use crate::PrimitivePythonId; use nac3core::inkwell::{ module::Linkage, types::{BasicType, BasicTypeEnum}, values::BasicValueEnum, AddressSpace, }; use itertools::Itertools; use nac3core::{ codegen::{ classes::{NDArrayType, ProxyType}, CodeGenContext, CodeGenerator, }, symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum}, toplevel::{ helper::PrimDef, numpy::{make_ndarray_ty, unpack_ndarray_var_tys}, DefinitionId, TopLevelDef, }, typecheck::{ type_inferencer::PrimitiveStore, typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap}, }, }; use nac3core::nac3parser::ast::{self, StrRef}; use parking_lot::RwLock; use pyo3::{ types::{PyDict, PyTuple}, PyAny, PyObject, PyResult, Python, }; use std::{ collections::{HashMap, HashSet}, sync::{ atomic::{AtomicBool, Ordering::Relaxed}, Arc, }, }; pub enum PrimitiveValue { I32(i32), I64(i64), U32(u32), U64(u64), F64(f64), Bool(bool), Str(String), } /// An entry in the [`DeferredEvaluationStore`], containing the deferred types, a [`PyObject`] /// representing the `__constraints__` of the type variables, and the name of the type to be /// instantiated. type DeferredEvaluationEntry = (Vec<Type>, PyObject, String); #[derive(Clone)] pub struct DeferredEvaluationStore { needs_defer: Arc<AtomicBool>, store: Arc<RwLock<Vec<DeferredEvaluationEntry>>>, } impl DeferredEvaluationStore { pub fn new() -> Self { DeferredEvaluationStore { needs_defer: Arc::new(AtomicBool::new(true)), store: Arc::new(RwLock::new(Vec::new())), } } } /// A class field as stored in the [`InnerResolver`], represented by the ID and name of the /// associated [`PythonValue`]. type ResolverField = (u64, StrRef); /// A class field as stored in Python, represented by the `id()` and [`PyObject`] of the field. type PyFieldHandle = (u64, PyObject); pub struct InnerResolver { pub id_to_type: RwLock<HashMap<StrRef, Type>>, pub id_to_def: RwLock<HashMap<StrRef, DefinitionId>>, pub id_to_pyval: RwLock<HashMap<StrRef, (u64, PyObject)>>, pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>, pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>, pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>, pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>, pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>, pub primitive_ids: PrimitivePythonId, pub helper: PythonHelper, pub string_store: Arc<RwLock<HashMap<String, i32>>>, pub exception_ids: Arc<RwLock<HashMap<usize, usize>>>, pub deferred_eval_store: DeferredEvaluationStore, // module specific pub name_to_pyid: HashMap<StrRef, u64>, pub module: PyObject, } pub struct Resolver(pub Arc<InnerResolver>); #[derive(Clone)] pub struct PythonHelper { pub type_fn: PyObject, pub len_fn: PyObject, pub id_fn: PyObject, pub origin_ty_fn: PyObject, pub args_ty_fn: PyObject, pub store_obj: PyObject, pub store_str: PyObject, } struct PythonValue { id: u64, value: PyObject, store_obj: PyObject, resolver: Arc<InnerResolver>, } impl StaticValue for PythonValue { fn get_unique_identifier(&self) -> u64 { self.id } fn get_const_obj<'ctx>( &self, ctx: &mut CodeGenContext<'ctx, '_>, _: &mut dyn CodeGenerator, ) -> BasicValueEnum<'ctx> { ctx.module.get_global(format!("{}_const", self.id).as_str()).map_or_else( || { Python::with_gil(|py| -> PyResult<BasicValueEnum<'ctx>> { let id: u32 = self.store_obj.call1(py, (self.value.clone(),))?.extract(py)?; let struct_type = ctx.ctx.struct_type(&[ctx.ctx.i32_type().into()], false); let global = ctx.module.add_global( struct_type, None, format!("{}_const", self.id).as_str(), ); global.set_constant(true); // Set linkage of global to private to avoid name collisions global.set_linkage(Linkage::Private); global.set_initializer(&ctx.ctx.const_struct( &[ctx.ctx.i32_type().const_int(u64::from(id), false).into()], false, )); Ok(global.as_pointer_value().into()) }) .unwrap() }, |val| val.as_pointer_value().into(), ) } fn to_basic_value_enum<'ctx, 'a>( &self, ctx: &mut CodeGenContext<'ctx, 'a>, generator: &mut dyn CodeGenerator, expected_ty: Type, ) -> Result<BasicValueEnum<'ctx>, String> { if let Some(val) = self.resolver.id_to_primitive.read().get(&self.id) { return Ok(match val { PrimitiveValue::I32(val) => ctx.ctx.i32_type().const_int(*val as u64, false).into(), PrimitiveValue::I64(val) => ctx.ctx.i64_type().const_int(*val as u64, false).into(), PrimitiveValue::U32(val) => { ctx.ctx.i32_type().const_int(u64::from(*val), false).into() } PrimitiveValue::U64(val) => ctx.ctx.i64_type().const_int(*val, false).into(), PrimitiveValue::F64(val) => ctx.ctx.f64_type().const_float(*val).into(), PrimitiveValue::Bool(val) => { ctx.ctx.i8_type().const_int(u64::from(*val), false).into() } PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(), }); } if let Some(global) = ctx.module.get_global(&self.id.to_string()) { return Ok(global.as_pointer_value().into()); } Python::with_gil(|py| -> PyResult<BasicValueEnum<'ctx>> { self.resolver .get_obj_value(py, self.value.as_ref(py), ctx, generator, expected_ty) .map(Option::unwrap) }) .map_err(|e| e.to_string()) } fn get_field<'ctx>( &self, name: StrRef, ctx: &mut CodeGenContext<'ctx, '_>, ) -> Option<ValueEnum<'ctx>> { { let field_to_val = self.resolver.field_to_val.read(); field_to_val.get(&(self.id, name)).cloned() } .unwrap_or_else(|| { Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> { let helper = &self.resolver.helper; let ty = helper.type_fn.call1(py, (&self.value,))?; let ty_id: u64 = helper.id_fn.call1(py, (ty,))?.extract(py)?; // for optimizing unwrap KernelInvariant if