humpback-dds/src/dds.rs

812 lines
29 KiB
Rust

use embedded_hal::blocking::spi::Transfer;
use crate::urukul::Error;
use core::mem::size_of;
use core::convert::TryInto;
use heapless::Vec;
use heapless::consts::*;
use log::debug;
/*
* Bitmask for all configurations (Order: CFR3, CFR2, CFR1)
*/
construct_bitmask!(DDSCFRMask; u32;
// CFR1 bitmasks
LSB_FIRST, 0, 1,
SDIO_IN_ONLY, 1, 1,
EXT_POWER_DOWN_CTRL, 3, 1,
AUX_DAC_POWER_DOWN, 4, 1,
REFCLK_IN_POWER_DOWN, 5, 1,
DAC_POWER_DOWN, 6, 1,
DIGITAL_POWER_DOWN, 7, 1,
SEL_AUTO_OSK, 8, 1,
OSK_ENABLE, 9, 1,
LOAD_ARR_IO_UPDATE, 10, 1,
CLEAR_PHASE_ACU, 11, 1,
CLEAR_DIGITAL_RAMP_ACU, 12, 1,
AUTOCLEAR_PHASE_ACU, 13, 1,
AUTOCLEAR_DIGITAL_RAMP_ACU, 14, 1,
LOAD_LRR_IO_UPDATE, 15, 1,
SEL_DDS_SIN_OUT, 16, 1,
PROFILE_CTRL, 17, 4,
INV_SINC_FILTER_ENABLE, 22, 1,
MANUAL_OSK_EXT_CTRL, 23, 1,
RAM_PLAYBACK_DST, 29, 2,
RAM_ENABLE, 31, 1,
// CFR2 bitmasks
FM_GAIN, 0 +32, 4,
PARALLEL_DATA_PORT_ENABLE, 4 +32, 1,
SYNC_TIM_VALIDATION_DISABLE, 5 +32, 1,
DATA_ASSEM_HOLD_LAST_VALUE, 6 +32, 1,
MATCHED_LATENCY_ENABLE, 7 +32, 1,
TXENABLE_INV, 9 +32, 1,
PDCLK_INV, 10 +32, 1,
PDCLK_ENABLE, 11 +32, 1,
IO_UPDATE_RATE_CTRL, 14 +32, 2,
READ_EFFECTIVE_FTW, 16 +32, 1,
DIGITAL_RAMP_NO_DWELL_LOW, 17 +32, 1,
DIGITAL_RAMP_NO_DWELL_HIGH, 18 +32, 1,
DIGITAL_RAMP_ENABLE, 19 +32, 1,
DIGITAL_RAMP_DEST, 20 +32, 2,
SYNC_CLK_ENABLE, 22 +32, 1,
INT_IO_UPDATE_ACTIVE, 23 +32, 1,
EN_AMP_SCALE_SINGLE_TONE_PRO, 24 +32, 1,
// CFR3 bitmasks
N, 1 +64, 7,
PLL_ENABLE, 8 +64, 1,
PFD_RESET, 10 +64, 1,
REFCLK_IN_DIV_RESETB, 14 +64, 1,
REFCLK_IN_DIV_BYPASS, 15 +64, 1,
I_CP, 19 +64, 3,
VCO_SEL, 24 +64, 3,
DRV0, 28 +64, 2
);
const WRITE_MASK :u8 = 0x00;
const READ_MASK :u8 = 0x80;
#[link_section = ".sram2.ram"]
static mut RAM_VEC: Vec<u8, U8192> = Vec(heapless::i::Vec::new());
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum RAMDestination {
Frequency = 0,
Phase = 1,
Amplitude = 2,
Polar = 3,
}
#[derive(Clone, Debug)]
pub enum RAMOperationMode {
DirectSwitch = 0,
RampUp = 1,
BidirectionalRamp = 2,
ContinuousBidirectionalRamp = 3,
ContinuousRecirculate = 4,
}
pub struct DDS<SPI> {
spi: SPI,
f_ref_clk: f64,
f_sys_clk: f64,
ram_dest: RAMDestination
}
impl<SPI, E> DDS<SPI>
where
SPI: Transfer<u8, Error = E>
{
pub fn new(spi: SPI, f_ref_clk: f64) -> Self {
DDS {
spi,
f_ref_clk,
f_sys_clk: f_ref_clk,
ram_dest: RAMDestination::Frequency,
}
}
}
impl<SPI, E> Transfer<u8> for DDS<SPI>
where
SPI: Transfer<u8, Error = E>
{
type Error = Error<E>;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.spi.transfer(words).map_err(Error::SPI)
}
}
impl<SPI, E> DDS<SPI>
where
SPI: Transfer<u8, Error = E>
{
/*
* Implement init: Set SDIO to be input only, using LSB first
*/
pub fn init(&mut self) -> Result<(), Error<E>> {
match self.write_register(0x00, &mut [
