use crate::{ codegen::classes::{ListType, NDArrayType, ProxyType, RangeType}, symbol_resolver::{StaticValue, SymbolResolver}, toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef}, typecheck::{ type_inferencer::{CodeLocation, PrimitiveStore}, typedef::{CallId, FuncArg, Type, TypeEnum, Unifier}, }, }; use crossbeam::channel::{unbounded, Receiver, Sender}; use inkwell::{ attributes::{Attribute, AttributeLoc}, basic_block::BasicBlock, builder::Builder, context::Context, debug_info::{ AsDIScope, DICompileUnit, DIFlagsConstants, DIScope, DISubprogram, DebugInfoBuilder, }, module::Module, passes::PassBuilderOptions, targets::{CodeModel, RelocMode, Target, TargetMachine, TargetTriple}, types::{AnyType, BasicType, BasicTypeEnum}, values::{BasicValueEnum, FunctionValue, IntValue, PhiValue, PointerValue}, AddressSpace, IntPredicate, OptimizationLevel, }; use itertools::Itertools; use nac3parser::ast::{Location, Stmt, StrRef}; use parking_lot::{Condvar, Mutex}; use std::collections::{HashMap, HashSet}; use std::sync::{ atomic::{AtomicBool, Ordering}, Arc, }; use std::thread; pub mod builtin_fns; pub mod classes; pub mod concrete_type; pub mod expr; pub mod extern_fns; mod generator; pub mod irrt; pub mod llvm_intrinsics; pub mod numpy; pub mod stmt; #[cfg(test)] mod test; use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore}; pub use generator::{CodeGenerator, DefaultCodeGenerator}; #[derive(Default)] pub struct StaticValueStore { pub lookup: HashMap, usize>, pub store: Vec>>, } pub type VarValue<'ctx> = (PointerValue<'ctx>, Option>, i64); /// Additional options for LLVM during codegen. #[derive(Clone, Debug, Eq, PartialEq)] pub struct CodeGenLLVMOptions { /// The optimization level to apply on the generated LLVM IR. pub opt_level: OptimizationLevel, /// Options related to the target machine. pub target: CodeGenTargetMachineOptions, } impl CodeGenLLVMOptions { /// Creates a [`TargetMachine`] using the target options specified by this struct. /// /// See [`Target::create_target_machine`]. #[must_use] pub fn create_target_machine(&self) -> Option { self.target.create_target_machine(self.opt_level) } } /// Additional options for code generation for the target machine. #[derive(Clone, Debug, Eq, PartialEq)] pub struct CodeGenTargetMachineOptions { /// The target machine triple. pub triple: String, /// The target machine CPU. pub cpu: String, /// Additional target machine features. pub features: String, /// Relocation mode for code generation. pub reloc_mode: RelocMode, /// Code model for code generation. pub code_model: CodeModel, } impl CodeGenTargetMachineOptions { /// Creates an instance of [`CodeGenTargetMachineOptions`] using the triple of the host machine. /// Other options are set to defaults. #[must_use] pub fn from_host_triple() -> CodeGenTargetMachineOptions { CodeGenTargetMachineOptions { triple: TargetMachine::get_default_triple().as_str().to_string_lossy().into_owned(), cpu: String::default(), features: String::default(), reloc_mode: RelocMode::Default, code_model: CodeModel::Default, } } /// Creates an instance of [`CodeGenTargetMachineOptions`] using the properties of the host /// machine. Other options are set to defaults. #[must_use] pub fn from_host() -> CodeGenTargetMachineOptions { CodeGenTargetMachineOptions { cpu: TargetMachine::get_host_cpu_name().to_string(), features: TargetMachine::get_host_cpu_features().to_string(), ..CodeGenTargetMachineOptions::from_host_triple() } } /// Creates a [`TargetMachine`] using the target options specified by this struct. /// /// See [`Target::create_target_machine`]. #[must_use] pub fn create_target_machine(&self, level: OptimizationLevel) -> Option { let triple = TargetTriple::create(self.triple.as_str()); let target = Target::from_triple(&triple).unwrap_or_else(|_| { panic!