forked from M-Labs/nac3
core: new np_{zeros,ones,fill} + some irrt model additions
This commit is contained in:
parent
51a099b602
commit
3344a2bcd3
|
@ -0,0 +1,155 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/numpy/ndarray_util.hpp>
|
||||
|
||||
namespace {
|
||||
|
||||
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
|
||||
//
|
||||
// NOTE: The order of fields is IMPORTANT. DON'T TOUCH IT
|
||||
//
|
||||
// Some resources you might find helpful:
|
||||
// - The official numpy implementations:
|
||||
// - https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||
// - On strides (about reshaping, slicing, C-contagiousness, etc)
|
||||
// - https://ajcr.net/stride-guide-part-1/.
|
||||
// - https://ajcr.net/stride-guide-part-2/.
|
||||
// - https://ajcr.net/stride-guide-part-3/.
|
||||
template <typename SizeT>
|
||||
struct NDArray {
|
||||
// The underlying data this `ndarray` is pointing to.
|
||||
//
|
||||
// NOTE: Formally this should be of type `void *`, but clang
|
||||
// translates `void *` to `i8 *` when run with `-S -emit-llvm`,
|
||||
// so we will put `uint8_t *` here for clarity.
|
||||
//
|
||||
// This pointer should point to the first element of the ndarray directly
|
||||
uint8_t *data;
|
||||
|
||||
// The number of bytes of a single element in `data`.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
SizeT itemsize;
|
||||
|
||||
// The number of dimensions of this shape.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
SizeT ndims;
|
||||
|
||||
// Array shape, with length equal to `ndims`.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
//
|
||||
// NOTE: `shape` can contain 0.
|
||||
// (those appear when the user makes an out of bounds slice into an ndarray, e.g., `np.zeros((3, 3))[400:].shape == (0, 3)`)
|
||||
SizeT *shape;
|
||||
|
||||
// Array strides (stride value is in number of bytes, NOT number of elements), with length equal to `ndims`.
|
||||
//
|
||||
// The `SizeT` is treated as `signed`.
|
||||
//
|
||||
// NOTE: `strides` can have negative numbers.
|
||||
// (those appear when there is a slice with a negative step, e.g., `my_array[::-1]`)
|
||||
SizeT *strides;
|
||||
|
||||
// Calculate the size/# of elements of an `ndarray`.
|
||||
// This function corresponds to `np.size(<ndarray>)` or `ndarray.size`
|
||||
SizeT size() {
|
||||
return ndarray_util::calc_size_from_shape(ndims, shape);
|
||||
}
|
||||
|
||||
// Calculate the number of bytes of its content of an `ndarray` *in its view*.
|
||||
// This function corresponds to `ndarray.nbytes`
|
||||
SizeT nbytes() {
|
||||
return this->size() * itemsize;
|
||||
}
|
||||
|
||||
// Set the strides of the ndarray with `ndarray_util::set_strides_by_shape`
|
||||
void set_strides_by_shape() {
|
||||
ndarray_util::set_strides_by_shape(itemsize, ndims, strides, shape);
|
||||
}
|
||||
|
||||
uint8_t* get_pelement_by_indices(const SizeT *indices) {
|
||||
uint8_t* element = data;
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
|
||||
element += indices[dim_i] * strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
uint8_t* get_nth_pelement(SizeT nth) {
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
|
||||
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
|
||||
return get_pelement_by_indices(indices);
|
||||
}
|
||||
|
||||
// Get the pointer to the nth element of the ndarray as if it were flattened.