0x00, 0x00, 0x00, 0x02
]) {
Ok(_) => Ok(()),
Err(e) => Err(e),
}
}
/*
* Implement clock control
*/
pub fn enable_divided_ref_clk(&mut self) -> Result<(), Error<E>> {
self.set_configurations(&mut [
// Disable PLL
(DDSCFRMask::PLL_ENABLE, 0),
// Take ref_clk source from divider
(DDSCFRMask::REFCLK_IN_DIV_BYPASS, 0),
// Ensure divider is not reset
(DDSCFRMask::REFCLK_IN_DIV_RESETB, 1),
])?;
self.f_sys_clk = self.f_ref_clk / 2.0;
Ok(())
}
pub fn enable_normal_ref_clk(&mut self) -> Result<(), Error<E>> {
self.set_configurations(&mut [
// Disable PLL
(DDSCFRMask::PLL_ENABLE, 0),
// Take ref_clk source from divider bypass
(DDSCFRMask::REFCLK_IN_DIV_BYPASS, 1),
// Reset does not matter
(DDSCFRMask::REFCLK_IN_DIV_RESETB, 1),
])?;
self.f_sys_clk = self.f_ref_clk;
Ok(())
}
pub fn enable_pll(&mut self, f_sys_clk: f64) -> Result<(), Error<E>> {
// Get a divider
let divider = (f_sys_clk / self.f_ref_clk) as u64;
// Reject extreme divider values. However, accept no frequency division
if (divider > 127 || divider < 12) && divider != 1 {
// panic!("Invalid divider value for PLL!");
return Err(Error::DDSCLKError);
}
let vco = self.get_VCO_no(f_sys_clk, divider as u8)?;
self.set_configurations(&mut [
// Enable PLL, set divider (valid or not) and VCO
(DDSCFRMask::PLL_ENABLE, 1),
(DDSCFRMask::N, divider as u32),
(DDSCFRMask::VCO_SEL, vco.into()),
// Reset PLL lock before re-enabling it
(DDSCFRMask::PFD_RESET, 1),
])?;
self.set_configurations(&mut [
(DDSCFRMask::PFD_RESET, 0),
])?;
self.f_sys_clk = self.f_ref_clk * (divider as f64);
Ok(())
}
// Change external clock source (ref_clk)
// This will always provide a legitimate f_sys_clk by the following priority
// 1. Keep DDS clock tree untouched, record the new f_sys_clk
// 2. Use the default divided-by-2 clock tree, if PLL configuration becomes invalid
pub fn set_ref_clk_frequency(&mut self, f_ref_clk: f64) -> Result<(), Error<E>> {
// Override old reference clock frequency (ref_clk)
self.f_ref_clk = f_ref_clk;
// Calculate the new system clock frequency, examine the clock tree
let mut configuration_queries = [
// Acquire PLL status
(DDSCFRMask::PLL_ENABLE, 0),
// Acquire N-divider, to adjust VCO if necessary
(DDSCFRMask::N, 0),
// Acquire REF_CLK divider bypass
(DDSCFRMask::REFCLK_IN_DIV_BYPASS, 0)
];
self.get_configurations(&mut configuration_queries)?;
if configuration_queries[0].1 == 1 {
// Recalculate sys_clk
let divider :f64 = configuration_queries[1].1.into();
let f_sys_clk = self.f_ref_clk * divider;
// Adjust VCO
match self.get_VCO_no(f_sys_clk, divider as u8) {
Ok(vco_no) => {
self.set_configurations(&mut [
// Update VCO selection
(DDSCFRMask::VCO_SEL, vco_no.into()),
// Reset PLL lock before re-enabling it
(DDSCFRMask::PFD_RESET, 1),
])?;
self.set_configurations(&mut [
(DDSCFRMask::PFD_RESET, 0),