("could not create target from target triple {}", self.triple) }); target.create_target_machine( &triple, self.cpu.as_str(), self.features.as_str(), level, self.reloc_mode, self.code_model, ) } } pub struct CodeGenContext<'ctx, 'a> { /// The LLVM context associated with [this context][CodeGenContext]. pub ctx: &'ctx Context, /// The [Builder] instance for creating LLVM IR statements. pub builder: Builder<'ctx>, /// The [`DebugInfoBuilder`], [compilation unit information][DICompileUnit], and /// [scope information][DIScope] of this context. pub debug_info: (DebugInfoBuilder<'ctx>, DICompileUnit<'ctx>, DIScope<'ctx>), /// The module for which [this context][CodeGenContext] is generating into. pub module: Module<'ctx>, /// The [`TopLevelContext`] associated with [this context][CodeGenContext]. pub top_level: &'a TopLevelContext, pub unifier: Unifier, pub resolver: Arc, pub static_value_store: Arc>, /// A [`HashMap`] containing the mapping between the names of variables currently in-scope and /// its value information. pub var_assignment: HashMap>, pub type_cache: HashMap>, pub primitives: PrimitiveStore, pub calls: Arc>, pub registry: &'a WorkerRegistry, /// Cache for constant strings. pub const_strings: HashMap>, /// [`BasicBlock`] containing all `alloca` statements for the current function. pub init_bb: BasicBlock<'ctx>, pub exception_val: Option>, /// The header and exit basic blocks of a loop in this context. See /// for explanation of these terminology. pub loop_target: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>, /// The target [`BasicBlock`] to jump to when performing stack unwind. pub unwind_target: Option>, /// The target [`BasicBlock`] to jump to before returning from the function. /// /// If this field is [None] when generating a return from a function, `ret` with no argument can /// be emitted. pub return_target: Option>, /// The [`PointerValue`] containing the return value of the function. pub return_buffer: Option>, // outer catch clauses pub outer_catch_clauses: Option<(Vec>>, BasicBlock<'ctx>, PhiValue<'ctx>)>, /// Whether `sret` is needed for the first parameter of the function. /// /// See [`need_sret`]. pub need_sret: bool, /// The current source location. pub current_loc: Location, } impl<'ctx, 'a> CodeGenContext<'ctx, 'a> { /// Whether the [current basic block][Builder::get_insert_block] referenced by `builder` /// contains a [terminator statement][BasicBlock::get_terminator]. pub fn is_terminated(&self) -> bool { self.builder.get_insert_block().and_then(BasicBlock::get_terminator).is_some() } } type Fp = Box; pub struct WithCall { fp: Fp, } impl WithCall { #[must_use] pub fn new(fp: Fp) -> WithCall { WithCall { fp } } pub fn run(&self, m: &Module) { (self.fp)(m); } } pub struct WorkerRegistry { sender: Arc>>, receiver: Arc>>, /// Whether any thread in this registry has panicked. panicked: AtomicBool, /// The total number of tasks queued or completed in the registry. task_count: Mutex, /// The number of threads available for this registry. thread_count: usize, wait_condvar: Condvar, top_level_ctx: Arc, static_value_store: Arc>, /// LLVM-related options for code generation. pub llvm_options: CodeGenLLVMOptions, } impl WorkerRegistry { /// Creates workers for this registry. #[must_use] pub fn create_workers( generators: Vec>, top_level_ctx: Arc, llvm_options: &CodeGenLLVMOptions, f: &Arc, ) -> (Arc, Vec>) { let (sender, receiver) = unbounded(); let task_count = Mutex::new(0); let wait_condvar = Condvar::new(); // init: 0 to be empty let mut static_value_store = StaticValueStore::default(); static_value_store.lookup.insert(Vec::default(), 0); static_value_store.store.push(HashMap::default()); let registry = Arc::new(WorkerRegistry { sender: Arc::new(sender), receiver: Arc::new(receiver), thread_count: generators.len(), panicked: AtomicBool::new(false), static_value_store: Arc::new(Mutex::new(static_value_store)), task_count, wait_condvar, top_level_ctx, llvm_options: llvm_options.clone(), }); let mut handles = Vec::new(); for mut generator in generators { let registry = registry.clone(); let registry2 = registry.clone(); let f = f.clone(); let worker_thread_name = format!("codegen-worker-{worker_id}", worker_id = generator.get_name()); let handle = thread::Builder::new() .name(worker_thread_name) .spawn(move || { registry.worker_thread(generator.as_mut(), &f); }) .unwrap(); let handle = thread::spawn(move || { if let Err(e) = handle.join() { if let Some(e) = e.downcast_ref::<&'static str>() { eprintln!("Got an error: {e}"); } else { eprintln!("Got an unknown error: {e:?