forked from M-Labs/nac3
1
0
Fork 0

README: typo/style

This commit is contained in:
Sebastien Bourdeauducq 2020-07-11 19:01:45 +08:00
parent 8085e7d646
commit 44e84cf7d4
1 changed files with 2 additions and 2 deletions

View File

@ -9,14 +9,14 @@ How to use
3. Search for the job named ``<board>-<variant>-sd`` (for example: ``zc706-nist_clock-sd`` or ``zc706-nist_qc2-sd``). 3. Search for the job named ``<board>-<variant>-sd`` (for example: ``zc706-nist_clock-sd`` or ``zc706-nist_qc2-sd``).
4. Download the ``boot.bin`` "binary distribution" and place it at the root of a FAT-formatted SD card. 4. Download the ``boot.bin`` "binary distribution" and place it at the root of a FAT-formatted SD card.
5. Optionally, create a ``config.txt`` configuration file at the root of the SD card containing ``key=value`` pairs on each line. Use the ``ip``, ``ip6`` and ``mac`` keys to respectively set the IPv4, IPv6 and MAC address of the board. Configuring an IPv6 address is entirely optional. If these keys are not found, the firmware will use default values that may or may not be compatible with your network. 5. Optionally, create a ``config.txt`` configuration file at the root of the SD card containing ``key=value`` pairs on each line. Use the ``ip``, ``ip6`` and ``mac`` keys to respectively set the IPv4, IPv6 and MAC address of the board. Configuring an IPv6 address is entirely optional. If these keys are not found, the firmware will use default values that may or may not be compatible with your network.
6. Insert the SD card in the development board and set up the board to boot from the SD card. For the ZC706, this is achieved by placing the large DIP switch SW11 in the 00110 position. 6. Insert the SD card into the board and set up the board to boot from the SD card. For the ZC706, this is achieved by placing the large DIP switch SW11 in the 00110 position.
7. Power up the board. After the firmware starts successfully, it should respond to ping at its IP addresses, and boot messages can be observed from its UART at 115200bps. 7. Power up the board. After the firmware starts successfully, it should respond to ping at its IP addresses, and boot messages can be observed from its UART at 115200bps.
8. Create and use an ARTIQ device database as usual, but set ``"target": "cortexa9"`` in the arguments of the core device. 8. Create and use an ARTIQ device database as usual, but set ``"target": "cortexa9"`` in the arguments of the core device.
Configuration Configuration
------------- -------------
Configuring the device is done using the ``config.txt`` text file at the root of the SD card, plus the content of the ``config`` folder. When searching for a configuration key, the firmware first looks for a file named ``/config/[key].bin`` and, if it exists, returns the contents of that file. If not, it looks into ``config.txt``, which contains a list of ``key=value`` pairs, one per line. The ``config`` folder allows configuration values to consist in binary data. Configuring the device is done using the ``config.txt`` text file at the root of the SD card, plus the contents of the ``config`` folder. When searching for a configuration key, the firmware first looks for a file named ``/config/[key].bin`` and, if it exists, returns the contents of that file. If not, it looks into ``config.txt``, which contains a list of ``key=value`` pairs, one per line. The ``config`` folder allows configuration values that consist in binary data, such as the startup kernel.
The following configuration keys are available: The following configuration keys are available: