forked from M-Labs/nac3
604 lines
27 KiB
Rust
604 lines
27 KiB
Rust
use std::borrow::{Borrow, BorrowMut};
|
|
use std::collections::HashSet;
|
|
use std::{collections::HashMap, sync::Arc};
|
|
|
|
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
|
|
use crate::symbol_resolver::SymbolResolver;
|
|
use crate::typecheck::typedef::{FunSignature, FuncArg};
|
|
use parking_lot::{Mutex, RwLock};
|
|
use rustpython_parser::ast::{self, Stmt};
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
|
|
pub struct DefinitionId(pub usize);
|
|
|
|
pub enum TopLevelDef {
|
|
Class {
|
|
// object ID used for TypeEnum
|
|
object_id: DefinitionId,
|
|
// type variables bounded to the class.
|
|
type_vars: Vec<Type>,
|
|
// class fields
|
|
fields: Vec<(String, Type)>,
|
|
// class methods, pointing to the corresponding function definition.
|
|
methods: Vec<(String, Type, DefinitionId)>,
|
|
// ancestor classes, including itself.
|
|
ancestors: Vec<DefinitionId>,
|
|
// symbol resolver of the module defined the class, none if it is built-in type
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Function {
|
|
// prefix for symbol, should be unique globally, and not ending with numbers
|
|
name: String,
|
|
// function signature.
|
|
signature: Type,
|
|
/// Function instance to symbol mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class.
|
|
/// Value: function symbol name.
|
|
instance_to_symbol: HashMap<String, String>,
|
|
/// Function instances to annotated AST mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class. Excluding rigid type
|
|
/// variables.
|
|
/// Value: AST annotated with types together with a unification table index. Could contain
|
|
/// rigid type variables that would be substituted when the function is instantiated.
|
|
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
|
|
// symbol resolver of the module defined the class
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Initializer {
|
|
class_id: DefinitionId,
|
|
},
|
|
}
|
|
|
|
pub struct TopLevelContext {
|
|
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
|
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
|
|
}
|
|
|
|
pub struct TopLevelComposer {
|
|
// list of top level definitions, same as top level context
|
|
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
|
// list of top level Type, the index is same as the field `definition_list`
|
|
pub ty_list: RwLock<Vec<Type>>,
|
|
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
|
|
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
|
|
// start as a primitive unifier, will add more top_level defs inside
|
|
pub unifier: RwLock<Unifier>,
|
|
// primitive store
|
|
pub primitives: PrimitiveStore,
|
|
// mangled class method name to def_id
|
|
pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
|
|
}
|
|
|
|
impl TopLevelComposer {
|
|
pub fn to_top_level_context(&self) -> TopLevelContext {
|
|
TopLevelContext {
|
|
definitions: self.definition_list.clone(),
|
|
// FIXME: all the big unifier or?
|
|
unifiers: Default::default(),
|
|
}
|
|
}
|
|
|
|
fn name_mangling(mut class_name: String, method_name: &str) -> String {
|
|
class_name.push_str(method_name);
|
|
class_name
|
|
}
|
|
|
|
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
|
|
let mut unifier = Unifier::new();
|
|
let int32 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(0),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let int64 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(1),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let float = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(2),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let bool = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(3),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let none = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(4),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let primitives = PrimitiveStore { int32, int64, float, bool, none };
|
|
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
|
|
(primitives, unifier)
|
|
}
|
|
|
|
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
|
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
|
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
|
|
let primitives = Self::make_primitives();
|
|
|
|
let top_level_def_list = vec![
