Compare commits

...

70 Commits

Author SHA1 Message Date
8baf111734 [meta] Apply clippy suggestions 2025-01-06 17:11:31 +08:00
eaaa194a87 [artiq] symbol_resolver: Cast ndarray.{shape,strides} globals to usize*
This is needed as ndarray.{shapes,strides} are ArrayValues, and so a GEP
operation is required to convert them into pointers to their first
elements.
2025-01-06 16:53:33 +08:00
352c7c880b [artiq] symbol_resolver: Fix incorrect global type for ndarray.strides 2025-01-06 16:53:33 +08:00
3c5e247195 [artiq] symbol_resolver: Use TargetData to get size of dtype
dtype.size_of() may not return a constant value.
2025-01-06 16:53:33 +08:00
4e21def1a0 [artiq] symbol_resolver: Add missing promotion for host compilation
Shape tuple is always in i32, so a zero-extension to i64 is
necessary when assigning the shape tuple into the shape field of the
ndarray.
2025-01-06 16:53:33 +08:00
2271b46b96 [core] codegen/values/ndarray: Fix Vec allocation 2025-01-06 16:53:33 +08:00
d9c180ed13 [artiq] symbol_resolver: Fix support for np.bool_ -> bool decay 2025-01-06 16:53:33 +08:00
8322d457c6 standalone/demo: numpy2 compatibility 2025-01-04 15:30:24 +08:00
e480081e4b update dependencies 2025-01-04 10:28:41 +08:00
12fddc3533 [core] codegen/ndarray: Make ndims non-optional
Now that everything is ported to use strided impl, dynamic-ndim ndarray
instances do not exist anymore.
2025-01-03 15:43:08 +08:00
3ac1083734 [core] codegen: Reimplement np_dot() for scalars and 1D
Based on 693b7f37: core/ndstrides: implement np_dot() for scalars and 1D
2025-01-03 15:43:08 +08:00
66b8a5e01d [core] codegen/ndarray: Reimplement matmul
Based on 73c2203b: core/ndstrides: implement general matmul
2025-01-03 15:43:06 +08:00
ebbadc2d74 [core] codegen: Reimplement ndarray cmpop
Based on 56cccce1: core/ndstrides: implement cmpop
2025-01-03 15:15:13 +08:00
a2f1b25fd8 [core] codegen: Reimplement ndarray unary op
Based on bb992704: core/ndstrides: implement unary op
2025-01-03 15:15:12 +08:00
59f19e29df [core] codegen: Reimplement ndarray binop
Based on 9e40c834: core/ndstrides: implement binop
2025-01-03 15:15:12 +08:00
6cbba8fdde [core] codegen: Reimplement builtin funcs to support strided ndarrays
Based on 7f3c4530: core/ndstrides: update builtin_fns to use ndarray
with strides
2025-01-03 15:15:12 +08:00
e6dab25a57 [core] codegen/ndarray: Add NDArrayOut, broadcast_map, map
Based on fbfc0b29: core/ndstrides: add NDArrayOut, broadcast_map and map
2025-01-03 15:15:11 +08:00
2dc5e79a23 [core] codegen/ndarray: Implement subscript assignment
Based on 5bed394e: core/ndstrides: implement subscript assignment

Overlapping is not handled. Currently it has undefined behavior.
2025-01-03 15:15:11 +08:00
dcde1d9c87 [core] codegen/values/ndarray: Add more ScalarOrNDArray utils
Based on f731e604: core/ndstrides: add more ScalarOrNDArray and
NDArrayObject utils
2025-01-03 15:15:10 +08:00
7375983e0c [core] codegen/ndarray: Implement np_transpose without axes argument
Based on 052b67c8: core/ndstrides: implement np_transpose() (no axes
argument)

The IRRT implementation knows how to handle axes. But the argument is
not in NAC3 yet.
2025-01-03 15:15:08 +08:00
43e440d2fd [core] codegen/ndarray: Reimplement broadcasting
Based on 9359ed96: core/ndstrides: implement broadcasting &
np_broadcast_to()
2025-01-03 15:14:59 +08:00
8d975b5ff3 [core] codegen/ndarray: Implement np_reshape
Based on 926e7e93: core/ndstrides: implement np_reshape()
2025-01-03 14:56:16 +08:00
aae41eef6a [core] toplevel: Add view functions category
Based on 9e0f636d: core: categorize np_{transpose,reshape} as 'view
functions'
2025-01-03 14:47:59 +08:00
132ba1942f [core] toplevel: Implement np_size
Based on 2c1030d1: core/ndstrides: implement np_size()
2025-01-03 14:16:29 +08:00
12358c57b1 [core] codegen/ndarray: Implement np_{shape,strides}
Based on 40c24486: core/ndstrides: implement np_shape() and np_strides()

These functions are not important, but they are handy for debugging.

`np.strides()` is not an actual NumPy function, but `ndarray.strides` is
used.
2025-01-03 13:58:47 +08:00
9ffa2d6552 [core] codegen/ndarray: Reimplement np_{copy,fill}
Based on 18db85fa: core/ndstrides: implement ndarray.fill() and .copy()
2025-01-03 13:58:47 +08:00
acb437919d [core] codegen/ndarray: Reimplement np_{eye,identity}
Based on fa047d50: core/ndstrides: implement np_identity() and np_eye()
2025-01-03 13:58:47 +08:00
fadadd7505 [core] codegen/ndarray: Reimplement np_array()
Based on 8f0084ac: core/ndstrides: implement np_array()

It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.