|
||||
uint8_t* checked_get_nth_pelement(ErrorContext* errctx, SizeT nth) {
|
||||
SizeT arr_size = this->size();
|
||||
if (!(0 <= nth && nth < arr_size)) {
|
||||
errctx->set_error(
|
||||
errctx->error_ids->index_error,
|
||||
"index {0} is out of bounds, valid range is {1} <= index < {2}",
|
||||
nth, 0, arr_size
|
||||
);
|
||||
return 0;
|
||||
}
|
||||
return get_nth_pelement(nth);
|
||||
}
|
||||
|
||||
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, itemsize);
|
||||
}
|
||||
|
||||
// Fill the ndarray with a value
|
||||
void fill_generic(const uint8_t* pvalue) {
|
||||
const SizeT size = this->size();
|
||||
for (SizeT i = 0; i < size; i++) {
|
||||
uint8_t* pelement = get_nth_pelement(i); // No need for checked_get_nth_pelement
|
||||
set_pelement_value(pelement, pvalue);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
||||
return ndarray->size();
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
||||
return ndarray->size();
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
|
||||
return ndarray->nbytes();
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
|
||||
return ndarray->nbytes();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative(ErrorContext* errctx, int32_t ndims, int32_t* shape) {
|
||||
ndarray_util::assert_shape_no_negative(errctx, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative64(ErrorContext* errctx, int64_t ndims, int64_t* shape) {
|
||||
ndarray_util::assert_shape_no_negative(errctx, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
||||
ndarray->set_strides_by_shape();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
||||
ndarray->set_strides_by_shape();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
|
||||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_fill_generic64(NDArray<int64_t>* ndarray, uint8_t* pvalue) {
|
||||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,107 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
|
||||
namespace {
|
||||
namespace ndarray_util {
|
||||
|
||||
// Throw an error if there is an axis with negative dimension
|
||||
template <typename SizeT>
|
||||
void assert_shape_no_negative(ErrorContext* errctx, SizeT ndims, const SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
if (shape[axis] < 0) {
|
||||
errctx->set_error(
|
||||
errctx->error_ids->value_error,
|
||||
"negative dimensions are not allowed; axis {0} has dimension {1}",
|
||||
axis, shape[axis]
|
||||
);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the size/# of elements of an ndarray given its shape
|
||||
template <typename SizeT>
|
||||
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
||||
SizeT size = 1;
|
||||
for (SizeT axis = 0; axis < ndims; axis++) size *= shape[axis];
|
||||
return size;
|
||||
}
|
||||
|
||||
// Compute the strides of an ndarray given an ndarray `shape`
|
||||
// and assuming that the ndarray is *fully C-contagious*.
|
||||
//
|
||||
// You might want to read up on https://ajcr.net/stride-guide-part-1/.
|
||||
template <typename SizeT>
|
||||
void set_strides_by_shape(SizeT itemsize, SizeT ndims, SizeT* dst_strides, const SizeT* shape) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
int axis = ndims - i - 1;
|
||||
dst_strides[axis] = stride_product * itemsize;
|
||||
stride_product *= shape[axis];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
|
||||
for (int32_t i = 0; i < ndims; i++) {
|
||||
int32_t axis = ndims - i - 1;
|
||||
int32_t dim = shape[axis];
|
||||
|
||||
indices[axis] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
bool can_broadcast_shape_to(
|
||||
const SizeT target_ndims,
|
||||
const SizeT *target_shape,
|
||||
const SizeT src_ndims,
|
||||
const SizeT *src_shape
|
||||
) {
|
||||
/*
|
||||
// See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
|
||||
This function handles this example:
|
||||
```
|
||||
Image (3d array): 256 x 256 x 3
|
||||
Scale (1d array): 3
|
||||
Result (3d array): 256 x 256 x 3
|
||||
```
|
||||
|
||||
Other interesting examples to consider:
|
||||
- `can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true`
|
||||
- `can_broadcast_shape_to([3], [3, 1]) == false`
|
||||
- `can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true`
|
||||
|
||||
In cases when the shapes contain zero(es):
|
||||
- `can_broadcast_shape_to([0], [1]) == true`
|
||||
- `can_broadcast_shape_to([0], [2]) == false`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1]) == true`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true`