|
|
RwLock::new(Self::make_top_level_class_def(0, None)),
|
|
RwLock::new(Self::make_top_level_class_def(1, None)),
|
|
RwLock::new(Self::make_top_level_class_def(2, None)),
|
|
RwLock::new(Self::make_top_level_class_def(3, None)),
|
|
RwLock::new(Self::make_top_level_class_def(4, None)),
|
|
];
|
|
|
|
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
|
|
|
let ty_list: Vec<Type> = vec![
|
|
primitives.0.int32,
|
|
primitives.0.int64,
|
|
primitives.0.float,
|
|
primitives.0.bool,
|
|
primitives.0.none,
|
|
];
|
|
|
|
let composer = TopLevelComposer {
|
|
definition_list: RwLock::new(top_level_def_list).into(),
|
|
ty_list: RwLock::new(ty_list),
|
|
ast_list: RwLock::new(ast_list),
|
|
primitives: primitives.0,
|
|
unifier: primitives.1.into(),
|
|
class_method_to_def_id: Default::default(),
|
|
};
|
|
(
|
|
vec![
|
|
("int32".into(), DefinitionId(0), composer.primitives.int32),
|
|
("int64".into(), DefinitionId(1), composer.primitives.int64),
|
|
("float".into(), DefinitionId(2), composer.primitives.float),
|
|
("bool".into(), DefinitionId(3), composer.primitives.bool),
|
|
("none".into(), DefinitionId(4), composer.primitives.none),
|
|
],
|
|
composer,
|
|
)
|
|
}
|
|
|
|
/// already include the definition_id of itself inside the ancestors vector
|
|
pub fn make_top_level_class_def(
|
|
index: usize,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Class {
|
|
object_id: DefinitionId(index),
|
|
type_vars: Default::default(),
|
|
fields: Default::default(),
|
|
methods: Default::default(),
|
|
ancestors: vec![DefinitionId(index)],
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
pub fn make_top_level_function_def(
|
|
name: String,
|
|
ty: Type,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Function {
|
|
name,
|
|
signature: ty,
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
pub fn register_top_level(
|
|
&mut self,
|
|
ast: ast::Stmt<()>,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> Result<(String, DefinitionId, Type), String> {
|
|
// get write access to the lists
|
|
let (mut def_list, mut ty_list, mut ast_list) =
|
|
(self.definition_list.write(), self.ty_list.write(), self.ast_list.write());
|
|
|
|
// will be deleted after tested
|
|
assert_eq!(ty_list.len(), def_list.len());
|
|
assert_eq!(def_list.len(), ast_list.len());
|
|
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef { name, body, .. } => {
|
|
let class_name = name.to_string();
|
|
let class_def_id = def_list.len();
|
|
|
|
// add the class to the unifier
|
|
let ty = self.unifier.write().add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(class_def_id),
|
|
fields: Default::default(),
|
|
params: Default::default(),
|
|
});
|
|
|
|
// add the class to the definition lists
|
|
def_list
|
|
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
|
|
ty_list.push(ty);
|
|
// since later when registering class method, ast will still be used,
|
|
// here push None temporarly, later will push the ast
|
|
ast_list.push(None);
|
|
|
|
// parse class def body and register class methods into the def list.
|
|
// module's symbol resolver would not know the name of the class methods,
|
|
// thus cannot return their definition_id? so we have to manage it ourselves
|
|
// by using the field `class_method_to_def_id`
|
|
for b in body {
|
|
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
|
|
let fun_name = Self::name_mangling(class_name.clone(), name);
|
|
let def_id = def_list.len();
|
|
|
|
// add to unifier
|
|
let ty = self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: Default::default(),
|
|
ret: self.primitives.none,
|
|
vars: Default::default(),
|
|
}));
|
|
|
|
// add to the definition list
|
|
def_list.push(
|
|
Self::make_top_level_function_def(
|
|
fun_name.clone(),
|
|
ty,
|
|
resolver.clone(),
|
|
)
|
|
.into(),
|
|
);
|
|
ty_list.push(ty);
|
|
// the ast of class method is in the class, push None in to the list here
|
|
ast_list.push(None);
|
|
|
|
// class method, do not let the symbol manager manage it, use our own map
|
|
self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
|
|
|
|
// if it is the contructor, special handling is needed. In the above
|
|
// handling, we still add __init__ function to the class method
|
|
if name == "__init__" {
|
|
// NOTE: how can this later be fetched?