ty_id == self.resolver.primitive_ids.option && name == "_nac3_option".into() { let obj = self.value.getattr(py, name.to_string().as_str())?; let id = self.resolver.helper.id_fn.call1(py, (&obj,))?.extract(py)?; return if self.id == self.resolver.primitive_ids.none { Ok(None) } else { Ok(Some((id, obj))) }; } let def_id = { *self.resolver.pyid_to_def.read().get(&ty_id).unwrap() }; let mut mutable = true; let defs = ctx.top_level.definitions.read(); if let TopLevelDef::Class { fields, .. } = &*defs[def_id.0].read() { for (field_name, _, is_mutable) in fields { if field_name == &name { mutable = *is_mutable; break; } } } let result = if mutable { None } else { let obj = self.value.getattr(py, name.to_string().as_str())?; let id = self.resolver.helper.id_fn.call1(py, (&obj,))?.extract(py)?; Some((id, obj)) }; self.resolver.field_to_val.write().insert((self.id, name), result.clone()); Ok(result) }) .unwrap() }) .map(|(id, obj)| { ValueEnum::Static(Arc::new(PythonValue { id, value: obj, store_obj: self.store_obj.clone(), resolver: self.resolver.clone(), })) }) } fn get_tuple_element<'ctx>(&self, index: u32) -> Option<ValueEnum<'ctx>> { Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> { let helper = &self.resolver.helper; let ty = helper.type_fn.call1(py, (&self.value,))?; let ty_id: u64 = helper.id_fn.call1(py, (ty,))?.extract(py)?; assert_eq!(ty_id, self.resolver.primitive_ids.tuple); let tup: &PyTuple = self.value.extract(py)?; let elem = tup.get_item(index as usize)?; let id = self.resolver.helper.id_fn.call1(py, (elem,))?.extract(py)?; Ok(Some((id, elem.into()))) }) .unwrap() .map(|(id, obj)| { ValueEnum::Static(Arc::new(PythonValue { id, value: obj, store_obj: self.store_obj.clone(), resolver: self.resolver.clone(), })) }) } } impl InnerResolver { fn get_list_elem_type( &self, py: Python, list: &PyAny, len: usize, unifier: &mut Unifier, defs: &[Arc<RwLock<TopLevelDef>>], primitives: &PrimitiveStore, ) -> PyResult<Result<Type, String>> { let mut ty = match self.get_obj_type(py, list.get_item(0)?, unifier, defs, primitives)? { Ok(t) => t, Err(e) => return Ok(Err(format!("type error ({e}) at element #0 of the list"))), }; for i in 1..len { let b = match list .get_item(i) .map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))?? { Ok(t) => t, Err(e) => return Ok(Err(format!("type error ({e}) at element #{i} of the list"))), }; ty = match unifier.unify(ty, b) { Ok(()) => ty, Err(e) => { return Ok(Err(format!( "inhomogeneous type ({}) at element #{i} of the list", e.to_display(unifier) ))) } }; } Ok(Ok(ty)) } /// Handles python objects that represent types themselves, /// /// Primitives and class types should be themselves, use `ty_id` to check; /// `TypeVars` and `GenericAlias`(`A[int, bool]`) should use `ty_ty_id` to check. /// /// The `bool` value returned indicates whether they are instantiated or not fn get_pyty_obj_type( &self, py: Python, pyty: &PyAny, unifier: &mut Unifier, defs: &[Arc<RwLock<TopLevelDef>>], primitives: &PrimitiveStore, ) -> PyResult<Result<(Type, bool), String>> { let ty_id: u64 = self.helper.id_fn.call1(py, (pyty,))?.extract(py)?; let ty_ty_id: u64 = self.helper.id_fn.call1(py, (self.helper.type_fn.call1(py, (pyty,))?,))?.extract(py)?; if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 { Ok(Ok((primitives.int32, true))) } else if ty_id == self.primitive_ids.int64 { Ok(Ok((primitives.int64, true))) } else if ty_id == self.primitive_ids.uint32 { Ok(Ok((primitives.uint32, true))) } else if ty_id == self.primitive_ids.uint64 { Ok(Ok((primitives.uint64, true))) } else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ { Ok(Ok((primitives.bool, true))) } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { Ok(Ok((primitives.str, true))) } else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 { Ok(Ok((primitives.float, true))) } else if ty_id == self.primitive_ids.exception { Ok(Ok((primitives.exception, true))) } else if ty_id == self.primitive_ids.list { // do not handle type var param and concrete check here let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(primitives.list) { assert_eq!(*obj_id, PrimDef::List.id()); iter_type_vars(params).nth(0).unwrap() } else { unreachable!() }; let var = unifier.get_dummy_var().ty; let list = unifier .subst(primitives.list, &into_var_map([TypeVar { id: list_tvar.id, ty: var }])) .unwrap(); Ok(Ok((list, false))) } else if ty_id == self.primitive_ids.ndarray { // do not handle type var param and concrete check here let var = unifier.get_dummy_var().ty; let ndims = unifier.get_fresh_const_generic_var(primitives.usize(), None, None).ty; let ndarray = make_ndarray_ty(unifier, primitives, Some(var), Some(ndims)); Ok(Ok((ndarray, false))) } else if ty_id == self.primitive_ids.tuple { // do not handle type var param and concrete check here Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false }), false))) } else if ty_id == self.primitive_ids.option { Ok(Ok((primitives.option, false))) } else if ty_id == self.primitive_ids.none { unreachable!("none cannot be typeid") } else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).copied() { let def = defs[def_id.0].read(); let TopLevelDef::Class { object_id, type_vars, fields, methods, .. } = &*def else { // only object is supported, functions are not supported unreachable!("function type is not supported, should not be queried") }; // do not handle type var param and concrete check here, and no subst Ok(Ok({ let ty = TypeEnum::TObj { obj_id: *object_id, params: type_vars .iter() .map(|x| { let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) else { unreachable!