])?;
// Update f_sys_clk from recalculation
self.f_sys_clk = f_sys_clk;
Ok(())
},
Err(_) => {
// Forcibly turn off PLL, enable default clk tree (divide by 2)
self.enable_divided_ref_clk()
}
}
}
else if configuration_queries[2].1 == 0 {
self.f_sys_clk = self.f_ref_clk / 2.0;
Ok(())
}
else {
self.f_sys_clk = self.f_ref_clk;
Ok(())
}
}
// Change sys_clk frequency, method to be determined
pub fn set_sys_clk_frequency(&mut self, f_sys_clk: f64) -> Result<(), Error<E>> {
// If f_sys_clk is exactly the same as f_ref_clk, then invoke enable_normal_ref_clk
if f_sys_clk == self.f_ref_clk {
self.enable_normal_ref_clk()
}
// Otherwise, if the requested sys_clk is half of ref_clk, invoke enable_divided_ref_clk
else if f_sys_clk == (self.f_ref_clk / 2.0) {
self.enable_divided_ref_clk()
}
// Finally, try enabling PLL
else {
self.enable_pll(f_sys_clk)?;
if self.f_sys_clk == self.get_sys_clk_frequency()? {
Ok(())
} else {
Err(Error::WaitRetry)
}
}
}
#[allow(non_snake_case)]
fn get_VCO_no(&mut self, f_sys_clk: f64, divider: u8) -> Result<u8, Error<E>> {
// Select a VCO
if divider == 1 {
Ok(6) // Bypass PLL if no frequency division needed
} else if f_sys_clk > 1_150_000_000.0 {
Err(Error::DDSCLKError)
} else if f_sys_clk > 820_000_000.0 {
Ok(5)
} else if f_sys_clk > 700_000_000.0 {
Ok(4)
} else if f_sys_clk > 600_000_000.0 {
Ok(3)
} else if f_sys_clk > 500_000_000.0 {
Ok(2)
} else if f_sys_clk > 420_000_000.0 {
Ok(1)
} else if f_sys_clk > 370_000_000.0 {
Ok(0)
} else {
Ok(7) // Bypass PLL if f_sys_clk is too low
}
}
/*
* Implement configurations registers I/O through bitmasks
*
* Get all (cfr1, cfr2, cfr3) contents
*/
fn get_all_configurations(&mut self) -> Result<[u32; 3], Error<E>> {
let mut cfr_reg = [0; 12];
self.read_register(0x00, &mut cfr_reg[0..4])?;
self.read_register(0x01, &mut cfr_reg[4..8])?;
self.read_register(0x02, &mut cfr_reg[8..12])?;
Ok([
(cfr_reg[0] as u32) << 24 | (cfr_reg[1] as u32) << 16 | (cfr_reg[2] as u32) << 8 | (cfr_reg[3] as u32),
(cfr_reg[4] as u32) << 24 | (cfr_reg[5] as u32) << 16 | (cfr_reg[6] as u32) << 8 | (cfr_reg[7] as u32),
(cfr_reg[8] as u32) << 24 | (cfr_reg[9] as u32) << 16 | (cfr_reg[10] as u32) << 8 | (cfr_reg[11] as u32)
])
}
/*
* Get a set of configurations using DDSCFRMask
*/
pub fn get_configurations<'w>(&mut self, mask_pairs: &'w mut[(DDSCFRMask, u32)]) -> Result<&'w [(DDSCFRMask, u32)], Error<E>> {
let data_array = self.get_all_configurations()?;
for index in 0..mask_pairs.len() {
mask_pairs[index].1 = match mask_pairs[index].0.get_shift() {
0..=31 => mask_pairs[index].0.get_filtered_content(data_array[0]),
32..=63 => mask_pairs[index].0.get_filtered_content(data_array[1]),
64..=95 => mask_pairs[index].0.get_filtered_content(data_array[2]),
_ => panic!("Invalid DDSCFRMask!"),
}
}
Ok(mask_pairs)
}
/*