|
|
def_list.push(
|
|
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
|
.into(),
|
|
);
|
|
// arbitarily push one to make sure the index is correct
|
|
ty_list.push(self.primitives.none);
|
|
ast_list.push(None);
|
|
}
|
|
}
|
|
}
|
|
|
|
// move the ast to the entry of the class in the ast_list
|
|
ast_list[class_def_id] = Some(ast);
|
|
|
|
// return
|
|
Ok((class_name, DefinitionId(class_def_id), ty))
|
|
}
|
|
|
|
ast::StmtKind::FunctionDef { name, .. } => {
|
|
let fun_name = name.to_string();
|
|
|
|
// add to the unifier
|
|
let ty = self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: Default::default(),
|
|
ret: self.primitives.none,
|
|
vars: Default::default(),
|
|
}));
|
|
|
|
// add to the definition list
|
|
def_list.push(
|
|
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
|
|
.into(),
|
|
);
|
|
ty_list.push(ty);
|
|
ast_list.push(Some(ast));
|
|
|
|
// return
|
|
Ok((fun_name, DefinitionId(def_list.len() - 1), ty))
|
|
}
|
|
|
|
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
|
}
|
|
}
|
|
|
|
pub fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
|
let mut def_list = self.definition_list.write();
|
|
let ty_list = self.ty_list.read();
|
|
let ast_list = self.ast_list.read();
|
|
let mut unifier = self.unifier.write();
|
|
|
|
for (def, ty, ast) in def_list
|
|
.iter_mut()
|
|
.zip(ty_list.iter())
|
|
.zip(ast_list.iter())
|
|
.map(|((x, y), z)| (x, y, z))
|
|
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
|
|
{
|
|
unimplemented!()
|
|
}
|
|
unimplemented!()
|
|
}
|
|
|
|
/// this should be called after all top level classes are registered, and
|
|
/// will actually fill in those fields of the previous dummy one
|
|
pub fn analyze_top_level(&mut self) -> Result<(), String> {
|
|
let mut def_list = self.definition_list.write();
|
|
let ty_list = self.ty_list.read();
|
|
let ast_list = self.ast_list.read();
|
|
let mut unifier = self.unifier.write();
|
|
|
|
for (def, ty, ast) in def_list
|
|
.iter_mut()
|
|
.zip(ty_list.iter())
|
|
.zip(ast_list.iter())
|
|
.map(|((x, y), z)| (x, y, z))
|
|
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
|
|
{
|
|
// only analyze those entries with ast, and class_method(whose ast in class def)
|
|
match ast {
|
|
Some(ast::Located{node: ast::StmtKind::ClassDef {
|
|
bases,
|
|
body,
|
|
name: class_name,
|
|
..
|
|
}, .. }) => {
|
|
// get the mutable reference of the entry in the
|
|
// definition list, get the `TopLevelDef`
|
|
let (
|
|
def_ancestors,
|
|
def_fields,
|
|
def_methods,
|
|
def_type_vars,
|
|
resolver,
|
|
) = if let TopLevelDef::Class {
|
|
object_id: _,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
type_vars,
|
|
resolver: Some(resolver)
|
|
} = def.get_mut() {
|
|
(ancestors, fields, methods, type_vars, resolver.lock())
|
|
} else { unreachable!() };
|
|
|
|
// try to get mutable reference of the entry in the
|
|
// unification table, get the `TypeEnum`
|
|
let type_enum = unifier.get_ty(*ty);
|
|
let (
|
|
enum_params,
|
|
enum_fields
|
|
) = if let TypeEnum::TObj {
|
|
params,
|
|
fields,
|
|
..
|
|
} = type_enum.borrow() {
|
|
(params, fields)
|
|
} else { unreachable!() };
|
|
|
|
// ancestors and typevars associate with the class are analyzed by looking
|
|
// into the `bases` ast node
|
|
// `Generic` should only occur once, use this flag
|
|
let mut generic_occured = false;
|
|
// TODO: haven't check this yet
|
|
let mut occured_type_var: HashSet<Type> = Default::default();
|
|
// TODO: haven't check this yet
|
|
let mut occured_base: HashSet<DefinitionId> = Default::default();
|
|
for b in bases {
|
|
match &b.node {
|
|
// analyze typevars bounded to the class,
|
|
// only support things like `class A(Generic[T, V])`,
|
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
|
// i.e. only simple names are allowed in the subscript
|
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
|
ast::ExprKind::Subscript {value, slice, ..} if {
|
|
// can only be `Generic[...]` and this can only appear once
|
|
if let ast::ExprKind::Name { id, .. } = &value.node {
|
|
if id == "Generic" {
|
|
if !generic_occured {
|
|
generic_occured = true;
|
|
true
|
|
} else {
|
|
return Err("Only single Generic[...] or Protocol[...] can be in bases".into())
|
|
}
|
|
} else { false }
|
|
} else { false }
|
|
} => {
|
|
match &slice.node {
|
|
// `class Foo(Generic[T, V, P]):` multiple element inside the subscript
|
|
ast::ExprKind::Tuple {elts, ..} => {
|
|
let tys = elts
|
|
.iter()
|
|
// here parse_type_annotation should be fine,
|
|
// since we only expect type vars, which is not relevant
|
|
// to the top-level parsing
|
|
.map(|x| resolver.parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
x))
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
let ty_var_ids = tys
|
|
.iter()
|
|
.map(|t| {
|
|
let tmp = unifier.get_ty(*t);
|
|
// make sure it is type var
|
|
if let TypeEnum::TVar {id, ..} = tmp.as_ref() {
|
|
Ok(*id)
|
|
} else {
|
|
Err("Expect type variabls here".to_string())
|
|
}
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// write to TypeEnum
|
|
for (id, ty) in ty_var_ids.iter().zip(tys.iter()) {
|
|
enum_params.borrow_mut().insert(*id, *ty);
|
|
}
|
|
|
|
// write to TopLevelDef
|
|
for ty in tys{
|
|
def_type_vars.push(ty)
|
|
}
|
|
},
|
|
|
|
// `class Foo(Generic[T]):`, only single element
|
|
_ => {
|
|
let ty = resolver.parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
&slice
|
|
)?;
|
|
|
|
let ty_var_id = if let TypeEnum::TVar { id, .. } = unifier
|
|
.get_ty(ty)
|
|
.as_ref() { *id } else {
|
|
return Err("Expect type variabls here".to_string())
|
|
};
|
|
|
|
// write to TypeEnum
|
|
enum_params.borrow_mut().insert(ty_var_id, ty);
|
|
|
|
// write to TopLevelDef
|
|
def_type_vars.push(ty);
|
|
},
|
|
};
|
|
}
|
|
|
|
// analyze base classes, which is possible in
|
|
// other cases, we parse for the base class
|
|
// FIXME: calling parse_type_annotation here might cause some problem
|
|
// when the base class is parametrized `BaseClass[int, bool]`, since the
|
|
// analysis of type var of some class is not done yet.