() }; (*id, *x) }) .collect(), fields: { let mut res = methods .iter() .map(|(iden, ty, _)| (*iden, (*ty, false))) .collect::<HashMap<_, _>>(); res.extend(fields.clone().into_iter().map(|x| (x.0, (x.1, x.2)))); res }, }; // here also false, later instantiation use python object to check compatible (unifier.add_ty(ty), false) })) } else if ty_ty_id == self.primitive_ids.typevar { let name: &str = pyty.getattr("__name__").unwrap().extract().unwrap(); let (constraint_types, is_const_generic) = { let constraints = pyty.getattr("__constraints__").unwrap(); let mut result: Vec<Type> = vec![]; let needs_defer = self.deferred_eval_store.needs_defer.load(Relaxed); let mut is_const_generic = false; for i in 0usize.. { if let Ok(constr) = constraints.get_item(i) { let constr_id: u64 = self.helper.id_fn.call1(py, (constr,))?.extract(py)?; if constr_id == self.primitive_ids.const_generic_marker { is_const_generic = true; continue; } if !is_const_generic && needs_defer { result.push(unifier.get_dummy_var().ty); } else { result.push({ match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? { Ok((ty, _)) => { if unifier.is_concrete(ty, &[]) { ty } else { return Ok(Err(format!( "the {}th constraint of TypeVar `{}` is not concrete", i + 1, pyty.getattr("__name__")?.extract::<String>()? ))); } } Err(err) => return Ok(Err(err)), } }); } } else { break; } } if !is_const_generic && needs_defer { self.deferred_eval_store.store.write().push(( result.clone(), constraints.extract()?, pyty.getattr("__name__")?.extract::<String>()?, )); } (result, is_const_generic) }; let res = if is_const_generic { if constraint_types.len() != 1 { return Ok(Err(format!( "ConstGeneric expects 1 argument, got {}", constraint_types.len() ))); } unifier.get_fresh_const_generic_var(constraint_types[0], Some(name.into()), None).ty } else { unifier.get_fresh_var_with_range(&constraint_types, Some(name.into()), None).ty }; Ok(Ok((res, true))) } else if ty_ty_id == self.primitive_ids.generic_alias.0 || ty_ty_id == self.primitive_ids.generic_alias.1 { let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?; let args = self.helper.args_ty_fn.call1(py, (pyty,))?; let args: &PyTuple = args.downcast(py)?; let origin_ty = match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? { Ok((ty, false)) => ty, Ok((_, true)) => { return Ok(Err("instantiated type does not take type parameters".into())) } Err(err) => return Ok(Err(err)), }; match &*unifier.get_ty(origin_ty) { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => { if args.len() == 1 { let ty = match self.get_pyty_obj_type( py, args.get_item(0)?, unifier, defs, primitives, )? { Ok(ty) => ty, Err(err) => return Ok(Err(err)), }; if !unifier.is_concrete(ty.0, &[]) && !ty.1 { return Ok(Err( "type list should take concrete parameters in typevar range".into(), )); } let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(primitives.list) { assert_eq!(*obj_id, PrimDef::List.id()); iter_type_vars(params).nth(0).unwrap() } else { unreachable!() }; let list = unifier .subst( primitives.list, &into_var_map([TypeVar { id: list_tvar.id, ty: ty.0 }]), ) .unwrap(); Ok(Ok((list, true))) } else { return Ok(Err(format!( "type list needs exactly 1 type parameters, found {}", args.len() ))); } } TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { if args.len() != 2 { return Ok(Err(format!( "type list needs exactly 2 type parameters, found {}", args.len() ))); } // npt.NDArray[T] == np.ndarray[Any, np.dtype[T]] let ndarray_dtype_pyty = self.helper.args_ty_fn.call1(py, (args.get_item(1)?,))?; let dtype = ndarray_dtype_pyty.downcast::<PyTuple>(py)?.get_item(0)?; let ty = match self.get_pyty_obj_type(py, dtype, unifier, defs, primitives)? { Ok(ty) => ty, Err(err) => return Ok(Err(err)), }; if !unifier.is_concrete(ty.0, &[]) && !ty.1 { return Ok(Err( "type `ndarray` should take concrete parameters for dtype".into() )); } Ok(Ok((make_ndarray_ty(unifier, primitives, Some(ty.0), None), true))) } TypeEnum::TTuple { .. } => { let args = match args .iter() .map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives)) .collect::<Result<Vec<_>, _>>()? .into_iter() .collect::<Result<Vec<_>, _>>() { Ok(args) if !args.is_empty() => args .into_iter() .map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check { panic!("type tuple should take concrete parameters in type var ranges") } else { x } ) .collect::<Vec<_>>(), Err(err) => return Ok(Err(err)), _ => return Ok(Err("tuple type needs at least 1 type parameters".to_string())) }; Ok(Ok(( unifier.add_ty(TypeEnum::TTuple { ty: args, is_vararg_ctx: false }), true, ))) } TypeEnum::TObj { params, obj_id, .. } => { let subst = { if params.len() != args.len() { return Ok(Err(format!( "for class #{}, expect {} type parameters, got {}.", obj_id.0, params.len(), args.len(), ))); } let args = match args .iter() .map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives)) .collect::<Result<Vec<_>, _>>()? .into_iter() .collect::<Result<Vec<_>, _>>() { Ok(args) => args .into_iter() .map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check { panic!("type class should take concrete parameters in type var ranges") } else { x } ) .collect::<Vec<_>>(), Err(err) => return Ok(Err(err)), }; params .iter() .zip(args.iter()) .map(|((id, _), ty)| (*id, *ty)) .collect::<VarMap>() }; Ok(Ok((unifier.subst(origin_ty, &subst).unwrap_or(origin_ty), true))) } TypeEnum::TVirtual { .. } => { if args.len() == 1 { let ty = match self.get_pyty_obj_type( py, args.get_item(0)?, unifier, defs, primitives, )? { Ok(ty) => ty, Err(err) => return Ok(Err(err)), }; assert!