* Write (cfr1, cfr2, cfr3) contents
*/
fn set_all_configurations(&mut self, data_array: [u32; 3]) -> Result<(), Error<E>> {
for register in 0x00..=0x02 {
self.write_register(register, &mut [
((data_array[register as usize] >> 24) & 0xFF) as u8,
((data_array[register as usize] >> 16) & 0xFF) as u8,
((data_array[register as usize] >> 8 ) & 0xFF) as u8,
((data_array[register as usize] >> 0 ) & 0xFF) as u8
])?;
}
Ok(())
}
/*
* Set a set of configurations using DDSCFRMask
*/
pub fn set_configurations(&mut self, mask_pairs: &mut[(DDSCFRMask, u32)]) -> Result<(), Error<E>> {
let mut data_array = self.get_all_configurations()?;
for index in 0..mask_pairs.len() {
// Reject any attempt to rewrite LSB_FIRST and SDIO_INPUT_ONLY
if mask_pairs[index].0 == DDSCFRMask::LSB_FIRST || mask_pairs[index].0 == DDSCFRMask::SDIO_IN_ONLY {
continue;
}
match mask_pairs[index].0.get_shift() {
0..=31 => mask_pairs[index].0.set_data_by_arg(&mut data_array[0], mask_pairs[index].1),
32..=63 => mask_pairs[index].0.set_data_by_arg(&mut data_array[1], mask_pairs[index].1),
64..=95 => mask_pairs[index].0.set_data_by_arg(&mut data_array[2], mask_pairs[index].1),
_ => panic!("Invalid DDSCFRMask!"),
};
}
// Deterministically maintain LSB_FIRST and SDIO_INPUT_ONLY
DDSCFRMask::LSB_FIRST.set_data_by_arg(&mut data_array[0], 0);
DDSCFRMask::SDIO_IN_ONLY.set_data_by_arg(&mut data_array[0], 1);
self.set_all_configurations(data_array.clone())
}
/*
* Setup a complete single tone profile
* Phase: Expressed in positive degree, i.e. [0.0, 360.0)
* Frequency: Must be non-negative
* Amplitude: In a scale from 0 to 1, taking float
*/
pub fn set_single_tone_profile(&mut self, profile: u8, f_out: f64, phase_offset: f64, amp_scale_factor: f64) -> Result<(), Error<E>> {
assert!(profile < 8);
assert!(f_out >= 0.0);
assert!(phase_offset >= 0.0 && phase_offset < 360.0);
assert!(amp_scale_factor >=0.0 && amp_scale_factor <= 1.0);
let ftw = self.frequency_to_ftw(f_out);
let pow = self.degree_to_pow(phase_offset);
let asf = self.amplitude_to_asf(amp_scale_factor);
// Setup configuration registers before writing single tone register
self.enable_single_tone_configuration()?;
// Transfer single tone profile data
self.write_register(0x0E + profile, &mut [
((asf >> 8 ) & 0xFF) as u8,
((asf >> 0 ) & 0xFF) as u8,
((pow >> 8 ) & 0xFF) as u8,
((pow >> 0 ) & 0xFF) as u8,
((ftw >> 24) & 0xFF) as u8,
((ftw >> 16) & 0xFF) as u8,
((ftw >> 8 ) & 0xFF) as u8,
((ftw >> 0 ) & 0xFF) as u8,
])
}
/*
* Getter function for single tone profiles
*/
pub fn get_single_tone_profile(&mut self, profile: u8) -> Result<(f64, f64, f64), Error<E>> {
assert!(profile < 8);
let mut profile_content: [u8; 8] = [0; 8];
self.read_register(0x0E + profile, &mut profile_content)?;
// Convert ftw, pow and asf to f_out, phase and amplitude factor
