forked from M-Labs/nac3
np_reshape(WIP) and np_transpose added
This commit is contained in:
parent
688e85d13c
commit
9e7cf4fcac
@ -161,7 +161,9 @@
|
||||
clippy
|
||||
pre-commit
|
||||
rustfmt
|
||||
rust-analyzer
|
||||
];
|
||||
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}";
|
||||
};
|
||||
devShells.x86_64-linux.msys2 = pkgs.mkShell {
|
||||
name = "nac3-dev-shell-msys2";
|
||||
|
@ -2026,3 +2026,390 @@ pub fn gen_ndarray_fill<'ctx>(
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
x1: (Type, BasicValueEnum<'ctx>),
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
const FN_NAME: &str = "ndarray_transpose";
|
||||
let (x1_ty, x1) = x1;
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
if let BasicValueEnum::PointerValue(n1) = x1 {
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
|
||||
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
|
||||
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
|
||||
let out = create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&n1,
|
||||
|_, ctx, n| Ok(n.load_ndims(ctx)),
|
||||
|generator, ctx, n, idx| {
|
||||
let new_idx = ctx.builder.build_int_sub(n.load_ndims(ctx), idx, "").unwrap();
|
||||
let new_idx = ctx
|
||||
.builder
|
||||
.build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "")
|
||||
.unwrap();
|
||||
unsafe { Ok(n.dim_sizes().get_typed_unchecked(ctx, generator, &new_idx, None)) }
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(n_sz, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
// Calculate transposed idx
|
||||
// 2, 3 => idx = row * num_col + col = 3 + 2 = 5
|
||||
// 2, 3, 4 => idx = row * (num_col*num_z) + col * (num_z) + z => 12 + 8 + 3 | 18, [4, 2] 15, ,1,2
|
||||
// num_z (col + num_col * row) + z
|
||||
// 4D => 2, 3, 4, 5 = idx = num_w (num_z (col + num_col*row) + z) + w = 119
|
||||
// [1, 1, 2]?
|
||||
// 4 (1 + 3*1) + 2 = 6
|
||||
// z = 2, col = 1, row = 0
|
||||
// 0,1,
|
||||
// 2, 3 => idx = row * num_col + col | 2, 3, 4 => idx = row * (num_col * num_z) + col * (num_z) + num_z
|
||||
// ND => idx = 1 * (dim0 + dim1 + ... dimn) + dim[-1] * (dim0 + dim1 + ... + dimn-1) + ... + dim[1] * dim0
|
||||
// 6 + 12 + 6 = 24 num_z * (row*num_col + col + 1) 4*6=24
|
||||
// 2, 3, 4, 5 at idx 1 should go to
|
||||
// 5, 4, 3, 2
|
||||
|
||||
// 18 => [2, 4] dim = 4
|
||||
// 0 * 4 + 2 = 2
|
||||
// 4 => [1, 1] dim = 3
|
||||
// 2 * 3 + 1
|
||||
let new_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
let rem_idx = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(new_idx, llvm_usize.const_zero()).unwrap();
|
||||
ctx.builder.build_store(rem_idx, idx).unwrap();
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(n1.load_ndims(ctx), false),
|
||||
|generator, ctx, _, ndim| {
|
||||
let ndim_rev =
|
||||
ctx.builder.build_int_sub(n1.load_ndims(ctx), ndim, "").unwrap();
|
||||
let ndim_rev = ctx
|
||||
.builder
|
||||
.build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "")
|
||||
.unwrap();
|
||||
let dim = unsafe {
|
||||
n1.dim_sizes().get_typed_unchecked(ctx, generator, &ndim_rev, None)
|
||||
};
|
||||
|
||||
let rem_idx_val =
|
||||
ctx.builder.build_load(rem_idx, "").unwrap().into_int_value();
|
||||
let new_idx_val =
|
||||
ctx.builder.build_load(new_idx, "").unwrap().into_int_value();
|
||||
|
||||
let add_component =
|
||||
ctx.builder.build_int_unsigned_rem(rem_idx_val, dim, "").unwrap();
|
||||
let rem_idx_val =
|
||||
ctx.builder.build_int_unsigned_div(rem_idx_val, dim, "").unwrap();
|
||||
|
||||
let new_idx_val = ctx.builder.build_int_mul(new_idx_val, dim, "").unwrap();
|
||||
let new_idx_val =
|
||||
ctx.builder.build_int_add(new_idx_val, add_component, "").unwrap();
|
||||
|
||||
ctx.builder.build_store(rem_idx, rem_idx_val).unwrap();
|
||||
ctx.builder.build_store(new_idx, new_idx_val).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