( unifier.is_concrete(ty.0, &[]) || ty.1, "virtual class should take concrete parameters in type var ranges" ); Ok(Ok((unifier.add_ty(TypeEnum::TVirtual { ty: ty.0 }), true))) } else { return Ok(Err(format!( "virtual class needs exactly 1 type parameters, found {}", args.len() ))); } } _ => unimplemented!(), } } else if ty_id == self.primitive_ids.virtual_id { Ok(Ok(( { let ty = TypeEnum::TVirtual { ty: unifier.get_dummy_var().ty }; unifier.add_ty(ty) }, false, ))) } else { let str_fn = pyo3::types::PyModule::import(py, "builtins").unwrap().getattr("repr").unwrap(); let str_repr: String = str_fn.call1((pyty,)).unwrap().extract().unwrap(); Ok(Err(format!("{str_repr} is not registered with NAC3 (@nac3 decorator missing?)"))) } } pub fn get_obj_type( &self, py: Python, obj: &PyAny, unifier: &mut Unifier, defs: &[Arc<RwLock<TopLevelDef>>], primitives: &PrimitiveStore, ) -> PyResult<Result<Type, String>> { let ty = self.helper.type_fn.call1(py, (obj,)).unwrap(); let py_obj_id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?; if let Some(ty) = self.pyid_to_type.read().get(&py_obj_id) { return Ok(Ok(*ty)); } // check if constructor function exists in the methods list let pyid_to_def = self.pyid_to_def.read(); let constructor_ty = pyid_to_def.get(&py_obj_id).and_then(|def_id| { defs.iter().find_map(|def| { if let Some(rear_guard) = def.try_read() { if let TopLevelDef::Class { object_id, methods, constructor, .. } = &*rear_guard { if object_id == def_id && constructor.is_some() && methods.iter().any(|(s, _, _)| s == &"__init__".into()) { return *constructor; } } } None }) }); if let Some(ty) = constructor_ty { self.pyid_to_type.write().insert(py_obj_id, ty); return Ok(Ok(ty)); } let (extracted_ty, inst_check) = match self.get_pyty_obj_type( py, { if [ self.primitive_ids.typevar, self.primitive_ids.generic_alias.0, self.primitive_ids.generic_alias.1, ] .contains(&self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?) { obj } else { ty.as_ref(py) } }, unifier, defs, primitives, )? { Ok(s) => s, Err(e) => { // Allow access to Class Attributes of Classes without having to initialize Objects if self.pyid_to_def.read().contains_key(&py_obj_id) { if let Some(def_id) = self.pyid_to_def.read().get(&py_obj_id).copied() { let def = defs[def_id.0].read(); let TopLevelDef::Class { object_id, .. } = &*def else { // only object is supported, functions are not supported unreachable!("function type is not supported, should not be queried") }; let ty = TypeEnum::TObj { obj_id: *object_id, params: VarMap::new(), fields: HashMap::new(), }; (unifier.add_ty(ty), true) } else { return Ok(Err(e)); } } else { return Ok(Err(e)); } } }; match (&*unifier.get_ty(extracted_ty), inst_check) { // do the instantiation for these four types (TypeEnum::TObj { obj_id, params, .. }, false) if *obj_id == PrimDef::List.id() => { let ty = iter_type_vars(params).nth(0).unwrap().ty; let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?; if len == 0 { assert!(matches!( &*unifier.get_ty(ty), TypeEnum::TVar { fields: None, range, .. } if range.is_empty() )); Ok(Ok(extracted_ty)) } else { let actual_ty = self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?; match actual_ty { Ok(t) => match unifier.unify(ty, t) { Ok(()) => { let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(primitives.list) { assert_eq!(*obj_id, PrimDef::List.id()); iter_type_vars(params).nth(0).unwrap() } else { unreachable!() }; let list = unifier .subst( primitives.list, &into_var_map([TypeVar { id: list_tvar.id, ty }]), ) .unwrap(); Ok(Ok(list)) } Err(e) => Ok(Err(format!( "type error ({}) for the list", e.to_display(unifier) ))), }, Err(e) => Ok(Err(e)), } } } (TypeEnum::TObj { obj_id, .. }, false) if *obj_id == PrimDef::NDArray.id() => { let (ty, ndims) = unpack_ndarray_var_tys(unifier, extracted_ty); let len: usize = obj.getattr("ndim")?.extract()?; if len == 0 { assert!(matches!( &*unifier.get_ty(ty), TypeEnum::TVar { fields: None, range, .. } if range.is_empty() )); Ok(Ok(extracted_ty)) } else { let dtype = obj.getattr("dtype")?.getattr("type")?; let dtype_ty = self.get_pyty_obj_type(py, dtype, unifier, defs, primitives)?; match dtype_ty { Ok((t, _)) => match unifier.unify(ty, t) { Ok(()) => { let ndarray_ty = make_ndarray_ty(unifier, primitives, Some(ty), Some(ndims)); Ok(Ok(ndarray_ty)) } Err(e) => Ok(Err(format!( "type error ({}) for the ndarray", e.to_display(unifier), ))), }, Err(e) => Ok(Err(e)), } } } (TypeEnum::TTuple { .. }, false) => { let elements: &PyTuple = obj.downcast()?; let types: Result<Result<Vec<_>, _>, _> = elements .iter() .map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives)) .collect(); let types = types?; Ok(types.map(|types| { unifier.add_ty(TypeEnum::TTuple { ty: types, is_vararg_ctx: false }) })) } // special handling for option type since its class member layout in python side // is special and cannot be mapped directly to a nac3 type as below (TypeEnum::TObj { obj_id, params, .. }, false) if *obj_id == primitives.option.obj_id(unifier).unwrap() => { let Ok(field_data) = obj.getattr("_nac3_option") else { unreachable!("cannot be None") }; // if is `none` let zelf_id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?; if zelf_id == self.primitive_ids.none { let ty_enum = unifier.get_ty_immutable(primitives.option); let TypeEnum::TObj { params, .. } = ty_enum.as_ref() else { unreachable!