& *rhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap() =>
{
// LHS and RHS have valid types
}
_ => {
let lhs_str = unifier.stringify(lhs);
let rhs_str = unifier.stringify(rhs);
return Err(format!("ndarray.__matmul__ only accepts ndarray operands, but left operand has type {lhs_str}, and right operand has type {rhs_str}"));
}
}
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
}
_ => unreachable!(),
};
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
}
_ => unreachable!(),
};
match (lhs_ndims, rhs_ndims) {
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
(lhs, rhs) if lhs == 0 || rhs == 0 => {
return Err(format!(
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
u8::from(rhs == 0)
))
}
(lhs, rhs) => {
return Err(format!(
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
))
}
}
}
Operator::Div => {
if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if unifier.unioned(lhs, rhs) {
primitives.float
} else {
return Ok(None);
}
}
Operator::Pow => {
if is_left_ndarray || is_right_ndarray {
typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?
} else if [
primitives.int32,
primitives.int64,
primitives.uint32,
primitives.uint64,
primitives.float,
]
.into_iter()
.any(|ty| unifier.unioned(lhs, ty))
{
lhs
} else {
return Ok(None);
}
}
Operator::LShift | Operator::RShift => lhs,
Operator::BitOr | Operator::BitXor | Operator::BitAnd => {
if unifier.unioned(lhs, rhs) {
lhs
} else {
return Ok(None);
}
}
}))
}
pub fn typeof_unaryop(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
op: Unaryop,
operand: Type,
) -> Result<Option<Type>, String> {
let operand_obj_id = operand.obj_id(unifier);
if op == Unaryop::Not
&& operand_obj_id.is_some_and(|id| id == primitives.ndarray.obj_id(unifier).unwrap())
{
return Err(
"The truth value of an array with more than one element is ambiguous".to_string()
);
}
Ok(match op {
Unaryop::Not => match operand_obj_id {
Some(v) if v == PrimDef::NDArray.id() => Some(operand),
Some(_) => Some(primitives.bool),
_ => None,
},
Unaryop::Invert => {
if operand_obj_id.is_some_and(|id| id == PrimDef::Bool.id()) {
Some(primitives.int32)
} else if operand_obj_id.is_some_and(|id| PrimDef::iter().any(|prim| id == prim.id())) {
Some(operand)
} else {
None
}
}
Unaryop::UAdd | Unaryop::USub => {
if operand_obj_id.is_some_and(|id| id == PrimDef::NDArray.id()) {
let (dtype, _) = unpack_ndarray_var_tys(unifier, operand);
if dtype.obj_id(unifier).is_some_and(|id| id == PrimDef::Bool.id()) {
return Err(if op == Unaryop::UAdd {
"The ufunc 'positive' cannot be applied to ndarray[bool, N]".to_string()
} else {
"The numpy boolean negative, the `-` operator, is not supported, use the `~` operator function instead.".to_string()
});
}
Some(operand)
} else if operand_obj_id.is_some_and(|id| id == PrimDef::Bool.id()) {
Some(primitives.int32)
} else if operand_obj_id.is_some_and(|id| PrimDef::iter().any(|prim| id == prim.id())) {
Some(operand)
} else {
None
}
}
})
}
/// Returns the return type given a comparison operator and its primitive operands.
pub fn typeof_cmpop(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
_op: Cmpop,
lhs: Type,
rhs: Type,
) -> Result<Option<Type>, String> {
let is_left_ndarray = lhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
let is_right_ndarray = rhs.obj_id(unifier).is_some_and(|id| id == PrimDef::NDArray.id());
Ok(Some(if is_left_ndarray || is_right_ndarray {
let brd = typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?;
let (_, ndims) = unpack_ndarray_var_tys(unifier, brd);
make_ndarray_ty(unifier, primitives, Some(primitives.bool), Some(ndims))
} else if unifier.unioned(lhs, rhs) {
primitives.bool
} else {
return Ok(None);
}))
pub fn impl_eq(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_cmpop(unifier, store, ty, ty, &[Cmpop::Eq, Cmpop::NotEq]);
}
pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifier) {
@ -697,81 +299,39 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
bool: bool_t,
uint32: uint32_t,
uint64: uint64_t,
str: str_t,
list: list_t,
ndarray: ndarray_t,
..
} = *store;
let size_t = store.usize();
/* int ======== */
for t in [int32_t, int64_t, uint32_t, uint64_t] {
let ndarray_int_t = make_ndarray_ty(unifier, store, Some(t), None);
impl_basic_arithmetic(unifier, store, t, &[t, ndarray_int_t], None);
impl_pow(unifier, store, t, &[t, ndarray_int_t], None);
impl_basic_arithmetic(unifier, store, t, &[t], t);
impl_pow(unifier, store, t, &[t], t);
impl_bitwise_arithmetic(unifier, store, t);
impl_bitwise_shift(unifier, store, t);
impl_div(unifier, store, t, &[t, ndarray_int_t], None);
impl_floordiv(unifier, store, t, &[t, ndarray_int_t], None);
impl_mod(unifier, store, t, &[t, ndarray_int_t], None);
impl_invert(unifier, store, t, Some(t));
impl_not(unifier, store, t, Some(bool_t));
impl_comparison(unifier, store, t, &[t, ndarray_int_t], None);
impl_eq(unifier, store, t, &[t, ndarray_int_t], None);
impl_div(unifier, store, t, &[t]);
impl_floordiv(unifier, store, t, &[t], t);
impl_mod(unifier, store, t, &[t], t);
impl_invert(unifier, store, t);
impl_not(unifier, store, t);
impl_comparison(unifier, store, t, t);
impl_eq(unifier, store, t);
}
for t in [int32_t, int64_t] {
impl_sign(unifier, store, t, Some(t));
impl_sign(unifier, store, t);
}
/* float ======== */
let ndarray_float_t = make_ndarray_ty(unifier, store, Some(float_t), None);
let ndarray_int32_t = make_ndarray_ty(unifier, store, Some(int32_t), None);
impl_basic_arithmetic(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_pow(unifier, store, float_t, &[int32_t, float_t, ndarray_int32_t, ndarray_float_t], None);
impl_div(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_floordiv(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_mod(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_sign(unifier, store, float_t, Some(float_t));
impl_not(unifier, store, float_t, Some(bool_t));
impl_comparison(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_eq(unifier, store, float_t, &[float_t, ndarray_float_t], None);
impl_basic_arithmetic(unifier, store, float_t, &[float_t], float_t);
impl_pow(unifier, store, float_t, &[int32_t, float_t], float_t);
impl_div(unifier, store, float_t, &[float_t]);
impl_floordiv(unifier, store, float_t, &[float_t], float_t);
impl_mod(unifier, store, float_t, &[float_t], float_t);
impl_sign(unifier, store, float_t);
impl_not(unifier, store, float_t);
impl_comparison(unifier, store, float_t, float_t);
impl_eq(unifier, store, float_t);
/* bool ======== */
let ndarray_bool_t = make_ndarray_ty(unifier, store, Some(bool_t), None);
impl_invert(unifier, store, bool_t, Some(int32_t));
impl_not(unifier, store, bool_t, Some(bool_t));
impl_sign(unifier, store, bool_t, Some(int32_t));
impl_eq(unifier, store, bool_t, &[bool_t, ndarray_bool_t], None);
/* str ========= */
impl_cmpop(unifier, store, str_t, &[str_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
/* list ======== */
impl_binop(unifier, store, list_t, &[list_t], Some(list_t), &[Operator::Add]);
impl_binop(unifier, store, list_t, &[int32_t, int64_t], Some(list_t), &[Operator::Mult]);
impl_cmpop(unifier, store, list_t, &[list_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
/* ndarray ===== */
let ndarray_usized_ndims_tvar =
unifier.get_fresh_const_generic_var(size_t, Some("ndarray_ndims".into()), None);
let ndarray_unsized_t =
make_ndarray_ty(unifier, store, None, Some(ndarray_usized_ndims_tvar.ty));
let (ndarray_dtype_t, _) = unpack_ndarray_var_tys(unifier, ndarray_t);
let (ndarray_unsized_dtype_t, _) = unpack_ndarray_var_tys(unifier, ndarray_unsized_t);
impl_basic_arithmetic(
unifier,
store,
ndarray_t,
&[ndarray_unsized_t, ndarray_unsized_dtype_t],
None,
);
impl_pow(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_comparison(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_not(unifier, store, bool_t);
impl_eq(unifier, store, bool_t);
}

View File

@ -1,46 +1,24 @@
use std::collections::HashMap;
use std::fmt::Display;
use crate::typecheck::{magic_methods::HasOpInfo, typedef::TypeEnum};
use crate::typecheck::typedef::TypeEnum;
use super::{
magic_methods::Binop,
typedef::{RecordKey, Type, Unifier},
};
use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef};
use super::typedef::{RecordKey, Type, Unifier};
use nac3parser::ast::{Location, StrRef};
#[derive(Debug, Clone)]
pub enum TypeErrorKind {
GotMultipleValues {
name: StrRef,
},
TooManyArguments {
expected_min_count: usize,
expected_max_count: usize,
got_count: usize,
},
MissingArgs {
missing_arg_names: Vec<StrRef>,
expected: usize,
got: usize,
},
MissingArgs(String),
UnknownArgName(StrRef),
IncorrectArgType {
name: StrRef,
expected: Type,
got: Type,
},
UnsupportedBinaryOpTypes {
operator: Binop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
UnsupportedComparsionOpTypes {
operator: Cmpop,
lhs_type: Type,
rhs_type: Type,
expected_rhs_type: Type,
},
FieldUnificationError {
field: RecordKey,
types: (Type, Type),
@ -56,7 +34,6 @@ pub enum TypeErrorKind {
},
RequiresTypeAnn,
PolymorphicFunctionPointer,
NoSuchAttribute(RecordKey, Type),
}
#[derive(Debug, Clone)]
@ -100,49 +77,22 @@ impl<'a> Display for DisplayTypeError<'a> {
use TypeErrorKind::*;
let mut notes = Some(HashMap::new());
match &self.err.kind {
GotMultipleValues { name } => {
write!(f, "For multiple values for parameter {name}")
TooManyArguments { expected, got } => {
write!(f, "Too many arguments. Expected {expected} but got {got}")
}
TooManyArguments { expected_min_count, expected_max_count, got_count } => {
debug_assert!(expected_min_count <= expected_max_count);
if expected_min_count == expected_max_count {
let expected_count = expected_min_count; // or expected_max_count
write!(f, "Too many arguments. Expected {expected_count} but got {got_count}")
} else {
write!(f, "Too many arguments. Expected {expected_min_count} to {expected_max_count} arguments but got {got_count}")
}
}
MissingArgs { missing_arg_names } => {
let args = missing_arg_names.iter().join(", ");
MissingArgs(args) => {
write!(f, "Missing arguments: {args}")
}
UnsupportedBinaryOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "Unsupported operand type(s) for {op_symbol}: '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnsupportedComparsionOpTypes { operator, lhs_type, rhs_type, expected_rhs_type } => {
let op_symbol = operator.op_info().symbol;
let lhs_type_str = self.unifier.stringify_with_notes(*lhs_type, &mut notes);
let rhs_type_str = self.unifier.stringify_with_notes(*rhs_type, &mut notes);
let expected_rhs_type_str =
self.unifier.stringify_with_notes(*expected_rhs_type, &mut notes);
write!(f, "'{op_symbol}' not supported between instances of '{lhs_type_str}' and '{rhs_type_str}' (right operand should have type {expected_rhs_type_str})")
}
UnknownArgName(name) => {
write!(f, "Unknown argument name: {name}")
}
IncorrectArgType { name, expected, got } => {
let expected = self.unifier.stringify_with_notes(*expected, &mut notes);
let got = self.unifier.stringify_with_notes(*got, &mut notes);
write!(f, "Incorrect argument type for parameter {name}. Expected {expected}, but got {got}")
write!(
f,
"Incorrect argument type for {name}. Expected {expected}, but got {got}"
)
}
FieldUnificationError { field, types, loc } => {
let lhs = self.unifier.stringify_with_notes(types.0, &mut notes);
@ -183,10 +133,9 @@ impl<'a> Display for DisplayTypeError<'a> {
}
result
}
(
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
) if !is_vararg1 && !is_vararg2 && ty1.len() != ty2.len() => {
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 })
if ty1.len() != ty2.len() =>
{
let t1 = self.unifier.stringify_with_notes(*t1, &mut notes);
let t2 = self.unifier.stringify_with_notes(*t2, &mut notes);
write!(f, "Tuple length mismatch: got {t1} and {t2}")
@ -210,10 +159,6 @@ impl<'a> Display for DisplayTypeError<'a> {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
write!(f, "`{t}::{name}` field/method does not exist")
}
NoSuchAttribute(name, t) => {
let t = self.unifier.stringify_with_notes(*t, &mut notes);
write!(f, "`{t}::{name}` is not a class attribute")
}
TupleIndexOutOfBounds { index, len } => {
write!(
f,