|
||||
let new_idx_val = ctx.builder.build_load(new_idx, "").unwrap().into_int_value();
|
||||
unsafe { out.data().set_unchecked(ctx, generator, &new_idx_val, elem) };
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
|
||||
Ok(out.as_base_value().into())
|
||||
} else {
|
||||
unreachable!(
|
||||
"{FN_NAME}() not supported for '{}'",
|
||||
format!("'{}'", ctx.unifier.stringify(x1_ty))
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
x1: (Type, BasicValueEnum<'ctx>),
|
||||
shape: (Type, BasicValueEnum<'ctx>),
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
const FN_NAME: &str = "ndarray_reshape";
|
||||
let (x1_ty, x1) = x1;
|
||||
let (_, shape) = shape;
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
if let BasicValueEnum::PointerValue(n1) = x1 {
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
|
||||
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
|
||||
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
|
||||
// Check for -1 in the shapec
|
||||
let ndim_ty = match shape {
|
||||
BasicValueEnum::PointerValue(shape_list_ptr)
|
||||
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
|
||||
{
|
||||
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
|
||||
shape_list
|
||||
.data()
|
||||
.get(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
.into_int_value()
|
||||
.get_type()
|
||||
}
|
||||
BasicValueEnum::StructValue(shape_tuple) => ctx
|
||||
.builder
|
||||
.build_extract_value(shape_tuple, 0, "")
|
||||
.unwrap()
|
||||
.into_int_value()
|
||||
.get_type(),
|
||||
BasicValueEnum::IntValue(shape_int) => shape_int.get_type(),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let acc = generator.gen_var_alloc(ctx, ndim_ty.into(), None)?;
|
||||
let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(acc, ndim_ty.const_int(1, false)).unwrap();
|
||||
ctx.builder.build_store(num_neg, llvm_usize.const_zero()).unwrap();
|
||||
|
||||
let out = match shape {
|
||||
BasicValueEnum::PointerValue(shape_list_ptr)
|
||||
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
|
||||
{
|
||||
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(shape_list.load_size(ctx, None), false),
|
||||
|generator, ctx, _, idx| {
|
||||
let ele =
|
||||
shape_list.data().get(ctx, generator, &idx, None).into_int_value();
|
||||
|
||||
gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
ele,
|
||||
ndim_ty.const_zero(),
|
||||
"",
|
||||
)
|
||||
.unwrap())
|
||||
},
|
||||
|_, ctx| -> Result<Option<IntValue>, String> {
|
||||
let num_neg_value =
|
||||
ctx.builder.build_load(num_neg, "").unwrap().into_int_value();
|
||||
let num_neg_value = ctx
|
||||
.builder
|
||||
.build_int_add(
|
||||
num_neg_value,
|
||||
llvm_usize.const_int(1, false),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.builder.build_store(num_neg, num_neg_value).unwrap();
|
||||
Ok(None)
|
||||
},
|
||||
|_, ctx| {
|
||||
let acc_value =
|
||||
ctx.builder.build_load(acc, "").unwrap().into_int_value();
|
||||
let acc_value =
|
||||
ctx.builder.build_int_mul(acc_value, ele, "").unwrap();
|
||||
ctx.builder.build_store(acc, acc_value).unwrap();
|
||||
Ok(None)
|
||||
},
|
||||
)?;
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value();
|
||||
let rem = ctx.builder.build_int_sub(n_sz, acc_val, "").unwrap();
|
||||
create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&shape_list,
|
||||
|_, ctx, _| Ok(shape_list.load_size(ctx, None)),
|
||||
|generator, ctx, shape_list, idx| {
|
||||
let dim =
|
||||
shape_list.data().get(ctx, generator, &idx, None).into_int_value();
|
||||
Ok(gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
dim,
|
||||
ndim_ty.const_zero(),
|
||||
"",
|
||||
)
|
||||
.unwrap())
|
||||
},
|
||||
|_, _| Ok(Some(rem)),
|
||||
|_, _| Ok(Some(dim)),
|
||||
)?