|
||||
- `can_broadcast_shape_to([4, 3], [0, 3]) == false`
|
||||
- `can_broadcast_shape_to([4, 3], [0, 0]) == false`
|
||||
*/
|
||||
|
||||
// This is essentially doing the following in Python:
|
||||
// `for target_dim, src_dim in itertools.zip_longest(target_shape[::-1], src_shape[::-1], fillvalue=1)`
|
||||
for (SizeT i = 0; i < max(target_ndims, src_ndims); i++) {
|
||||
SizeT target_axis = target_ndims - i - 1;
|
||||
SizeT src_axis = src_ndims - i - 1;
|
||||
|
||||
bool target_dim_exists = target_axis >= 0;
|
||||
bool src_dim_exists = src_axis >= 0;
|
||||
|
||||
SizeT target_dim = target_dim_exists ? target_shape[target_axis] : 1;
|
||||
SizeT src_dim = src_dim_exists ? src_shape[src_axis] : 1;
|
||||
|
||||
bool ok = src_dim == 1 || target_dim == src_dim;
|
||||
if (!ok) return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,6 +1,8 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/core.hpp>
|
||||
#include <irrt/error_context.hpp>
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/utils.hpp>
|
||||
#include <irrt/error_context.hpp>
|
||||
#include <irrt/numpy/ndarray.hpp>
|
||||
#include <irrt/numpy/ndarray_util.hpp>
|
||||
#include <irrt/utils.hpp>
|
|
@ -8,9 +8,11 @@
|
|||
#include <irrt_everything.hpp>
|
||||
|
||||
#include <test/core.hpp>
|
||||
#include <test/ndarray.hpp>
|
||||
#include <test/test_core.hpp>
|
||||
|
||||
int main() {
|
||||
test_int_exp();
|
||||
run_all_tests_ndarray();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,44 @@
|
|||
#pragma once
|
||||
|
||||
#include <test/core.hpp>
|
||||
#include <irrt/numpy/ndarray.hpp>
|
||||
#include <irrt/numpy/ndarray_util.hpp>
|
||||
|
||||
void test_calc_size_from_shape_normal() {
|
||||
// Test shapes with normal values
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 2, 3, 5, 7 };
|
||||
assert_values_match(210, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
|
||||
}
|
||||
|
||||
void test_calc_size_from_shape_has_zero() {
|
||||
// Test shapes with 0 in them
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 2, 0, 5, 7 };
|
||||
assert_values_match(0, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
|
||||
}
|
||||
|
||||
void test_set_strides_by_shape() {
|
||||
// Test `set_strides_by_shape()`
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 99, 3, 5, 7 };
|
||||
int32_t strides[4] = { 0 };
|
||||
ndarray_util::set_strides_by_shape((int32_t) sizeof(int32_t), 4, strides, shape);
|
||||
|
||||
int32_t expected_strides[4] = {
|
||||
105 * sizeof(int32_t),
|
||||
35 * sizeof(int32_t),
|
||||
7 * sizeof(int32_t),
|
||||
1 * sizeof(int32_t)
|
||||
};
|
||||
assert_arrays_match(4, expected_strides, strides);
|
||||
}
|
||||
|
||||
void run_all_tests_ndarray() {
|
||||
test_calc_size_from_shape_normal();
|
||||
test_calc_size_from_shape_has_zero();
|
||||
test_set_strides_by_shape();
|
||||
}
|
|
@ -8,4 +8,4 @@ void test_int_exp() {
|
|||
|
||||
assert_values_match(125, __nac3_int_exp_impl<int32_t>(5, 3));
|
||||
assert_values_match(3125, __nac3_int_exp_impl<int32_t>(5, 5));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
use crate::typecheck::typedef::Type;
|
||||
|
||||
pub mod error_context;
|
||||
pub mod numpy;
|
||||
mod test;
|
||||
mod util;
|
||||
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
pub mod ndarray;
|
||||
pub mod shape;
|
||||
|
||||
pub use ndarray::*;
|
||||
pub use shape::*;
|
|
@ -0,0 +1,243 @@
|
|||
use inkwell::types::{BasicType, BasicTypeEnum};
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{
|
||||
error_context::{check_error_context, prepare_error_context, ErrorContext},
|
||||
util::{get_sized_dependent_function_name, FunctionBuilder},
|
||||
},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::Producer;
|
||||
|
||||
pub struct NpArrayFields<'ctx> {
|
||||
pub data: Field<OpaquePointerModel>,
|
||||
pub itemsize: Field<IntModel<'ctx>>,
|
||||
pub ndims: Field<IntModel<'ctx>>,
|
||||
pub shape: Field<PointerModel<IntModel<'ctx>>>,
|
||||
pub strides: Field<PointerModel<IntModel<'ctx>>>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NpArray<'ctx> {
|
||||
pub sizet: IntModel<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> IsStruct<'ctx> for NpArray<'ctx> {
|
||||
type Fields = NpArrayFields<'ctx>;
|
||||
|
||||
fn struct_name(&self) -> &'static str {
|
||||
"NDArray"
|
||||
}
|
||||
|
||||
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
|
||||
NpArrayFields {
|
||||
data: builder.add_field_auto("data"),
|