("must be tobj") }; let var_map = into_var_map(iter_type_vars(params).map(|tvar| { let TypeEnum::TVar { id, range, name, loc, .. } = &*unifier.get_ty(tvar.ty) else { unreachable!() }; assert_eq!(*id, tvar.id); let ty = unifier.get_fresh_var_with_range(range, *name, *loc).ty; TypeVar { id: *id, ty } })); return Ok(Ok(unifier.subst(primitives.option, &var_map).unwrap())); } let ty = match self.get_obj_type(py, field_data, unifier, defs, primitives)? { Ok(t) => t, Err(e) => { return Ok(Err(format!( "error when getting type of the option object ({e})" ))) } }; let new_var_map: VarMap = params.iter().map(|(id, _)| (*id, ty)).collect(); let res = unifier.subst(extracted_ty, &new_var_map).unwrap_or(extracted_ty); Ok(Ok(res)) } (TypeEnum::TObj { params, fields, .. }, false) => { self.pyid_to_type.write().insert(py_obj_id, extracted_ty); let var_map = into_var_map(iter_type_vars(params).map(|tvar| { let TypeEnum::TVar { id, range, name, loc, .. } = &*unifier.get_ty(tvar.ty) else { unreachable!() }; assert_eq!(*id, tvar.id); let ty = unifier.get_fresh_var_with_range(range, *name, *loc).ty; TypeVar { id: *id, ty } })); let mut instantiate_obj = || { // loop through non-function fields of the class to get the instantiated value for field in fields { let name: String = (*field.0).into(); if let TypeEnum::TFunc(..) = &*unifier.get_ty(field.1 .0) { continue; } let field_data = match obj.getattr(name.as_str()) { Ok(d) => d, Err(e) => return Ok(Err(format!("{e}"))), }; let ty = match self.get_obj_type(py, field_data, unifier, defs, primitives)? { Ok(t) => t, Err(e) => { return Ok(Err(format!( "error when getting type of field `{name}` ({e})" ))) } }; let field_ty = unifier.subst(field.1 .0, &var_map).unwrap_or(field.1 .0); if let Err(e) = unifier.unify(ty, field_ty) { // field type mismatch return Ok(Err(format!( "error when getting type of field `{name}` ({})", e.to_display(unifier) ))); } } for ty in var_map.values() { // must be concrete type if !unifier.is_concrete(*ty, &[]) { return Ok(Err("object is not of concrete type".into())); } } let extracted_ty = unifier.subst(extracted_ty, &var_map).unwrap_or(extracted_ty); Ok(Ok(extracted_ty)) }; let result = instantiate_obj(); // update/remove the cache according to the result match result { Ok(Ok(ty)) => self.pyid_to_type.write().insert(py_obj_id, ty), _ => self.pyid_to_type.write().remove(&py_obj_id), }; result } _ => { // check integer bounds if unifier.unioned(extracted_ty, primitives.int32) { obj.extract::<i32>().map_or_else( |_| Ok(Err(format!("{obj} is not in the range of int32"))), |_| Ok(Ok(extracted_ty)), ) } else if unifier.unioned(extracted_ty, primitives.int64) { obj.extract::<i64>().map_or_else( |_| Ok(Err(format!("{obj} is not in the range of int64"))), |_| Ok(Ok(extracted_ty)), ) } else if unifier.unioned(extracted_ty, primitives.uint32) { obj.extract::<u32>().map_or_else( |_| Ok(Err(format!("{obj} is not in the range of uint32"))), |_| Ok(Ok(extracted_ty)), ) } else if unifier.unioned(extracted_ty, primitives.uint64) { obj.extract::<u64>().map_or_else( |_| Ok(Err(format!("{obj} is not in the range of uint64"))), |_| Ok(Ok(extracted_ty)), ) } else if unifier.unioned(extracted_ty, primitives.bool) { obj.extract::<bool>().map_or_else( |_| Ok(Err(format!("{obj} is not in the range of bool"))), |_| Ok(Ok(extracted_ty)), ) } else if unifier.unioned(extracted_ty, primitives.float) { obj.extract::<f64>().map_or_else( |_| Ok(Err(format!("{obj} is not in the range of float64"))), |_| Ok(Ok(extracted_ty)), ) } else { Ok(Ok(extracted_ty)) } } } } pub fn get_obj_value<'ctx>( &self, py: Python, obj: &PyAny, ctx: &mut CodeGenContext<'ctx, '_>, generator: &mut dyn CodeGenerator, expected_ty: Type, ) -> PyResult<Option<BasicValueEnum<'ctx>>> { let ty_id: u64 = self.helper.id_fn.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?.extract(py)?; let id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?; if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 { let val: i32 = obj.extract().unwrap(); self.id_to_primitive.write().insert(id, PrimitiveValue::I32(val)); Ok(Some(ctx.ctx.i32_type().const_int(val as u64, false).into())) } else if ty_id == self.primitive_ids.int64 { let val: i64 = obj.extract().unwrap(); self.id_to_primitive.write().insert(id, PrimitiveValue::I64(val)); Ok(Some(ctx.ctx.i64_type().const_int(val as u64, false).into())) } else if ty_id == self.primitive_ids.uint32 { let val: u32 = obj.extract().unwrap(); self.id_to_primitive.write().insert(id, PrimitiveValue::U32(val)); Ok(Some(ctx.ctx.i32_type().const_int(u64::from(val), false).into())) } else if ty_id == self.primitive_ids.uint64 { let val: u64 = obj.extract().unwrap(); self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val)); Ok(Some(ctx.ctx.i64_type().const_int(val, false).into())) } else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ { let val: bool = obj.extract().unwrap(); self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val)); Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into())) } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { let val: String = obj.extract().unwrap(); self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone())); Ok(Some(ctx.gen_string(generator, val).into())) } else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 { let val: f64 = obj.extract().unwrap(); self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val)); Ok(Some(ctx.ctx.f64_type().const_float(val).into())) } else if ty_id == self.primitive_ids.list { let id_str = id.to_string(); if let Some(global) = ctx.module.get_global(&id_str) { return Ok(Some(global.as_pointer_value().into())); } let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?; let elem_ty = match ctx.unifier.get_ty_immutable(expected_ty).as_ref() { TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => { iter_type_vars(params).nth(0).unwrap().ty } _ => unreachable!