let ftw: u64 = (profile_content[4] as u64) << 24 |
(profile_content[5] as u64) << 16 |
(profile_content[6] as u64) << 8 |
(profile_content[7] as u64);
let f_out: f64 = ((ftw as f64)/(((1_u64) << 32) as f64))*self.f_sys_clk;
let pow: u64 = (profile_content[2] as u64) << 8 |
(profile_content[3] as u64);
let phase: f64 = ((pow as f64)/(((1_u64) << 16) as f64))*360.0;
let asf: u64 = ((profile_content[0] & 0x3F) as u64) << 8 |
(profile_content[1] as u64);
let amplitude: f64 = (asf as f64)/(((1_u64) << 14) as f64);
Ok((f_out, phase, amplitude))
}
/*
* Set frequency of a single tone profile
* Frequency: Must be non-negative
* Keep other field unchanged in the register
*/
pub fn set_single_tone_profile_frequency(&mut self, profile: u8, f_out: f64) -> Result<(), Error<E>> {
// Setup configuration registers before writing single tone register
self.enable_single_tone_configuration()?;
let ftw = self.frequency_to_ftw(f_out);
// Read existing amplitude/phase data
let mut register: [u8; 8] = [0; 8];
self.read_register(0x0E + profile, &mut register)?;
// Overwrite FTW
register[4] = ((ftw >> 24) & 0xFF) as u8;
register[5] = ((ftw >> 16) & 0xFF) as u8;
register[6] = ((ftw >> 8) & 0xFF) as u8;
register[7] = ((ftw >> 0) & 0xFF) as u8;
// Update FTW by writing back the register
self.write_register(0x0E + profile, &mut register)
}
/*
* Set phase offset of a single tone profile
* Phase: Expressed in positive degree, i.e. [0.0, 360.0)
* Keep other field unchanged in the register
*/
pub fn set_single_tone_profile_phase(&mut self, profile: u8, phase_offset: f64) -> Result<(), Error<E>> {
// Setup configuration registers before writing single tone register
self.enable_single_tone_configuration()?;
let pow = self.degree_to_pow(phase_offset);
// Read existing amplitude/frequency data
let mut register: [u8; 8] = [0; 8];
self.read_register(0x0E + profile, &mut register)?;
// Overwrite POW
register[2] = ((pow >> 8) & 0xFF) as u8;
register[3] = ((pow >> 0) & 0xFF) as u8;
// Update POW by writing back the register
self.write_register(0x0E + profile, &mut register)
}
/*
* Set amplitude offset of a single tone profile
* Amplitude: In a scale from 0 to 1, taking float
* Keep other field unchanged in the register
*/
pub fn set_single_tone_profile_amplitude(&mut self, profile: u8, amp_scale_factor: f64) -> Result<(), Error<E>> {
// Setup configuration registers before writing single tone register
self.enable_single_tone_configuration()?;
// Calculate amplitude_scale_factor (ASF)
let asf = self.amplitude_to_asf(amp_scale_factor);
// Read existing frequency/phase data
let mut register: [u8; 8] = [0; 8];
self.read_register(0x0E + profile, &mut register)?;
// Overwrite POW
register[0] = ((asf >> 8) & 0xFF) as u8;
register[1] = ((asf >> 0) & 0xFF) as u8;