||||
itemsize: builder.add_field("itemsize", self.sizet),
|
||||
ndims: builder.add_field("ndims", self.sizet),
|
||||
shape: builder.add_field("shape", PointerModel(self.sizet)),
|
||||
strides: builder.add_field("strides", PointerModel(self.sizet)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> Pointer<'ctx, StructModel<NpArray<'ctx>>> {
|
||||
pub fn shape_slice(&self, ctx: &CodeGenContext<'ctx, '_>) -> ArraySlice<'ctx, IntModel<'ctx>> {
|
||||
let ndims = self.gep(ctx, |f| f.ndims).load(ctx, "ndims");
|
||||
let shape_base_ptr = self.gep(ctx, |f| f.shape).load(ctx, "shape");
|
||||
ArraySlice { num_elements: ndims, pointer: shape_base_ptr }
|
||||
}
|
||||
|
||||
pub fn strides_slice(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> ArraySlice<'ctx, IntModel<'ctx>> {
|
||||
let ndims = self.gep(ctx, |f| f.ndims).load(ctx, "ndims");
|
||||
let strides_base_ptr = self.gep(ctx, |f| f.strides).load(ctx, "strides");
|
||||
ArraySlice { num_elements: ndims, pointer: strides_base_ptr }
|
||||
}
|
||||
}
|
||||
|
||||
pub fn alloca_ndarray<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_type: BasicTypeEnum<'ctx>,
|
||||
ndims: &Int<'ctx>,
|
||||
name: &str,
|
||||
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let sizet = IntModel(generator.get_size_type(ctx.ctx));
|
||||
|
||||
// Allocate ndarray
|
||||
let ndarray_ptr = StructModel(NpArray { sizet }).alloca(ctx, name);
|
||||
|
||||
// Set ndims
|
||||
ndarray_ptr.gep(ctx, |f| f.ndims).store(ctx, ndims);
|
||||
|
||||
// Set itemsize
|
||||
let itemsize = elem_type.size_of().unwrap();
|
||||
let itemsize =
|
||||
ctx.builder.build_int_s_extend_or_bit_cast(itemsize, sizet.0, "itemsize").unwrap();
|
||||
ndarray_ptr.gep(ctx, |f| f.itemsize).store(ctx, &Int(itemsize));
|
||||
|
||||
// Allocate and set shape
|
||||
let shape_ptr = ctx.builder.build_array_alloca(sizet.0, ndims.0, "shape").unwrap();
|
||||
ndarray_ptr.gep(ctx, |f| f.shape).store(ctx, &Pointer { element: sizet, value: shape_ptr });
|
||||
// .store(ctx, &Pointer { addressee_optic: IntLens(sizet), address: shape_ptr });
|
||||
|
||||
// Allocate and set strides
|
||||
let strides_ptr = ctx.builder.build_array_alloca(sizet.0, ndims.0, "strides").unwrap();
|
||||
ndarray_ptr.gep(ctx, |f| f.strides).store(ctx, &Pointer { element: sizet, value: strides_ptr });
|
||||
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
|
||||
pub enum NDArrayInitMode<'ctx, G: CodeGenerator + ?Sized> {
|
||||
NDims { ndims: Int<'ctx> },
|
||||
Shape { shape: Producer<'ctx, G, IntModel<'ctx>> },
|
||||
ShapeAndAllocaData { shape: Producer<'ctx, G, IntModel<'ctx>> },
|
||||
}
|
||||
|
||||
/// TODO: DOCUMENT ME
|
||||
pub fn alloca_ndarray_and_init<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_type: BasicTypeEnum<'ctx>,
|
||||
init_mode: NDArrayInitMode<'ctx, G>,
|
||||
name: &str,
|
||||
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
// It is implemented verbosely in order to make the initialization modes super clear in their intent.
|
||||
match init_mode {
|
||||
NDArrayInitMode::NDims { ndims } => {
|
||||
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, &ndims, name)?;
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
NDArrayInitMode::Shape { shape } => {
|
||||
let ndims = shape.count;
|
||||
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, &ndims, name)?;
|
||||
|
||||
// Fill `ndarray.shape`
|
||||
(shape.write_to_array)(generator, ctx, &ndarray_ptr.shape_slice(ctx))?;
|
||||
|
||||
// Check if `shape` has bad inputs
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(
|
||||
generator,
|
||||
ctx,
|
||||
&ndims,
|
||||
&ndarray_ptr.gep(ctx, |f| f.shape).load(ctx, "shape"),
|
||||
);
|
||||
|
||||
// NOTE: DO NOT DO `set_strides_by_shape` HERE.
|
||||
// Simply this is because we specified that `SetShape` wouldn't do `set_strides_by_shape`
|
||||
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
NDArrayInitMode::ShapeAndAllocaData { shape } => {
|
||||
let ndims = shape.count;
|
||||
let ndarray_ptr = alloca_ndarray(generator, ctx, elem_type, &ndims, name)?;
|
||||
|
||||
// Fill `ndarray.shape`
|
||||
(shape.write_to_array)(generator, ctx, &ndarray_ptr.shape_slice(ctx))?;
|
||||
|
||||
// Check if `shape` has bad inputs
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(
|
||||
generator,
|
||||
ctx,
|
||||
&ndims,
|
||||
&ndarray_ptr.gep(ctx, |f| f.shape).load(ctx, "shape"),
|
||||
);
|
||||
|
||||
// Now we populate `ndarray.data` by alloca-ing.