}"); } registry2.panicked.store(true, Ordering::SeqCst); registry2.wait_condvar.notify_all(); } }); handles.push(handle); } (registry, handles) } pub fn wait_tasks_complete(&self, handles: Vec>) { { let mut count = self.task_count.lock(); while *count != 0 { if self.panicked.load(Ordering::SeqCst) { break; } self.wait_condvar.wait(&mut count); } } for _ in 0..self.thread_count { self.sender.send(None).unwrap(); } { let mut count = self.task_count.lock(); while *count != self.thread_count { if self.panicked.load(Ordering::SeqCst) { break; } self.wait_condvar.wait(&mut count); } } for handle in handles { handle.join().unwrap(); } assert!(!self.panicked.load(Ordering::SeqCst), "tasks panicked"); } /// Adds a task to this [`WorkerRegistry`]. pub fn add_task(&self, task: CodeGenTask) { *self.task_count.lock() += 1; self.sender.send(Some(task)).unwrap(); } /// Function executed by worker thread for generating IR for each function. fn worker_thread(&self, generator: &mut G, f: &Arc) { let context = Context::create(); let mut builder = context.create_builder(); let mut module = context.create_module(generator.get_name()); let target_machine = self.llvm_options.create_target_machine().unwrap(); module.set_data_layout(&target_machine.get_target_data().get_data_layout()); module.set_triple(&target_machine.get_triple()); module.add_basic_value_flag( "Debug Info Version", inkwell::module::FlagBehavior::Warning, context.i32_type().const_int(3, false), ); module.add_basic_value_flag( "Dwarf Version", inkwell::module::FlagBehavior::Warning, context.i32_type().const_int(4, false), ); let mut errors = HashSet::new(); while let Some(task) = self.receiver.recv().unwrap() { match gen_func(&context, generator, self, builder, module, task) { Ok(result) => { builder = result.0; module = result.1; } Err((old_builder, e)) => { builder = old_builder; errors.insert(e); // create a new empty module just to continue codegen and collect errors module = context.create_module(&format!("{}_recover", generator.get_name())); let target_machine = self.llvm_options.create_target_machine().unwrap(); module.set_data_layout(&target_machine.get_target_data().get_data_layout()); module.set_triple(&target_machine.get_triple()); } } *self.task_count.lock() -= 1; self.wait_condvar.notify_all(); } assert!( errors.is_empty(), "Codegen error: {}", errors.into_iter().sorted().join("\n----------\n") ); let result = module.verify(); if let Err(err) = result { println!("{}", module.print_to_string().to_str().unwrap()); panic!("{}", err.to_string()) } let pass_options = PassBuilderOptions::create(); let target_machine = self .llvm_options .target .create_target_machine(self.llvm_options.opt_level) .unwrap_or_else(|| { panic!( "could not create target machine from properties {:?}", self.llvm_options.target ) }); let passes = format!("default", self.llvm_options.opt_level as u32); let result = module.run_passes(passes.as_str(), &target_machine, pass_options); if let Err(err) = result { panic!( "Failed to run optimization for module `{}`: {}", module.get_name().to_str().unwrap(), err.to_string() ); } f.run(&module); let mut lock = self.task_count.lock(); *lock += 1; self.wait_condvar.notify_all(); } } pub struct CodeGenTask { pub subst: Vec<(Type, ConcreteType)>, pub store: ConcreteTypeStore, pub symbol_name: String, pub signature: ConcreteType, pub body: Arc>>>, pub calls: Arc>, pub unifier_index: usize, pub resolver: Arc, pub id: usize, } /// Retrieves the [LLVM type][BasicTypeEnum] corresponding to the [Type]. /// /// This function is used to obtain the in-memory representation of `ty`, e.g. a `bool` variable /// would be represented by an `i8`. #[allow(clippy::too_many_arguments)] fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>( ctx: &'ctx Context, module: &Module<'ctx>, generator: &G, unifier: &mut Unifier, top_level: &TopLevelContext, type_cache: &mut HashMap>, ty: Type, ) -> BasicTypeEnum<'ctx> { use TypeEnum::*; // we assume the type cache should already contain primitive types, // and they should be passed by value instead of passing as pointer. type_cache.get(&unifier.get_representative(ty)).copied().unwrap_or_else(|| { let ty_enum = unifier.get_ty(ty); let result = match &*ty_enum { TObj { obj_id, fields, .. } => { // check to avoid treating non-class primitives as classes if