|
||||
.unwrap()
|
||||
.into_int_value())
|
||||
},
|
||||
)
|
||||
}
|
||||
BasicValueEnum::StructValue(shape_tuple) => {
|
||||
let ndims = shape_tuple.get_type().count_fields();
|
||||
let mut acc_val = ndim_ty.const_int(1, false);
|
||||
|
||||
for dim_i in 0..ndims {
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_extract_value(shape_tuple, dim_i, "")
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
|
||||
gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::SLT, dim, ndim_ty.const_zero(), "")
|
||||
.unwrap())
|
||||
},
|
||||
|_, ctx| -> Result<Option<IntValue>, String> {
|
||||
let num_negs =
|
||||
ctx.builder.build_load(num_neg, "").unwrap().into_int_value();
|
||||
let num_negs = ctx
|
||||
.builder
|
||||
.build_int_add(num_negs, llvm_usize.const_int(1, false), "")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(num_neg, num_negs).unwrap();
|
||||
Ok(None)
|
||||
},
|
||||
|_, ctx| {
|
||||
acc_val = ctx.builder.build_int_mul(acc_val, dim, "").unwrap();
|
||||
Ok(None)
|
||||
},
|
||||
)?;
|
||||
}
|
||||
|
||||
let rem = ctx.builder.build_int_sub(n_sz, acc_val, "").unwrap();
|
||||
let mut shape = Vec::with_capacity(ndims as usize);
|
||||
|
||||
for dim_i in 0..ndims {
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_extract_value(shape_tuple, dim_i, "")
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
|
||||
let dim = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::SLT, dim, ndim_ty.const_zero(), "")
|
||||
.unwrap())
|
||||
},
|
||||
|_, _| Ok(Some(rem)),
|
||||
|_, _| Ok(Some(dim)),
|
||||
)?
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
shape.push(dim);
|
||||
}
|
||||
create_ndarray_const_shape(generator, ctx, elem_ty, shape.as_slice())
|
||||
}
|
||||
BasicValueEnum::IntValue(shape_int) => {
|
||||
let shape_int = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
shape_int,
|
||||
ndim_ty.const_zero(),
|
||||
"",
|
||||
)
|
||||
.unwrap())
|
||||
},
|
||||
|_, _| Ok(Some(n_sz)),
|
||||
|_, _| Ok(Some(shape_int)),
|
||||
)?
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
.unwrap();
|
||||
|
||||
let num_negs = ctx.builder.build_load(num_neg, "").unwrap().into_int_value();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder
|
||||
.build_int_compare(IntPredicate::ULT, num_negs, llvm_usize.const_int(2, false), "")
|
||||
.unwrap(),
|
||||
"0:ValueError",
|
||||
"can only specify one unknown dimension",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let out_sz = call_ndarray_calc_size(generator, ctx, &out.dim_sizes(), (None, None));
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(),
|
||||
"0:ValueError",
|
||||
"cannot reshape array of size {} into provided shape",
|
||||
[Some(n_sz), None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(n_sz, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
unsafe { out.data().set_unchecked(ctx, generator, &idx, elem) };
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
|
||||
Ok(out.as_base_value().into())
|
||||
} else {
|
||||
unreachable!(
|
||||
"{FN_NAME}() not supported for '{}'",
|
||||
format!("'{}'", ctx.unifier.stringify(x1_ty))
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -557,6 +557,10 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
| PrimDef::FunNpHypot
|
||||
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
|
||||
|
||||
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
||||
self.build_np_sp_ndarray_1ary_function(prim)
|
||||
}
|
||||
|
||||
PrimDef::FunNpDot
|
||||
| PrimDef::FunNpLinalgMatmul
|
||||
| PrimDef::FunNpLinalgCholesky
|
||||