File diff suppressed because it is too large Load Diff

View File

@ -3,14 +3,12 @@ use super::*;
use crate::{
codegen::CodeGenContext,
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
toplevel::{DefinitionId, TopLevelDef},
};
use indexmap::IndexMap;
use indoc::indoc;
use nac3parser::ast::FileName;
use std::iter::zip;
use nac3parser::parser::parse_program;
use parking_lot::RwLock;
use std::iter::zip;
use test_case::test_case;
struct Resolver {
@ -34,21 +32,19 @@ impl SymbolResolver for Resolver {
_: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String> {
self.id_to_type.get(&str).copied().ok_or_else(|| format!("cannot find symbol `{str}`"))
self.id_to_type.get(&str).cloned().ok_or_else(|| format!("cannot find symbol `{}`", str))
}
fn get_symbol_value<'ctx>(
fn get_symbol_value<'ctx, 'a>(
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> {
self.id_to_def
.get(&id)
.copied()
self.id_to_def.get(&id).cloned()
.ok_or_else(|| HashSet::from(["Unknown identifier".to_string()]))
}
@ -77,86 +73,67 @@ impl TestEnvironment {
let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int32.id(),
obj_id: DefinitionId(0),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
with_fields(&mut unifier, int32, |unifier, fields| {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "other".into(),
ty: int32,
default_value: None,
is_vararg: false,
}],
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
ret: int32,
vars: VarMap::new(),
vars: HashMap::new(),
}));
fields.insert("__add__".into(), (add_ty, false));
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int64.id(),
obj_id: DefinitionId(1),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Float.id(),
obj_id: DefinitionId(2),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Bool.id(),
obj_id: DefinitionId(3),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::None.id(),
obj_id: DefinitionId(4),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let range = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Range.id(),
obj_id: DefinitionId(5),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let str = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Str.id(),
obj_id: DefinitionId(6),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let exception = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Exception.id(),
obj_id: DefinitionId(7),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let uint32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt32.id(),
obj_id: DefinitionId(8),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let uint64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt64.id(),
obj_id: DefinitionId(9),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let option = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Option.id(),
obj_id: DefinitionId(10),
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray_dtype_tvar = unifier.get_fresh_var(Some("ndarray_dtype".into()), None);
let ndarray_ndims_tvar =
unifier.get_fresh_const_generic_var(uint64, Some("ndarray_ndims".into()), None);
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: HashMap::new(),
params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
params: HashMap::new(),
});
let primitives = PrimitiveStore {
int32,
@ -170,14 +147,10 @@ impl TestEnvironment {
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
unifier.put_primitive_store(&primitives);
set_primitives_magic_methods(&primitives, &mut unifier);
let id_to_name: HashMap<_, _> = [
let id_to_name = [
(0, "int32".into()),
(1, "int64".into()),
(2, "float".into()),
@ -187,21 +160,23 @@ impl TestEnvironment {
(6, "str".into()),
(7, "exception".into()),
]
.into();
.iter()
.cloned()
.collect();
let mut identifier_mapping = HashMap::new();
identifier_mapping.insert("None".into(), none);
let resolver = Arc::new(Resolver {
id_to_type: identifier_mapping.clone(),
id_to_def: HashMap::default(),
class_names: HashMap::default(),
id_to_def: Default::default(),
class_names: Default::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>;
TestEnvironment {
top_level: TopLevelContext {
definitions: Arc::default(),
unifiers: Arc::default(),
definitions: Default::default(),
unifiers: Default::default(),
personality_symbol: None,
},
unifier,
@ -223,112 +198,81 @@ impl TestEnvironment {
let mut identifier_mapping = HashMap::new();
let mut top_level_defs: Vec<Arc<RwLock<TopLevelDef>>> = Vec::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int32.id(),
obj_id: DefinitionId(0),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
with_fields(&mut unifier, int32, |unifier, fields| {
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "other".into(),
ty: int32,
default_value: None,
is_vararg: false,
}],
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
ret: int32,
vars: VarMap::new(),
vars: HashMap::new(),
}));
fields.insert("__add__".into(), (add_ty, false));
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Int64.id(),
obj_id: DefinitionId(1),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Float.id(),
obj_id: DefinitionId(2),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Bool.id(),
obj_id: DefinitionId(3),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::None.id(),
obj_id: DefinitionId(4),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let range = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Range.id(),
obj_id: DefinitionId(5),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let str = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Str.id(),
obj_id: DefinitionId(6),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let exception = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Exception.id(),
obj_id: DefinitionId(7),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let uint32 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt32.id(),
obj_id: DefinitionId(8),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let uint64 = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::UInt64.id(),
obj_id: DefinitionId(9),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
let option = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Option.id(),
obj_id: DefinitionId(10),
fields: HashMap::new(),
params: VarMap::new(),
});
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
});
identifier_mapping.insert("None".into(), none);
for (i, name) in [
"int32",
"int64",
"float",
"bool",
"none",
"range",
"str",
"Exception",
"uint32",
"uint64",
"Option",
"list",
"ndarray",
]
.iter()
.enumerate()
for (i, name) in ["int32", "int64", "float", "bool", "none", "range", "str", "Exception"]
.iter()
.enumerate()
{
top_level_defs.push(
RwLock::new(TopLevelDef::Class {
name: (*name).into(),
object_id: DefinitionId(i),
type_vars: Vec::default(),
fields: Vec::default(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: Default::default(),
resolver: None,
constructor: None,
loc: None,
@ -336,7 +280,7 @@ impl TestEnvironment {
.into(),
);
}
let defs = 12;
let defs = 7;
let primitives = PrimitiveStore {
int32,
@ -350,29 +294,23 @@ impl TestEnvironment {
uint32,
uint64,
option,
list,
ndarray,
size_t: 64,
};
unifier.put_primitive_store(&primitives);
let tvar = unifier.get_dummy_var();
let (v0, id) = unifier.get_dummy_var();
let foo_ty = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(defs + 1),
fields: [("a".into(), (tvar.ty, true))].into(),
params: into_var_map([tvar]),
fields: [("a".into(), (v0, true))].iter().cloned().collect::<HashMap<_, _>>(),
params: [(id, v0)].iter().cloned().collect::<HashMap<_, _>>(),
});
top_level_defs.push(
RwLock::new(TopLevelDef::Class {
name: "Foo".into(),
object_id: DefinitionId(defs + 1),
type_vars: vec![tvar.ty],
fields: [("a".into(), tvar.ty, true)].into(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
type_vars: vec![v0],
fields: [("a".into(), v0, true)].into(),
methods: Default::default(),
ancestors: Default::default(),
resolver: None,
constructor: None,
loc: None,
@ -385,29 +323,31 @@ impl TestEnvironment {
unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![],
ret: foo_ty,
vars: into_var_map([tvar]),
vars: [(id, v0)].iter().cloned().collect(),
})),
);
let fun = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![],
ret: int32,
vars: IndexMap::default(),
vars: Default::default(),
}));
let bar = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(defs + 2),
fields: [("a".into(), (int32, true)), ("b".into(), (fun, true))].into(),
params: IndexMap::default(),
fields: [("a".into(), (int32, true)), ("b".into(), (fun, true))]
.iter()
.cloned()
.collect::<HashMap<_, _>>(),
params: Default::default(),
});
top_level_defs.push(
RwLock::new(TopLevelDef::Class {
name: "Bar".into(),
object_id: DefinitionId(defs + 2),
type_vars: Vec::default(),
type_vars: Default::default(),
fields: [("a".into(), int32, true), ("b".into(), fun, true)].into(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
methods: Default::default(),
ancestors: Default::default(),
resolver: None,
constructor: None,
loc: None,
@ -419,24 +359,26 @@ impl TestEnvironment {
unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![],
ret: bar,
vars: IndexMap::default(),
vars: Default::default(),
})),
);
let bar2 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(defs + 3),
fields: [("a".into(), (bool, true)), ("b".into(), (fun, false))].into(),
params: IndexMap::default(),
fields: [("a".into(), (bool, true)), ("b".into(), (fun, false))]
.iter()
.cloned()
.collect::<HashMap<_, _>>(),
params: Default::default(),
});
top_level_defs.push(
RwLock::new(TopLevelDef::Class {
name: "Bar2".into(),
object_id: DefinitionId(defs + 3),
type_vars: Vec::default(),
type_vars: Default::default(),
fields: [("a".into(), bool, true), ("b".into(), fun, false)].into(),
attributes: Vec::default(),
methods: Vec::default(),
ancestors: Vec::default(),
methods: Default::default(),
ancestors: Default::default(),
resolver: None,
constructor: None,
loc: None,
@ -448,10 +390,10 @@ impl TestEnvironment {
unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![],
ret: bar2,
vars: IndexMap::default(),
vars: Default::default(),
})),
);
let class_names: HashMap<_, _> = [("Bar".into(), bar), ("Bar2".into(), bar2)].into();
let class_names = [("Bar".into(), bar), ("Bar2".into(), bar2)].iter().cloned().collect();
let id_to_name = [
"int32".into(),
@ -462,22 +404,18 @@ impl TestEnvironment {
"range".into(),
"str".into(),
"exception".into(),
"uint32".into(),
"uint64".into(),
"option".into(),
"list".into(),
"ndarray".into(),
"Foo".into(),
"Bar".into(),
"Bar2".into(),
]
.into_iter()
.iter()
.enumerate()
.map(|(a, b)| (a, *b))
.collect();
let top_level = TopLevelContext {
definitions: Arc::new(top_level_defs.into()),
unifiers: Arc::default(),
unifiers: Default::default(),
personality_symbol: None,
};
@ -488,7 +426,9 @@ impl TestEnvironment {
("Bar".into(), DefinitionId(defs + 2)),
("Bar2".into(), DefinitionId(defs + 3)),
]
.into(),
.iter()
.cloned()
.collect(),
class_names,
}) as Arc<dyn SymbolResolver + Send + Sync>;
@ -513,11 +453,11 @@ impl TestEnvironment {
top_level: &self.top_level,
function_data: &mut self.function_data,
unifier: &mut self.unifier,
variable_mapping: HashMap::default(),
variable_mapping: Default::default(),
primitives: &mut self.primitives,
virtual_checks: &mut self.virtual_checks,
calls: &mut self.calls,
defined_identifiers: HashSet::default(),
defined_identifiers: Default::default(),
in_handler: false,
}
}
@ -529,7 +469,7 @@ impl TestEnvironment {
c = 1.234
d = True
"},
&[("a", "int32"), ("b", "int64"), ("c", "float"), ("d", "bool")].into(),
[("a", "int32"), ("b", "int64"), ("c", "float"), ("d", "bool")].iter().cloned().collect(),
&[]
; "primitives test")]
#[test_case(indoc! {"
@ -538,7 +478,7 @@ impl TestEnvironment {
c = 1.234
d = b(c)
"},
&[("a", "fn[[x:float, y:float], float]"), ("b", "fn[[x:float], float]"), ("c", "float"), ("d", "float")].into(),
[("a", "fn[[x:float, y:float], float]"), ("b", "fn[[x:float], float]"), ("c", "float"), ("d", "float")].iter().cloned().collect(),
&[]
; "lambda test")]
#[test_case(indoc! {"
@ -547,7 +487,7 @@ impl TestEnvironment {
a = b
c = b(1)
"},
&[("a", "fn[[x:int32], int32]"), ("b", "fn[[x:int32], int32]"), ("c", "int32")].into(),
[("a", "fn[[x:int32], int32]"), ("b", "fn[[x:int32], int32]"), ("c", "int32")].iter().cloned().collect(),
&[]
; "lambda test 2")]
#[test_case(indoc! {"
@ -563,15 +503,15 @@ impl TestEnvironment {
b(123)
"},
&[("a", "fn[[x:bool], bool]"), ("b", "fn[[x:int32], int32]"), ("c", "bool"),
("d", "int32"), ("foo1", "Foo[bool]"), ("foo2", "Foo[int32]")].into(),
[("a", "fn[[x:bool], bool]"), ("b", "fn[[x:int32], int32]"), ("c", "bool"),
("d", "int32"), ("foo1", "Foo[bool]"), ("foo2", "Foo[int32]")].iter().cloned().collect(),
&[]
; "obj test")]
#[test_case(indoc! {"
a = [1, 2, 3]
b = [x + x for x in a]
"},
&[("a", "list[int32]"), ("b", "list[int32]")].into(),
[("a", "list[int32]"), ("b", "list[int32]")].iter().cloned().collect(),
&[]
; "listcomp test")]
#[test_case(indoc! {"
@ -579,25 +519,25 @@ impl TestEnvironment {
b = a.b()
a = virtual(Bar2())
"},
&[("a", "virtual[Bar]"), ("b", "int32")].into(),
[("a", "virtual[Bar]"), ("b", "int32")].iter().cloned().collect(),
&[("Bar", "Bar"), ("Bar2", "Bar")]
; "virtual test")]
#[test_case(indoc! {"
a = [virtual(Bar(), Bar), virtual(Bar2())]
b = [x.b() for x in a]
"},
&[("a", "list[virtual[Bar]]"), ("b", "list[int32]")].into(),
[("a", "list[virtual[Bar]]"), ("b", "list[int32]")].iter().cloned().collect(),
&[("Bar", "Bar"), ("Bar2", "Bar")]
; "virtual list test")]
fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &str)]) {
println!("source:\n{source}");
fn test_basic(source: &str, mapping: HashMap<&str, &str>, virtuals: &[(&str, &str)]) {
println!("source:\n{}", source);
let mut env = TestEnvironment::new();
let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().cloned().collect();
defined_identifiers.insert("virtual".into());
let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap();
inferencer.defined_identifiers = defined_identifiers.clone();
let statements = parse_program(source, Default::default()).unwrap();
let statements = statements
.into_iter()
.map(|v| inferencer.fold_stmt(v))
@ -606,37 +546,37 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
inferencer.check_block(&statements, &mut defined_identifiers).unwrap();
for (k, v) in &inferencer.variable_mapping {
for (k, v) in inferencer.variable_mapping.iter() {
let name = inferencer.unifier.internal_stringify(
*v,
&mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"),
&mut |v| format!("v{}", v),
&mut None,
);
println!("{k}: {name}");
println!("{}: {}", k, name);
}
for (k, v) in mapping {
for (k, v) in mapping.iter() {
let ty = inferencer.variable_mapping.get(&(*k).into()).unwrap();
let name = inferencer.unifier.internal_stringify(
*ty,
&mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"),
&mut |v| format!("v{}", v),
&mut None,
);
assert_eq!(format!("{k}: {v}"), format!("{k}: {name}"));
assert_eq!(format!("{}: {}", k, v), format!("{}: {}", k, name));
}
assert_eq!(inferencer.virtual_checks.len(), virtuals.len());
for ((a, b, _), (x, y)) in zip(inferencer.virtual_checks.iter(), virtuals) {
let a = inferencer.unifier.internal_stringify(
*a,
&mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"),
&mut |v| format!("v{}", v),
&mut None,
);
let b = inferencer.unifier.internal_stringify(
*b,
&mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"),
&mut |v| format!("v{}", v),
&mut None,
);
@ -655,14 +595,14 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
g = a // b
h = a % b
"},
&[("a", "int32"),
[("a", "int32"),
("b", "int32"),
("c", "int32"),
("d", "int32"),
("e", "int32"),
("f", "float"),
("g", "int32"),
("h", "int32")].into()
("h", "int32")].iter().cloned().collect()
; "int32")]
#[test_case(
indoc! {"
@ -678,7 +618,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
ii = 3
j = a ** b
"},
&[("a", "float"),
[("a", "float"),
("b", "float"),
("c", "float"),
("d", "float"),
@ -688,7 +628,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
("h", "float"),
("i", "float"),
("ii", "int32"),
("j", "float")].into()
("j", "float")].iter().cloned().collect()
; "float"
)]
#[test_case(
@ -706,7 +646,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
k = a < b
l = a != b
"},
&[("a", "int64"),
[("a", "int64"),
("b", "int64"),
("c", "int64"),
("d", "int64"),
@ -717,7 +657,7 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
("i", "bool"),
("j", "bool"),
("k", "bool"),
("l", "bool")].into()
("l", "bool")].iter().cloned().collect()
; "int64"
)]
#[test_case(
@ -728,22 +668,22 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
d = not a
e = a != b
"},
&[("a", "bool"),
[("a", "bool"),
("b", "bool"),
("c", "bool"),
("d", "bool"),
("e", "bool")].into()
("e", "bool")].iter().cloned().collect()
; "boolean"
)]
fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) {
println!("source:\n{source}");
fn test_primitive_magic_methods(source: &str, mapping: HashMap<&str, &str>) {
println!("source:\n{}", source);
let mut env = TestEnvironment::basic_test_env();
let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().cloned().collect();
defined_identifiers.insert("virtual".into());
let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap();
inferencer.defined_identifiers = defined_identifiers.clone();
let statements = parse_program(source, Default::default()).unwrap();
let statements = statements
.into_iter()
.map(|v| inferencer.fold_stmt(v))
@ -752,23 +692,23 @@ fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) {
inferencer.check_block(&statements, &mut defined_identifiers).unwrap();
for (k, v) in &inferencer.variable_mapping {
for (k, v) in inferencer.variable_mapping.iter() {
let name = inferencer.unifier.internal_stringify(
*v,
&mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"),
&mut |v| format!("v{}", v),
&mut None,
);
println!("{k}: {name}");
println!("{}: {}", k, name);
}
for (k, v) in mapping {
for (k, v) in mapping.iter() {
let ty = inferencer.variable_mapping.get(&(*k).into()).unwrap();
let name = inferencer.unifier.internal_stringify(
*ty,
&mut |v| (*id_to_name.get(&v).unwrap()).into(),
&mut |v| format!("v{v}"),
&mut |v| format!("v{}", v),
&mut None,
);
assert_eq!(format!("{k}: {v}"), format!("{k}: {name}"));
assert_eq!(format!("{}: {}", k, v), format!("{}: {}", k, name));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -28,32 +28,32 @@ impl Unifier {
TypeEnum::TVar { fields: Some(map1), .. },
TypeEnum::TVar { fields: Some(map2), .. },
) => self.map_eq2(map1, map2),
(
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: false },
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: false },
) => {
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 }) => {
ty1.len() == ty2.len()
&& ty1.iter().zip(ty2.iter()).all(|(t1, t2)| self.eq(*t1, *t2))
}
(TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => self.eq(*ty1, *ty2),
(TypeEnum::TList { ty: ty1 }, TypeEnum::TList { ty: ty2 })
| (TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => {
self.eq(*ty1, *ty2)
}
(
TypeEnum::TObj { obj_id: id1, params: params1, .. },
TypeEnum::TObj { obj_id: id2, params: params2, .. },
) => id1 == id2 && self.map_eq(params1, params2),
// TLiteral, TCall and TFunc are not yet implemented
// TCall and TFunc are not yet implemented
_ => false,
}
}
fn map_eq<K>(&mut self, map1: &IndexMapping<K>, map2: &IndexMapping<K>) -> bool
fn map_eq<K>(&mut self, map1: &Mapping<K>, map2: &Mapping<K>) -> bool
where
K: std::hash::Hash + Eq + Clone,
{
if map1.len() != map2.len() {
return false;
}
for (k, v) in map1 {
if !map2.get(k).is_some_and(|v1| self.eq(*v, *v1)) {
for (k, v) in map1.iter() {
if !map2.get(k).map(|v1| self.eq(*v, *v1)).unwrap_or(false) {
return false;
}
}
@ -67,8 +67,8 @@ impl Unifier {
if map1.len() != map2.len() {
return false;
}
for (k, v) in map1 {
if !map2.get(k).is_some_and(|v1| self.eq(v.ty, v1.ty)) {
for (k, v) in map1.iter() {
if !map2.get(k).map(|v1| self.eq(v.ty, v1.ty)).unwrap_or(false) {
return false;
}
}
@ -91,7 +91,7 @@ impl TestEnvironment {
unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
}),
);
type_mapping.insert(
@ -99,7 +99,7 @@ impl TestEnvironment {
unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
}),
);
type_mapping.insert(
@ -107,25 +107,16 @@ impl TestEnvironment {
unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2),
fields: HashMap::new(),
params: VarMap::new(),
params: HashMap::new(),
}),
);
let tvar = unifier.get_dummy_var();
let (v0, id) = unifier.get_dummy_var();
type_mapping.insert(
"Foo".into(),
unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3),
fields: [("a".into(), (tvar.ty, true))].into(),
params: into_var_map([tvar]),
}),
);
let tvar = unifier.get_dummy_var();
type_mapping.insert(
"list".into(),
unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([tvar]),
fields: [("a".into(), (v0, true))].iter().cloned().collect::<HashMap<_, _>>(),
params: [(id, v0)].iter().cloned().collect::<HashMap<_, _>>(),
}),
);
@ -138,40 +129,14 @@ impl TestEnvironment {
result.0
}
fn internal_parse<'b>(&mut self, typ: &'b str, mapping: &Mapping<String>) -> (Type, &'b str) {
fn internal_parse<'a, 'b>(
&'a mut self,
typ: &'b str,
mapping: &Mapping<String>,
) -> (Type, &'b str) {
// for testing only, so we can just panic when the input is malformed
let end = typ.find(|c| ['[', ',', ']', '='].contains(&c)).unwrap_or(typ.len());
let end = typ.find(|c| ['[', ',', ']', '='].contains(&c)).unwrap_or_else(|| typ.len());
match &typ[..end] {
"list" => {
let mut s = &typ[end..];
assert_eq!(&s[0..1], "[");
let mut ty = Vec::new();
while &s[0..1] != "]" {
let result = self.internal_parse(&s[1..], mapping);
ty.push(result.0);
s = result.1;
}
assert_eq!(ty.len(), 1);
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*self.unifier.get_ty_immutable(self.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
(
self.unifier
.subst(
self.type_mapping["list"],
&into_var_map([TypeVar { id: list_elem_tvar.id, ty: ty[0] }]),
)
.unwrap(),
&s[1..],
)
}
"tuple" => {
let mut s = &typ[end..];
assert_eq!(&s[0..1], "[");
@ -181,7 +146,13 @@ impl TestEnvironment {
ty.push(result.0);
s = result.1;
}
(self.unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }), &s[1..])
(self.unifier.add_ty(TypeEnum::TTuple { ty }), &s[1..])
}
"list" => {
assert_eq!(&typ[end..end + 1], "[");
let (ty, s) = self.internal_parse(&typ[end + 1..], mapping);
assert_eq!(&s[0..1], "]");
(self.unifier.add_ty(TypeEnum::TList { ty }), &s[1..])
}
"Record" => {
let mut s = &typ[end..];
@ -198,12 +169,12 @@ impl TestEnvironment {
}
x => {
let mut s = &typ[end..];
let ty = mapping.get(x).copied().unwrap_or_else(|| {
let ty = mapping.get(x).cloned().unwrap_or_else(|| {
// mapping should be type variables, type_mapping should be concrete types
// we should not resolve the type of type variables.
let mut ty = *self.type_mapping.get(x).unwrap();
let te = self.unifier.get_ty(ty);
if let TypeEnum::TObj { params, .. } = &*te {
if let TypeEnum::TObj { params, .. } = &*te.as_ref() {
if !params.is_empty() {
assert_eq!(&s[0..1], "[");
let mut p = Vec::new();
@ -215,7 +186,7 @@ impl TestEnvironment {
s = &s[1..];
ty = self
.unifier
.subst(ty, &params.keys().copied().zip(p).collect())
.subst(ty, &params.keys().cloned().zip(p.into_iter()).collect())
.unwrap_or(ty);
}
}
@ -279,12 +250,12 @@ fn test_unify(
let mut mapping = HashMap::new();
for i in 1..=variable_count {
let v = env.unifier.get_dummy_var();
mapping.insert(format!("v{i}"), v.ty);
mapping.insert(format!("v{}", i), v.0);
}
// unification may have side effect when we do type resolution, so freeze the types
// before doing unification.
let mut pairs = Vec::new();
for (a, b) in &perm {
for (a, b) in perm.iter() {
let t1 = env.parse(a, &mapping);
let t2 = env.parse(b, &mapping);
pairs.push((t1, t2));
@ -292,8 +263,8 @@ fn test_unify(
for (t1, t2) in pairs {
env.unifier.unify(t1, t2).unwrap();
}
for (a, b) in verify_pairs {
println!("{a} = {b}");
for (a, b) in verify_pairs.iter() {
println!("{} = {}", a, b);
let t1 = env.parse(a, &mapping);
let t2 = env.parse(b, &mapping);
println!("a = {}, b = {}", env.unifier.stringify(t1), env.unifier.stringify(t2));
@ -307,7 +278,7 @@ fn test_unify(
("v1", "tuple[int]"),
("v2", "list[int]"),
],
(("v1", "v2"), "Incompatible types: 11[0] and tuple[0]")
(("v1", "v2"), "Incompatible types: list[0] and tuple[0]")
; "type mismatch"
)]
#[test_case(2,
@ -331,7 +302,7 @@ fn test_unify(
("v1", "Record[a=float,b=int]"),
("v2", "Foo[v3]"),
],
(("v1", "v2"), "`3[typevar5]::b` field/method does not exist")
(("v1", "v2"), "`3[typevar4]::b` field/method does not exist")
; "record obj merge"
)]
/// Test cases for invalid unifications.
@ -344,12 +315,12 @@ fn test_invalid_unification(
let mut mapping = HashMap::new();
for i in 1..=variable_count {
let v = env.unifier.get_dummy_var();
mapping.insert(format!("v{i}"), v.ty);
mapping.insert(format!("v{}", i), v.0);
}
// unification may have side effect when we do type resolution, so freeze the types
// before doing unification.
let mut pairs = Vec::new();
for (a, b) in unify_pairs {
for (a, b) in unify_pairs.iter() {
let t1 = env.parse(a, &mapping);
let t2 = env.parse(b, &mapping);
pairs.push((t1, t2));
@ -371,12 +342,16 @@ fn test_recursive_subst() {
with_fields(&mut env.unifier, foo_id, |_unifier, fields| {
fields.insert("rec".into(), (foo_id, true));
});
let TypeEnum::TObj { params, .. } = &*foo_ty else { unreachable!() };
let TypeEnum::TObj { params, .. } = &*foo_ty else {
unreachable!()
};
let mapping = params.iter().map(|(id, _)| (*id, int)).collect();
let instantiated = env.unifier.subst(foo_id, &mapping).unwrap();
let instantiated_ty = env.unifier.get_ty(instantiated);
let TypeEnum::TObj { fields, .. } = &*instantiated_ty else { unreachable!() };
let TypeEnum::TObj { fields, .. } = &*instantiated_ty else {
unreachable!()
};
assert!(env.unifier.unioned(fields.get(&"a".into()).unwrap().0, int));
assert!(env.unifier.unioned(fields.get(&"rec".into()).unwrap().0, instantiated));
}
@ -388,27 +363,36 @@ fn test_virtual() {
let fun = env.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![],
ret: int,
vars: VarMap::new(),
vars: HashMap::new(),
}));
let bar = env.unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(5),
fields: [("f".into(), (fun, false)), ("a".into(), (int, false))].into(),
params: VarMap::new(),
fields: [("f".into(), (fun, false)), ("a".into(), (int, false))]
.iter()
.cloned()
.collect::<HashMap<StrRef, _>>(),
params: HashMap::new(),
});
let v0 = env.unifier.get_dummy_var().ty;
let v1 = env.unifier.get_dummy_var().ty;
let v0 = env.unifier.get_dummy_var().0;
let v1 = env.unifier.get_dummy_var().0;
let a = env.unifier.add_ty(TypeEnum::TVirtual { ty: bar });
let b = env.unifier.add_ty(TypeEnum::TVirtual { ty: v0 });
let c = env.unifier.add_record([("f".into(), RecordField::new(v1, false, None))].into());
let c = env
.unifier
.add_record([("f".into(), RecordField::new(v1, false, None))].iter().cloned().collect());
env.unifier.unify(a, b).unwrap();
env.unifier.unify(b, c).unwrap();
assert!(env.unifier.eq(v1, fun));
let d = env.unifier.add_record([("a".into(), RecordField::new(v1, true, None))].into());
let d = env
.unifier
.add_record([("a".into(), RecordField::new(v1, true, None))].iter().cloned().collect());
assert_eq!(env.unify(b, d), Err("`virtual[5]::a` field/method does not exist".to_string()));
let d = env.unifier.add_record([("b".into(), RecordField::new(v1, true, None))].into());
let d = env
.unifier
.add_record([("b".into(), RecordField::new(v1, true, None))].iter().cloned().collect());
assert_eq!(env.unify(b, d), Err("`virtual[5]::b` field/method does not exist".to_string()));
}
@ -421,132 +405,86 @@ fn test_typevar_range() {
let int_list = env.parse("list[int]", &HashMap::new());
let float_list = env.parse("list[float]", &HashMap::new());
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*env.unifier.get_ty_immutable(env.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
// unification between v and int
// where v in (int, bool)
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).0;
env.unifier.unify(int, v).unwrap();
// unification between v and list[int]
// where v in (int, bool)
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).0;
assert_eq!(
env.unify(int_list, v),
Err("Expected any one of these types: 0, 2, but got 11[0]".to_string())
Err("Expected any one of these types: 0, 2, but got list[0]".to_string())
);
// unification between v and float
// where v in (int, bool)
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).0;
assert_eq!(
env.unify(float, v),
Err("Expected any one of these types: 0, 2, but got 1".to_string())
);
let v1 = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let v1_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: v1 }]),
});
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).ty;
let v1 = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).0;
let v1_list = env.unifier.add_ty(TypeEnum::TList { ty: v1 });
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).0;
// unification between v and int
// where v in (int, list[v1]), v1 in (int, bool)
env.unifier.unify(int, v).unwrap();
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).ty;
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).0;
// unification between v and list[int]
// where v in (int, list[v1]), v1 in (int, bool)
env.unifier.unify(int_list, v).unwrap();
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).ty;
let v = env.unifier.get_fresh_var_with_range(&[int, v1_list], None, None).0;
// unification between v and list[float]
// where v in (int, list[v1]), v1 in (int, bool)
println!("float_list: {}, v: {}", env.unifier.stringify(float_list), env.unifier.stringify(v));
assert_eq!(
env.unify(float_list, v),
Err("Expected any one of these types: 0, 11[typevar6], but got 11[1]\n\nNotes:\n typevar6 ∈ {0, 2}".to_string())
Err("Expected any one of these types: 0, list[typevar5], but got list[1]\n\nNotes:\n typevar5 ∈ {0, 2}".to_string())
);
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).0;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).0;
env.unifier.unify(a, b).unwrap();
env.unifier.unify(a, float).unwrap();
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).0;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).0;
env.unifier.unify(a, b).unwrap();
assert_eq!(env.unify(a, int), Err("Expected any one of these types: 1, but got 0".into()));
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).ty;
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
let b_list = env.unifier.get_fresh_var_with_range(&[b_list], None, None).ty;
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).0;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).0;
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).0;
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
let b_list = env.unifier.get_fresh_var_with_range(&[b_list], None, None).0;
env.unifier.unify(a_list, b_list).unwrap();
let float_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: float }]),
});
let float_list = env.unifier.add_ty(TypeEnum::TList { ty: float });
env.unifier.unify(a_list, float_list).unwrap();
// previous unifications should not affect a and b
env.unifier.unify(a, int).unwrap();
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).ty;
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).0;
let b = env.unifier.get_fresh_var_with_range(&[boolean, float], None, None).0;
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
env.unifier.unify(a_list, b_list).unwrap();
let int_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: int }]),
});
let int_list = env.unifier.add_ty(TypeEnum::TList { ty: int });
assert_eq!(
env.unify(a_list, int_list),
Err("Incompatible types: 11[typevar23] and 11[0]\
\n\nNotes:\n typevar23 {1}"
.into())
Err("Incompatible types: list[typevar22] and list[0]\
\n\nNotes:\n typevar22 {1}".into())
);
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).ty;
let b = env.unifier.get_dummy_var().ty;
let a_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).ty;
let b_list = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: b }]),
});
let a = env.unifier.get_fresh_var_with_range(&[int, float], None, None).0;
let b = env.unifier.get_dummy_var().0;
let a_list = env.unifier.add_ty(TypeEnum::TList { ty: a });
let a_list = env.unifier.get_fresh_var_with_range(&[a_list], None, None).0;
let b_list = env.unifier.add_ty(TypeEnum::TList { ty: b });
env.unifier.unify(a_list, b_list).unwrap();
assert_eq!(
env.unify(b, boolean),
@ -557,29 +495,17 @@ fn test_typevar_range() {
#[test]
fn test_rigid_var() {
let mut env = TestEnvironment::new();
let a = env.unifier.get_fresh_rigid_var(None, None).ty;
let b = env.unifier.get_fresh_rigid_var(None, None).ty;
let x = env.unifier.get_dummy_var().ty;
let list_elem_tvar = env.unifier.get_fresh_var(Some("list_elem".into()), None);
let list_a = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: a }]),
});
let list_x = env.unifier.add_ty(TypeEnum::TObj {
obj_id: env.type_mapping["list"].obj_id(&env.unifier).unwrap(),
fields: Mapping::default(),
params: into_var_map([TypeVar { id: list_elem_tvar.id, ty: x }]),
});
let a = env.unifier.get_fresh_rigid_var(None, None).0;
let b = env.unifier.get_fresh_rigid_var(None, None).0;
let x = env.unifier.get_dummy_var().0;
let list_a = env.unifier.add_ty(TypeEnum::TList { ty: a });
let list_x = env.unifier.add_ty(TypeEnum::TList { ty: x });
let int = env.parse("int", &HashMap::new());
let list_int = env.parse("list[int]", &HashMap::new());
assert_eq!(env.unify(a, b), Err("Incompatible types: typevar4 and typevar3".to_string()));
assert_eq!(env.unify(a, b), Err("Incompatible types: typevar3 and typevar2".to_string()));
env.unifier.unify(list_a, list_x).unwrap();
assert_eq!(
env.unify(list_x, list_int),
Err("Incompatible types: 11[typevar3] and 11[0]".to_string())
);
assert_eq!(env.unify(list_x, list_int), Err("Incompatible types: list[typevar2] and list[0]".to_string()));
env.unifier.replace_rigid_var(a, int);
env.unifier.unify(list_x, list_int).unwrap();
@ -593,26 +519,16 @@ fn test_instantiation() {
let float = env.parse("float", &HashMap::new());
let list_int = env.parse("list[int]", &HashMap::new());
let list_elem_tvar = if let TypeEnum::TObj { params, .. } =
&*env.unifier.get_ty_immutable(env.type_mapping["list"])
{
iter_type_vars(params).next().unwrap()
} else {
unreachable!()
};
let obj_map: HashMap<_, _> =
[(0usize, "int"), (1, "float"), (2, "bool")].iter().cloned().collect();
let obj_map: HashMap<_, _> = [(0usize, "int"), (1, "float"), (2, "bool"), (11, "list")].into();
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).ty;
let list_v = env
.unifier
.subst(env.type_mapping["list"], &into_var_map([TypeVar { id: list_elem_tvar.id, ty: v }]))
.unwrap();
let v1 = env.unifier.get_fresh_var_with_range(&[list_v, int], None, None).ty;
let v2 = env.unifier.get_fresh_var_with_range(&[list_int, float], None, None).ty;
let t = env.unifier.get_dummy_var().ty;
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2], is_vararg_ctx: false });
let v3 = env.unifier.get_fresh_var_with_range(&[tuple, t], None, None).ty;
let v = env.unifier.get_fresh_var_with_range(&[int, boolean], None, None).0;
let list_v = env.unifier.add_ty(TypeEnum::TList { ty: v });
let v1 = env.unifier.get_fresh_var_with_range(&[list_v, int], None, None).0;
let v2 = env.unifier.get_fresh_var_with_range(&[list_int, float], None, None).0;
let t = env.unifier.get_dummy_var().0;
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2] });
let v3 = env.unifier.get_fresh_var_with_range(&[tuple, t], None, None).0;
// t = TypeVar('t')
// v = TypeVar('v', int, bool)
// v1 = TypeVar('v1', 'list[v]', int)
@ -634,7 +550,7 @@ fn test_instantiation() {
tuple[int, list[bool], list[int]]
tuple[int, list[int], float]
tuple[int, list[int], list[int]]
v6"
v5"
}
.split('\n')
.collect_vec();
@ -643,8 +559,8 @@ fn test_instantiation() {
.map(|ty| {
env.unifier.internal_stringify(
*ty,
&mut |i| (*obj_map.get(&i).unwrap()).to_string(),
&mut |i| format!("v{i}"),
&mut |i| obj_map.get(&i).unwrap().to_string(),
&mut |i| format!("v{}", i),
&mut None,
)
})