PrimDef::contains_id(*obj_id) { return match &*unifier.get_ty_immutable(ty) { TObj { obj_id, params, .. } if *obj_id == PrimDef::Option.id() => { get_llvm_type( ctx, module, generator, unifier, top_level, type_cache, *params.iter().next().unwrap().1, ) .ptr_type(AddressSpace::default()) .into() } TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => { let element_type = get_llvm_type( ctx, module, generator, unifier, top_level, type_cache, *params.iter().next().unwrap().1, ); ListType::new(generator, ctx, element_type).as_base_type().into() } TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { let (dtype, _) = unpack_ndarray_var_tys(unifier, ty); let element_type = get_llvm_type( ctx, module, generator, unifier, top_level, type_cache, dtype, ); NDArrayType::new(generator, ctx, element_type).as_base_type().into() } _ => unreachable!( "LLVM type for primitive {} is missing", unifier.stringify(ty) ), }; } // a struct with fields in the order of declaration let top_level_defs = top_level.definitions.read(); let definition = top_level_defs.get(obj_id.0).unwrap(); let TopLevelDef::Class { fields: fields_list, .. } = &*definition.read() else { unreachable!() }; let name = unifier.stringify(ty); let ty = if let Some(t) = module.get_struct_type(&name) { t.ptr_type(AddressSpace::default()).into() } else { let struct_type = ctx.opaque_struct_type(&name); type_cache.insert( unifier.get_representative(ty), struct_type.ptr_type(AddressSpace::default()).into(), ); let fields = fields_list .iter() .map(|f| { get_llvm_type( ctx, module, generator, unifier, top_level, type_cache, fields[&f.0].0, ) }) .collect_vec(); struct_type.set_body(&fields, false); struct_type.ptr_type(AddressSpace::default()).into() }; return ty; } TTuple { ty, is_vararg_ctx } => { // a struct with fields in the order present in the tuple assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type"); let fields = ty .iter() .map(|ty| { get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty) }) .collect_vec(); ctx.struct_type(&fields, false).into() } TVirtual { .. } => unimplemented!(), _ => unreachable!("{}", ty_enum.get_type_name()), }; type_cache.insert(unifier.get_representative(ty), result); result }) } /// Retrieves the [LLVM type][`BasicTypeEnum`] corresponding to the [`Type`]. /// /// This function is used mainly to obtain the ABI representation of `ty`, e.g. a `bool` is /// would be represented by an `i1`. /// /// The difference between the in-memory representation (as returned by [`get_llvm_type`]) and the /// ABI representation is that the in-memory representation must be at least byte-sized and must /// be byte-aligned for the variable to be addressable in memory, whereas there is no such /// restriction for ABI representations. #[allow(clippy::too_many_arguments)] fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>( ctx: &'ctx Context, module: &Module<'ctx>, generator: &G, unifier: &mut Unifier, top_level: &TopLevelContext, type_cache: &mut HashMap>, primitives: &PrimitiveStore, ty: Type, ) -> BasicTypeEnum<'ctx> { // If the type is used in the definition of a function, return `i1` instead of `i8` for ABI // consistency. return if unifier.unioned(ty, primitives.bool) { ctx.bool_type().into() } else { get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty) }; } /// Whether `sret` is needed for a return value with type `ty`. /// /// When returning a large data structure (e.g. structures that do not fit in 1-2 native words of /// the target processor) by value, a synthetic parameter with a pointer type will be passed in the /// slot of the first parameter to act as the location of which the return value is passed into. /// /// See for more /// information. fn need_sret(ty: BasicTypeEnum) -> bool { fn need_sret_impl(ty: BasicTypeEnum, maybe_large: bool) -> bool { match ty { BasicTypeEnum::IntType(_) | BasicTypeEnum::PointerType(_) => false, BasicTypeEnum::FloatType(_) if maybe_large => false, BasicTypeEnum::StructType(ty) if maybe_large && ty.count_fields() <= 2 => { ty.get_field_types().iter().any(|ty| need_sret_impl(*ty, false)) } _ => true, } } need_sret_impl(ty, true) } /// Implementation for generating LLVM IR for a function. pub fn gen_func_impl< 'ctx, G: CodeGenerator, F: FnOnce(&mut G, &mut CodeGenContext) -> Result<(), String>, >( context: &'ctx Context, generator: &mut G, registry: &WorkerRegistry, builder: Builder<'ctx>, module: Module<'ctx>, task: CodeGenTask, codegen_function: F, ) -> Result<(Builder<'ctx>, Module<'ctx>, FunctionValue<'ctx>), (Builder<'ctx>, String)> { let top_level_ctx = registry.top_level_ctx.clone(); let static_value_store = registry.static_value_store.clone(); let (mut unifier, primitives) = { let (unifier, primitives) = &top_level_ctx.unifiers.read()[task.unifier_index]; (Unifier::from_shared_unifier(unifier), *primitives) }; unifier.put_primitive_store(&primitives); unifier.top_level = Some(top_level_ctx.clone()); let mut cache = HashMap::new(); for (a, b) in &task.subst { // this should be unification between variables and concrete types // and should not cause any problem... let b = task.store.to_unifier_type(&mut unifier, &primitives, *b, &mut cache); unifier .unify(*a, b) .or_else(|err| { if matches!(&*unifier.get_ty(*a), TypeEnum::TRigidVar { .. }) { unifier.replace_rigid_var(*a, b); Ok(()) } else { Err(err) } }) .unwrap(); } // rebuild primitive store with unique representatives let primitives = PrimitiveStore { int32: unifier.get_representative(primitives.int32), int64: unifier.get_representative(primitives.int64), uint32: unifier.get_representative(primitives.uint32), uint64: unifier.get_representative(primitives.uint64), float: unifier.get_representative(primitives.float), bool: unifier.get_representative(primitives.bool), none: unifier.get_representative(primitives.none), range: unifier.get_representative(primitives.range), str: unifier.get_representative(primitives.str), exception: unifier.get_representative(primitives.exception), option: unifier.get_representative(primitives.option), ..primitives }; let mut type_cache: HashMap<_, _> = [ (primitives.int32, context.i32_type().into()), (primitives.int64, context.i64_type().into()), (primitives.uint32, context.i32_type().into()), (primitives.uint64, context.i64_type().into()), (primitives.float, context.f64_type().into()), (primitives.bool, context.i8_type().into()), (primitives.str, { let name = "str"; match module.get_struct_type(name) { None => { let str_type = context.opaque_struct_type("str"); let fields = [ context.i8_type().ptr_type(AddressSpace::default()).into(), generator.get_size_type(context).into(), ]; str_type.set_body(&fields, false); str_type.into() } Some(t) => t.as_basic_type_enum(), } }), (primitives.range, RangeType::new(context).as_base_type().into()), (primitives.exception, { let name = "Exception"; if let Some(t) = module.get_struct_type(name) { t.ptr_type(AddressSpace::default()).as_basic_type_enum() } else { let exception = context.opaque_struct_type("Exception"); let int32 = context.i32_type().into(); let int64 = context.i64_type().into(); let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum(); let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64]; exception.set_body(&fields, false); exception.ptr_type(AddressSpace::default()).as_basic_type_enum() } }), ] .iter() .copied() .collect(); // NOTE: special handling of option cannot use this type cache since it contains type var, // handled inside get_llvm_type instead let ConcreteTypeEnum::TFunc { args, ret, .. } = task.store.get(task.signature) else { unreachable!() }; let (args, ret) = ( args.iter() .map(|arg| FuncArg { name: arg.name, ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache), default_value: arg.default_value.clone(), is_vararg: arg.is_vararg, }) .collect_vec(), task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache), ); let ret_type = if unifier.unioned(ret, primitives.none) { None } else { Some(get_llvm_abi_type( context, &module, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, &primitives, ret, )) }; let has_sret = ret_type.map_or(false, |ty| need_sret(ty)); let mut params = args .iter() .filter(|arg| !arg.is_vararg) .map(|arg| { debug_assert!