|
|
// we can first only look at the name, and later check the
|
|
// parameter when others are done
|
|
// Or
|
|
// first get all the class' type var analyzed, and then
|
|
// analyze the base class
|
|
_ => {
|
|
let ty = resolver.parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
b
|
|
)?;
|
|
|
|
let obj_def_id = if let TypeEnum::TObj { obj_id, .. } = unifier
|
|
.get_ty(ty)
|
|
.as_ref() {
|
|
*obj_id
|
|
} else {
|
|
return Err("Expect concrete classes/types here".into())
|
|
};
|
|
|
|
// write to TopLevelDef
|
|
def_ancestors.push(obj_def_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// class method and field are analyzed by
|
|
// looking into the class body ast node
|
|
// NOTE: should consider parents' method and fields(check re-def and add),
|
|
// but we do it later we go over these again after we finish analyze the
|
|
// fields/methods as declared in the ast
|
|
// method with same name should not occur twice, so use this
|
|
let defined_method: HashSet<String> = Default::default();
|
|
for stmt in body {
|
|
if let ast::StmtKind::FunctionDef {
|
|
name: func_name,
|
|
args,
|
|
body,
|
|
returns,
|
|
..
|
|
} = &stmt.node {
|
|
// build type enum, need FunSignature {args, vars, ret}
|
|
// args. Now only args with no default TODO: other kinds of args
|
|
let func_args = args.args
|
|
.iter()
|
|
.map(|x| -> Result<FuncArg, String> {
|
|
Ok(FuncArg {
|
|
name: x.node.arg.clone(),
|
|
ty: resolver.parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
x
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| "type annotations required for function parameters".to_string())?
|
|
)?,
|
|
default_value: None
|
|
})
|
|
})
|
|
.collect::<Result<Vec<FuncArg>, _>>()?;
|
|
// vars. find TypeVars used in the argument type annotation
|
|
let func_vars = func_args
|
|
.iter()
|
|
.filter_map(|FuncArg { ty, .. } | {
|
|
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
|
|
Some((*id, *ty))
|
|
} else { None }
|
|
})
|
|
.collect::<HashMap<u32, Type>>();
|
|
// return type
|
|
let func_ret = resolver
|
|
.parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
returns
|
|
.as_ref()
|
|
.ok_or_else(|| "return type annotations required here".to_string())?
|
|
.as_ref(),
|
|
)?;
|
|
// build the TypeEnum
|
|
let func_type_sig = FunSignature {
|
|
args: func_args,
|
|
vars: func_vars,
|
|
ret: func_ret
|
|
};
|
|
|
|
// write to the TypeEnum and Def_list (by replacing the ty with the new Type created above)
|
|
let func_name_mangled = Self::name_mangling(class_name.clone(), func_name);
|
|
let def_id = self.class_method_to_def_id.read()[&func_name_mangled];
|
|
unimplemented!();
|
|
|
|
|
|
if func_name == "__init__" {
|
|
// special for constructor, need to look into the fields
|
|
// TODO: look into the function body and see
|
|
}
|
|
} else {
|
|
// do nothing. we do not care about things like this?
|
|
// class A:
|
|
// a = 3
|
|
// b = [2, 3]
|
|
}
|
|
}
|
|
},
|
|
|
|
// top level function definition
|
|
Some(ast::Located{node: ast::StmtKind::FunctionDef {
|
|
name,
|
|
args,
|
|
body,
|
|
returns,
|
|
..
|
|
}, .. }) => {
|
|
// TODO:
|
|
unimplemented!()
|
|
}
|
|
|
|
// only expect class def and function def ast
|
|
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|