|
||||
// But first, we need to know the size of the ndarray to know how many elements to alloca,
|
||||
// since calculating nbytes of an ndarray requires `ndarray.shape` to be set.
|
||||
let ndarray_nbytes = call_nac3_ndarray_nbytes(generator, ctx, &ndarray_ptr);
|
||||
|
||||
// Alloca `data` and assign it to `ndarray.data`
|
||||
let data_ptr = OpaquePointer(
|
||||
ctx.builder
|
||||
.build_array_alloca(ctx.ctx.i8_type(), ndarray_nbytes.0, "data")
|
||||
.unwrap(),
|
||||
);
|
||||
ndarray_ptr.gep(ctx, |f| f.data).store(ctx, &data_ptr);
|
||||
|
||||
// Finally, do `set_strides_by_shape`
|
||||
// Check out https://ajcr.net/stride-guide-part-1/ to see what numpy "strides" are.
|
||||
call_nac3_ndarray_set_strides_by_shape(generator, ctx, &ndarray_ptr);
|
||||
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndims: &Int<'ctx>,
|
||||
shape_ptr: &Pointer<'ctx, IntModel<'ctx>>,
|
||||
) {
|
||||
let sizet = IntModel(generator.get_size_type(ctx.ctx));
|
||||
|
||||
let errctx = prepare_error_context(ctx);
|
||||
FunctionBuilder::begin(
|
||||
ctx,
|
||||
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_util_assert_shape_no_negative"),
|
||||
)
|
||||
.arg("errctx", &PointerModel(StructModel(ErrorContext)), &errctx)
|
||||
.arg("ndims", &sizet, ndims)
|
||||
.arg("shape", &PointerModel(sizet), shape_ptr)
|
||||
.returning_void();
|
||||
check_error_context(generator, ctx, &errctx);
|
||||
}
|
||||
|
||||
fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray_ptr: &Pointer<'ctx, StructModel<NpArray<'ctx>>>,
|
||||
) {
|
||||
let sizet = IntModel(generator.get_size_type(ctx.ctx));
|
||||
|
||||
FunctionBuilder::begin(
|
||||
ctx,
|
||||
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_util_assert_shape_no_negative"),
|
||||
)
|
||||
.arg("ndarray", &PointerModel(StructModel(NpArray { sizet })), ndarray_ptr)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray_ptr: &Pointer<'ctx, StructModel<NpArray<'ctx>>>,
|
||||
) -> Int<'ctx> {
|
||||
let sizet = IntModel(generator.get_size_type(ctx.ctx));
|
||||
|
||||
FunctionBuilder::begin(
|
||||
ctx,
|
||||
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_util_assert_shape_no_negative"),
|
||||
)
|
||||
.arg("ndarray", &PointerModel(StructModel(NpArray { sizet })), ndarray_ptr)
|
||||
.returning("nbytes", &sizet)
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_fill_generic<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray_ptr: &Pointer<'ctx, StructModel<NpArray<'ctx>>>,
|
||||
fill_value_ptr: &OpaquePointer<'ctx>,
|
||||
) {
|
||||
let sizet = IntModel(generator.get_size_type(ctx.ctx));
|
||||
|
||||
FunctionBuilder::begin(
|
||||
ctx,
|
||||
&get_sized_dependent_function_name(sizet, "__nac3_ndarray_fill_generic"),
|
||||
)
|
||||
.arg("ndarray", &PointerModel(StructModel(NpArray { sizet })), ndarray_ptr)
|
||||
.arg("pvalue", &OpaquePointerModel, fill_value_ptr)
|
||||
.returning_void();
|
||||
}
|
|
@ -0,0 +1,162 @@
|
|||
use inkwell::values::BasicValueEnum;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{ListValue, UntypedArrayLikeAccessor},
|
||||
model::*,
|
||||
stmt::gen_for_callback_incrementing,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
pub type ProducerWriteToArray<'ctx, G, E> = Box<
|
||||
dyn Fn(&mut G, &mut CodeGenContext<'ctx, '_>, &ArraySlice<'ctx, E>) -> Result<(), String>
|
||||
+ 'ctx,
|
||||
>;
|
||||
|
||||
pub struct Producer<'ctx, G: CodeGenerator + ?Sized, E: Model<'ctx>> {
|
||||
pub count: Int<'ctx>,
|
||||
pub write_to_array: ProducerWriteToArray<'ctx, G, E>,
|
||||
}
|
||||
|
||||
/// TODO: UPDATE DOCUMENTATION
|
||||
/// LLVM-typed implementation for generating a [`Producer`] that sets a list of ints.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
///
|
||||
/// ### Notes on `shape`
|
||||
///
|
||||
/// Just like numpy, the `shape` argument can be:
|
||||
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
///
|
||||
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
|
||||
/// learn how `shape` gets from being a Python user expression to here.