(!arg.is_vararg); get_llvm_abi_type( context, &module, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, &primitives, arg.ty, ) .into() }) .collect_vec(); if has_sret { params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into()); } debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1)); let vararg_arg = args.iter().find(|arg| arg.is_vararg); let fn_type = match ret_type { Some(ret_type) if !has_sret => ret_type.fn_type(¶ms, vararg_arg.is_some()), _ => context.void_type().fn_type(¶ms, vararg_arg.is_some()), }; let symbol = &task.symbol_name; let fn_val = module.get_function(symbol).unwrap_or_else(|| module.add_function(symbol, fn_type, None)); if let Some(personality) = &top_level_ctx.personality_symbol { let personality = module.get_function(personality).unwrap_or_else(|| { let ty = context.i32_type().fn_type(&[], true); module.add_function(personality, ty, None) }); fn_val.set_personality_function(personality); } if has_sret { fn_val.add_attribute( AttributeLoc::Param(0), context.create_type_attribute( Attribute::get_named_enum_kind_id("sret"), ret_type.unwrap().as_any_type_enum(), ), ); } let init_bb = context.append_basic_block(fn_val, "init"); builder.position_at_end(init_bb); let body_bb = context.append_basic_block(fn_val, "body"); let mut var_assignment = HashMap::new(); let offset = u32::from(has_sret); // Store non-vararg argument values into local variables for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) { let param = fn_val.get_nth_param((n as u32) + offset).unwrap(); let local_type = get_llvm_type( context, &module, generator, &mut unifier, top_level_ctx.as_ref(), &mut type_cache, arg.ty, ); let alloca = builder.build_alloca(local_type, &format!("{}.addr", &arg.name.to_string())).unwrap(); // Remap boolean parameters into i8 let param = if local_type.is_int_type() && param.is_int_value() { let expected_ty = local_type.into_int_type(); let param_val = param.into_int_value(); if expected_ty.get_bit_width() == 8 && param_val.get_type().get_bit_width() == 1 { bool_to_i8(&builder, context, param_val) } else { param_val } .into() } else { param }; builder.build_store(alloca, param).unwrap(); var_assignment.insert(arg.name, (alloca, None, 0)); } // TODO: Save vararg parameters as list let return_buffer = if has_sret { Some(fn_val.get_nth_param(0).unwrap().into_pointer_value()) } else { fn_type.get_return_type().map(|v| builder.build_alloca(v, "$ret").unwrap()) }; let static_values = { let store = registry.static_value_store.lock(); store.store[task.id].clone() }; for (k, v) in static_values { let (_, static_val, _) = var_assignment.get_mut(&args[k].name).unwrap(); *static_val = Some(v); } builder.build_unconditional_branch(body_bb).unwrap(); builder.position_at_end(body_bb); let (dibuilder, compile_unit) = module.create_debug_info_builder( /* allow_unresolved */ true, /* language */ inkwell::debug_info::DWARFSourceLanguage::Python, /* filename */ &task .body .first() .map_or_else(|| "".to_string(), |f| f.location.file.0.to_string()), /* directory */ "", /* producer */ "NAC3", /* is_optimized */ registry.llvm_options.opt_level != OptimizationLevel::None, /* compiler command line flags */ "", /* runtime_ver */ 0, /* split_name */ "", /* kind */ inkwell::debug_info::DWARFEmissionKind::Full, /* dwo_id */ 0, /* split_debug_inling */ true, /* debug_info_for_profiling */ false, /* sysroot */ "", /* sdk */ "", ); let subroutine_type = dibuilder.create_subroutine_type( compile_unit.get_file(), Some( dibuilder .create_basic_type("_", 0_u64, 0x00, inkwell::debug_info::DIFlags::PUBLIC) .unwrap() .as_type(), ), &[], inkwell::debug_info::DIFlags::PUBLIC, ); let (row, col) = task.body.first().map_or_else(|| (0, 0), |b| (b.location.row, b.location.column)); let func_scope: DISubprogram<'_> = dibuilder.create_function( /* scope */ compile_unit.as_debug_info_scope(), /* func name */ symbol, /* linkage_name */ None, /* file */ compile_unit.get_file(), /* line_no */ row as u32, /* DIType */ subroutine_type, /* is_local_to_unit */ false, /* is_definition */ true, /* scope_line */ row as u32, /* flags */ inkwell::debug_info::DIFlags::PUBLIC, /* is_optimized */ registry.llvm_options.opt_level != OptimizationLevel::None, ); fn_val.set_subprogram(func_scope); let mut code_gen_context = CodeGenContext { ctx: context, resolver: task.resolver, top_level: top_level_ctx.as_ref(), calls: task.calls, loop_target: None, return_target: None, return_buffer, unwind_target: None, outer_catch_clauses: None, const_strings: HashMap::default(), registry, var_assignment, type_cache, primitives, init_bb, exception_val: Option::default(), builder, module, unifier, static_value_store, need_sret: has_sret, current_loc: Location::default(), debug_info: (dibuilder, compile_unit, func_scope.as_debug_info_scope()), }; let loc = code_gen_context.debug_info.0.create_debug_location( context, row as u32, col as u32, func_scope.as_debug_info_scope(), None, ); code_gen_context.builder.set_current_debug_location(loc); let result = codegen_function(generator, &mut code_gen_context); // after static analysis, only void functions can have no return at the end. if !code_gen_context.is_terminated() { code_gen_context.builder.build_return(None).unwrap(); } code_gen_context.builder.unset_current_debug_location(); code_gen_context.debug_info.0.finalize(); let CodeGenContext { builder, module, .. } = code_gen_context; if let Err(e) = result { return Err((builder, e)); } Ok((builder, module, fn_val)) } /// Generates LLVM IR for a function. /// /// * `context` - The [LLVM Context][`Context`] used in generating the function body. /// * `generator` - The [`CodeGenerator`] for generating various program constructs. /// * `registry` - The [`WorkerRegistry`] responsible for monitoring this function generation task. /// * `builder` - The [`Builder`] used for generating LLVM IR. /// * `module` - The [`Module`] of which the generated LLVM function will be inserted into. /// * `task` - The [`CodeGenTask`] associated with this function generation task. /// pub fn gen_func<'ctx, G: CodeGenerator>( context: &'ctx Context, generator: &mut G, registry: &WorkerRegistry, builder: Builder<'ctx>, module: Module<'ctx>, task: CodeGenTask, ) -> Result<(Builder<'ctx>, Module<'ctx>, FunctionValue<'ctx>), (Builder<'ctx>, String)> { let body = task.body.clone(); gen_func_impl(context, generator, registry, builder, module, task, |generator, ctx| { generator.gen_block(ctx, body.iter()) }) } /// Converts the value of a boolean-like value `bool_value` into an `i1`. fn bool_to_i1<'ctx>(builder: &Builder<'ctx>, bool_value: IntValue<'ctx>) -> IntValue<'ctx> { if bool_value.get_type().get_bit_width() == 1 { bool_value } else { builder .build_int_compare( IntPredicate::NE, bool_value, bool_value.get_type().const_zero(), "tobool", ) .unwrap() } } /// Converts the value of a boolean-like value `bool_value` into an `i8`. fn bool_to_i8<'ctx>( builder: &Builder<'ctx>, ctx: &'ctx Context, bool_value: IntValue<'ctx>, ) -> IntValue<'ctx> { let value_bits = bool_value.get_type().get_bit_width(); match value_bits { 8 => bool_value, 1 => builder.build_int_z_extend(bool_value, ctx.i8_type(), "frombool").unwrap(), _ => bool_to_i8( builder, ctx, builder .build_int_compare( IntPredicate::NE, bool_value, bool_value.get_type().const_zero(), "", ) .unwrap(), ), } } /// Generates a sequence of IR which checks whether `value` does not exceed the upper bound of the /// range as defined by `stop` and `step`. /// /// Note that the generated IR will **not** check whether value is part of the range or whether /// value exceeds the lower bound of the range (as evident by the missing `start` argument). /// /// The generated IR is equivalent to the following Rust code: /// /// ```rust,ignore /// let sign = step > 0; /// let (lo, hi) = if sign { (value, stop) } else { (stop, value) }; /// let cmp = lo < hi; /// ``` /// /// Returns an `i1` [`IntValue`] representing the result of whether the `value` is in the range. fn gen_in_range_check<'ctx>( ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>, stop: IntValue<'ctx>, step: IntValue<'ctx>, ) -> IntValue<'ctx> { let sign = ctx .builder .build_int_compare(IntPredicate::SGT, step, ctx.ctx.i32_type().const_zero(), "") .unwrap(); let lo = ctx .builder .build_select(sign, value, stop, "") .map(BasicValueEnum::into_int_value) .unwrap(); let hi = ctx .builder .build_select(sign, stop, value, "") .map(BasicValueEnum::into_int_value) .unwrap(); ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap() } /// Returns the internal name for the `va_count` argument, used to indicate the number of arguments /// passed to the variadic function. fn get_va_count_arg_name(arg_name: StrRef) -> StrRef { format!("__{}_va_count", &arg_name).into() }