View File

@ -16,10 +16,21 @@ pub struct UnificationTable<V> {
#[derive(Clone, Debug)]
enum Action<V> {
Parent { key: usize, original_parent: usize },
Value { key: usize, original_value: Option<V> },
Rank { key: usize, original_rank: u32 },
Marker { generation: u32 },
Parent {
key: usize,
original_parent: usize,
},
Value {
key: usize,
original_value: Option<V>,
},
Rank {
key: usize,
original_rank: u32,
},
Marker {
generation: u32,
}
}
impl<V> Default for UnificationTable<V> {
@ -30,13 +41,7 @@ impl<V> Default for UnificationTable<V> {
impl<V> UnificationTable<V> {
pub fn new() -> UnificationTable<V> {
UnificationTable {
parents: Vec::new(),
ranks: Vec::new(),
values: Vec::new(),
log: Vec::new(),
generation: 0,
}
UnificationTable { parents: Vec::new(), ranks: Vec::new(), values: Vec::new(), log: Vec::new(), generation: 0 }
}
pub fn new_key(&mut self, v: V) -> UnificationKey {
@ -120,10 +125,7 @@ impl<V> UnificationTable<V> {
pub fn restore_snapshot(&mut self, snapshot: (usize, u32)) {
let (log_len, generation) = snapshot;
assert!(self.log.len() >= log_len, "snapshot restoration error");
assert!(
matches!(self.log[log_len - 1], Action::Marker { generation: gen } if gen == generation),
"snapshot restoration error"
);
assert!(matches!(self.log[log_len - 1], Action::Marker { generation: gen } if gen == generation), "snapshot restoration error");
for action in self.log.drain(log_len - 1..).rev() {
match action {
Action::Parent { key, original_parent } => {
@ -143,10 +145,7 @@ impl<V> UnificationTable<V> {
pub fn discard_snapshot(&mut self, snapshot: (usize, u32)) {
let (log_len, generation) = snapshot;
assert!(self.log.len() >= log_len, "snapshot discard error");
assert!(
matches!(self.log[log_len - 1], Action::Marker { generation: gen } if gen == generation),
"snapshot discard error"
);
assert!(matches!(self.log[log_len - 1], Action::Marker { generation: gen } if gen == generation), "snapshot discard error");
self.log.clear();
}
}
@ -160,23 +159,11 @@ where
.enumerate()
.map(|(i, (v, p))| if *p == i { v.as_ref().map(|v| v.as_ref().clone()) } else { None })
.collect();
UnificationTable {
parents: self.parents.clone(),
ranks: self.ranks.clone(),
values,
log: Vec::new(),
generation: 0,
}
UnificationTable { parents: self.parents.clone(), ranks: self.ranks.clone(), values, log: Vec::new(), generation: 0 }
}
pub fn from_send(table: &UnificationTable<V>) -> UnificationTable<Rc<V>> {
let values = table.values.iter().cloned().map(|v| v.map(Rc::new)).collect();
UnificationTable {
parents: table.parents.clone(),
ranks: table.ranks.clone(),
values,
log: Vec::new(),
generation: 0,
}
UnificationTable { parents: table.parents.clone(), ranks: table.ranks.clone(), values, log: Vec::new(), generation: 0 }
}
}

View File

@ -32,6 +32,7 @@ pub struct DwarfReader<'a> {
}
impl<'a> DwarfReader<'a> {
pub fn new(slice: &[u8], virt_addr: u32) -> DwarfReader {
DwarfReader { slice, virt_addr, base_slice: slice, base_virt_addr: virt_addr }
}
@ -59,7 +60,7 @@ impl<'a> DwarfReader<'a> {
let mut byte: u8;
loop {
byte = self.read_u8();
result |= u64::from(byte & 0x7F) << shift;
result |= ((byte & 0x7F) as u64) << shift;
shift += 7;
if byte & 0x80 == 0 {
break;
@ -74,7 +75,7 @@ impl<'a> DwarfReader<'a> {
let mut byte: u8;
loop {
byte = self.read_u8();
result |= u64::from(byte & 0x7F) << shift;
result |= ((byte & 0x7F) as u64) << shift;
shift += 7;
if byte & 0x80 == 0 {
break;
@ -156,9 +157,10 @@ fn read_encoded_pointer(reader: &mut DwarfReader, encoding: u8) -> Result<usize,
}
match encoding & 0x0F {
DW_EH_PE_absptr | DW_EH_PE_udata4 => Ok(reader.read_u32() as usize),
DW_EH_PE_absptr => Ok(reader.read_u32() as usize),
DW_EH_PE_uleb128 => Ok(reader.read_uleb128() as usize),
DW_EH_PE_udata2 => Ok(reader.read_u16() as usize),
DW_EH_PE_udata4 => Ok(reader.read_u32() as usize),
DW_EH_PE_udata8 => Ok(reader.read_u64() as usize),
DW_EH_PE_sleb128 => Ok(reader.read_sleb128() as usize),
DW_EH_PE_sdata2 => Ok(reader.read_i16() as usize),
@ -168,7 +170,10 @@ fn read_encoded_pointer(reader: &mut DwarfReader, encoding: u8) -> Result<usize,
}
}
fn read_encoded_pointer_with_pc(reader: &mut DwarfReader, encoding: u8) -> Result<usize, ()> {
fn read_encoded_pointer_with_pc(
reader: &mut DwarfReader,
encoding: u8,
) -> Result<usize, ()> {
let entry_virt_addr = reader.virt_addr;
let mut result = read_encoded_pointer(reader, encoding)?;
@ -218,10 +223,11 @@ pub struct EH_Frame<'a> {
}
impl<'a> EH_Frame<'a> {
/// Creates an [EH_Frame] using the bytes in the `.eh_frame` section and its address in the ELF
/// file.
pub fn new(eh_frame_slice: &[u8], eh_frame_addr: u32) -> EH_Frame {
EH_Frame { reader: DwarfReader::new(eh_frame_slice, eh_frame_addr) }
pub fn new(eh_frame_slice: &[u8], eh_frame_addr: u32) -> Result<EH_Frame, ()> {
Ok(EH_Frame { reader: DwarfReader::new(eh_frame_slice, eh_frame_addr) })
}
/// Returns an [Iterator] over all Call Frame Information (CFI) records.
@ -229,7 +235,10 @@ impl<'a> EH_Frame<'a> {
let reader = DwarfReader::from_reader(&self.reader, true);
let len = reader.slice.len();
CFI_Records { reader, available: len }
CFI_Records {
reader,
available: len,
}
}
}
@ -238,7 +247,7 @@ impl<'a> EH_Frame<'a> {
/// From the [specification](https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html):
///
/// > Each CFI record contains a Common Information Entry (CIE) record followed by 1 or more Frame
/// > Description Entry (FDE) records.
/// Description Entry (FDE) records.
pub struct CFI_Record<'a> {
// It refers to the augmentation data that corresponds to 'R' in the augmentation string
fde_pointer_encoding: u8,
@ -246,6 +255,7 @@ pub struct CFI_Record<'a> {
}
impl<'a> CFI_Record<'a> {
pub fn from_reader(cie_reader: &mut DwarfReader<'a>) -> Result<CFI_Record<'a>, ()> {
let length = cie_reader.read_u32();
let fde_reader = match length {
@ -254,7 +264,7 @@ impl<'a> CFI_Record<'a> {
// length == u32::MAX means that the length is only representable with 64 bits,
// which does not make sense in a system with 32-bit address.
0xFFFF_FFFF => unimplemented!(),
0xFFFFFFFF => unimplemented!(),
_ => {
let mut fde_reader = DwarfReader::from_reader(cie_reader, false);
@ -313,7 +323,10 @@ impl<'a> CFI_Record<'a> {
}
assert_ne!(fde_pointer_encoding, DW_EH_PE_omit);
Ok(CFI_Record { fde_pointer_encoding, fde_reader })
Ok(CFI_Record {
fde_pointer_encoding,
fde_reader,
})
}
/// Returns a [DwarfReader] initialized to the first Frame Description Entry (FDE) of this CFI
@ -327,7 +340,11 @@ impl<'a> CFI_Record<'a> {
let reader = self.get_fde_reader();
let len = reader.slice.len();
FDE_Records { pointer_encoding: self.fde_pointer_encoding, reader, available: len }
FDE_Records {
pointer_encoding: self.fde_pointer_encoding,
reader,
available: len,
}
}
}
@ -354,7 +371,7 @@ impl<'a> Iterator for CFI_Records<'a> {
let length = match length {
// eh_frame with 0-length means the CIE is terminated
0 => return None,
0xFFFF_FFFF => unimplemented!("CIE entries larger than 4 bytes not supported"),
0xFFFFFFFF => unimplemented!("CIE entries larger than 4 bytes not supported"),
other => other,
} as usize;
@ -370,7 +387,7 @@ impl<'a> Iterator for CFI_Records<'a> {
// Skip this record if it is a FDE
if cie_ptr == 0 {
// Rewind back to the start of the CFI Record
return Some(CFI_Record::from_reader(&mut this_reader).ok().unwrap());
return Some(CFI_Record::from_reader(&mut this_reader).ok().unwrap())
}
}
}
@ -400,7 +417,7 @@ impl<'a> Iterator for FDE_Records<'a> {
let length = match self.reader.read_u32() {
// eh_frame with 0-length means the CIE is terminated
0 => return None,
0xFFFF_FFFF => unimplemented!("CIE entries larger than 4 bytes not supported"),
0xFFFFFFFF => unimplemented!("CIE entries larger than 4 bytes not supported"),
other => other,
} as usize;
@ -431,6 +448,7 @@ pub struct EH_Frame_Hdr<'a> {
}
impl<'a> EH_Frame_Hdr<'a> {
/// Create a [EH_Frame_Hdr] object, and write out the fixed fields of `.eh_frame_hdr` to memory.
///
/// Load address is not known at this point.
@ -441,16 +459,15 @@ impl<'a> EH_Frame_Hdr<'a> {
) -> EH_Frame_Hdr {
let mut writer = DwarfWriter::new(eh_frame_hdr_slice);
writer.write_u8(1); // version
writer.write_u8(0x1B); // eh_frame_ptr_enc - PC-relative 4-byte signed value
writer.write_u8(0x03); // fde_count_enc - 4-byte unsigned value
writer.write_u8(0x3B); // table_enc - .eh_frame_hdr section-relative 4-byte signed value
writer.write_u8(1); // version
writer.write_u8(0x1B); // eh_frame_ptr_enc - PC-relative 4-byte signed value
writer.write_u8(0x03); // fde_count_enc - 4-byte unsigned value
writer.write_u8(0x3B); // table_enc - .eh_frame_hdr section-relative 4-byte signed value
let eh_frame_offset = eh_frame_addr.wrapping_sub(
eh_frame_hdr_addr + writer.offset as u32 + ((mem::size_of::<u8>() as u32) * 4),
);
writer.write_u32(eh_frame_offset); // eh_frame_ptr
writer.write_u32(0); // `fde_count`, will be written in finalize_fde
let eh_frame_offset = eh_frame_addr
.wrapping_sub(eh_frame_hdr_addr + writer.offset as u32 + ((mem::size_of::<u8>() as u32) * 4));
writer.write_u32(eh_frame_offset); // eh_frame_ptr
writer.write_u32(0); // `fde_count`, will be written in finalize_fde
EH_Frame_Hdr { fde_writer: writer, eh_frame_hdr_addr, fdes: Vec::new() }
}
@ -475,10 +492,7 @@ impl<'a> EH_Frame_Hdr<'a> {
self.fde_writer.write_u32(*init_loc);
self.fde_writer.write_u32(*addr);
}
LittleEndian::write_u32(
&mut self.fde_writer.slice[Self::fde_count_offset()..],
self.fdes.len() as u32,
);
LittleEndian::write_u32(&mut self.fde_writer.slice[Self::fde_count_offset()..], self.fdes.len() as u32);
}
pub fn size_from_eh_frame(eh_frame: &[u8]) -> usize {
@ -490,7 +504,7 @@ impl<'a> EH_Frame_Hdr<'a> {
// The original length field should be able to hold the entire value.
// The device memory space is limited to 32-bits addresses anyway.
let entry_length = reader.read_u32();
if entry_length == 0 || entry_length == 0xFFFF_FFFF {
if entry_length == 0 || entry_length == 0xFFFFFFFF {
unimplemented!()
}
@ -501,7 +515,7 @@ impl<'a> EH_Frame_Hdr<'a> {
fde_count += 1;
}
reader.offset(entry_length - mem::size_of::<u32>() as u32);
reader.offset(entry_length - mem::size_of::<u32>() as u32)
}
12 + fde_count * 8