// Update POW by writing back the register
self.write_register(0x0E + profile, &mut register)
}
// Helper function to switch into single tone mode
// Need to setup configuration registers before writing single tone register
fn enable_single_tone_configuration(&mut self) -> Result<(), Error<E>> {
self.set_configurations(&mut [
(DDSCFRMask::RAM_ENABLE, 0),
(DDSCFRMask::DIGITAL_RAMP_ENABLE, 0),
(DDSCFRMask::OSK_ENABLE, 0),
(DDSCFRMask::PARALLEL_DATA_PORT_ENABLE, 0),
])?;
self.set_configurations(&mut [
(DDSCFRMask::EN_AMP_SCALE_SINGLE_TONE_PRO, 1),
])
}
// Helper function to configure the default frequency in the FTW register (0x07)
pub fn set_default_ftw(&mut self, frequency: f64) -> Result<(), Error<E>> {
let mut ftw: [u8; 4] = self.frequency_to_ftw(frequency).to_be_bytes();
self.write_register(0x07, &mut ftw)
}
// Helper function to configure the default amplitude in the ASF register (0x09)
pub fn set_default_asf(&mut self, amplitude: f64) -> Result<(), Error<E>> {
let shifted_asf: [u8; 2] = (self.amplitude_to_asf(amplitude) << 2).to_be_bytes();
let mut asf_register: [u8; 4] = [0; 4];
self.read_register(0x09, &mut asf_register)?;
// Override original ASF
asf_register[2] = shifted_asf[0];
asf_register[3] = (shifted_asf[1] & 0xFC) | (asf_register[3] & 0x03);
self.write_register(0x09, &mut asf_register)
}
pub fn get_default_ftw(&mut self) -> Result<f64, Error<E>> {
let mut ftw_bytes: [u8; 4] = [0; 4];
self.read_register(0x07, &mut ftw_bytes)?;
let ftw: u64 = (ftw_bytes[0] as u64) << 24 |
(ftw_bytes[1] as u64) << 16 |
(ftw_bytes[2] as u64) << 8 |
(ftw_bytes[3] as u64);
Ok(((ftw as f64)/(((1_u64) << 32) as f64))*self.f_sys_clk)
}
pub fn get_default_asf(&mut self) -> Result<f64, Error<E>> {
let mut asf_register: [u8; 4] = [0; 4];
self.read_register(0x09, &mut asf_register)?;
let asf: u64 = ((asf_register[2] as u64) << 6) |
((asf_register[3] as u64) >> 2);
Ok((asf as f64)/(((1_u64) << 14) as f64))
}
// Helper function to switch into RAM mode
// Need to setup configuration registers before writing into RAM profile register
fn enable_ram_configuration(&mut self, ram_dst: RAMDestination) -> Result<(), Error<E>> {
self.set_configurations(&mut [
(DDSCFRMask::RAM_ENABLE, 1),
(DDSCFRMask::RAM_PLAYBACK_DST, ram_dst as u32),
])
}
// Helper function to switch out of RAM mode
// Need to setup configuration registers before writing into RAM profile register
fn disable_ram_configuration(&mut self) -> Result<(), Error<E>> {
self.set_configurations(&mut [
(DDSCFRMask::RAM_ENABLE, 0),
])
}
// Setup a RAM profile
pub fn set_up_ram_profile(&mut self, profile: u8, start_addr: u16,
end_addr: u16, no_dwell_high: bool, zero_crossing: bool,
op_mode: RAMOperationMode, ramp_rate: u16
)-> Result<(), Error<E>>
{
assert!(profile <= 7);
assert!(end_addr >= start_addr);