@ -1885,6 +1889,49 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Build 1-ary numpy/scipy functions that take in an ndarray and return a value of the same type as the input.
|
||||
fn build_np_sp_ndarray_1ary_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
|
||||
|
||||
let elem_type = self.unifier.get_fresh_var(Some("R".into()), None);
|
||||
let ndarray_type = make_ndarray_ty(self.unifier, self.primitives, Some(elem_type.ty), None);
|
||||
let ndarray_ty =
|
||||
self.unifier.get_fresh_var_with_range(&[ndarray_type], Some("T".into()), None);
|
||||
let var_map = into_var_map([elem_type, ndarray_ty]);
|
||||
|
||||
match prim {
|
||||
PrimDef::FunNpTranspose => create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&var_map,
|
||||
prim.name(),
|
||||
ndarray_ty.ty,
|
||||
&[(ndarray_ty.ty, "x")],
|
||||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let arg_ty = fun.0.args[0].ty;
|
||||
let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
||||
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
|
||||
}),
|
||||
),
|
||||
|
||||
PrimDef::FunNpReshape => create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&var_map,
|
||||
prim.name(),
|
||||
ndarray_ty.ty,
|
||||
&[(ndarray_ty.ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
||||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let x1_ty = fun.0.args[0].ty;
|
||||
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
||||
let x2_ty = fun.0.args[1].ty;
|
||||
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
||||
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
||||
}),
|
||||
),
|
||||
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Build `np_linalg` and `sp_linalg` functions
|
||||
///
|
||||
/// The input to these functions must be floating point `NDArray`
|
||||
|
@ -99,6 +99,8 @@ pub enum PrimDef {
|
||||
FunNpLdExp,
|
||||
FunNpHypot,
|
||||
FunNpNextAfter,
|
||||
FunNpTranspose,
|
||||
FunNpReshape,
|
||||
|
||||
// Linalg functions
|
||||
FunNpDot,
|
||||
@ -282,6 +284,10 @@ impl PrimDef {
|
||||
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
||||
PrimDef::FunNpHypot => fun("np_hypot", None),
|
||||
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||
|
||||
// Linalg functions
|
||||
PrimDef::FunNpDot => fun("np_dot", None),
|
||||
PrimDef::FunNpLinalgMatmul => fun("np_linalg_matmul", None),
|
||||
PrimDef::FunNpLinalgCholesky => fun("np_linalg_cholesky", None),
|
||||
|
@ -218,6 +218,8 @@ def patch(module):
|
||||
module.np_ldexp = np.ldexp
|
||||
module.np_hypot = np.hypot
|
||||
module.np_nextafter = np.nextafter
|
||||
module.np_transpose = np.transpose
|
||||
module.np_reshape = np.reshape
|
||||
|
||||
# SciPy Math functions
|
||||
module.sp_spec_erf = special.erf
|
||||
|
10
nac3standalone/demo/interpreted.log
Normal file
10
nac3standalone/demo/interpreted.log
Normal file
@ -0,0 +1,10 @@
|
||||
1.000000
|
||||
2.000000
|
||||
3.000000
|
||||
4.000000
|
||||
5.000000
|
||||
6.000000
|
||||
7.000000
|
||||
8.000000
|
||||
9.000000
|
||||
10.000000
|
10
nac3standalone/demo/run_32.log
Normal file
10
nac3standalone/demo/run_32.log
Normal file
@ -0,0 +1,10 @@
|
||||
1.000000
|
||||
2.000000
|
||||
3.000000
|
||||
4.000000
|
||||
5.000000
|
||||
6.000000
|
||||
7.000000
|
||||
8.000000
|
||||
9.000000
|
||||
10.000000
|
@ -68,6 +68,12 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
|
||||
for c in range(len(n[r])):
|
||||
output_float64(n[r][c])
|
||||
|
||||
def output_ndarray_float_3(n: ndarray[float, Literal[3]]):
|
||||
for r in range(len(n)):
|
||||
for c in range(len(n[r])):
|
||||
for z in range(len(n[r][c])):