("must be list"), }; let size_t = generator.get_size_type(ctx.ctx); let ty = if len == 0 && matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. }) { // The default type for zero-length lists of unknown element type is size_t size_t.into() } else { ctx.get_llvm_type(generator, elem_ty) }; let arr_ty = ctx .ctx .struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false); { if self.global_value_ids.read().contains_key(&id) { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { ctx.module.add_global(arr_ty, Some(AddressSpace::default()), &id_str) }); return Ok(Some(global.as_pointer_value().into())); } self.global_value_ids.write().insert(id, obj.into()); } let arr: Result<Option<Vec<_>>, _> = (0..len) .map(|i| { obj.get_item(i).and_then(|elem| { self.get_obj_value(py, elem, ctx, generator, elem_ty).map_err(|e| { super::CompileError::new_err(format!("Error getting element {i}: {e}")) }) }) }) .collect(); let arr = arr?.unwrap(); let arr_global = ctx.module.add_global( ty.array_type(len as u32), Some(AddressSpace::default()), &(id_str.clone() + "_"), ); let arr: BasicValueEnum = if ty.is_int_type() { let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_int_value).collect(); ty.into_int_type().const_array(&arr) } else if ty.is_float_type() { let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_float_value).collect(); ty.into_float_type().const_array(&arr) } else if ty.is_array_type() { let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_array_value).collect(); ty.into_array_type().const_array(&arr) } else if ty.is_struct_type() { let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_struct_value).collect(); ty.into_struct_type().const_array(&arr) } else if ty.is_pointer_type() { let arr: Vec<_> = arr.into_iter().map(BasicValueEnum::into_pointer_value).collect(); ty.into_pointer_type().const_array(&arr) } else { unreachable!() } .into(); arr_global.set_initializer(&arr); let val = arr_ty.const_named_struct(&[ arr_global .as_pointer_value() .const_cast(ty.ptr_type(AddressSpace::default())) .into(), size_t.const_int(len as u64, false).into(), ]); let global = ctx.module.add_global(arr_ty, Some(AddressSpace::default()), &id_str); global.set_initializer(&val); Ok(Some(global.as_pointer_value().into())) } else if ty_id == self.primitive_ids.ndarray { let id_str = id.to_string(); if let Some(global) = ctx.module.get_global(&id_str) { return Ok(Some(global.as_pointer_value().into())); } let ndarray_ty = if matches!(&*ctx.unifier.get_ty_immutable(expected_ty), TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id()) { expected_ty } else { unreachable!("must be ndarray") }; let (ndarray_dtype, ndarray_ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty); let llvm_usize = generator.get_size_type(ctx.ctx); let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype); let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty); { if self.global_value_ids.read().contains_key(&id) { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { ctx.module.add_global( ndarray_llvm_ty.as_underlying_type(), Some(AddressSpace::default()), &id_str, ) }); return Ok(Some(global.as_pointer_value().into())); } self.global_value_ids.write().insert(id, obj.into()); } let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndarray_ndims) else { unreachable!("Expected Literal for ndarray_ndims") }; let ndarray_ndims = if values.len() == 1 { values[0].clone() } else { todo!("Unpacking literal of more than one element unimplemented") }; let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else { unreachable!("Expected u64 value for ndarray_ndims") }; // Obtain the shape of the ndarray let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?; assert_eq!(shape_tuple.len(), ndarray_ndims as usize); let shape_values: Result<Option<Vec<_>>, _> = shape_tuple .iter() .enumerate() .map(|(i, elem)| { self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err( |e| super::CompileError::new_err(format!("Error getting element {i}: {e}")), ) }) .collect(); let shape_values = shape_values?.unwrap(); let shape_values = llvm_usize.const_array( &shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(), ); // create a global for ndarray.shape and initialize it using the shape let shape_global = ctx.module.add_global( llvm_usize.array_type(ndarray_ndims as u32), Some(AddressSpace::default()), &(id_str.clone() + ".shape"), ); shape_global.set_initializer(&shape_values); // Obtain the (flattened) elements of the ndarray let sz: usize = obj.getattr("size")?.extract()?; let data: Result<Option<Vec<_>>, _> = (0..sz) .map(|i| { obj.getattr("flat")?.get_item(i).and_then(|elem| { self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| { super::CompileError::new_err(format!