View File

@ -1,5 +1,5 @@
/* generated from elf.h with rust-bindgen and then manually altered */
#![allow(non_camel_case_types, non_snake_case, non_upper_case_globals, dead_code, clippy::pedantic)]
#![allow(non_camel_case_types, non_snake_case, non_upper_case_globals, dead_code)]
pub const EI_NIDENT: usize = 16;
pub const EI_MAG0: usize = 0;

View File

@ -1,26 +1,3 @@
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
clippy::cast_possible_truncation,
clippy::cast_possible_wrap,
clippy::cast_sign_loss,
clippy::doc_markdown,
clippy::enum_glob_use,
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::similar_names,
clippy::struct_field_names,
clippy::too_many_lines,
clippy::wildcard_imports
)]
use dwarf::*;
use elf::*;
use std::collections::HashMap;
@ -93,45 +70,45 @@ struct SectionRecord<'a> {
data: Vec<u8>,
}
fn read_unaligned<T: Copy>(data: &[u8], offset: usize) -> Option<T> {
fn read_unaligned<T: Copy>(data: &[u8], offset: usize) -> Result<T, ()> {
if data.len() < offset + mem::size_of::<T>() {
None
Err(())
} else {
let ptr = data.as_ptr().wrapping_add(offset).cast();
Some(unsafe { ptr::read_unaligned(ptr) })
let ptr = data.as_ptr().wrapping_add(offset) as *const T;
Ok(unsafe { ptr::read_unaligned(ptr) })
}
}
#[must_use]
pub fn get_ref_slice<T: Copy>(data: &[u8], offset: usize, len: usize) -> Option<&[T]> {
pub fn get_ref_slice<T: Copy>(data: &[u8], offset: usize, len: usize) -> Result<&[T], ()> {
if data.len() < offset + mem::size_of::<T>() * len {
None
Err(())
} else {
let ptr = data.as_ptr().wrapping_add(offset).cast();
Some(unsafe { slice::from_raw_parts(ptr, len) })
let ptr = data.as_ptr().wrapping_add(offset) as *const T;
Ok(unsafe { slice::from_raw_parts(ptr, len) })
}
}
fn from_struct_slice<T>(struct_vec: &[T]) -> Vec<u8> {
fn from_struct_vec<T>(struct_vec: Vec<T>) -> Vec<u8> {
let ptr = struct_vec.as_ptr();
unsafe { slice::from_raw_parts(ptr.cast(), mem::size_of_val(struct_vec)) }.to_vec()
unsafe { slice::from_raw_parts(ptr as *const u8, struct_vec.len() * mem::size_of::<T>()) }
.to_vec()
}
fn to_struct_slice<T>(bytes: &[u8]) -> &[T] {
unsafe { slice::from_raw_parts(bytes.as_ptr().cast(), bytes.len() / mem::size_of::<T>()) }
unsafe { slice::from_raw_parts(bytes.as_ptr() as *const T, bytes.len() / mem::size_of::<T>()) }
}
fn to_struct_mut_slice<T>(bytes: &mut [u8]) -> &mut [T] {
unsafe {
slice::from_raw_parts_mut(bytes.as_mut_ptr().cast(), bytes.len() / mem::size_of::<T>())
slice::from_raw_parts_mut(bytes.as_mut_ptr() as *mut T, bytes.len() / mem::size_of::<T>())
}
}
fn elf_hash(name: &[u8]) -> u32 {
let mut h: u32 = 0;
for c in name {
h = (h << 4) + u32::from(*c);
let g = h & 0xf000_0000;
h = (h << 4) + *c as u32;
let g = h & 0xf0000000;
if g != 0 {
h ^= g >> 24;
h &= !g;
@ -225,26 +202,22 @@ impl<'a> Linker<'a> {
relocs: &[R],
target_section: Elf32_Word,
) -> Result<(), Error> {
type RelocateFn = dyn Fn(&mut [u8], Elf32_Word);
struct RelocInfo<'a, R> {
pub defined_val: bool,
pub indirect_reloc: Option<&'a R>,
pub pc_relative: bool,
pub relocate: Option<Box<RelocateFn>>,
}
for reloc in relocs {
let sym = match reloc.sym_info() as usize {
STN_UNDEF => None,
sym_index => {
Some(self.symtab.get(sym_index).ok_or("symbol out of bounds of symbol table")?)
}
sym_index => Some(
self.symtab
.get(sym_index)
.ok_or("symbol out of bounds of symbol table")?,
),
};
let resolve_symbol_addr =
|sym_option: Option<&Elf32_Sym>| -> Result<Elf32_Word, Error> {
let Some(sym) = sym_option else { return Ok(0) };
let sym = match sym_option {
Some(sym) => sym,
None => return Ok(0),
};
match sym.st_shndx {
SHN_UNDEF => Err(Error::Lookup("undefined symbol")),
@ -271,6 +244,13 @@ impl<'a> Linker<'a> {
.ok_or(Error::Parsing("Cannot find section with matching sh_index"))
};
struct RelocInfo<'a, R> {
pub defined_val: bool,
pub indirect_reloc: Option<&'a R>,
pub pc_relative: bool,
pub relocate: Option<Box<dyn Fn(&mut [u8], Elf32_Word)>>,
}
let classify = |reloc: &R, sym_option: Option<&Elf32_Sym>| -> Option<RelocInfo<R>> {
let defined_val = sym_option.map_or(true, |sym| {
sym.st_shndx != SHN_UNDEF || ELF32_ST_BIND(sym.st_info) == STB_LOCAL
@ -282,7 +262,7 @@ impl<'a> Linker<'a> {
indirect_reloc: None,
pc_relative: true,
relocate: Some(Box::new(|target_word, value| {
LittleEndian::write_u32(target_word, value);
LittleEndian::write_u32(target_word, value)
})),
}),
@ -293,9 +273,9 @@ impl<'a> Linker<'a> {
relocate: Some(Box::new(|target_word, value| {
LittleEndian::write_u32(
target_word,
(LittleEndian::read_u32(target_word) & 0x8000_0000)
| value & 0x7FFF_FFFF,
);
(LittleEndian::read_u32(target_word) & 0x80000000)
| value & 0x7FFFFFFF,
)
})),
}),
@ -317,8 +297,8 @@ impl<'a> Linker<'a> {
relocate: Some(Box::new(|target_word, value| {
let auipc_raw = LittleEndian::read_u32(target_word);
let auipc_insn =
(auipc_raw & 0xFFF) | ((value + 0x800) & 0xFFFF_F000);
LittleEndian::write_u32(target_word, auipc_insn);
(auipc_raw & 0xFFF) | ((value + 0x800) & 0xFFFFF000);
LittleEndian::write_u32(target_word, auipc_insn)
})),
})
}
@ -328,14 +308,15 @@ impl<'a> Linker<'a> {
indirect_reloc: None,
pc_relative: true,
relocate: Some(Box::new(|target_word, value| {
LittleEndian::write_u32(target_word, value);
LittleEndian::write_u32(target_word, value)
})),
}),
R_RISCV_PCREL_LO12_I => {
let expected_offset = sym_option.map_or(0, |sym| sym.st_value);
let indirect_reloc =
relocs.iter().find(|reloc| reloc.offset() == expected_offset)?;
let indirect_reloc = relocs
.iter()
.find(|reloc| reloc.offset() == expected_offset)?;
Some(RelocInfo {
defined_val: {
let indirect_sym =
@ -349,14 +330,14 @@ impl<'a> Linker<'a> {
// Here, we convert to direct addressing
// GOT reloc (indirect) -> lw + addi
// PCREL reloc (direct) -> addi
let (lo_opcode, lo_funct3) = (0b001_0011, 0b000);
let (lo_opcode, lo_funct3) = (0b0010011, 0b000);
let addi_lw_raw = LittleEndian::read_u32(target_word);
let addi_insn = lo_opcode
| (addi_lw_raw & 0xF8F80)
| (lo_funct3 << 12)
| ((value & 0xFFF) << 20);
LittleEndian::write_u32(target_word, addi_insn);
LittleEndian::write_u32(target_word, addi_insn)
})),
})
}
@ -373,7 +354,10 @@ impl<'a> Linker<'a> {
indirect_reloc: None,
pc_relative: false,
relocate: Some(Box::new(|target_word, value| {
LittleEndian::write_u32(target_word, value);
LittleEndian::write_u32(
target_word,
value,
)
})),
}),
@ -383,7 +367,7 @@ impl<'a> Linker<'a> {
pc_relative: false,
relocate: Some(Box::new(|target_word, value| {
let old_value = LittleEndian::read_u32(target_word);
LittleEndian::write_u32(target_word, old_value.wrapping_add(value));
LittleEndian::write_u32(target_word, old_value.wrapping_add(value))
})),
}),
@ -393,7 +377,7 @@ impl<'a> Linker<'a> {
pc_relative: false,
relocate: Some(Box::new(|target_word, value| {
let old_value = LittleEndian::read_u32(target_word);
LittleEndian::write_u32(target_word, old_value.wrapping_sub(value));
LittleEndian::write_u32(target_word, old_value.wrapping_sub(value))
})),
}),
@ -402,7 +386,10 @@ impl<'a> Linker<'a> {
indirect_reloc: None,
pc_relative: false,
relocate: Some(Box::new(|target_word, value| {
LittleEndian::write_u16(target_word, value as u16);
LittleEndian::write_u16(
target_word,
value as u16,
)
})),
}),
@ -415,7 +402,7 @@ impl<'a> Linker<'a> {
LittleEndian::write_u16(
target_word,
old_value.wrapping_add(value as u16),
);
)
})),
}),
@ -428,7 +415,7 @@ impl<'a> Linker<'a> {
LittleEndian::write_u16(
target_word,
old_value.wrapping_sub(value as u16),
);
)
})),
}),
@ -510,7 +497,7 @@ impl<'a> Linker<'a> {
if let Some(relocate) = reloc_info.relocate {
let target_word = &mut target_sec_image[reloc.offset() as usize..];
relocate(target_word, value);
relocate(target_word, value)
} else {
self.rela_dyn_relas.push(Elf32_Rela {
r_offset: rela_off,
@ -558,18 +545,16 @@ impl<'a> Linker<'a> {
let eh_frame_slice = eh_frame_rec.data.as_slice();
// Prepare a new buffer to dodge borrow check
let mut eh_frame_hdr_vec: Vec<u8> = vec![0; eh_frame_hdr_rec.shdr.sh_size as usize];
let eh_frame = EH_Frame::new(eh_frame_slice, eh_frame_rec.shdr.sh_offset);
let eh_frame = EH_Frame::new(eh_frame_slice, eh_frame_rec.shdr.sh_offset)
.map_err(|()| "cannot read EH frame")?;
let mut eh_frame_hdr = EH_Frame_Hdr::new(
eh_frame_hdr_vec.as_mut_slice(),
eh_frame_hdr_rec.shdr.sh_offset,
eh_frame_rec.shdr.sh_offset,
);
eh_frame.cfi_records().flat_map(|cfi| cfi.fde_records()).for_each(&mut |(
init_pos,
virt_addr,
)| {
eh_frame_hdr.add_fde(init_pos, virt_addr);
});
eh_frame.cfi_records()
.flat_map(|cfi| cfi.fde_records())
.for_each(&mut |(init_pos, virt_addr)| eh_frame_hdr.add_fde(init_pos, virt_addr));
// Sort FDE entries in .eh_frame_hdr
eh_frame_hdr.finalize_fde();
@ -583,129 +568,55 @@ impl<'a> Linker<'a> {
}
pub fn ld(data: &'a [u8]) -> Result<Vec<u8>, Error> {
fn allocate_rela_dyn<R: Relocatable>(
linker: &Linker,
relocs: &[R],
) -> Result<(usize, Vec<u32>), Error> {
let mut alloc_size = 0;
let mut rela_dyn_sym_indices = Vec::new();
for reloc in relocs {
if reloc.sym_info() as usize == STN_UNDEF {
continue;
}
let sym: &Elf32_Sym = linker
.symtab
.get(reloc.sym_info() as usize)
.ok_or("symbol out of bounds of symbol table")?;
match (linker.isa, reloc.type_info()) {
// Absolute address relocations
// A runtime relocation is needed to find the loading address
(Isa::CortexA9, R_ARM_ABS32) | (Isa::RiscV32, R_RISCV_32) => {
alloc_size += mem::size_of::<Elf32_Rela>(); // FIXME: RELA vs REL
if ELF32_ST_BIND(sym.st_info) == STB_GLOBAL && sym.st_shndx == SHN_UNDEF {
rela_dyn_sym_indices.push(reloc.sym_info());
}
}
// Relative address relocations
// Relay the relocation to the runtime linker only if the symbol is not defined
(Isa::CortexA9, R_ARM_REL32 | R_ARM_PREL31 | R_ARM_TARGET2)
| (
Isa::RiscV32,
R_RISCV_CALL_PLT | R_RISCV_PCREL_HI20 | R_RISCV_GOT_HI20 | R_RISCV_32_PCREL
| R_RISCV_SET32 | R_RISCV_ADD32 | R_RISCV_SUB32 | R_RISCV_SET16
| R_RISCV_ADD16 | R_RISCV_SUB16 | R_RISCV_SET8 | R_RISCV_ADD8
| R_RISCV_SUB8 | R_RISCV_SET6 | R_RISCV_SUB6,
) => {
if ELF32_ST_BIND(sym.st_info) == STB_GLOBAL && sym.st_shndx == SHN_UNDEF {
alloc_size += mem::size_of::<Elf32_Rela>(); // FIXME: RELA vs REL
rela_dyn_sym_indices.push(reloc.sym_info());
}
}
// RISC-V: Lower 12-bits relocations
// If the upper 20-bits relocation cannot be resolved,
// this relocation will be relayed to the runtime linker.
(Isa::RiscV32, R_RISCV_PCREL_LO12_I) => {
// Find the HI20 relocation
let indirect_reloc = relocs
.iter()
.find(|reloc| reloc.offset() == sym.st_value)
.ok_or("malformatted LO12 relocation")?;
let indirect_sym = linker.symtab[indirect_reloc.sym_info() as usize];
if ELF32_ST_BIND(indirect_sym.st_info) == STB_GLOBAL
&& indirect_sym.st_shndx == SHN_UNDEF
{
alloc_size += mem::size_of::<Elf32_Rela>(); // FIXME: RELA vs REL
rela_dyn_sym_indices.push(reloc.sym_info());
}
}
_ => {
println!("Relocation type 0x{:X?} is not supported", reloc.type_info());
unimplemented!()
}
}
}
Ok((alloc_size, rela_dyn_sym_indices))
}
let Some(ehdr) = read_unaligned::<Elf32_Ehdr>(data, 0) else {
Err("cannot read ELF header")?
};
let ehdr = read_unaligned::<Elf32_Ehdr>(data, 0).map_err(|()| "cannot read ELF header")?;
let isa = match ehdr.e_machine {
EM_ARM => Isa::CortexA9,
EM_RISCV => Isa::RiscV32,
_ => return Err(Error::Parsing("unsupported architecture")),
};
let Some(shdrs) =
get_ref_slice::<Elf32_Shdr>(data, ehdr.e_shoff as usize, ehdr.e_shnum as usize)
else {
Err("cannot read section header table")?
};
let shdrs = get_ref_slice::<Elf32_Shdr>(data, ehdr.e_shoff as usize, ehdr.e_shnum as usize)
.map_err(|()| "cannot read section header table")?;
// Read .strtab
let strtab_shdr = shdrs[ehdr.e_shstrndx as usize];
let Some(strtab) =
let strtab =
get_ref_slice::<u8>(data, strtab_shdr.sh_offset as usize, strtab_shdr.sh_size as usize)
else {
Err("cannot read the string table from data")?
};
.map_err(|()| "cannot read the string table from data")?;
// Read .symtab
let symtab_shdr = shdrs
.iter()
.find(|shdr| shdr.sh_type as usize == SHT_SYMTAB)
.ok_or(Error::Parsing("cannot find the symbol table"))?;
let Some(symtab) = get_ref_slice::<Elf32_Sym>(
let symtab = get_ref_slice::<Elf32_Sym>(
data,
symtab_shdr.sh_offset as usize,
symtab_shdr.sh_size as usize / mem::size_of::<Elf32_Sym>(),
) else {
Err("cannot read the symbol table from data")?
};
)
.map_err(|()| "cannot read the symbol table from data")?;
// Section table for the .elf paired with the section name
// To be formalized incrementally
// Very hashmap-like structure, but the order matters, so it is a vector
let elf_shdrs = vec![SectionRecord {
shdr: Elf32_Shdr {
sh_name: 0,
sh_type: 0,
sh_flags: 0,
sh_addr: 0,
sh_offset: 0,
sh_size: 0,
sh_link: 0,
sh_info: 0,
sh_addralign: 0,
sh_entsize: 0,
let elf_shdrs = vec![
SectionRecord {
shdr: Elf32_Shdr {
sh_name: 0,
sh_type: 0,
sh_flags: 0,
sh_addr: 0,
sh_offset: 0,
sh_size: 0,
sh_link: 0,
sh_info: 0,
sh_addralign: 0,
sh_entsize: 0,
},
name: "",
data: vec![0; 0],
},
name: "",
data: vec![0; 0],
}];
];
let elf_sh_data_off = mem::size_of::<Elf32_Ehdr>() + mem::size_of::<Elf32_Phdr>() * 5;
// Image of the linked dynamic library, to be formalized incrementally
@ -841,27 +752,21 @@ impl<'a> Linker<'a> {
($shdr: expr, $stmt: expr) => {
match $shdr.sh_type as usize {
SHT_RELA => {
let Some(relocs) = get_ref_slice::<Elf32_Rela>(
let relocs = get_ref_slice::<Elf32_Rela>(
data,
$shdr.sh_offset as usize,
$shdr.sh_size as usize / mem::size_of::<Elf32_Rela>(),
) else {
Err("cannot parse relocations")?
};
#[allow(clippy::redundant_closure_call)]
)
.map_err(|()| "cannot parse relocations")?;
$stmt(relocs)
}
SHT_REL => {
let Some(relocs) = get_ref_slice::<Elf32_Rel>(
let relocs = get_ref_slice::<Elf32_Rel>(
data,
$shdr.sh_offset as usize,
$shdr.sh_size as usize / mem::size_of::<Elf32_Rel>(),
) else {
Err("cannot parse relocations")?
};
#[allow(clippy::redundant_closure_call)]
)
.map_err(|()| "cannot parse relocations")?;
$stmt(relocs)
}
_ => unreachable!(),
@ -869,6 +774,84 @@ impl<'a> Linker<'a> {
};
}
fn allocate_rela_dyn<R: Relocatable>(
linker: &Linker,
relocs: &[R],
) -> Result<(usize, Vec<u32>), Error> {
let mut alloc_size = 0;
let mut rela_dyn_sym_indices = Vec::new();
for reloc in relocs {
if reloc.sym_info() as usize == STN_UNDEF {
continue;
}
let sym: &Elf32_Sym = linker
.symtab
.get(reloc.sym_info() as usize)
.ok_or("symbol out of bounds of symbol table")?;
match (linker.isa, reloc.type_info()) {
// Absolute address relocations
// A runtime relocation is needed to find the loading address
(Isa::CortexA9, R_ARM_ABS32) | (Isa::RiscV32, R_RISCV_32) => {
alloc_size += mem::size_of::<Elf32_Rela>(); // FIXME: RELA vs REL
if ELF32_ST_BIND(sym.st_info) == STB_GLOBAL && sym.st_shndx == SHN_UNDEF {
rela_dyn_sym_indices.push(reloc.sym_info());
}
}
// Relative address relocations
// Relay the relocation to the runtime linker only if the symbol is not defined
(Isa::CortexA9, R_ARM_REL32)
| (Isa::CortexA9, R_ARM_PREL31)
| (Isa::CortexA9, R_ARM_TARGET2)
| (Isa::RiscV32, R_RISCV_CALL_PLT)
| (Isa::RiscV32, R_RISCV_PCREL_HI20)
| (Isa::RiscV32, R_RISCV_GOT_HI20)
| (Isa::RiscV32, R_RISCV_32_PCREL)
| (Isa::RiscV32, R_RISCV_SET32)
| (Isa::RiscV32, R_RISCV_ADD32)
| (Isa::RiscV32, R_RISCV_SUB32)
| (Isa::RiscV32, R_RISCV_SET16)
| (Isa::RiscV32, R_RISCV_ADD16)
| (Isa::RiscV32, R_RISCV_SUB16)
| (Isa::RiscV32, R_RISCV_SET8)
| (Isa::RiscV32, R_RISCV_ADD8)
| (Isa::RiscV32, R_RISCV_SUB8)
| (Isa::RiscV32, R_RISCV_SET6)
| (Isa::RiscV32, R_RISCV_SUB6) => {
if ELF32_ST_BIND(sym.st_info) == STB_GLOBAL && sym.st_shndx == SHN_UNDEF {
alloc_size += mem::size_of::<Elf32_Rela>(); // FIXME: RELA vs REL
rela_dyn_sym_indices.push(reloc.sym_info());
}
}
// RISC-V: Lower 12-bits relocations
// If the upper 20-bits relocation cannot be resolved,
// this relocation will be relayed to the runtime linker.
(Isa::RiscV32, R_RISCV_PCREL_LO12_I) => {
// Find the HI20 relocation
let indirect_reloc = relocs
.iter()
.find(|reloc| reloc.offset() == sym.st_value)
.ok_or("malformatted LO12 relocation")?;
let indirect_sym = linker.symtab[indirect_reloc.sym_info() as usize];
if ELF32_ST_BIND(indirect_sym.st_info) == STB_GLOBAL
&& indirect_sym.st_shndx == SHN_UNDEF
{
alloc_size += mem::size_of::<Elf32_Rela>(); // FIXME: RELA vs REL
rela_dyn_sym_indices.push(reloc.sym_info());
}
}
_ => {
println!("Relocation type 0x{:X?} is not supported", reloc.type_info());
unimplemented!()
}
}
}
Ok((alloc_size, rela_dyn_sym_indices))
}
for shdr in shdrs
.iter()
.filter(|shdr| shdr.sh_type as usize == SHT_REL || shdr.sh_type as usize == SHT_RELA)
@ -896,7 +879,7 @@ impl<'a> Linker<'a> {
}
// Avoid symbol duplication
rela_dyn_sym_indices.sort_unstable();
rela_dyn_sym_indices.sort();
rela_dyn_sym_indices.dedup();
if rela_dyn_size != 0 {
@ -1027,9 +1010,7 @@ impl<'a> Linker<'a> {
let mut hash_bucket: Vec<u32> = vec![0; dynsym.len()];
let mut hash_chain: Vec<u32> = vec![0; dynsym.len()];
for (sym_index, (str_start, str_end)) in
dynsym_names.iter().enumerate().take(dynsym.len()).skip(1)
{
for (sym_index, (str_start, str_end)) in dynsym_names.iter().enumerate().take(dynsym.len()).skip(1) {
let hash = elf_hash(&dynstr[*str_start..*str_end]);
let mut hash_index = hash as usize % hash_bucket.len();
@ -1081,7 +1062,7 @@ impl<'a> Linker<'a> {
sh_entsize: mem::size_of::<Elf32_Sym>() as Elf32_Word,
},
".dynsym",
from_struct_slice(&dynsym),
from_struct_vec(dynsym),
);
let hash_elf_index = linker.load_section(
&Elf32_Shdr {
@ -1097,7 +1078,7 @@ impl<'a> Linker<'a> {
sh_entsize: 4,
},
".hash",
from_struct_slice(&hash),
from_struct_vec(hash),
);
// Link .rela.dyn header to the .dynsym header
@ -1196,7 +1177,7 @@ impl<'a> Linker<'a> {
};
let dynamic_elf_index =
linker.load_section(&dynamic_shdr, ".dynamic", from_struct_slice(&dyn_entries));
linker.load_section(&dynamic_shdr, ".dynamic", from_struct_vec(dyn_entries));
let last_w_sec_elf_index = linker.elf_shdrs.len() - 1;
@ -1272,9 +1253,7 @@ impl<'a> Linker<'a> {
update_dynsym_record!(b"__bss_start", bss_offset, bss_elf_index as Elf32_Section);
update_dynsym_record!(b"_end", bss_offset, bss_elf_index as Elf32_Section);
} else {
for (bss_iter_index, &(bss_section_index, section_name)) in
bss_index_vec.iter().enumerate()
{
for (bss_iter_index, &(bss_section_index, section_name)) in bss_index_vec.iter().enumerate() {
let shdr = &shdrs[bss_section_index];
let bss_elf_index = linker.load_section(
shdr,
@ -1347,7 +1326,7 @@ impl<'a> Linker<'a> {
// Prepare a STRTAB to hold the names of section headers
// Fix the sh_name field of the section headers
let mut shstrtab = Vec::new();
for shdr_rec in &mut linker.elf_shdrs {
for shdr_rec in linker.elf_shdrs.iter_mut() {
let shstrtab_index = shstrtab.len();
shstrtab.extend(shdr_rec.name.as_bytes());
shstrtab.push(0);
@ -1388,17 +1367,20 @@ impl<'a> Linker<'a> {
let alignment = (4 - (linker.image.len() % 4)) % 4;
let sec_headers_offset = linker.image.len() + alignment;
linker.image.extend(vec![0; alignment]);
for rec in &linker.elf_shdrs {
for rec in linker.elf_shdrs.iter() {
let shdr = rec.shdr;
linker.image.extend(unsafe {
slice::from_raw_parts(ptr::addr_of!(shdr).cast(), mem::size_of::<Elf32_Shdr>())
slice::from_raw_parts(
&shdr as *const Elf32_Shdr as *const u8,
mem::size_of::<Elf32_Shdr>(),
)
});
}
// Update the PHDRs
let phdr_offset = mem::size_of::<Elf32_Ehdr>();
unsafe {
let phdr_ptr = linker.image.as_mut_ptr().add(phdr_offset).cast();
let phdr_ptr = linker.image.as_mut_ptr().add(phdr_offset) as *mut Elf32_Phdr;
let phdr_slice = slice::from_raw_parts_mut(phdr_ptr, 5);
// List of program headers:
// 1. ELF headers & program headers
@ -1475,7 +1457,7 @@ impl<'a> Linker<'a> {
}
// Update the EHDR
let ehdr_ptr = linker.image.as_mut_ptr().cast();
let ehdr_ptr = linker.image.as_mut_ptr() as *mut Elf32_Ehdr;
unsafe {
*ehdr_ptr = Elf32_Ehdr {
e_ident: ehdr.e_ident,