|
||||
output_float64(n[r][c][z])
|
||||
|
||||
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
|
||||
pass
|
||||
|
||||
@ -1429,6 +1435,21 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
|
||||
output_ndarray_float_2(nextafter_x_zeros)
|
||||
output_ndarray_float_2(nextafter_x_ones)
|
||||
|
||||
def test_ndarray_transpose():
|
||||
# x: ndarray[float, 3] = np_array([[[1., 2.], [3., 4.], [5., 6.]]])
|
||||
x: ndarray[float, 1] = np_array([1., 2., 3.])
|
||||
y = np_transpose(x)
|
||||
|
||||
output_ndarray_float_1(x)
|
||||
output_ndarray_float_1(y)
|
||||
|
||||
def test_ndarray_reshape():
|
||||
x: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
|
||||
y = np_reshape(x, [2, 5])
|
||||
|
||||
output_ndarray_float_1(x)
|
||||
# output_ndarray_float_1(y)
|
||||
|
||||
def test_ndarray_dot():
|
||||
x: ndarray[float, 1] = np_array([5.0, 1.0])
|
||||
y: ndarray[float, 1] = np_array([5.0, 1.0])
|
||||
@ -1528,192 +1549,194 @@ def test_ndarray_svd():
|
||||
|
||||
|
||||
def run() -> int32:
|
||||
test_ndarray_ctor()
|
||||
test_ndarray_empty()
|
||||
test_ndarray_zeros()
|
||||
test_ndarray_ones()
|
||||
test_ndarray_full()
|
||||
test_ndarray_eye()
|
||||
test_ndarray_array()
|
||||
test_ndarray_identity()
|
||||
test_ndarray_fill()
|
||||
test_ndarray_copy()
|
||||
# test_ndarray_ctor()
|
||||
# test_ndarray_empty()
|
||||
# test_ndarray_zeros()
|
||||
# test_ndarray_ones()
|
||||
# test_ndarray_full()
|
||||
# test_ndarray_eye()
|
||||
# test_ndarray_array()
|
||||
# test_ndarray_identity()
|
||||
# test_ndarray_fill()
|
||||
# test_ndarray_copy()
|
||||
|
||||
test_ndarray_neg_idx()
|
||||
test_ndarray_slices()
|
||||
test_ndarray_nd_idx()
|
||||
# test_ndarray_neg_idx()
|
||||
# test_ndarray_slices()
|
||||
# test_ndarray_nd_idx()
|
||||
|
||||
test_ndarray_add()
|
||||
test_ndarray_add_broadcast()
|
||||
test_ndarray_add_broadcast_lhs_scalar()
|
||||
test_ndarray_add_broadcast_rhs_scalar()
|
||||
test_ndarray_iadd()
|
||||
test_ndarray_iadd_broadcast()
|
||||
test_ndarray_iadd_broadcast_scalar()
|
||||
test_ndarray_sub()
|
||||
test_ndarray_sub_broadcast()
|
||||
test_ndarray_sub_broadcast_lhs_scalar()
|
||||
test_ndarray_sub_broadcast_rhs_scalar()
|
||||
test_ndarray_isub()
|
||||
test_ndarray_isub_broadcast()
|
||||
test_ndarray_isub_broadcast_scalar()
|
||||
test_ndarray_mul()
|
||||
test_ndarray_mul_broadcast()
|
||||
test_ndarray_mul_broadcast_lhs_scalar()
|
||||
test_ndarray_mul_broadcast_rhs_scalar()
|
||||
test_ndarray_imul()
|
||||
test_ndarray_imul_broadcast()
|
||||
test_ndarray_imul_broadcast_scalar()
|
||||
test_ndarray_truediv()
|
||||
test_ndarray_truediv_broadcast()
|
||||
test_ndarray_truediv_broadcast_lhs_scalar()
|
||||
test_ndarray_truediv_broadcast_rhs_scalar()
|
||||
test_ndarray_itruediv()
|
||||
test_ndarray_itruediv_broadcast()
|
||||
test_ndarray_itruediv_broadcast_scalar()
|
||||
test_ndarray_floordiv()
|
||||
test_ndarray_floordiv_broadcast()
|
||||
test_ndarray_floordiv_broadcast_lhs_scalar()
|
||||
test_ndarray_floordiv_broadcast_rhs_scalar()
|
||||
test_ndarray_ifloordiv()
|
||||
test_ndarray_ifloordiv_broadcast()
|
||||
test_ndarray_ifloordiv_broadcast_scalar()
|
||||
test_ndarray_mod()
|
||||
test_ndarray_mod_broadcast()
|
||||
test_ndarray_mod_broadcast_lhs_scalar()
|
||||
test_ndarray_mod_broadcast_rhs_scalar()
|
||||
test_ndarray_imod()
|
||||
test_ndarray_imod_broadcast()
|
||||
test_ndarray_imod_broadcast_scalar()
|
||||
test_ndarray_pow()
|
||||
test_ndarray_pow_broadcast()
|
||||
test_ndarray_pow_broadcast_lhs_scalar()
|
||||
test_ndarray_pow_broadcast_rhs_scalar()