("Error getting element {i}: {e}")) }) }) }) .collect(); let data = data?.unwrap().into_iter(); let data = match ndarray_dtype_llvm_ty { BasicTypeEnum::ArrayType(ty) => { ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec()) } BasicTypeEnum::FloatType(ty) => { ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec()) } BasicTypeEnum::IntType(ty) => { ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec()) } BasicTypeEnum::PointerType(ty) => { ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec()) } BasicTypeEnum::StructType(ty) => { ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec()) } BasicTypeEnum::VectorType(_) => unreachable!(), }; // create a global for ndarray.data and initialize it using the elements let data_global = ctx.module.add_global( ndarray_dtype_llvm_ty.array_type(sz as u32), Some(AddressSpace::default()), &(id_str.clone() + ".data"), ); data_global.set_initializer(&data); // create a global for the ndarray object and initialize it let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[ llvm_usize.const_int(ndarray_ndims, false).into(), shape_global .as_pointer_value() .const_cast(llvm_usize.ptr_type(AddressSpace::default())) .into(), data_global .as_pointer_value() .const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default())) .into(), ]); let ndarray = ctx.module.add_global( ndarray_llvm_ty.as_underlying_type(), Some(AddressSpace::default()), &id_str, ); ndarray.set_initializer(&value); Ok(Some(ndarray.as_pointer_value().into())) } else if ty_id == self.primitive_ids.tuple { let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty); let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else { unreachable!() }; let tup_tys = ty.iter(); let elements: &PyTuple = obj.downcast()?; assert_eq!(elements.len(), tup_tys.len()); let val: Result<Option<Vec<_>>, _> = elements .iter() .enumerate() .zip(tup_tys) .map(|((i, elem), ty)| { self.get_obj_value(py, elem, ctx, generator, *ty).map_err(|e| { super::CompileError::new_err(format!("Error getting element {i}: {e}")) }) }) .collect(); let val = val?.unwrap(); let val = ctx.ctx.const_struct(&val, false); Ok(Some(val.into())) } else if ty_id == self.primitive_ids.option { let option_val_ty = match ctx.unifier.get_ty_immutable(expected_ty).as_ref() { TypeEnum::TObj { obj_id, params, .. } if *obj_id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap() => { *params.iter().next().unwrap().1 } _ => unreachable!("must be option type"), }; if id == self.primitive_ids.none { // for option type, just a null ptr Ok(Some( ctx.get_llvm_type(generator, option_val_ty) .ptr_type(AddressSpace::default()) .const_null() .into(), )) } else { match self .get_obj_value( py, obj.getattr("_nac3_option").unwrap(), ctx, generator, option_val_ty, ) .map_err(|e| { super::CompileError::new_err(format!( "Error getting value of Option object: {e}" )) })? { Some(v) => { let global_str = format!("{id}_option"); { if self.global_value_ids.read().contains_key(&id) { let global = ctx.module.get_global(&global_str).unwrap_or_else(|| { ctx.module.add_global( v.get_type(), Some(AddressSpace::default()), &global_str, ) }); return Ok(Some(global.as_pointer_value().into())); } self.global_value_ids.write().insert(id, obj.into()); } let global = ctx.module.add_global( v.get_type(), Some(AddressSpace::default()), &global_str, ); global.set_initializer(&v); Ok(Some(global.as_pointer_value().into())) } None => Ok(None), } } } else { let id_str = id.to_string(); if let Some(global) = ctx.module.get_global(&id_str) { return Ok(Some(global.as_pointer_value().into())); } let top_level_defs = ctx.top_level.definitions.read(); let ty = self .get_obj_type(py, obj, &mut ctx.unifier, &top_level_defs, &ctx.primitives)? .unwrap(); let ty = ctx .get_llvm_type(generator, ty) .into_pointer_type() .get_element_type() .into_struct_type(); { if self.global_value_ids.read().contains_key(&id) { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { ctx.module.add_global(ty, Some(AddressSpace::default()), &id_str) }); return Ok(Some(global.as_pointer_value().into())); } self.global_value_ids.write().insert(id, obj.into()); } // should be classes let definition = top_level_defs.get(self.pyid_to_def.read().get(&ty_id).unwrap().0).unwrap().read(); let TopLevelDef::Class { fields, .. } = &*definition else { unreachable!() }; let values: Result<Option<Vec<_>>, _> = fields .iter() .map(|(name, ty, _)| { self.get_obj_value( py, obj.getattr(name.to_string().as_str())?, ctx, generator, *ty, ) .map_err(|e| { super::CompileError::new_err(format!("Error getting field {name}: {e}")) }) }) .collect(); let values = values?; if let Some(values) = values { let val = ty.const_named_struct(&values); let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { ctx.module.add_global(ty, Some(AddressSpace::default()), &id_str) }); global.set_initializer(&val); Ok(Some(global.as_pointer_value().into())) } else { Ok(None) } } } fn get_default_param_obj_value( &self, py: Python, obj: &PyAny, ) -> PyResult<Result<SymbolValue, String>> { let id: u64 = self.helper.id_fn.call1(py, (obj,))?.extract(py)?; let ty_id: u64 = self.helper.id_fn.