View File

@ -16,7 +16,7 @@ lalrpop-util = "0.20"
log = "0.4"
unic-emoji-char = "0.9"
unic-ucd-ident = "0.9"
unicode_names2 = "1.2"
unicode_names2 = "1.0"
phf = { version = "0.11", features = ["macros"] }
ahash = "0.8"

View File

@ -1,15 +1,15 @@
use crate::ast::Ident;
use crate::ast::Location;
use crate::error::*;
use crate::token::Tok;
use lalrpop_util::ParseError;
use nac3ast::*;
use crate::ast::Ident;
use crate::ast::Location;
use crate::token::Tok;
use crate::error::*;
pub fn make_config_comment(
com_loc: Location,
stmt_loc: Location,
nac3com_above: Vec<(Ident, Tok)>,
nac3com_end: Option<Ident>,
nac3com_end: Option<Ident>
) -> Result<Vec<Ident>, ParseError<Location, Tok, LexicalError>> {
if com_loc.column() != stmt_loc.column() && !nac3com_above.is_empty() {
return Err(ParseError::User {
@ -17,25 +17,24 @@ pub fn make_config_comment(
location: com_loc,
error: LexicalErrorType::OtherError(
format!(
"config comment at top must have the same indentation with what it applies (comment at {com_loc}, statement at {stmt_loc})",
"config comment at top must have the same indentation with what it applies (comment at {}, statement at {})",
com_loc,
stmt_loc,
)
)
}
});
})
};
Ok(nac3com_above
.into_iter()
.map(|(com, _)| com)
.chain(nac3com_end.map_or_else(|| vec![].into_iter(), |com| vec![com].into_iter()))
.collect())
Ok(
nac3com_above
.into_iter()
.map(|(com, _)| com)
.chain(nac3com_end.map_or_else(|| vec![].into_iter(), |com| vec![com].into_iter()))
.collect()
)
}
pub fn handle_small_stmt<U>(
stmts: &mut [Stmt<U>],
nac3com_above: Vec<(Ident, Tok)>,
nac3com_end: Option<Ident>,
com_above_loc: Location,
) -> Result<(), ParseError<Location, Tok, LexicalError>> {
pub fn handle_small_stmt<U>(stmts: &mut [Stmt<U>], nac3com_above: Vec<(Ident, Tok)>, nac3com_end: Option<Ident>, com_above_loc: Location) -> Result<(), ParseError<Location, Tok, LexicalError>> {
if com_above_loc.column() != stmts[0].location.column() && !nac3com_above.is_empty() {
return Err(ParseError::User {
error: LexicalError {
@ -48,12 +47,17 @@ pub fn handle_small_stmt<U>(
)
)
}
});
})
}
apply_config_comments(&mut stmts[0], nac3com_above.into_iter().map(|(com, _)| com).collect());
apply_config_comments(
&mut stmts[0],
nac3com_above
.into_iter()
.map(|(com, _)| com).collect()
);
apply_config_comments(
stmts.last_mut().unwrap(),
nac3com_end.map_or_else(Vec::new, |com| vec![com]),
nac3com_end.map_or_else(Vec::new, |com| vec![com])
);
Ok(())
}
@ -76,8 +80,6 @@ fn apply_config_comments<U>(stmt: &mut Stmt<U>, comments: Vec<Ident>) {
| StmtKind::Nonlocal { config_comment, .. }
| StmtKind::Assert { config_comment, .. } => config_comment.extend(comments),
_ => {
unreachable!("only small statements should call this function")
}
_ => { unreachable!("only small statements should call this function") }
}
}

View File

@ -37,7 +37,7 @@ impl fmt::Display for LexicalErrorType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
LexicalErrorType::StringError => write!(f, "Got unexpected string"),
LexicalErrorType::FStringError(error) => write!(f, "Got error in f-string: {error}"),
LexicalErrorType::FStringError(error) => write!(f, "Got error in f-string: {}", error),
LexicalErrorType::UnicodeError => write!(f, "Got unexpected unicode"),
LexicalErrorType::NestingError => write!(f, "Got unexpected nesting"),
LexicalErrorType::IndentationError => {
@ -59,13 +59,13 @@ impl fmt::Display for LexicalErrorType {
write!(f, "positional argument follows keyword argument")
}
LexicalErrorType::UnrecognizedToken { tok } => {
write!(f, "Got unexpected token {tok}")
write!(f, "Got unexpected token {}", tok)
}
LexicalErrorType::LineContinuationError => {
write!(f, "unexpected character after line continuation character")
}
LexicalErrorType::Eof => write!(f, "unexpected EOF while parsing"),
LexicalErrorType::OtherError(msg) => write!(f, "{msg}"),
LexicalErrorType::OtherError(msg) => write!(f, "{}", msg),
}
}
}
@ -96,7 +96,7 @@ impl fmt::Display for FStringErrorType {
FStringErrorType::UnopenedRbrace => write!(f, "Unopened '}}'"),
FStringErrorType::ExpectedRbrace => write!(f, "Expected '}}' after conversion flag."),
FStringErrorType::InvalidExpression(error) => {
write!(f, "Invalid expression: {error}")
write!(f, "Invalid expression: {}", error)
}
FStringErrorType::InvalidConversionFlag => write!(f, "Invalid conversion flag"),
FStringErrorType::EmptyExpression => write!(f, "Empty expression"),
@ -144,27 +144,36 @@ pub enum ParseErrorType {
impl From<LalrpopError<Location, Tok, LexicalError>> for ParseError {
fn from(err: LalrpopError<Location, Tok, LexicalError>) -> Self {
match err {
LalrpopError::ExtraToken { token } => {
ParseError { error: ParseErrorType::ExtraToken(token.1), location: token.0 }
}
LalrpopError::User { error } => {
ParseError { error: ParseErrorType::Lexical(error.error), location: error.location }
}
// TODO: Are there cases where this isn't an EOF?
LalrpopError::InvalidToken { location } => ParseError {
error: ParseErrorType::Eof,
location,
},
LalrpopError::ExtraToken { token } => ParseError {
error: ParseErrorType::ExtraToken(token.1),
location: token.0,
},
LalrpopError::User { error } => ParseError {
error: ParseErrorType::Lexical(error.error),
location: error.location,
},
LalrpopError::UnrecognizedToken { token, expected } => {
// Hacky, but it's how CPython does it. See PyParser_AddToken,
// in particular "Only one possible expected token" comment.
let expected = if expected.len() == 1 { Some(expected[0].clone()) } else { None };
let expected = if expected.len() == 1 {
Some(expected[0].clone())
} else {
None
};
ParseError {
error: ParseErrorType::UnrecognizedToken(token.1, expected),
location: token.0,
}
}
LalrpopError::UnrecognizedEof { location, .. }
// TODO: Are there cases where this isn't an EOF?
| LalrpopError::InvalidToken { location } => {
ParseError { error: ParseErrorType::Eof, location }
}
LalrpopError::UnrecognizedEof { location, .. } => ParseError {
error: ParseErrorType::Eof,
location,
},
}
}
}
@ -179,7 +188,7 @@ impl fmt::Display for ParseErrorType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ParseErrorType::Eof => write!(f, "Got unexpected EOF"),
ParseErrorType::ExtraToken(ref tok) => write!(f, "Got extraneous token: {tok:?}"),
ParseErrorType::ExtraToken(ref tok) => write!(f, "Got extraneous token: {:?}", tok),
ParseErrorType::InvalidToken => write!(f, "Got invalid token"),
ParseErrorType::UnrecognizedToken(ref tok, ref expected) => {
if *tok == Tok::Indent {
@ -187,10 +196,10 @@ impl fmt::Display for ParseErrorType {
} else if expected.as_deref() == Some("Indent") {
write!(f, "expected an indented block")
} else {
write!(f, "Got unexpected token {tok}")
write!(f, "Got unexpected token {}", tok)
}
}
ParseErrorType::Lexical(ref error) => write!(f, "{error}"),
ParseErrorType::Lexical(ref error) => write!(f, "{}", error),
}
}
}
@ -198,7 +207,6 @@ impl fmt::Display for ParseErrorType {
impl Error for ParseErrorType {}
impl ParseErrorType {
#[must_use]
pub fn is_indentation_error(&self) -> bool {
match self {
ParseErrorType::Lexical(LexicalErrorType::IndentationError) => true,
@ -208,11 +216,11 @@ impl ParseErrorType {
_ => false,
}
}
#[must_use]
pub fn is_tab_error(&self) -> bool {
matches!(
self,
ParseErrorType::Lexical(LexicalErrorType::TabError | LexicalErrorType::TabsAfterSpaces)
ParseErrorType::Lexical(LexicalErrorType::TabError)
| ParseErrorType::Lexical(LexicalErrorType::TabsAfterSpaces)
)
}
}

View File

@ -15,7 +15,10 @@ struct FStringParser<'a> {
impl<'a> FStringParser<'a> {
fn new(source: &'a str, str_location: Location) -> Self {
Self { chars: source.chars().peekable(), str_location }
Self {
chars: source.chars().peekable(),
str_location,
}
}
#[inline]
@ -130,10 +133,10 @@ impl<'a> FStringParser<'a> {
)
} else {
Box::new(self.expr(ExprKind::Constant {
value: spec_expression.clone().into(),
value: spec_expression.to_owned().into(),
kind: None,
}))
});
})
}
'(' | '{' | '[' => {
expression.push(ch);
@ -248,11 +251,17 @@ impl<'a> FStringParser<'a> {
}
if !content.is_empty() {
values.push(self.expr(ExprKind::Constant { value: content.into(), kind: None }));
values.push(self.expr(ExprKind::Constant {
value: content.into(),
kind: None,
}))
}
let s = match values.len() {
0 => self.expr(ExprKind::Constant { value: String::new().into(), kind: None }),
0 => self.expr(ExprKind::Constant {
value: String::new().into(),
kind: None,
}),
1 => values.into_iter().next().unwrap(),
_ => self.expr(ExprKind::JoinedStr { values }),
};
@ -261,14 +270,16 @@ impl<'a> FStringParser<'a> {
}
fn parse_fstring_expr(source: &str) -> Result<Expr, ParseError> {
let fstring_body = format!("({source})");
let fstring_body = format!("({})", source);
parse_expression(&fstring_body)
}
/// Parse an fstring from a string, located at a certain position in the sourcecode.
/// In case of errors, we will get the location and the error returned.
pub fn parse_located_fstring(source: &str, location: Location) -> Result<Expr, FStringError> {
FStringParser::new(source, location).parse().map_err(|error| FStringError { error, location })
FStringParser::new(source, location)
.parse()
.map_err(|error| FStringError { error, location })
}
#[cfg(test)]
@ -282,7 +293,7 @@ mod tests {
#[test]
fn test_parse_fstring() {
let source = "{a}{ b }{{foo}}";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
@ -290,7 +301,7 @@ mod tests {
#[test]
fn test_parse_fstring_nested_spec() {
let source = "{foo:{spec}}";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
@ -298,7 +309,7 @@ mod tests {
#[test]
fn test_parse_fstring_not_nested_spec() {
let source = "{foo:spec}";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
@ -311,7 +322,7 @@ mod tests {
#[test]
fn test_fstring_parse_selfdocumenting_base() {
let src = "{user=}";
let parse_ast = parse_fstring(src).unwrap();
let parse_ast = parse_fstring(&src).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
@ -319,7 +330,7 @@ mod tests {
#[test]
fn test_fstring_parse_selfdocumenting_base_more() {
let src = "mix {user=} with text and {second=}";
let parse_ast = parse_fstring(src).unwrap();
let parse_ast = parse_fstring(&src).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
@ -327,7 +338,7 @@ mod tests {
#[test]
fn test_fstring_parse_selfdocumenting_format() {
let src = "{user=:>10}";
let parse_ast = parse_fstring(src).unwrap();
let parse_ast = parse_fstring(&src).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
@ -360,35 +371,35 @@ mod tests {
#[test]
fn test_parse_fstring_not_equals() {
let source = "{1 != 2}";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_equals() {
let source = "{42 == 42}";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_selfdoc_prec_space() {
let source = "{x =}";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_selfdoc_trailing_space() {
let source = "{x= }";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_fstring_yield_expr() {
let source = "{yield}";
let parse_ast = parse_fstring(source).unwrap();
let parse_ast = parse_fstring(&source).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
}