|
||||
pub fn parse_input_shape_arg<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
) -> Producer<'ctx, G, IntModel<'ctx>>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let sizet = IntModel(generator.get_size_type(ctx.ctx));
|
||||
|
||||
match &*ctx.unifier.get_ty(shape_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
|
||||
|
||||
// A list has to be a PointerValue
|
||||
let shape_list = ListValue::from_ptr_val(shape.into_pointer_value(), sizet.0, None);
|
||||
|
||||
// Create `Producer`
|
||||
let ndims = Int(shape_list.load_size(ctx, Some("count")));
|
||||
Producer {
|
||||
count: ndims,
|
||||
write_to_array: Box::new(move |ctx, generator, dst_array| {
|
||||
// Basically iterate through the list and write to `dst_slice` accordingly
|
||||
let init_val = sizet.constant(0).0;
|
||||
let max_val = (ndims.0, false);
|
||||
let incr_val = sizet.constant(1).0;
|
||||
gen_for_callback_incrementing(
|
||||
ctx,
|
||||
generator,
|
||||
init_val,
|
||||
max_val,
|
||||
|generator, ctx, _hooks, axis| {
|
||||
let axis = Int(axis);
|
||||
|
||||
// Get the dimension at `axis`
|
||||
let dim = shape_list
|
||||
.data()
|
||||
.get(ctx, generator, &axis.0, None)
|
||||
.into_int_value();
|
||||
|
||||
// Cast `dim` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(dim, sizet.0, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_array.ix(generator, ctx, axis, "dim").store(ctx, &Int(dim));
|
||||
Ok(())
|
||||
},
|
||||
incr_val,
|
||||
)
|
||||
}),
|
||||
}
|
||||
}
|
||||
TypeEnum::TTuple { ty: tuple_types } => {
|
||||
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||
|
||||
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
|
||||
let ndims = tuple_types.len();
|
||||
|
||||
// A tuple has to be a StructValue
|
||||
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
|
||||
let shape_tuple = shape.into_struct_value();
|
||||
|
||||
Producer {
|
||||
count: sizet.constant(ndims as u64),
|
||||
write_to_array: Box::new(move |generator, ctx, dst_array| {
|
||||
for axis in 0..ndims {
|
||||
// Get the dimension at `axis`
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_extract_value(
|
||||
shape_tuple,
|
||||
axis as u32,
|
||||
format!("dim{axis}").as_str(),
|
||||
)
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
|
||||
// Cast `dim` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(dim, sizet.0, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_array
|
||||
.ix(generator, ctx, sizet.constant(axis as u64), "dim")
|
||||
.store(ctx, &Int(dim));
|
||||
}
|
||||
Ok(())
|
||||
}),
|
||||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
|
||||
// The value has to be an integer
|
||||
let shape_int = shape.into_int_value();
|
||||
|
||||
Producer {
|
||||
count: sizet.constant(1),
|
||||
write_to_array: Box::new(move |generator, ctx, dst_array| {
|
||||
// Cast `shape_int` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(shape_int, sizet.0, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Set shape[0] = shape_int
|
||||
dst_array.ix(generator, ctx, sizet.constant(0), "dim").store(ctx, &Int(dim));
|
||||
|
||||
Ok(())
|
||||
}),
|
||||
}
|
||||
}
|
||||
_ => panic!("parse_input_shape_arg encountered unknown type"),
|
||||
}
|
||||
}
|
|
@ -45,6 +45,7 @@ pub mod irrt;
|
|||
pub mod llvm_intrinsics;
|
||||
pub mod model;
|
||||
pub mod numpy;
|
||||
pub mod numpy_new;
|
||||
pub mod stmt;
|
||||
|
||||
#[cfg(test)]
|
||||
|
|
|
@ -8,6 +8,8 @@ use super::core::*;
|
|||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct IntModel<'ctx>(pub IntType<'ctx>);
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Int<'ctx>(pub IntValue<'ctx>);