assert!(end_addr < 1024);
self.enable_ram_configuration(self.ram_dest)?;
self.write_register(0x0E + profile, &mut [
0x00,
((ramp_rate >> 8) & 0xFF).try_into().unwrap(),
((ramp_rate >> 0) & 0xFF).try_into().unwrap(),
((end_addr >> 2) & 0xFF).try_into().unwrap(),
((end_addr & 0x3) << 6).try_into().unwrap(),
((start_addr >> 2) & 0xFF).try_into().unwrap(),
((start_addr & 0x3) << 6).try_into().unwrap(),
((no_dwell_high as u8) << 5) | ((zero_crossing as u8) << 3) | (op_mode as u8)
])
}
pub fn get_ram_profile(&mut self, profile: u8) -> Result<(u16, u16, u16, u8), Error<E>> {
assert!(profile <= 7);
let mut buffer: [u8; 8] = [0; 8];
self.read_register(0x0E + profile, &mut buffer)?;
let start = u16::from_be_bytes([buffer[5], buffer[6]]) >> 6;
let end = u16::from_be_bytes([buffer[3], buffer[4]]) >> 6;
let stride = u16::from_be_bytes([buffer[1], buffer[2]]);
let op_mode = buffer[7] & 0x07;
Ok((start, end, stride, op_mode))
}
pub fn ram_mode_enabled(&mut self) -> Result<bool, Error<E>> {
let mut ram_query = [(DDSCFRMask::RAM_ENABLE, 0)];
self.get_configurations(&mut ram_query)?;
Ok(ram_query[0].1 != 0)
}
// Calculate ftw (frequency tuning word)
pub fn frequency_to_ftw(&mut self, f_out: f64) -> u32 {
let f_res: u64 = 1 << 32;
((f_res as f64) * f_out / self.f_sys_clk) as u32
}
// Calculate pow (Phase Offset Word)
fn degree_to_pow(&mut self, phase_offset: f64) -> u16 {
// Calculate phase offset word (POW)
let phase_res: u64 = 1 << 16;
((phase_res as f64) * phase_offset / 360.0) as u16
}
// Calculate asf (Amplitude Scale Factor)
fn amplitude_to_asf(&mut self, amplitude: f64) -> u16 {
let amp_res: u64 = 0x3FFF;
((amp_res as f64) * amplitude) as u16
}
// Write RAM bytes into DDS channel
// Assume profile 7 is selected by the CPLD in prior
pub unsafe fn commit_ram_buffer(&mut self, start_addr: u16, ram_dest: RAMDestination) -> Result<(), Error<E>> {
let ram_size = ((RAM_VEC.len() - 1) as u16)/4;
if RAM_VEC.len() == 0 || RAM_VEC[0] != 0x16 ||
(start_addr + ram_size) > 1024 || start_addr >= 1024 {
return Err(Error::DDSRAMError)
}
let end_addr: [u8; 2] = ((ram_size + start_addr - 1) << 6).to_be_bytes();
// Use profile 7 to setup a temperory RAM profile
self.enable_ram_configuration(ram_dest.clone())?;
self.write_register(0x15, &mut [
0x00,
0x00, 0x01,
end_addr[0], end_addr[1],
((start_addr >> 2) & 0xFF).try_into().unwrap(),
((start_addr & 0x3) << 6).try_into().unwrap(),
0x00
])?;
self.disable_ram_configuration()?;
log::info!("RAM buffer: {:?}", RAM_VEC);
self.spi.transfer(&mut RAM_VEC)
.map(|_| ())
.map_err(Error::SPI)?;
RAM_VEC.clear();
self.ram_dest = ram_dest;
self.enable_ram_configuration(ram_dest)
}
/*
* Test method for DDS.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
// Test configuration register by getting SDIO_IN_ONLY and LSB_FIRST.