View File

@ -54,32 +54,38 @@ pub fn parse_args(func_args: Vec<FunctionArgument>) -> Result<ArgumentList, Lexi
let mut keyword_names = HashSet::with_capacity_and_hasher(func_args.len(), RandomState::new());
for (name, value) in func_args {
if let Some((location, name)) = name {
if let Some(keyword_name) = &name {
if keyword_names.contains(keyword_name) {
match name {
Some((location, name)) => {
if let Some(keyword_name) = &name {
if keyword_names.contains(keyword_name) {
return Err(LexicalError {
error: LexicalErrorType::DuplicateKeywordArgumentError,
location,
});
}
keyword_names.insert(keyword_name.clone());
}
keywords.push(ast::Keyword::new(
location,
ast::KeywordData {
arg: name.map(|name| name.into()),
value: Box::new(value),
},
));
}
None => {
// Allow starred args after keyword arguments.
if !keywords.is_empty() && !is_starred(&value) {
return Err(LexicalError {
error: LexicalErrorType::DuplicateKeywordArgumentError,
location,
error: LexicalErrorType::PositionalArgumentError,
location: value.location,
});
}
keyword_names.insert(keyword_name.clone());
args.push(value);
}
keywords.push(ast::Keyword::new(
location,
ast::KeywordData { arg: name.map(String::into), value: Box::new(value) },
));
} else {
// Allow starred args after keyword arguments.
if !keywords.is_empty() && !is_starred(&value) {
return Err(LexicalError {
error: LexicalErrorType::PositionalArgumentError,
location: value.location,
});
}
args.push(value);
}
}
Ok(ArgumentList { args, keywords })

View File

@ -3,12 +3,12 @@
//! This means source code is translated into separate tokens.
pub use super::token::Tok;
use crate::ast::{FileName, Location};
use crate::ast::{Location, FileName};
use crate::error::{LexicalError, LexicalErrorType};
use std::char;
use std::cmp::Ordering;
use std::num::IntErrorKind;
use std::str::FromStr;
use std::num::IntErrorKind;
use unic_emoji_char::is_emoji_presentation;
use unic_ucd_ident::{is_xid_continue, is_xid_start};
@ -32,14 +32,20 @@ impl IndentationLevel {
if self.spaces <= other.spaces {
Ok(Ordering::Less)
} else {
Err(LexicalError { location, error: LexicalErrorType::TabError })
Err(LexicalError {
location,
error: LexicalErrorType::TabError,
})
}
}
Ordering::Greater => {
if self.spaces >= other.spaces {
Ok(Ordering::Greater)
} else {
Err(LexicalError { location, error: LexicalErrorType::TabError })
Err(LexicalError {
location,
error: LexicalErrorType::TabError,
})
}
}
Ordering::Equal => Ok(self.spaces.cmp(&other.spaces)),
@ -57,7 +63,7 @@ pub struct Lexer<T: Iterator<Item = char>> {
chr1: Option<char>,
chr2: Option<char>,
location: Location,
config_comment_prefix: Option<&'static str>,
config_comment_prefix: Option<&'static str>
}
pub static KEYWORDS: phf::Map<&'static str, Tok> = phf::phf_map! {
@ -130,7 +136,11 @@ where
T: Iterator<Item = char>,
{
pub fn new(source: T) -> Self {
let mut nlh = NewlineHandler { source, chr0: None, chr1: None };
let mut nlh = NewlineHandler {
source,
chr0: None,
chr1: None,
};
nlh.shift();
nlh.shift();
nlh
@ -159,7 +169,7 @@ where
self.shift();
} else {
// Transform MAC EOL into \n
self.chr0 = Some('\n');
self.chr0 = Some('\n')
}
} else {
break;
@ -179,13 +189,13 @@ where
chars: input,
at_begin_of_line: true,
nesting: 0,
indentation_stack: vec![IndentationLevel::default()],
indentation_stack: vec![Default::default()],
pending: Vec::new(),
chr0: None,
location: start,
chr1: None,
chr2: None,
config_comment_prefix: Some(" nac3:"),
config_comment_prefix: Some(" nac3:")
};
lxr.next_char();
lxr.next_char();
@ -207,9 +217,11 @@ where
let mut saw_f = false;
loop {
// Detect r"", f"", b"" and u""
if !(saw_b || saw_u || saw_f) && matches!(self.chr0, Some('b' | 'B')) {
if !(saw_b || saw_u || saw_f) && matches!(self.chr0, Some('b') | Some('B')) {
saw_b = true;
} else if !(saw_b || saw_r || saw_u || saw_f) && matches!(self.chr0, Some('u' | 'U')) {
} else if !(saw_b || saw_r || saw_u || saw_f)
&& matches!(self.chr0, Some('u') | Some('U'))
{
saw_u = true;
} else if !(saw_r || saw_u) && (self.chr0 == Some('r') || self.chr0 == Some('R')) {
saw_r = true;
@ -275,15 +287,15 @@ where
let end_pos = self.get_pos();
let value = match i128::from_str_radix(&value_text, radix) {
Ok(value) => value,
Err(e) => match e.kind() {
IntErrorKind::PosOverflow | IntErrorKind::NegOverflow => i128::MAX,
_ => {
return Err(LexicalError {
error: LexicalErrorType::OtherError(format!("{e:?}")),
Err(e) => {
match e.kind() {
IntErrorKind::PosOverflow | IntErrorKind::NegOverflow => i128::MAX,
_ => return Err(LexicalError {
error: LexicalErrorType::OtherError(format!("{:?}", e)),
location: start_pos,
})
}),
}
},
}
};
Ok((start_pos, Tok::Int { value }, end_pos))
}
@ -326,7 +338,14 @@ where
if self.chr0 == Some('j') || self.chr0 == Some('J') {
self.next_char();
let end_pos = self.get_pos();
Ok((start_pos, Tok::Complex { real: 0.0, imag: value }, end_pos))
Ok((
start_pos,
Tok::Complex {
real: 0.0,
imag: value,
},
end_pos,
))
} else {
let end_pos = self.get_pos();
Ok((start_pos, Tok::Float { value }, end_pos))
@ -345,7 +364,7 @@ where
let value = value_text.parse::<i128>().ok();
let nonzero = match value {
Some(value) => value != 0i128,
None => true,
None => true
};
if start_is_zero && nonzero {
return Err(LexicalError {
@ -360,7 +379,7 @@ where
/// Consume a sequence of numbers with the given radix,
/// the digits can be decorated with underscores
/// like this: `'1_2_3_4'` == `'1234'`
/// like this: '1_2_3_4' == '1234'
fn radix_run(&mut self, radix: u32) -> String {
let mut value_text = String::new();
@ -393,7 +412,7 @@ where
2 => matches!(c, Some('0'..='1')),
8 => matches!(c, Some('0'..='7')),
10 => matches!(c, Some('0'..='9')),
16 => matches!(c, Some('0'..='9' | 'a'..='f' | 'A'..='F')),
16 => matches!(c, Some('0'..='9') | Some('a'..='f') | Some('A'..='F')),
other => unimplemented!("Radix not implemented: {}", other),
}
}
@ -401,8 +420,8 @@ where
/// Test if we face '[eE][-+]?[0-9]+'
fn at_exponent(&self) -> bool {
match self.chr0 {
Some('e' | 'E') => match self.chr1 {
Some('+' | '-') => matches!(self.chr2, Some('0'..='9')),
Some('e') | Some('E') => match self.chr1 {
Some('+') | Some('-') => matches!(self.chr2, Some('0'..='9')),
Some('0'..='9') => true,
_ => false,
},
@ -414,17 +433,19 @@ where
fn lex_comment(&mut self) -> Option<Spanned> {
self.next_char();
// if possibly nac3 pseudocomment, special handling for `# nac3:`
let (mut prefix, mut is_comment) =
self.config_comment_prefix.map_or_else(|| ("".chars(), false), |v| (v.chars(), true));
let (mut prefix, mut is_comment) = self
.config_comment_prefix
.map_or_else(|| ("".chars(), false), |v| (v.chars(), true));
// for the correct location of config comment
let mut start_loc = self.location;
start_loc.go_left();
loop {
match self.chr0 {
Some('\n') | None => return None,
Some('\n') => return None,
None => return None,
Some(c) => {
if let (true, Some(p)) = (is_comment, prefix.next()) {
is_comment = is_comment && c == p;
is_comment = is_comment && c == p
} else {
// done checking prefix, if is comment then return the spanned
if is_comment {
@ -439,20 +460,22 @@ where
return Some((
start_loc,
Tok::ConfigComment { content: content.trim().into() },
self.location,
self.location
));
}
}
}
}
self.next_char();
}
};
}
fn unicode_literal(&mut self, literal_number: usize) -> Result<char, LexicalError> {
let mut p: u32 = 0u32;
let unicode_error =
LexicalError { error: LexicalErrorType::UnicodeError, location: self.get_pos() };
let unicode_error = LexicalError {
error: LexicalErrorType::UnicodeError,
location: self.get_pos(),
};
for i in 1..=literal_number {
match self.next_char() {
Some(c) => match c.to_digit(16) {
@ -473,7 +496,7 @@ where
octet_content.push(first);
while octet_content.len() < 3 {
if let Some('0'..='7') = self.chr0 {
octet_content.push(self.next_char().unwrap());
octet_content.push(self.next_char().unwrap())
} else {
break;
}
@ -507,8 +530,10 @@ where
}
}
}
unicode_names2::character(&name)
.ok_or(LexicalError { error: LexicalErrorType::UnicodeError, location: start_pos })
unicode_names2::character(&name).ok_or(LexicalError {
error: LexicalErrorType::UnicodeError,
location: start_pos,
})
}
fn lex_string(
@ -541,7 +566,7 @@ where
} else if is_raw {
string_content.push('\\');
if let Some(c) = self.next_char() {
string_content.push(c);
string_content.push(c)
} else {
return Err(LexicalError {
error: LexicalErrorType::StringError,
@ -574,7 +599,7 @@ where
Some('u') if !is_bytes => string_content.push(self.unicode_literal(4)?),
Some('U') if !is_bytes => string_content.push(self.unicode_literal(8)?),
Some('N') if !is_bytes => {
string_content.push(self.parse_unicode_name()?);
string_content.push(self.parse_unicode_name()?)
}
Some(c) => {
string_content.push('\\');
@ -625,15 +650,20 @@ where
let end_pos = self.get_pos();
let tok = if is_bytes {
Tok::Bytes { value: string_content.chars().map(|c| c as u8).collect() }
Tok::Bytes {
value: string_content.chars().map(|c| c as u8).collect(),
}
} else {
Tok::String { value: string_content, is_fstring }
Tok::String {
value: string_content,
is_fstring,
}
};
Ok((start_pos, tok, end_pos))
}
fn is_identifier_start(c: char) -> bool {
fn is_identifier_start(&self, c: char) -> bool {
match c {
'_' | 'a'..='z' | 'A'..='Z' => true,
'+' | '-' | '*' | '/' | '=' | ' ' | '<' | '>' => false,
@ -805,14 +835,18 @@ where
// Check if we have some character:
if let Some(c) = self.chr0 {
// First check identifier:
if Self::is_identifier_start(c) {
if self.is_identifier_start(c) {
let identifier = self.lex_identifier()?;
self.emit(identifier);
} else if is_emoji_presentation(c) {
let tok_start = self.get_pos();
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::Name { name: c.to_string().into() }, tok_end));
self.emit((
tok_start,
Tok::Name { name: c.to_string().into() },
tok_end,
));
} else {
self.consume_character(c)?;
}
@ -865,13 +899,16 @@ where
'=' => {
let tok_start = self.get_pos();
self.next_char();
if let Some('=') = self.chr0 {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::EqEqual, tok_end));
} else {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::Equal, tok_end));
match self.chr0 {
Some('=') => {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::EqEqual, tok_end));
}
_ => {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::Equal, tok_end));
}
}
}
'+' => {
@ -897,13 +934,16 @@ where
}
Some('*') => {
self.next_char();
if let Some('=') = self.chr0 {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleStarEqual, tok_end));
} else {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleStar, tok_end));
match self.chr0 {
Some('=') => {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleStarEqual, tok_end));
}
_ => {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleStar, tok_end));
}
}
}
_ => {
@ -923,13 +963,16 @@ where
}
Some('/') => {
self.next_char();
if let Some('=') = self.chr0 {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleSlashEqual, tok_end));
} else {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleSlash, tok_end));
match self.chr0 {
Some('=') => {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleSlashEqual, tok_end));
}
_ => {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::DoubleSlash, tok_end));
}
}
}
_ => {
@ -1098,13 +1141,16 @@ where
match self.chr0 {
Some('<') => {
self.next_char();
if let Some('=') = self.chr0 {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::LeftShiftEqual, tok_end));
} else {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::LeftShift, tok_end));
match self.chr0 {
Some('=') => {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::LeftShiftEqual, tok_end));
}
_ => {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::LeftShift, tok_end));
}
}
}
Some('=') => {
@ -1124,13 +1170,16 @@ where
match self.chr0 {
Some('>') => {
self.next_char();
if let Some('=') = self.chr0 {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::RightShiftEqual, tok_end));
} else {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::RightShift, tok_end));
match self.chr0 {
Some('=') => {
self.next_char();
let tok_end = self.get_pos();
self.emit((tok_start, Tok::RightShiftEqual, tok_end));
}
_ => {
let tok_end = self.get_pos();
self.emit((tok_start, Tok::RightShift, tok_end));
}
}
}
Some('=') => {
@ -1284,14 +1333,13 @@ where
#[cfg(test)]
mod tests {
use super::{make_tokenizer, NewlineHandler, Tok};
use nac3ast::FileName;
const WINDOWS_EOL: &str = "\r\n";
const MAC_EOL: &str = "\r";
const UNIX_EOL: &str = "\n";
pub fn lex_source(source: &str) -> Vec<Tok> {
let lexer = make_tokenizer(source, FileName::default());
let lexer = make_tokenizer(source, Default::default());
lexer.map(|x| x.unwrap().1).collect()
}
@ -1371,7 +1419,7 @@ class Foo(A, B):
Dedent,
Dedent
]
);
)
}
#[test]
@ -1391,8 +1439,14 @@ class Foo(A, B):
assert_eq!(
tokens,
vec![
Tok::String { value: "\\\\".to_owned(), is_fstring: false },
Tok::String { value: "\\".to_owned(), is_fstring: false },
Tok::String {
value: "\\\\".to_owned(),
is_fstring: false,
},
Tok::String {
value: "\\".to_owned(),
is_fstring: false,
},
Tok::Newline,
]
);
@ -1405,13 +1459,27 @@ class Foo(A, B):
assert_eq!(
tokens,
vec![
Tok::Int { value: 47i128 },
Tok::Int { value: 13i128 },
Tok::Int { value: 0i128 },
Tok::Int { value: 123i128 },
Tok::Int {
value: 47i128,
},
Tok::Int {
value: 13i128,
},
Tok::Int {
value: 0i128,
},
Tok::Int {
value: 123i128,
},
Tok::Float { value: 0.2 },
Tok::Complex { real: 0.0, imag: 2.0 },
Tok::Complex { real: 0.0, imag: 2.2 },
Tok::Complex {
real: 0.0,
imag: 2.0,
},
Tok::Complex {
real: 0.0,
imag: 2.2,
},
Tok::Newline,
]
);
@ -1471,13 +1539,21 @@ class Foo(A, B):
assert_eq!(
tokens,
vec![
Tok::Name { name: String::from("avariable").into() },
Tok::Name {
name: String::from("avariable").into(),
},
Tok::Equal,
Tok::Int { value: 99i128 },
Tok::Int {
value: 99i128
},
Tok::Plus,
Tok::Int { value: 2i128 },
Tok::Int {
value: 2i128
},
Tok::Minus,
Tok::Int { value: 0i128 },
Tok::Int {
value: 0i128
},
Tok::Newline,
]
);
@ -1664,15 +1740,42 @@ class Foo(A, B):
assert_eq!(
tokens,
vec![
Tok::String { value: String::from("double"), is_fstring: false },
Tok::String { value: String::from("single"), is_fstring: false },
Tok::String { value: String::from("can't"), is_fstring: false },
Tok::String { value: String::from("\\\""), is_fstring: false },
Tok::String { value: String::from("\t\r\n"), is_fstring: false },
Tok::String { value: String::from("\\g"), is_fstring: false },
Tok::String { value: String::from("raw\\'"), is_fstring: false },
Tok::String { value: String::from("Đ"), is_fstring: false },
Tok::String { value: String::from("\u{80}\u{0}a"), is_fstring: false },
Tok::String {
value: String::from("double"),
is_fstring: false,
},
Tok::String {
value: String::from("single"),
is_fstring: false,
},
Tok::String {
value: String::from("can't"),
is_fstring: false,
},
Tok::String {
value: String::from("\\\""),
is_fstring: false,
},
Tok::String {
value: String::from("\t\r\n"),
is_fstring: false,
},
Tok::String {
value: String::from("\\g"),
is_fstring: false,
},
Tok::String {
value: String::from("raw\\'"),
is_fstring: false,
},
Tok::String {
value: String::from("Đ"),
is_fstring: false,
},
Tok::String {
value: String::from("\u{80}\u{0}a"),
is_fstring: false,
},
Tok::Newline,
]
);
@ -1727,7 +1830,7 @@ class Foo(A, B):
#[test]
fn test_escape_char_in_byte_literal() {
// backslash does not escape
let source = r#"b"omkmok\Xaa""#;
let source = r##"b"omkmok\Xaa""##;
let tokens = lex_source(source);
let res = vec![111, 109, 107, 109, 111, 107, 92, 88, 97, 97];
assert_eq!(tokens, vec![Tok::Bytes { value: res }, Tok::Newline]);
@ -1737,17 +1840,41 @@ class Foo(A, B):
fn test_raw_byte_literal() {
let source = r"rb'\x1z'";
let tokens = lex_source(source);
assert_eq!(tokens, vec![Tok::Bytes { value: b"\\x1z".to_vec() }, Tok::Newline]);
assert_eq!(
tokens,
vec![
Tok::Bytes {
value: b"\\x1z".to_vec()
},
Tok::Newline
]
);
let source = r"rb'\\'";
let tokens = lex_source(source);
assert_eq!(tokens, vec![Tok::Bytes { value: b"\\\\".to_vec() }, Tok::Newline]);
assert_eq!(
tokens,
vec![
Tok::Bytes {
value: b"\\\\".to_vec()
},
Tok::Newline
]
)
}
#[test]
fn test_escape_octet() {
let source = r"b'\43a\4\1234'";
let source = r##"b'\43a\4\1234'"##;
let tokens = lex_source(source);
assert_eq!(tokens, vec![Tok::Bytes { value: b"#a\x04S4".to_vec() }, Tok::Newline]);
assert_eq!(
tokens,
vec![
Tok::Bytes {
value: b"#a\x04S4".to_vec()
},
Tok::Newline
]
)
}
#[test]
@ -1756,7 +1883,13 @@ class Foo(A, B):
let tokens = lex_source(source);
assert_eq!(
tokens,
vec![Tok::String { value: "\u{2002}".to_owned(), is_fstring: false }, Tok::Newline]
);
vec![
Tok::String {
value: "\u{2002}".to_owned(),
is_fstring: false,
},
Tok::Newline
]
)
}
}