|
||||
|
||||
impl<'ctx> ModelValue<'ctx> for Int<'ctx> {
|
||||
|
@ -30,6 +32,13 @@ impl<'ctx> Model<'ctx> for IntModel<'ctx> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntModel<'ctx> {
|
||||
#[must_use]
|
||||
pub fn constant(&self, value: u64) -> Int<'ctx> {
|
||||
Int(self.0.const_int(value, false))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct FixedIntModel<T>(pub T);
|
||||
pub struct FixedInt<'ctx, T: IsFixedInt> {
|
||||
|
|
|
@ -72,3 +72,9 @@ impl<'ctx> Model<'ctx> for OpaquePointerModel {
|
|||
OpaquePointer(ptr)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> OpaquePointer<'ctx> {
|
||||
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: BasicValueEnum<'ctx>) {
|
||||
ctx.builder.build_store(self.0, value).unwrap();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
use inkwell::values::IntValue;
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::{Int, Model, Pointer};
|
||||
|
@ -13,11 +11,11 @@ impl<'ctx, E: Model<'ctx>> ArraySlice<'ctx, E> {
|
|||
pub fn ix_unchecked(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
idx: IntValue<'ctx>,
|
||||
idx: Int<'ctx>,
|
||||
name: &str,
|
||||
) -> Pointer<'ctx, E> {
|
||||
let element_addr =
|
||||
unsafe { ctx.builder.build_in_bounds_gep(self.pointer.value, &[idx], name).unwrap() };
|
||||
unsafe { ctx.builder.build_in_bounds_gep(self.pointer.value, &[idx.0], name).unwrap() };
|
||||
Pointer { value: element_addr, element: self.pointer.element.clone() }
|
||||
}
|
||||
|
||||
|
@ -25,12 +23,12 @@ impl<'ctx, E: Model<'ctx>> ArraySlice<'ctx, E> {
|
|||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
idx: IntValue<'ctx>,
|
||||
idx: Int<'ctx>,
|
||||
name: &str,
|
||||
) -> Pointer<'ctx, E> {
|
||||
let int_type = self.num_elements.0.get_type(); // NOTE: Weird get_type(), see comment under `trait Ixed`
|
||||
|
||||
assert_eq!(int_type.get_bit_width(), idx.get_type().get_bit_width()); // Might as well check bit width to catch bugs
|
||||
assert_eq!(int_type.get_bit_width(), idx.0.get_type().get_bit_width()); // Might as well check bit width to catch bugs
|
||||
|
||||
// TODO: SGE or UGE? or make it defined by the implementee?
|
||||
|
||||
|
@ -40,7 +38,7 @@ impl<'ctx, E: Model<'ctx>> ArraySlice<'ctx, E> {
|
|||
.build_int_compare(
|
||||
inkwell::IntPredicate::SLE,
|
||||
int_type.const_zero(),
|
||||
idx,
|
||||
idx.0,
|
||||
"lower_bounded",
|
||||
)
|
||||
.unwrap();
|
||||
|
@ -50,7 +48,7 @@ impl<'ctx, E: Model<'ctx>> ArraySlice<'ctx, E> {
|
|||
.builder
|
||||
.build_int_compare(
|
||||
inkwell::IntPredicate::SLT,
|
||||
idx,
|
||||
idx.0,
|
||||
self.num_elements.0,
|
||||
"upper_bounded",
|
||||
)
|
||||
|
@ -65,7 +63,7 @@ impl<'ctx, E: Model<'ctx>> ArraySlice<'ctx, E> {
|
|||
bounded,
|
||||
"0:IndexError",
|
||||
"nac3core LLVM codegen attempting to access out of bounds array index {0}. Must satisfy 0 <= index < {2}",
|
||||
[ Some(idx), Some(self.num_elements.0), None],
|
||||
[ Some(idx.0), Some(self.num_elements.0), None],
|
||||
ctx.current_loc
|
||||
);
|
||||
|
||||
|
|
|
@ -0,0 +1,188 @@
|
|||
use inkwell::values::{BasicValue, BasicValueEnum, PointerValue};
|
||||
use nac3parser::ast::StrRef;
|
||||
|
||||
use crate::{
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::DefinitionId,
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
|
||||
use super::{
|
||||
irrt::numpy::{
|
||||
alloca_ndarray_and_init, call_nac3_ndarray_fill_generic, parse_input_shape_arg,
|
||||
NDArrayInitMode, NpArray,
|
||||
},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for constructing an empty `NDArray`.