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?.extract(py)?; Ok(if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 { let val: i32 = obj.extract()?; Ok(SymbolValue::I32(val)) } else if ty_id == self.primitive_ids.int64 { let val: i64 = obj.extract()?; Ok(SymbolValue::I64(val)) } else if ty_id == self.primitive_ids.uint32 { let val: u32 = obj.extract()?; Ok(SymbolValue::U32(val)) } else if ty_id == self.primitive_ids.uint64 { let val: u64 = obj.extract()?; Ok(SymbolValue::U64(val)) } else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ { let val: bool = obj.extract()?; Ok(SymbolValue::Bool(val)) } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { let val: String = obj.extract()?; Ok(SymbolValue::Str(val)) } else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 { let val: f64 = obj.extract()?; Ok(SymbolValue::Double(val)) } else if ty_id == self.primitive_ids.tuple { let elements: &PyTuple = obj.downcast()?; let elements: Result<Result<Vec<_>, String>, _> = elements.iter().map(|elem| self.get_default_param_obj_value(py, elem)).collect(); elements?.map(SymbolValue::Tuple) } else if ty_id == self.primitive_ids.option { if id == self.primitive_ids.none { Ok(SymbolValue::OptionNone) } else { self.get_default_param_obj_value(py, obj.getattr("_nac3_option").unwrap())? .map(|v| SymbolValue::OptionSome(Box::new(v))) } } else { Err("only primitives values, option and tuple can be default parameter value".into()) }) } } impl SymbolResolver for Resolver { fn get_default_param_value(&self, expr: &ast::Expr) -> Option<SymbolValue> { let ast::ExprKind::Name { id, .. } = &expr.node else { unreachable!("only for resolving names") }; Python::with_gil(|py| -> PyResult<Option<SymbolValue>> { let obj: &PyAny = self.0.module.extract(py)?; let members: &PyDict = obj.getattr("__dict__").unwrap().downcast().unwrap(); let mut sym_value = None; for (key, val) in members { let key: &str = key.extract()?; if key == id.to_string() { if let Ok(Ok(v)) = self.0.get_default_param_obj_value(py, val) { sym_value = Some(v); } break; } } Ok(sym_value) }) .unwrap() } fn get_symbol_type( &self, unifier: &mut Unifier, defs: &[Arc<RwLock<TopLevelDef>>], primitives: &PrimitiveStore, str: StrRef, ) -> Result<Type, String> { if let Some(ty) = { let id_to_type = self.0.id_to_type.read(); id_to_type.get(&str).copied() } { Ok(ty) } else { let Some(id) = self.0.name_to_pyid.get(&str) else { return Err(format!("cannot find symbol `{str}`")); }; let result = if let Some(t) = { let pyid_to_type = self.0.pyid_to_type.read(); pyid_to_type.get(id).copied() } { Ok(t) } else { Python::with_gil(|py| -> PyResult<Result<Type, String>> { let obj: &PyAny = self.0.module.extract(py)?; let mut sym_ty = Err(format!("cannot find symbol `{str}`")); let members: &PyDict = obj.getattr("__dict__").unwrap().downcast().unwrap(); for (key, val) in members { let key: &str = key.extract()?; if key == str.to_string() { sym_ty = self.0.get_obj_type(py, val, unifier, defs, primitives)?; break; } } if let Ok(t) = sym_ty { if let TypeEnum::TVar { .. } = &*unifier.get_ty(t) { self.0.pyid_to_type.write().insert(*id, t); } } Ok(sym_ty) }) .unwrap() }; result } } fn get_symbol_value<'ctx>( &self, id: StrRef, _: &mut CodeGenContext<'ctx, '_>, ) -> Option<ValueEnum<'ctx>> { let sym_value = { let id_to_val = self.0.id_to_pyval.read(); id_to_val.get(&id).cloned() } .or_else(|| { Python::with_gil(|py| -> PyResult<Option<(u64, PyObject)>> { let obj: &PyAny = self.0.module.extract(py)?; let mut sym_value: Option<(u64, PyObject)> = None; let members: &PyDict = obj.getattr("__dict__").unwrap().downcast().unwrap(); for (key, val) in members { let key: &str = key.extract()?; if key == id.to_string() { let id = self.0.helper.id_fn.call1(py, (val,))?.extract(py)?; sym_value = Some((id, val.extract()?)); break; } } if let Some((pyid, val)) = &sym_value { self.0.id_to_pyval.write().insert(id, (*pyid, val.clone())); } Ok(sym_value) }) .unwrap() }); sym_value.map(|(id, v)| { ValueEnum::Static(Arc::new(PythonValue { id, value: v, store_obj: self.0.helper.store_obj.clone(), resolver: self.0.clone(), })) }) } fn get_identifier_def(&self, id: StrRef) -> Result<DefinitionId, HashSet<String>> { { let id_to_def = self.0.id_to_def.read(); id_to_def.get(&id).copied().ok_or_else(String::new) } .or_else(|_| { let py_id = self .0 .name_to_pyid .get(&id) .ok_or_else(|| HashSet::from([format!("Undefined identifier `{id}`")]))?; let result = self.0.pyid_to_def.read().get(py_id).copied().ok_or_else(|| { HashSet::from([format!( "`{id}` is not registered with NAC3 (@nac3 decorator missing?)" )]) })?; self.0.id_to_def.write().insert(id, result); Ok(result) }) } fn get_string_id(&self, s: &str) -> i32 { let mut string_store = self.0.string_store.write(); if let Some(id) = string_store.get(s) { *id } else { let id = Python::with_gil(|py| -> PyResult<i32> { self.0.helper.store_str.call1(py, (s,))?.extract(py) }) .unwrap(); string_store.insert(s.into(), id); id } } fn handle_deferred_eval( &self, unifier: &mut Unifier, defs: &[Arc<RwLock<TopLevelDef>>], primitives: &PrimitiveStore, ) -> Result<(), String> { // we don't need a lock because this will only be run in a single thread if self.0.deferred_eval_store.needs_defer.load(Relaxed) { self.0.deferred_eval_store.needs_defer.store(false, Relaxed); let store = self.0.deferred_eval_store.store.read(); Python::with_gil(|py| -> PyResult<Result<(), String>> { for (variables, constraints, name) in store.iter() { let constraints: &PyAny = constraints.as_ref(py); for (i, var) in variables.iter().enumerate() { if let Ok(constr) = constraints.get_item(i) { match self.0.get_pyty_obj_type(py, constr, unifier, defs, primitives)? { Ok((ty, _)) => { if !unifier.is_concrete(ty, &[]) { return Ok(Err(format!( "the {}th constraint of TypeVar `{}` is not concrete", i + 1, name, ))); } unifier.unify(ty, *var).unwrap(); } Err(err) => return Ok(Err(err)), } } else { break; } } } Ok(Ok(())) }) .unwrap()?; } Ok(()) } fn get_exception_id(&self, tyid: usize) -> usize { let exn_ids = self.0.exception_ids.read(); exn_ids.get(&tyid).copied().unwrap_or(0) } }