View File

@ -15,24 +15,6 @@
//!
//! ```
#![deny(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
clippy::all
)]
#![warn(clippy::pedantic)]
#![allow(
clippy::enum_glob_use,
clippy::fn_params_excessive_bools,
clippy::missing_errors_doc,
clippy::missing_panics_doc,
clippy::module_name_repetitions,
clippy::too_many_lines,
clippy::wildcard_imports
)]
#[macro_use]
extern crate log;
use lalrpop_util::lalrpop_mod;
@ -45,16 +27,9 @@ pub mod lexer;
pub mod mode;
pub mod parser;
lalrpop_mod!(
#[allow(
future_incompatible,
let_underscore,
nonstandard_style,
rust_2024_compatibility,
unused,
clippy::all,
clippy::pedantic
)]
#[allow(clippy::all)]
#[allow(unused)]
python
);
pub mod config_comment_helper;
pub mod token;
pub mod config_comment_helper;

View File

@ -5,7 +5,6 @@
//! parse a whole program, a single statement, or a single
//! expression.
use nac3ast::Location;
use std::iter;
use crate::ast::{self, FileName};
@ -64,7 +63,7 @@ pub fn parse_program(source: &str, file: FileName) -> Result<ast::Suite, ParseEr
///
/// ```
pub fn parse_expression(source: &str) -> Result<ast::Expr, ParseError> {
parse(source, Mode::Expression, FileName::default()).map(|top| match top {
parse(source, Mode::Expression, Default::default()).map(|top| match top {
ast::Mod::Expression { body } => *body,
_ => unreachable!(),
})
@ -73,10 +72,12 @@ pub fn parse_expression(source: &str) -> Result<ast::Expr, ParseError> {
// Parse a given source code
pub fn parse(source: &str, mode: Mode, file: FileName) -> Result<ast::Mod, ParseError> {
let lxr = lexer::make_tokenizer(source, file);
let marker_token = (Location::default(), mode.to_marker(), Location::default());
let marker_token = (Default::default(), mode.to_marker(), Default::default());
let tokenizer = iter::once(Ok(marker_token)).chain(lxr);
python::TopParser::new().parse(tokenizer).map_err(ParseError::from)
python::TopParser::new()
.parse(tokenizer)
.map_err(ParseError::from)
}
#[cfg(test)]
@ -85,42 +86,42 @@ mod tests {
#[test]
fn test_parse_empty() {
let parse_ast = parse_program("", FileName::default()).unwrap();
let parse_ast = parse_program("", Default::default()).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_print_hello() {
let source = String::from("print('Hello world')");
let parse_ast = parse_program(&source, FileName::default()).unwrap();
let parse_ast = parse_program(&source, Default::default()).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_print_2() {
let source = String::from("print('Hello world', 2)");
let parse_ast = parse_program(&source, FileName::default()).unwrap();
let parse_ast = parse_program(&source, Default::default()).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_kwargs() {
let source = String::from("my_func('positional', keyword=2)");
let parse_ast = parse_program(&source, FileName::default()).unwrap();
let parse_ast = parse_program(&source, Default::default()).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_if_elif_else() {
let source = String::from("if 1: 10\nelif 2: 20\nelse: 30");
let parse_ast = parse_program(&source, FileName::default()).unwrap();
let parse_ast = parse_program(&source, Default::default()).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
#[test]
fn test_parse_lambda() {
let source = "lambda x, y: x * y"; // lambda(x, y): x * y";
let parse_ast = parse_program(source, FileName::default()).unwrap();
let parse_ast = parse_program(source, Default::default()).unwrap();
insta::assert_debug_snapshot!(parse_ast);
}
@ -128,7 +129,7 @@ mod tests {
fn test_parse_tuples() {
let source = "a, b = 4, 5";
insta::assert_debug_snapshot!(parse_program(source, FileName::default()).unwrap());
insta::assert_debug_snapshot!(parse_program(source, Default::default()).unwrap());
}
#[test]
@ -139,7 +140,7 @@ class Foo(A, B):
pass
def method_with_default(self, arg='default'):
pass";
insta::assert_debug_snapshot!(parse_program(source, FileName::default()).unwrap());
insta::assert_debug_snapshot!(parse_program(source, Default::default()).unwrap());
}
#[test]
@ -182,7 +183,7 @@ while i < 2: # nac3: 4
# nac3: if1
if 1: # nac3: if2
3";
insta::assert_debug_snapshot!(parse_program(source, FileName::default()).unwrap());
insta::assert_debug_snapshot!(parse_program(source, Default::default()).unwrap());
}
#[test]
@ -195,7 +196,7 @@ while test: # nac3: while3
# nac3: simple assign0
a = 3 # nac3: simple assign1
";
insta::assert_debug_snapshot!(parse_program(source, FileName::default()).unwrap());
insta::assert_debug_snapshot!(parse_program(source, Default::default()).unwrap());
}
#[test]
@ -214,7 +215,7 @@ if a: # nac3: small2
for i in a: # nac3: for1
pass
";
insta::assert_debug_snapshot!(parse_program(source, FileName::default()).unwrap());
insta::assert_debug_snapshot!(parse_program(source, Default::default()).unwrap());
}
#[test]
@ -223,6 +224,6 @@ for i in a: # nac3: for1
if a: # nac3: something
a = 3
";
assert!(parse_program(source, FileName::default()).is_err());
assert!(parse_program(source, Default::default()).is_err());
}
}

View File

@ -1,7 +1,7 @@
//! Different token definitions.
//! Loosely based on token.h from CPython source:
use crate::ast;
use std::fmt::{self, Write};
use crate::ast;
/// Python source code can be tokenized in a sequence of these tokens.
#[derive(Clone, Debug, PartialEq)]
@ -111,23 +111,15 @@ impl fmt::Display for Tok {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use Tok::*;
match self {
Name { name } => {
write!(f, "'{}'", ast::get_str_from_ref(&ast::get_str_ref_lock(), *name))
}
Int { value } => {
if *value == i128::MAX {
write!(f, "'#OFL#'")
} else {
write!(f, "'{value}'")
}
}
Float { value } => write!(f, "'{value}'"),
Complex { real, imag } => write!(f, "{real}j{imag}"),
Name { name } => write!(f, "'{}'", ast::get_str_from_ref(&ast::get_str_ref_lock(), *name)),
Int { value } => if *value != i128::MAX { write!(f, "'{}'", value) } else { write!(f, "'#OFL#'") },
Float { value } => write!(f, "'{}'", value),
Complex { real, imag } => write!(f, "{}j{}", real, imag),
String { value, is_fstring } => {
if *is_fstring {
write!(f, "f")?;
write!(f, "f")?
}
write!(f, "{value:?}")
write!(f, "{:?}", value)
}
Bytes { value } => {
write!(f, "b\"")?;
@ -137,16 +129,12 @@ impl fmt::Display for Tok {
10 => f.write_str("\\n")?,
13 => f.write_str("\\r")?,
32..=126 => f.write_char(*i as char)?,
_ => write!(f, "\\x{i:02x}")?,
_ => write!(f, "\\x{:02x}", i)?,
}
}
f.write_str("\"")
}
ConfigComment { content } => write!(
f,
"ConfigComment: '{}'",
ast::get_str_from_ref(&ast::get_str_ref_lock(), *content)
),
ConfigComment { content } => write!(f, "ConfigComment: '{}'", ast::get_str_from_ref(&ast::get_str_ref_lock(), *content)),
Newline => f.write_str("Newline"),
Indent => f.write_str("Indent"),
Dedent => f.write_str("Dedent"),

View File

@ -4,19 +4,16 @@ version = "0.1.0"
authors = ["M-Labs"]
edition = "2021"
[features]
no-escape-analysis = ["nac3core/no-escape-analysis"]
[dependencies]
parking_lot = "0.12"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" }
[dependencies.clap]
version = "4.5"
version = "4.4"
features = ["derive"]
[dependencies.inkwell]
version = "0.4"
version = "0.2"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]

View File

@ -1,4 +0,0 @@
*.bc
*.ll
*.o
/demo

View File

@ -3,66 +3,23 @@
set -e
if [ -z "$1" ]; then
echo "No argument supplied"
exit 1
echo "Requires at least one argument"
exit 1
fi
declare -a nac3args
while [ $# -gt 1 ]; do
case "$1" in
--help)
echo "Usage: check_demo.sh [--debug] [-i686] -- [NAC3ARGS...] demo"
exit
;;
--debug)
debug=1
;;
-i686)
i686=1
;;
--)
shift
break
;;
*)
echo "Unrecognized argument \"$1\""
exit 1
;;
esac
shift
done
while [ $# -gt 1 ]; do
nac3args+=("$1")
shift
done
demo="$1"
echo "### Checking $demo..."
echo ">>>>>> Running $demo with the Python interpreter"
echo -n "Checking $demo... "
./interpret_demo.py "$demo" > interpreted.log
./run_demo.sh --out run.log "${nac3args[@]}" "$demo"
./run_demo.sh --lli --out run_lli.log "${nac3args[@]}" "$demo"
diff -Nau interpreted.log run.log
diff -Nau interpreted.log run_lli.log
echo "ok"
if [ -n "$i686" ]; then
echo "...... Trying NAC3's 32-bit code generator output"
if [ -n "$debug" ]; then
./run_demo.sh --debug -i686 --out run_32.log -- "${nac3args[@]}" "$demo"
else
./run_demo.sh -i686 --out run_32.log -- "${nac3args[@]}" "$demo"
fi
diff -Nau interpreted.log run_32.log
fi
echo "...... Trying NAC3's 64-bit code generator output"
if [ -n "$debug" ]; then
./run_demo.sh --debug --out run_64.log -- "${nac3args[@]}" "$demo"
else
./run_demo.sh --out run_64.log -- "${nac3args[@]}" "$demo"
fi
diff -Nau interpreted.log run_64.log
echo "...... OK"
rm -f interpreted.log \
run_32.log run_64.log
rm -f interpreted.log run.log run_lli.log

View File

@ -2,11 +2,6 @@
set -e
if [ "$1" == "--help" ]; then
echo "Usage: check_demos.sh [CHECKARGS...] [--] [NAC3ARGS...]"
exit
fi
count=0
for demo in src/*.py; do
./check_demo.sh "$@" "$demo"

View File

@ -1,4 +1,3 @@
#include <inttypes.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
@ -6,12 +5,20 @@
#include <stdlib.h>
#include <string.h>
#if __SIZEOF_POINTER__ == 8
#define usize uint64_t
#elif __SIZEOF_POINTER__ == 4
#define usize uint32_t
#else
#error "Unsupported platform - Platform is not 32-bit or 64-bit"
#endif
double dbl_nan(void) {
return NAN;
return NAN;
}
double dbl_inf(void) {
return INFINITY;
return INFINITY;
}
void output_bool(bool x) {
@ -19,19 +26,19 @@ void output_bool(bool x) {
}
void output_int32(int32_t x) {
printf("%" PRId32 "\n", x);
printf("%d\n", x);
}
void output_int64(int64_t x) {
printf("%" PRId64 "\n", x);
printf("%lld\n", x);
}
void output_uint32(uint32_t x) {
printf("%" PRIu32 "\n", x);
printf("%u\n", x);
}
void output_uint64(uint64_t x) {
printf("%" PRIu64 "\n", x);
printf("%llu\n", x);
}
void output_float64(double x) {
@ -42,17 +49,8 @@ void output_float64(double x) {
}
}
void output_range(int32_t range[3]) {
printf("range(");
printf("%d, %d", range[0], range[1]);
if (range[2] != 1) {
printf(", %d", range[2]);
}
puts(")");
}
void output_asciiart(int32_t x) {
static const char* chars = " .,-:;i+hHM$*#@ ";
static const char *chars = " .,-:;i+hHM$*#@ ";
if (x < 0) {
putchar('\n');
} else {
@ -61,15 +59,15 @@ void output_asciiart(int32_t x) {
}
struct cslice {
void* data;
size_t len;
void *data;
usize len;
};
void output_int32_list(struct cslice* slice) {
const int32_t* data = (int32_t*)slice->data;
void output_int32_list(struct cslice *slice) {
const int32_t *data = (int32_t *) slice->data;
putchar('[');
for (size_t i = 0; i < slice->len; ++i) {
for (usize i = 0; i < slice->len; ++i) {
if (i == slice->len - 1) {
printf("%d", data[i]);
} else {
@ -80,51 +78,29 @@ void output_int32_list(struct cslice* slice) {
putchar('\n');
}
void output_str(struct cslice* slice) {
const char* data = (const char*)slice->data;
void output_str(struct cslice *slice) {
const char *data = (const char *) slice->data;
for (size_t i = 0; i < slice->len; ++i) {
for (usize i = 0; i < slice->len; ++i) {
putchar(data[i]);
}
}
void output_strln(struct cslice* slice) {
output_str(slice);
putchar('\n');
}
uint64_t dbg_stack_address(__attribute__((unused)) struct cslice* slice) {
uint64_t dbg_stack_address(__attribute__((unused)) struct cslice *slice) {
int i;
void* ptr = (void*)&i;
return (uintptr_t)ptr;
void *ptr = (void *) &i;
return (uintptr_t) ptr;
}
uint32_t __nac3_personality(uint32_t state, uint32_t exception_object, uint32_t context) {
printf("__nac3_personality(state: %u, exception_object: %u, context: %u)\n", state, exception_object, context);
printf("__nac3_personality(state: %u, exception_object: %u, context: %u\n", state, exception_object, context);
exit(101);
__builtin_unreachable();
}
// See `struct Exception<'a>` in
// https://github.com/m-labs/artiq/blob/master/artiq/firmware/libeh/eh_artiq.rs
struct Exception {
uint32_t id;
struct cslice file;
uint32_t line;
uint32_t column;
struct cslice function;
struct cslice message;
int64_t param[3];
};
uint32_t __nac3_raise(struct Exception* e) {
printf("__nac3_raise called. Exception details:\n");
printf(" ID: %" PRIu32 "\n", e->id);
printf(" Location: %*s:%" PRIu32 ":%" PRIu32 "\n", (int)e->file.len, (const char*)e->file.data, e->line,
e->column);
printf(" Function: %*s\n", (int)e->function.len, (const char*)e->function.data);
printf(" Message: \"%*s\"\n", (int)e->message.len, (const char*)e->message.data);
printf(" Params: {0}=%" PRId64 ", {1}=%" PRId64 ", {2}=%" PRId64 "\n", e->param[0], e->param[1], e->param[2]);
uint32_t __nac3_raise(uint32_t state, uint32_t exception_object, uint32_t context) {
printf("__nac3_raise(state: %u, exception_object: %u, context: %u\n", state, exception_object, context);
exit(101);
__builtin_unreachable();
}

View File

@ -5,13 +5,11 @@ import importlib.util
import importlib.machinery
import math
import numpy as np
import numpy.typing as npt
import scipy as sp
import pathlib
from numpy import int32, int64, uint32, uint64
from scipy import special
from typing import TypeVar, Generic, Literal, Union
from typing import TypeVar, Generic
T = TypeVar('T')
class Option(Generic[T]):
@ -52,45 +50,11 @@ class _ConstGenericMarker:
def ConstGeneric(name, constraint):
return TypeVar(name, _ConstGenericMarker, constraint)
N = TypeVar("N", bound=np.uint64)
class _NDArrayDummy(Generic[T, N]):
pass
# https://stackoverflow.com/questions/67803260/how-to-create-a-type-alias-with-a-throw-away-generic
NDArray = Union[npt.NDArray[T], _NDArrayDummy[T, N]]
def _bool(x):
if isinstance(x, np.ndarray):
return np.bool_(x)
else:
return bool(x)
def _float(x):
if isinstance(x, np.ndarray):
return np.float_(x)
else:
return float(x)
def round_away_zero(x):
if isinstance(x, np.ndarray):
return np.vectorize(round_away_zero)(x)
if x >= 0.0:
return math.floor(x + 0.5)
else:
if x >= 0.0:
return math.floor(x + 0.5)
else:
return math.ceil(x - 0.5)
def _floor(x):
if isinstance(x, np.ndarray):
return np.vectorize(_floor)(x)
else:
return math.floor(x)
def _ceil(x):
if isinstance(x, np.ndarray):
return np.vectorize(_ceil)(x)
else:
return math.ceil(x)
return math.ceil(x - 0.5)
def patch(module):
def dbl_nan():
@ -108,9 +72,6 @@ def patch(module):
def output_float(x):
print("%f" % x)
def output_strln(x):
print(x, end='')
def dbg_stack_address(_):
return 0
@ -124,8 +85,6 @@ def patch(module):
return output_asciiart
elif name == "output_float64":
return output_float
elif name == "output_str":
return output_strln
elif name in {
"output_bool",
"output_int32",
@ -133,8 +92,7 @@ def patch(module):
"output_int32_list",
"output_uint32",
"output_uint64",
"output_strln",
"output_range",
"output_str",
}:
return print
elif name == "dbg_stack_address":
@ -146,12 +104,9 @@ def patch(module):
module.int64 = int64
module.uint32 = uint32
module.uint64 = uint64
module.bool = _bool
module.float = _float
module.TypeVar = TypeVar
module.ConstGeneric = ConstGeneric
module.Generic = Generic
module.Literal = Literal
module.extern = extern
module.Option = Option
module.Some = Some
@ -161,33 +116,16 @@ def patch(module):
module.round = round_away_zero
module.round64 = round_away_zero
module.np_round = np.round
module.floor = _floor
module.floor64 = _floor
module.floor = math.floor
module.floor64 = math.floor
module.np_floor = np.floor
module.ceil = _ceil
module.ceil64 = _ceil
module.ceil = math.ceil
module.ceil64 = math.ceil
module.np_ceil = np.ceil
# NumPy NDArray factory functions
module.ndarray = NDArray
module.np_ndarray = np.ndarray
module.np_empty = np.empty
module.np_zeros = np.zeros
module.np_ones = np.ones
module.np_full = np.full
module.np_eye = np.eye
module.np_identity = np.identity
module.np_array = np.array
# NumPy Math functions
module.np_isnan = np.isnan
module.np_isinf = np.isinf
module.np_min = np.min
module.np_minimum = np.minimum
module.np_argmin = np.argmin
module.np_max = np.max
module.np_maximum = np.maximum
module.np_argmax = np.argmax
module.np_sin = np.sin
module.np_cos = np.cos
module.np_exp = np.exp
@ -218,10 +156,8 @@ def patch(module):
module.np_ldexp = np.ldexp
module.np_hypot = np.hypot
module.np_nextafter = np.nextafter
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# SciPy Math functions
# SciPy Math Functions
module.sp_spec_erf = special.erf
module.sp_spec_erfc = special.erfc
module.sp_spec_gamma = special.gamma
@ -229,19 +165,6 @@ def patch(module):
module.sp_spec_j0 = special.j0
module.sp_spec_j1 = special.j1
# Linalg functions
module.np_dot = np.dot
module.np_linalg_cholesky = np.linalg.cholesky
module.np_linalg_qr = np.linalg.qr
module.np_linalg_svd = np.linalg.svd
module.np_linalg_inv = np.linalg.inv
module.np_linalg_pinv = np.linalg.pinv
module.np_linalg_matrix_power = np.linalg.matrix_power
module.np_linalg_det = np.linalg.det
module.sp_linalg_lu = lambda x: sp.linalg.lu(x, True)
module.sp_linalg_schur = sp.linalg.schur
module.sp_linalg_hessenberg = lambda x: sp.linalg.hessenberg(x, True)
def file_import(filename, prefix="file_import_"):
filename = pathlib.Path(filename)