|
||||
test_ndarray_ipow()
|
||||
test_ndarray_ipow_broadcast()
|
||||
test_ndarray_ipow_broadcast_scalar()
|
||||
test_ndarray_matmul()
|
||||
test_ndarray_imatmul()
|
||||
test_ndarray_pos()
|
||||
test_ndarray_neg()
|
||||
test_ndarray_inv()
|
||||
test_ndarray_eq()
|
||||
test_ndarray_eq_broadcast()
|
||||
test_ndarray_eq_broadcast_lhs_scalar()
|
||||
test_ndarray_eq_broadcast_rhs_scalar()
|
||||
test_ndarray_ne()
|
||||
test_ndarray_ne_broadcast()
|
||||
test_ndarray_ne_broadcast_lhs_scalar()
|
||||
test_ndarray_ne_broadcast_rhs_scalar()
|
||||
test_ndarray_lt()
|
||||
test_ndarray_lt_broadcast()
|
||||
test_ndarray_lt_broadcast_lhs_scalar()
|
||||
test_ndarray_lt_broadcast_rhs_scalar()
|
||||
test_ndarray_lt()
|
||||
test_ndarray_le_broadcast()
|
||||
test_ndarray_le_broadcast_lhs_scalar()
|
||||
test_ndarray_le_broadcast_rhs_scalar()
|
||||
test_ndarray_gt()
|
||||
test_ndarray_gt_broadcast()
|
||||
test_ndarray_gt_broadcast_lhs_scalar()
|
||||
test_ndarray_gt_broadcast_rhs_scalar()
|
||||
test_ndarray_gt()
|
||||
test_ndarray_ge_broadcast()
|
||||
test_ndarray_ge_broadcast_lhs_scalar()
|
||||
test_ndarray_ge_broadcast_rhs_scalar()
|
||||
# test_ndarray_add()
|
||||
# test_ndarray_add_broadcast()
|
||||
# test_ndarray_add_broadcast_lhs_scalar()
|
||||
# test_ndarray_add_broadcast_rhs_scalar()
|
||||
# test_ndarray_iadd()
|
||||
# test_ndarray_iadd_broadcast()
|
||||
# test_ndarray_iadd_broadcast_scalar()
|
||||
# test_ndarray_sub()
|
||||
# test_ndarray_sub_broadcast()
|
||||
# test_ndarray_sub_broadcast_lhs_scalar()
|
||||
# test_ndarray_sub_broadcast_rhs_scalar()
|
||||
# test_ndarray_isub()
|
||||
# test_ndarray_isub_broadcast()
|
||||
# test_ndarray_isub_broadcast_scalar()
|
||||
# test_ndarray_mul()
|
||||
# test_ndarray_mul_broadcast()
|
||||
# test_ndarray_mul_broadcast_lhs_scalar()
|
||||
# test_ndarray_mul_broadcast_rhs_scalar()
|
||||
# test_ndarray_imul()
|
||||
# test_ndarray_imul_broadcast()
|
||||
# test_ndarray_imul_broadcast_scalar()
|
||||
# test_ndarray_truediv()
|
||||
# test_ndarray_truediv_broadcast()
|
||||
# test_ndarray_truediv_broadcast_lhs_scalar()
|
||||
# test_ndarray_truediv_broadcast_rhs_scalar()
|
||||
# test_ndarray_itruediv()
|
||||
# test_ndarray_itruediv_broadcast()
|
||||
# test_ndarray_itruediv_broadcast_scalar()
|
||||
# test_ndarray_floordiv()
|
||||
# test_ndarray_floordiv_broadcast()
|
||||
# test_ndarray_floordiv_broadcast_lhs_scalar()
|
||||
# test_ndarray_floordiv_broadcast_rhs_scalar()
|
||||
# test_ndarray_ifloordiv()
|
||||
# test_ndarray_ifloordiv_broadcast()
|
||||
# test_ndarray_ifloordiv_broadcast_scalar()
|
||||
# test_ndarray_mod()
|
||||
# test_ndarray_mod_broadcast()
|
||||
# test_ndarray_mod_broadcast_lhs_scalar()
|
||||
# test_ndarray_mod_broadcast_rhs_scalar()
|
||||
# test_ndarray_imod()
|
||||
# test_ndarray_imod_broadcast()
|
||||
# test_ndarray_imod_broadcast_scalar()
|
||||
# test_ndarray_pow()
|
||||
# test_ndarray_pow_broadcast()
|
||||
# test_ndarray_pow_broadcast_lhs_scalar()
|
||||
# test_ndarray_pow_broadcast_rhs_scalar()
|
||||
# test_ndarray_ipow()
|
||||
# test_ndarray_ipow_broadcast()
|
||||
# test_ndarray_ipow_broadcast_scalar()
|
||||
# test_ndarray_matmul()
|
||||
# test_ndarray_imatmul()
|
||||
# test_ndarray_pos()
|
||||
# test_ndarray_neg()
|
||||
# test_ndarray_inv()
|
||||
# test_ndarray_eq()
|
||||
# test_ndarray_eq_broadcast()
|
||||
# test_ndarray_eq_broadcast_lhs_scalar()
|
||||
# test_ndarray_eq_broadcast_rhs_scalar()
|
||||
# test_ndarray_ne()
|
||||
# test_ndarray_ne_broadcast()
|
||||
# test_ndarray_ne_broadcast_lhs_scalar()
|