|
||||
fn call_ndarray_empty_impl<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
name: &str,
|
||||
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let elem_type = ctx.get_llvm_type(generator, elem_ty);
|
||||
let shape = parse_input_shape_arg(generator, ctx, shape, shape_ty);
|
||||
let ndarray_ptr = alloca_ndarray_and_init(
|
||||
generator,
|
||||
ctx,
|
||||
elem_type,
|
||||
NDArrayInitMode::ShapeAndAllocaData { shape },
|
||||
name,
|
||||
)?;
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
|
||||
fn call_ndarray_full_impl<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
name: &str,
|
||||
) -> Result<Pointer<'ctx, StructModel<NpArray<'ctx>>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let ndarray_ptr = call_ndarray_empty_impl(generator, ctx, elem_ty, shape, shape_ty, name)?;
|
||||
|
||||
// NOTE: fill_value's type is not checked!! so be careful with logics
|
||||
let fill_value_ptr =
|
||||
OpaquePointer(ctx.builder.build_alloca(fill_value.get_type(), "fill_value_ptr").unwrap());
|
||||
fill_value_ptr.store(ctx, fill_value);
|
||||
call_nac3_ndarray_fill_generic(generator, ctx, &ndarray_ptr, &fill_value_ptr);
|
||||
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.empty`.
|
||||
pub fn gen_ndarray_empty<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse arguments
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Implementation
|
||||
let ndarray_ptr = call_ndarray_empty_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
shape,
|
||||
shape_ty,
|
||||
"ndarray",
|
||||
)?;
|
||||
Ok(ndarray_ptr.value)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.zeros`.
|
||||
pub fn gen_ndarray_zeros<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse arguments
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Implementation
|
||||
// NOTE: Currently nac3's `np.zeros` is always `float64`.
|
||||
let float64_ty = context.primitives.float;
|
||||
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
|
||||
|
||||
let ndarray_ptr = call_ndarray_full_impl(
|
||||
generator,
|
||||
context,
|
||||
float64_ty, // `elem_ty` is always `float64`
|
||||
shape,
|
||||
shape_ty,
|
||||
float64_llvm_type.const_zero().as_basic_value_enum(),
|
||||
"ndarray",
|
||||
)?;
|
||||
Ok(ndarray_ptr.value)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.ones`.
|
||||
pub fn gen_ndarray_ones<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse arguments
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Implementation
|
||||
// NOTE: Currently nac3's `np.ones` is always `float64`.
|
||||
let float64_ty = context.primitives.float;
|
||||
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
|
||||
|
||||
let ndarray_ptr = call_ndarray_full_impl(
|
||||
generator,
|
||||
context,
|
||||
float64_ty, // `elem_ty` is always `float64`
|
||||
shape,
|
||||
shape_ty,
|
||||
float64_llvm_type.const_float(1.0).as_basic_value_enum(),
|
||||
"ndarray",
|
||||
)?;
|
||||
Ok(ndarray_ptr.value)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.full`.
|
||||
pub fn gen_ndarray_full<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
// Parse argument #1 shape
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Parse argument #2 fill_value
|
||||
let fill_value_ty = fun.0.args[1].ty;
|
||||
let fill_value_arg =
|
||||
args[1].1.clone().to_basic_value_enum(context, generator, fill_value_ty)?;
|
||||
|
||||
// Implementation
|
||||
let ndarray_ptr = call_ndarray_full_impl(
|
||||
generator,
|
||||
context,
|
||||
fill_value_ty,
|
||||
shape_arg,
|
||||
shape_ty,
|
||||
fill_value_arg,
|
||||
"ndarray",
|
||||
)?;
|
||||
Ok(ndarray_ptr.value)
|
||||
}
|
|
@ -18,6 +18,7 @@ use crate::{
|
|||
expr::destructure_range,
|
||||
irrt::*,
|
||||
numpy::*,
|
||||
numpy_new,
|
||||
stmt::exn_constructor,
|
||||
},
|
||||
symbol_resolver::SymbolValue,
|
||||
|
@ -1194,9 +1195,9 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
&[(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
||||
Box::new(move |ctx, obj, fun, args, generator| {
|
||||
let func = match prim {
|
||||
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
|
||||
PrimDef::FunNpZeros => gen_ndarray_zeros,
|
||||
PrimDef::FunNpOnes => gen_ndarray_ones,
|
||||
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => numpy_new::gen_ndarray_empty,
|
||||
PrimDef::FunNpZeros => numpy_new::gen_ndarray_zeros,
|
||||
PrimDef::FunNpOnes => numpy_new::gen_ndarray_ones,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
|
||||
|
|
Loading…
Reference in New Issue