let mut error_count = 0;
let mut config_checks = [
(DDSCFRMask::SDIO_IN_ONLY, 1),
(DDSCFRMask::LSB_FIRST, 0)
];
self.get_configurations(&mut config_checks)?;
if config_checks[0].1 == 0 {
error_count += 1;
}
if config_checks[1].1 == 1 {
error_count += 1;
}
Ok(error_count)
}
// Setter function for f_sys_clk
// Warning: This does not setup the chip to generate this actual f_sys_clk
// pub(crate) fn set_f_sys_clk(&mut self, f_sys_clk: f64) {
// self.f_sys_clk = f_sys_clk;
// }
// Getter function for f_sys_clk
pub fn get_f_sys_clk(&mut self) -> f64 {
self.f_sys_clk
}
// Acquire real f_sys_clk
pub fn get_sys_clk_frequency(&mut self) -> Result<f64, Error<E>> {
// Calculate the new system clock frequency, examine the clock tree
let mut configuration_queries = [
// Acquire PLL status
(DDSCFRMask::PLL_ENABLE, 0),
// Acquire N-divider, to adjust VCO if necessary
(DDSCFRMask::N, 0),
// Acquire REF_CLK divider bypass
(DDSCFRMask::REFCLK_IN_DIV_BYPASS, 0)
];
self.get_configurations(&mut configuration_queries)?;
if configuration_queries[0].1 == 1 {
// Recalculate sys_clk
let divider :f64 = configuration_queries[1].1.into();
Ok(self.f_ref_clk * divider)
}
else if configuration_queries[2].1 == 0 {
Ok(self.f_ref_clk / 2.0)
}
else {
Ok(self.f_ref_clk)
}
}
}
// Strong check for bytes passed to a register
macro_rules! impl_register_io {
($($reg_addr: expr, $reg_byte_size: expr),+) => {
impl<SPI, E> DDS<SPI>
where
SPI: Transfer<u8, Error = E>
{
pub fn write_register(&mut self, addr: u8, bytes: &mut[u8]) -> Result<(), Error<E>> {
match addr {
$(
$reg_addr => {
assert_eq!(bytes.len(), $reg_byte_size);
let mut arr: [u8; $reg_byte_size + 1] = [0; ($reg_byte_size + 1)];
arr[0] = addr | WRITE_MASK;
for i in 0..$reg_byte_size {
arr[i+1] = bytes[i];
}
self.spi.transfer(&mut arr)
.map(|_| ())
.map_err(Error::SPI)?;
debug!("Write register: {:X}, Bytes: {:X?}", addr, bytes);
Ok(())
},
)*
_ => panic!("Bad address for DDS writing.")
}
}
pub fn read_register<'w>(&mut self, addr: u8, bytes: &'w mut[u8]) -> Result<&'w [u8], Error<E>> {
match addr {
$(
$reg_addr => {
assert_eq!(bytes.len(), $reg_byte_size);
let mut arr: [u8; $reg_byte_size + 1] = [0; ($reg_byte_size + 1)];
arr[0] = addr | READ_MASK;
match self.spi.transfer(&mut arr).map_err(Error::SPI) {
Ok(ret) => {
assert_eq!(ret.len(), $reg_byte_size + 1);
for i in 0..$reg_byte_size {
bytes[i] = ret[i+1];
}
debug!("Read register: {:X}, Bytes: {:X?}", addr, bytes);
Ok(bytes)
},
Err(e) => Err(e),
}
},
)*
_ => panic!("Bad address for DDS reading.")
}
}
}
}
}
impl_register_io!(
0x00, 4,
0x01, 4,
0x02, 4,
0x03, 4,
0x04, 4,
0x07, 4,
0x08, 2,
0x09, 4,
0x0A, 4,
0x0B, 8,
0x0C, 8,
0x0D, 4,
0x0E, 8,
0x0F, 8,
0x10, 8,
0x11, 8,
0x12, 8,
0x13, 8,
0x14, 8,
0x15, 8
);
// Append bytes to the RAM buffer
pub unsafe fn append_ram_byte(data: &[u8]) {
assert!(data.len() <= 4096);
// Add RAM address if needed
if RAM_VEC.len() == 0 {
RAM_VEC.push(0x16).unwrap();
} else if RAM_VEC[0] != 0x16 || (data.len() + RAM_VEC.len()) >= RAM_VEC.capacity() {
RAM_VEC.clear();
RAM_VEC.push(0x16).unwrap();
}
RAM_VEC.extend_from_slice(data).unwrap();
log::info!("RAM buffer: {:?}", RAM_VEC);
}