||||
# test_ndarray_ne_broadcast_rhs_scalar()
|
||||
# test_ndarray_lt()
|
||||
# test_ndarray_lt_broadcast()
|
||||
# test_ndarray_lt_broadcast_lhs_scalar()
|
||||
# test_ndarray_lt_broadcast_rhs_scalar()
|
||||
# test_ndarray_lt()
|
||||
# test_ndarray_le_broadcast()
|
||||
# test_ndarray_le_broadcast_lhs_scalar()
|
||||
# test_ndarray_le_broadcast_rhs_scalar()
|
||||
# test_ndarray_gt()
|
||||
# test_ndarray_gt_broadcast()
|
||||
# test_ndarray_gt_broadcast_lhs_scalar()
|
||||
# test_ndarray_gt_broadcast_rhs_scalar()
|
||||
# test_ndarray_gt()
|
||||
# test_ndarray_ge_broadcast()
|
||||
# test_ndarray_ge_broadcast_lhs_scalar()
|
||||
# test_ndarray_ge_broadcast_rhs_scalar()
|
||||
|
||||
test_ndarray_int32()
|
||||
test_ndarray_int64()
|
||||
test_ndarray_uint32()
|
||||
test_ndarray_uint64()
|
||||
test_ndarray_float()
|
||||
test_ndarray_bool()
|
||||
# test_ndarray_int32()
|
||||
# test_ndarray_int64()
|
||||
# test_ndarray_uint32()
|
||||
# test_ndarray_uint64()
|
||||
# test_ndarray_float()
|
||||
# test_ndarray_bool()
|
||||
|
||||
test_ndarray_round()
|
||||
test_ndarray_floor()
|
||||
test_ndarray_min()
|
||||
test_ndarray_minimum()
|
||||
test_ndarray_minimum_broadcast()
|
||||
test_ndarray_minimum_broadcast_lhs_scalar()
|
||||
test_ndarray_minimum_broadcast_rhs_scalar()
|
||||
test_ndarray_argmin()
|
||||
test_ndarray_max()
|
||||
test_ndarray_maximum()
|
||||
test_ndarray_maximum_broadcast()
|
||||
test_ndarray_maximum_broadcast_lhs_scalar()
|
||||
test_ndarray_maximum_broadcast_rhs_scalar()
|
||||
test_ndarray_argmax()
|
||||
test_ndarray_abs()
|
||||
test_ndarray_isnan()
|
||||
test_ndarray_isinf()
|
||||
# test_ndarray_round()
|
||||
# test_ndarray_floor()
|
||||
# test_ndarray_min()
|
||||
# test_ndarray_minimum()
|
||||
# test_ndarray_minimum_broadcast()
|
||||
# test_ndarray_minimum_broadcast_lhs_scalar()
|
||||
# test_ndarray_minimum_broadcast_rhs_scalar()
|
||||
# test_ndarray_argmin()
|
||||
# test_ndarray_max()
|
||||
# test_ndarray_maximum()
|
||||
# test_ndarray_maximum_broadcast()
|
||||
# test_ndarray_maximum_broadcast_lhs_scalar()
|
||||
# test_ndarray_maximum_broadcast_rhs_scalar()
|
||||
# test_ndarray_argmax()
|
||||
# test_ndarray_abs()
|
||||
# test_ndarray_isnan()
|
||||
# test_ndarray_isinf()
|
||||
|
||||
test_ndarray_sin()
|
||||
test_ndarray_cos()
|
||||
test_ndarray_exp()
|
||||
test_ndarray_exp2()
|
||||
test_ndarray_log()
|
||||
test_ndarray_log10()
|
||||
test_ndarray_log2()
|
||||
test_ndarray_fabs()
|
||||
test_ndarray_sqrt()
|
||||
test_ndarray_rint()
|
||||
test_ndarray_tan()
|
||||
test_ndarray_arcsin()
|
||||
test_ndarray_arccos()
|
||||
test_ndarray_arctan()
|
||||
test_ndarray_sinh()
|
||||
test_ndarray_cosh()
|
||||
test_ndarray_tanh()
|
||||
test_ndarray_arcsinh()
|
||||
test_ndarray_arccosh()
|
||||
test_ndarray_arctanh()
|
||||
test_ndarray_expm1()
|
||||
test_ndarray_cbrt()
|
||||
# test_ndarray_sin()
|
||||
# test_ndarray_cos()
|
||||
# test_ndarray_exp()
|
||||
# test_ndarray_exp2()
|
||||
# test_ndarray_log()
|
||||
# test_ndarray_log10()
|
||||
# test_ndarray_log2()
|
||||
# test_ndarray_fabs()
|
||||
# test_ndarray_sqrt()
|
||||
# test_ndarray_rint()
|
||||
# test_ndarray_tan()
|
||||
# test_ndarray_arcsin()
|
||||
# test_ndarray_arccos()
|
||||
# test_ndarray_arctan()
|
||||
# test_ndarray_sinh()
|
||||
# test_ndarray_cosh()
|
||||
# test_ndarray_tanh()
|
||||
# test_ndarray_arcsinh()
|
||||
# test_ndarray_arccosh()
|
||||
# test_ndarray_arctanh()
|
||||
# test_ndarray_expm1()
|
||||
# test_ndarray_cbrt()
|
||||
|
||||
test_ndarray_erf()
|
||||
test_ndarray_erfc()