View File

@ -1,114 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "approx"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cab112f0a86d568ea0e627cc1d6be74a1e9cd55214684db5561995f6dad897c6"
dependencies = [
"num-traits",
]
[[package]]
name = "autocfg"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
[[package]]
name = "cslice"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0f8cb7306107e4b10e64994de6d3274bd08996a7c1322a27b86482392f96be0a"
[[package]]
name = "libm"
version = "0.2.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ec2a862134d2a7d32d7983ddcdd1c4923530833c9f2ea1a44fc5fa473989058"
[[package]]
name = "linalg"
version = "0.1.0"
dependencies = [
"cslice",
"nalgebra",
]
[[package]]
name = "nalgebra"
version = "0.32.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b5c17de023a86f59ed79891b2e5d5a94c705dbe904a5b5c9c952ea6221b03e4"
dependencies = [
"approx",
"num-complex",
"num-rational",
"num-traits",
"simba",
"typenum",
]
[[package]]
name = "num-complex"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73f88a1307638156682bada9d7604135552957b7818057dcef22705b4d509495"
dependencies = [
"num-traits",
]
[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
"num-traits",
]
[[package]]
name = "num-rational"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f83d14da390562dca69fc84082e73e548e1ad308d24accdedd2720017cb37824"
dependencies = [
"num-integer",
"num-traits",
]
[[package]]
name = "num-traits"
version = "0.2.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "071dfc062690e90b734c0b2273ce72ad0ffa95f0c74596bc250dcfd960262841"
dependencies = [
"autocfg",
"libm",
]
[[package]]
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "simba"
version = "0.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "061507c94fc6ab4ba1c9a0305018408e312e17c041eb63bef8aa726fa33aceae"
dependencies = [
"approx",
"num-complex",
"num-traits",
"paste",
]
[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

View File

@ -1,13 +0,0 @@
[package]
name = "linalg"
version = "0.1.0"
edition = "2021"
[lib]
crate-type = ["staticlib"]
[dependencies]
nalgebra = {version = "0.32.6", default-features = false, features = ["libm", "alloc"]}
cslice = "0.3.0"
[workspace]

View File

@ -1,406 +0,0 @@
// Uses `nalgebra` crate to invoke `np_linalg` and `sp_linalg` functions
// When converting between `nalgebra::Matrix` and `NDArray` following considerations are necessary
//
// * Both `nalgebra::Matrix` and `NDArray` require their content to be stored in row-major order
// * `NDArray` data pointer can be directly read and converted to `nalgebra::Matrix` (row and column number must be known)
// * `nalgebra::Matrix::as_slice` returns the content of matrix in column-major order and initial data needs to be transposed before storing it in `NDArray` data pointer
use core::slice;
use nalgebra::DMatrix;
fn report_error(
error_name: &str,
fn_name: &str,
file_name: &str,
line_num: u32,
col_num: u32,
err_msg: &str,
) -> ! {
panic!(
"Exception {} from {} in {}:{}:{}, message: {}",
error_name, fn_name, file_name, line_num, col_num, err_msg
);
}
pub struct InputMatrix {
pub ndims: usize,
pub dims: *const usize,
pub data: *mut f64,
}
impl InputMatrix {
fn get_dims(&mut self) -> Vec<usize> {
let dims = unsafe { slice::from_raw_parts(self.dims, self.ndims) };
dims.to_vec()
}
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_cholesky(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix1.cholesky();
match result {
Some(res) => {
out_slice.copy_from_slice(res.unpack().transpose().as_slice());
}
None => {
report_error(
"LinAlgError",
"np_linalg_cholesky",
file!(),
line!(),
column!(),
"Matrix is not positive definite",
);
}
};
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_qr(
mat1: *mut InputMatrix,
out_q: *mut InputMatrix,
out_r: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_q = out_q.as_mut().unwrap();
let out_r = out_r.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_cholesky", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outq_dim = (*out_q).get_dims();
let outr_dim = (*out_r).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, outq_dim[0] * outq_dim[1]) };
let out_r_slice = unsafe { slice::from_raw_parts_mut(out_r.data, outr_dim[0] * outr_dim[1]) };
// Refer to https://github.com/dimforge/nalgebra/issues/735
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let res = matrix1.qr();
let (q, r) = res.unpack();
// Uses different algo need to match numpy
out_q_slice.copy_from_slice(q.transpose().as_slice());
out_r_slice.copy_from_slice(r.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_svd(
mat1: *mut InputMatrix,
outu: *mut InputMatrix,
outs: *mut InputMatrix,
outvh: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let outu = outu.as_mut().unwrap();
let outs = outs.as_mut().unwrap();
let outvh = outvh.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_svd", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outu_dim = (*outu).get_dims();
let outs_dim = (*outs).get_dims();
let outvh_dim = (*outvh).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(outu.data, outu_dim[0] * outu_dim[1]) };
let out_s_slice = unsafe { slice::from_raw_parts_mut(outs.data, outs_dim[0]) };
let out_vh_slice =
unsafe { slice::from_raw_parts_mut(outvh.data, outvh_dim[0] * outvh_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix.svd(true, true);
out_u_slice.copy_from_slice(result.u.unwrap().transpose().as_slice());
out_s_slice.copy_from_slice(result.singular_values.as_slice());
out_vh_slice.copy_from_slice(result.v_t.unwrap().transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_inv(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_invertible() {
report_error(
"LinAlgError",
"np_linalg_inv",
file!(),
line!(),
column!(),
"no inverse for Singular Matrix",
);
}
let inv = matrix.try_inverse().unwrap();
out_slice.copy_from_slice(inv.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_pinv(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_pinv", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let svd = matrix.svd(true, true);
let inv = svd.pseudo_inverse(1e-15);
match inv {
Ok(m) => {
out_slice.copy_from_slice(m.transpose().as_slice());
}
Err(err_msg) => {
report_error("LinAlgError", "np_linalg_pinv", file!(), line!(), column!(), err_msg);
}
}
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_matrix_power(
mat1: *mut InputMatrix,
mat2: *mut InputMatrix,
out: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let mat2 = mat2.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D", mat1.ndims);
report_error("ValueError", "np_linalg_matrix_power", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let power = unsafe { slice::from_raw_parts_mut(mat2.data, 1) };
let power = power[0];
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let abs_pow = power.abs();
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let mut result = matrix1.pow(abs_pow as u32);
if power < 0.0 {
if !result.is_invertible() {
report_error(
"LinAlgError",
"np_linalg_inv",
file!(),
line!(),
column!(),
"no inverse for Singular Matrix",
);
}
result = result.try_inverse().unwrap();
}
out_slice.copy_from_slice(result.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn np_linalg_det(mat1: *mut InputMatrix, out: *mut InputMatrix) {
let mat1 = mat1.as_mut().unwrap();
let out = out.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "np_linalg_det", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, 1) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_square() {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_inv", file!(), line!(), column!(), &err_msg);
}
out_slice[0] = matrix.determinant();
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_lu(
mat1: *mut InputMatrix,
out_l: *mut InputMatrix,
out_u: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_l = out_l.as_mut().unwrap();
let out_u = out_u.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_lu", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
let outl_dim = (*out_l).get_dims();
let outu_dim = (*out_u).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_l_slice = unsafe { slice::from_raw_parts_mut(out_l.data, outl_dim[0] * outl_dim[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(out_u.data, outu_dim[0] * outu_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (_, l, u) = matrix.lu().unpack();
out_l_slice.copy_from_slice(l.transpose().as_slice());
out_u_slice.copy_from_slice(u.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_schur(
mat1: *mut InputMatrix,
out_t: *mut InputMatrix,
out_z: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_t = out_t.as_mut().unwrap();
let out_z = out_z.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_schur", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {0} != {1}", dim1[0], dim1[1]);
report_error("LinAlgError", "np_linalg_schur", file!(), line!(), column!(), &err_msg);
}
let out_t_dim = (*out_t).get_dims();
let out_z_dim = (*out_z).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_t_slice = unsafe { slice::from_raw_parts_mut(out_t.data, out_t_dim[0] * out_t_dim[1]) };
let out_z_slice = unsafe { slice::from_raw_parts_mut(out_z.data, out_z_dim[0] * out_z_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (z, t) = matrix.schur().unpack();
out_t_slice.copy_from_slice(t.transpose().as_slice());
out_z_slice.copy_from_slice(z.transpose().as_slice());
}
/// # Safety
///
/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order
#[no_mangle]
pub unsafe extern "C" fn sp_linalg_hessenberg(
mat1: *mut InputMatrix,
out_h: *mut InputMatrix,
out_q: *mut InputMatrix,
) {
let mat1 = mat1.as_mut().unwrap();
let out_h = out_h.as_mut().unwrap();
let out_q = out_q.as_mut().unwrap();
if mat1.ndims != 2 {
let err_msg = format!("expected 2D Vector Input, but received {}D input", mat1.ndims);
report_error("ValueError", "sp_linalg_hessenberg", file!(), line!(), column!(), &err_msg);
}
let dim1 = (*mat1).get_dims();
if dim1[0] != dim1[1] {
let err_msg =
format!("last 2 dimensions of the array must be square: {} != {}", dim1[0], dim1[1]);
report_error("LinAlgError", "sp_linalg_hessenberg", file!(), line!(), column!(), &err_msg);
}
let out_h_dim = (*out_h).get_dims();
let out_q_dim = (*out_q).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_h_slice = unsafe { slice::from_raw_parts_mut(out_h.data, out_h_dim[0] * out_h_dim[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, out_q_dim[0] * out_q_dim[1]) };
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (q, h) = matrix.hessenberg().unpack();
out_h_slice.copy_from_slice(h.transpose().as_slice());
out_q_slice.copy_from_slice(q.transpose().as_slice());
}

View File

@ -2,9 +2,6 @@
set -e
: "${DEMO_LINALG_STUB:=linalg/target/release/liblinalg.a}"
: "${DEMO_LINALG_STUB32:=linalg/target/i686-unknown-linux-gnu/release/liblinalg.a}"
if [ -z "$1" ]; then
echo "No argument supplied"
exit 1
@ -13,40 +10,21 @@ fi
declare -a nac3args
while [ $# -ge 1 ]; do
case "$1" in
--help)
echo "Usage: run_demo.sh [--help] [--out OUTFILE] [--debug] [-i686] -- [NAC3ARGS...] demo"
exit
;;
--out)
shift
outfile="$1"
;;
--debug)
debug=1
;;
-i686)
i686=1
;;
--)
shift
break
--lli)
use_lli=1
;;
*)
echo "Unrecognized argument \"$1\""
exit 1
nac3args+=("$1")
;;
esac
shift
done
while [ $# -ge 1 ]; do
nac3args+=("$1")
shift
done
if [ -n "$debug" ] && [ -e ../../target/debug/nac3standalone ]; then
nac3standalone=../../target/debug/nac3standalone
elif [ -e ../../target/release/nac3standalone ]; then
if [ -e ../../target/release/nac3standalone ]; then
nac3standalone=../../target/release/nac3standalone
else
# used by Nix builds
@ -54,19 +32,29 @@ else
fi
rm -f ./*.o ./*.bc demo
if [ -z "$i686" ]; then
if [ -z "$use_lli" ]; then
$nac3standalone "${nac3args[@]}"
clang -c -std=gnu11 -Wall -Wextra -O3 -o demo.o demo.c
clang -o demo module.o demo.o $DEMO_LINALG_STUB -lm -Wl,--no-warn-search-mismatch
else
$nac3standalone --triple i686-unknown-linux-gnu --target-features +sse2 "${nac3args[@]}"
clang -m32 -c -std=gnu11 -Wall -Wextra -O3 -msse2 -o demo.o demo.c
clang -m32 -o demo module.o demo.o $DEMO_LINALG_STUB32 -lm -Wl,--no-warn-search-mismatch
fi
if [ -z "$outfile" ]; then
./demo
clang -c -std=gnu11 -Wall -Wextra -O3 -o demo.o demo.c
clang -lm -o demo module.o demo.o
if [ -z "$outfile" ]; then
./demo
else
./demo > "$outfile"
fi
else
./demo > "$outfile"
$nac3standalone --emit-llvm "${nac3args[@]}"
clang -c -std=gnu11 -Wall -Wextra -O3 -emit-llvm -o demo.bc demo.c
shopt -s nullglob
llvm-link -o nac3out.bc module*.bc main.bc
shopt -u nullglob
if [ -z "$outfile" ]; then
lli --extra-module demo.bc --extra-module irrt.bc nac3out.bc
else
lli --extra-module demo.bc --extra-module irrt.bc nac3out.bc > "$outfile"
fi
fi

View File

@ -1,76 +0,0 @@
@extern
def output_int32(x: int32):
...
@extern
def output_bool(x: bool):
...
def example1():
x, *ys, z = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(len(ys))
output_int32(ys[0])
output_int32(ys[1])
output_int32(ys[2])
output_int32(z)
def example2():
x, y, *zs = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(y)
output_int32(len(zs))
output_int32(zs[0])
output_int32(zs[1])
output_int32(zs[2])
def example3():
*xs, y, z = (1, 2, 3, 4, 5)
output_int32(len(xs))
output_int32(xs[0])
output_int32(xs[1])
output_int32(xs[2])
output_int32(y)
output_int32(z)
def example4():
*xs, y, z = (4, 5)
output_int32(len(xs))
output_int32(y)
output_int32(z)
def example5():
# Example from: https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
x = [0, 1]
i = 0
i, x[i] = 1, 2 # i is updated, then x[i] is updated
output_int32(i)
output_int32(x[0])
output_int32(x[1])
class A:
value: int32
def __init__(self):
self.value = 1000
def example6():
ws = [88, 7, 8]
a = A()
x, [y, *ys, a.value], ws[0], (ws[0],) = 1, (2, False, 4, 5), 99, (6,)
output_int32(x)
output_int32(y)
output_bool(ys[0])
output_int32(ys[1])
output_int32(a.value)
output_int32(ws[0])
output_int32(ws[1])
output_int32(ws[2])
def run() -> int32:
example1()
example2()
example3()
example4()
example5()
example6()
return 0

View File

@ -6,10 +6,6 @@ def output_int32(x: int32):
def output_int64(x: int64):
...
@extern
def output_strln(x: str):
...
class B:
b: int32
@ -27,14 +23,10 @@ class A:
def get_a(self) -> int32:
return self.a
# def get_b(self) -> B:
# return self.b
def get_b(self) -> B:
return self.b
class Initless:
def foo(self):
output_strln("hello")
def run() -> int32:
a = A(10)
output_int32(a.a)
@ -43,8 +35,4 @@ def run() -> int32:
output_int32(a.a)
output_int32(a.get_a())
# output_int32(a.get_b().b) FIXME: NAC3 prints garbage
initless = Initless()
initless.foo()
return 0

View File

@ -16,28 +16,28 @@ class HybridGenericClass2(Generic[A, T]):
class HybridGenericClass3(Generic[T, A, B]):
pass
def make_generic_2() -> ConstGenericClass[Literal[2]]:
def make_generic_2() -> ConstGenericClass[2]:
return ...
def make_generic2_1_2() -> ConstGeneric2Class[Literal[1], Literal[2]]:
def make_generic2_1_2() -> ConstGeneric2Class[1, 2]:
return ...
def make_hybrid_class_2_int32() -> HybridGenericClass2[Literal[2], int32]:
def make_hybrid_class_2_int32() -> HybridGenericClass2[2, int32]:
return ...
def make_hybrid_class_i32_0_1() -> HybridGenericClass3[int32, Literal[0], Literal[1]]:
def make_hybrid_class_i32_0_1() -> HybridGenericClass3[int32, 0, 1]:
return ...
def consume_generic_2(instance: ConstGenericClass[Literal[2]]):
def consume_generic_2(instance: ConstGenericClass[2]):
pass
def consume_generic2_1_2(instance: ConstGeneric2Class[Literal[1], Literal[2]]):
def consume_generic2_1_2(instance: ConstGeneric2Class[1, 2]):
pass
def consume_hybrid_class_2_i32(instance: HybridGenericClass2[Literal[2], int32]):
def consume_hybrid_class_2_i32(instance: HybridGenericClass2[2, int32]):
pass
def consume_hybrid_class_i32_0_1(instance: HybridGenericClass3[int32, Literal[0], Literal[1]]):
def consume_hybrid_class_i32_0_1(instance: HybridGenericClass3[int32, 0, 1]):
pass
def f():

View File

@ -22,10 +22,6 @@ def output_uint64(x: uint64):
def output_float64(x: float):
...
@extern
def output_range(x: range):
...
@extern
def output_int32_list(x: list[int32]):
...
@ -38,10 +34,6 @@ def output_asciiart(x: int32):
def output_str(x: str):
...
@extern
def output_strln(x: str):
...
def test_output_bool():
output_bool(True)
output_bool(False)
@ -67,15 +59,6 @@ def test_output_float64():
output_float64(16.25)
output_float64(-16.25)
def test_output_range():
r = range(1, 100, 5)
output_int32(r.start)
output_int32(r.stop)
output_int32(r.step)
output_range(range(10))
output_range(range(1, 10))
output_range(range(1, 10, 2))
def test_output_asciiart():
for i in range(17):
output_asciiart(i)
@ -85,8 +68,7 @@ def test_output_int32_list():
output_int32_list([0, 1, 3, 5, 10])
def test_output_str_family():
output_str("hello")
output_strln(" world")
output_str("hello world")
def run() -> int32:
test_output_bool()
@ -95,7 +77,6 @@ def run() -> int32:
test_output_uint32()
test_output_uint64()
test_output_float64()
test_output_range()
test_output_asciiart()
test_output_int32_list()
test_output_str_family()

View File

@ -10,58 +10,23 @@ class A:
def __init__(self, a: int32):
self.a = a
def output_all_fields(self):
output_int32(self.a)
def f1(self):
self.f2()
def set_a(self, a: int32):
self.a = a
def f2(self):
output_int32(self.a)
class B(A):
b: int32
def __init__(self, b: int32):
A.__init__(self, b + 1)
self.set_b(b)
def output_parent_fields(self):
A.output_all_fields(self)
def output_all_fields(self):
A.output_all_fields(self)
output_int32(self.b)
def set_b(self, b: int32):
self.a = b + 1
self.b = b
class C(B):
c: int32
def __init__(self, c: int32):
B.__init__(self, c + 1)
self.c = c
def output_parent_fields(self):
B.output_all_fields(self)
def output_all_fields(self):
B.output_all_fields(self)
output_int32(self.c)
def set_c(self, c: int32):
self.c = c
def run() -> int32:
ccc = C(10)
ccc.output_all_fields()
ccc.set_a(1)
ccc.set_b(2)
ccc.set_c(3)
ccc.output_all_fields()
bbb = B(10)
bbb.set_a(9)
bbb.set_b(8)
bbb.output_all_fields()
ccc.output_all_fields()
aaa = A(5)
bbb = B(2)
aaa.f1()
bbb.f1()
return 0

View File

@ -1,7 +1,3 @@
@extern
def output_bool(x: bool):
...
@extern
def output_int32_list(x: list[int32]):
...
@ -34,32 +30,6 @@ def run() -> int32:
get_list_slice()
list_slice_assignment()
output_int32_list([1, 2, 3] + [4, 5, 6])
output_int32_list([1, 2, 3] * 3)
output_bool([] == [])
output_bool([0] == [])
output_bool([0] == [0])
output_bool([0, 1] == [0])
output_bool([0, 1] == [0, 1])
output_bool([] != [])
output_bool([0] != [])
output_bool([0] != [0])
output_bool([0] != [0, 1])
output_bool([0, 1] != [0, 1])
output_bool([] == [] == [])
output_bool([0] == [0] == [0])
output_bool([0, 1] == [0] == [0, 1])
output_bool([0, 1] == [0, 1] == [0])
output_bool([0] == [0, 1] == [0, 1])
output_bool([0, 1] == [0, 1] == [0, 1])
output_bool([] != [] != [])
output_bool([0] != [0] != [0])
output_bool([0, 1] != [0] != [0, 1])
output_bool([0, 1] != [0, 1] != [0])
output_bool([0] != [0, 1] != [0, 1])
output_bool([0, 1] != [0, 1] != [0, 1])
return 0
def get_list_slice():

View File

@ -23,12 +23,11 @@ def run() -> int32:
output_int32(x)
output_str(" * ")
output_float64(n / x)
output_str("\n")
except: # Assume this is intended to catch x == 0
break
else:
# loop fell through without finding a factor
output_int32(n)
output_str(" is a prime number\n")
output_str(" is a prime number")
return 0

Some files were not shown because too many files have changed in this diff Show More