|
||||
test_ndarray_gamma()
|
||||
test_ndarray_gammaln()
|
||||
test_ndarray_j0()
|
||||
test_ndarray_j1()
|
||||
# test_ndarray_erf()
|
||||
# test_ndarray_erfc()
|
||||
# test_ndarray_gamma()
|
||||
# test_ndarray_gammaln()
|
||||
# test_ndarray_j0()
|
||||
# test_ndarray_j1()
|
||||
|
||||
test_ndarray_arctan2()
|
||||
test_ndarray_arctan2_broadcast()
|
||||
test_ndarray_arctan2_broadcast_lhs_scalar()
|
||||
test_ndarray_arctan2_broadcast_rhs_scalar()
|
||||
test_ndarray_copysign()
|
||||
test_ndarray_copysign_broadcast()
|
||||
test_ndarray_copysign_broadcast_lhs_scalar()
|
||||
test_ndarray_copysign_broadcast_rhs_scalar()
|
||||
test_ndarray_fmax()
|
||||
test_ndarray_fmax_broadcast()
|
||||
test_ndarray_fmax_broadcast_lhs_scalar()
|
||||
test_ndarray_fmax_broadcast_rhs_scalar()
|
||||
test_ndarray_fmin()
|
||||
test_ndarray_fmin_broadcast()
|
||||
test_ndarray_fmin_broadcast_lhs_scalar()
|
||||
test_ndarray_fmin_broadcast_rhs_scalar()
|
||||
test_ndarray_ldexp()
|
||||
test_ndarray_ldexp_broadcast()
|
||||
test_ndarray_ldexp_broadcast_lhs_scalar()
|
||||
test_ndarray_ldexp_broadcast_rhs_scalar()
|
||||
test_ndarray_hypot()
|
||||
test_ndarray_hypot_broadcast()
|
||||
test_ndarray_hypot_broadcast_lhs_scalar()
|
||||
test_ndarray_hypot_broadcast_rhs_scalar()
|
||||
test_ndarray_nextafter()
|
||||
test_ndarray_nextafter_broadcast()
|
||||
test_ndarray_nextafter_broadcast_lhs_scalar()
|
||||
test_ndarray_nextafter_broadcast_rhs_scalar()
|
||||
|
||||
test_ndarray_dot()
|
||||
test_ndarray_linalg_matmul()
|
||||
test_ndarray_cholesky()
|
||||
test_ndarray_qr()
|
||||
test_ndarray_svd()
|
||||
test_ndarray_linalg_inv()
|
||||
test_ndarray_pinv()
|
||||
test_ndarray_lu()
|
||||
test_ndarray_schur()
|
||||
test_ndarray_hessenberg()
|
||||
# test_ndarray_arctan2()
|
||||
# test_ndarray_arctan2_broadcast()
|
||||
# test_ndarray_arctan2_broadcast_lhs_scalar()
|
||||
# test_ndarray_arctan2_broadcast_rhs_scalar()
|
||||
# test_ndarray_copysign()
|
||||
# test_ndarray_copysign_broadcast()
|
||||
# test_ndarray_copysign_broadcast_lhs_scalar()
|
||||
# test_ndarray_copysign_broadcast_rhs_scalar()
|
||||
# test_ndarray_fmax()
|
||||
# test_ndarray_fmax_broadcast()
|
||||
# test_ndarray_fmax_broadcast_lhs_scalar()
|
||||
# test_ndarray_fmax_broadcast_rhs_scalar()
|
||||
# test_ndarray_fmin()
|
||||
# test_ndarray_fmin_broadcast()
|
||||
# test_ndarray_fmin_broadcast_lhs_scalar()
|
||||
# test_ndarray_fmin_broadcast_rhs_scalar()
|
||||
# test_ndarray_ldexp()
|
||||
# test_ndarray_ldexp_broadcast()
|
||||
# test_ndarray_ldexp_broadcast_lhs_scalar()
|
||||
# test_ndarray_ldexp_broadcast_rhs_scalar()
|
||||
# test_ndarray_hypot()
|
||||
# test_ndarray_hypot_broadcast()
|
||||
# test_ndarray_hypot_broadcast_lhs_scalar()
|
||||
# test_ndarray_hypot_broadcast_rhs_scalar()
|
||||
# test_ndarray_nextafter()
|
||||
# test_ndarray_nextafter_broadcast()
|
||||
# test_ndarray_nextafter_broadcast_lhs_scalar()
|
||||
# test_ndarray_nextafter_broadcast_rhs_scalar()
|
||||
# test_ndarray_transpose()
|
||||
test_ndarray_reshape()
|
||||
|
||||
# test_ndarray_dot()
|
||||
# test_ndarray_linalg_matmul()
|
||||
# test_ndarray_cholesky()
|
||||
# test_ndarray_qr()
|
||||
# test_ndarray_svd()
|
||||
# test_ndarray_linalg_inv()
|
||||
# test_ndarray_pinv()
|
||||
# test_ndarray_lu()
|
||||
# test_ndarray_schur()
|
||||
# test_ndarray_hessenberg()
|
||||
return 0
|
||||
|
1
pyo3_output/nac3artiq.so
Symbolic link
1
pyo3_output/nac3artiq.so
Symbolic link
@ -0,0 +1 @@
|
||||
../target/debug/libnac3artiq.so
|
Loading…
Reference in New Issue
Block a user