However, currently only `np_array(<input>, copy=False)` and `np_array
(<input>, copy=True)` are supported. In NumPy, copy could be false,
true, or None. Right now, NAC3's `np_array(<input>, copy=False)` behaves
like NumPy's `np.array(<input>, copy=None)`.
2025-01-03 13:58:47 +08:00
26f1428739 [core] codegen: Refactor len()
Based on 54a842a9: core/ndstrides: implement len(ndarray) & refactor
len()
2025-01-03 13:58:47 +08:00
5880f964bb [core] codegen/ndarray: Reimplement np_{zeros,ones,full,empty}
Based on 792374fa: core/ndstrides: implement np_{zeros,ones,full,empty}.
2025-01-03 13:58:47 +08:00
7d02f5833d [core] codegen: Implement Tuple{Type,Value} 2025-01-03 13:58:47 +08:00
822f9d33f8 [core] codegen: Refactor ListType to use derive(StructFields) 2025-01-03 13:58:47 +08:00
805a9d23b3 [core] codegen: Add derive(Copy, Clone) to TypedArrayLikeAdapter 2025-01-03 13:58:46 +08:00
1ffe2fcc7f [core] irrt: Minor reformat 2025-01-03 13:26:51 +08:00
2f0847d77b [core] codegen/types: Refactor ProxyType
- Add alloca_type() function to obtain the type that should be passed
into a `build_alloca` call
- Provide default implementations for raw_alloca and array_alloca
- Add raw_alloca_var and array_alloca_var to distinguish alloca
instructions placed at the front of the function vs at the current
builder location
2024-12-30 17:00:17 +08:00
dc9efa9e8c [core] codegen/ndarray: Use IRRT for size() and indexing operations
Also refactor some usages of call_ndarray_calc_size with ndarray.size().
2024-12-30 16:58:33 +08:00
3c0ce3031f [core] codegen: Update raw_alloca to return PointerValue
Better match the expected behavior of alloca.
2024-12-30 16:51:34 +08:00
d5e8df070a [core] Minor improvements to IRRT and add missing documentation 2024-12-30 16:51:17 +08:00
dc413dfa43 [core] codegen: Refactor TypedArrayLikeAdapter to use fn
Allows for greater flexibility when TypedArrayLikeAdapter is used with
custom value types.
2024-12-30 16:50:22 +08:00
19122e2905 [core] codegen: Rename classes/functions for consistency
- ContiguousNDArrayFields -> ContiguousNDArrayStructFields
- ndarray/nditer: Add _field suffix to field accessors
2024-12-30 16:50:18 +08:00
318371a509 [core] irrt: Minor cleanup 2024-12-30 14:13:48 +08:00
35e3042435 [core] Refactor/Remove redundant and unused constructs
- Use ProxyValue.name where necessary
- Remove NDArrayValue::ptr_to_{shape,strides}
- Remove functions made obsolete by ndstrides
- Remove use statement for ndarray::views as it only contain an impl
block.
- Remove class_names field in Resolvers of test sources
2024-12-30 14:13:48 +08:00
0e5940c49d [meta] Refactor itertools::{chain,enumerate,repeat_n} with std equiv 2024-12-30 14:13:48 +08:00
fbf0053c24 [core] irrt/string: Minor cleanup
- Refactor __nac3_str_eq to always return bool
- Use `get_usize_dependent_function_name` to get IRRT func name
2024-12-30 14:04:42 +08:00
456aefa6ee clean up duplicate include 2024-12-30 13:03:31 +08:00
ram
49a7469b4a use memcmp for string comparison
Co-authored-by: ram <RAMTEJ001@e.ntu.edu.sg>
Co-committed-by: ram <RAMTEJ001@e.ntu.edu.sg>
2024-12-30 13:02:09 +08:00
1531b6cc98 cargo: update dependencies 2024-12-13 19:42:01 +08:00
9bbc40bbfa flake: update dependencies 2024-12-13 19:41:52 +08:00
790e56d106 msys2: update 2024-12-13 19:39:39 +08:00
a00eb7969e [core] codegen: Implement matrix_power
Last of the functions that need to be ported over to strided-ndarray.
2024-12-13 15:23:31 +08:00
27a6f47330 [core] codegen: Implement construction of unsized ndarrays
Partially based on f731e604: core/ndstrides: add more ScalarOrNDArray
and NDArrayObject utils.
2024-12-13 15:23:31 +08:00
061747c67b [core] codegen: Implement NDArrayValue::atleast_nd
Based on 9cfa2622: core/ndstrides: add NDArrayObject::atleast_nd.
2024-12-13 15:23:31 +08:00
dc91d9e35a [core] codegen: Implement ScalarOrNDArray and use it in indexing
Based on 8f9d2d82: core/ndstrides: implement ndarray indexing.
2024-12-13 15:23:31 +08:00
438943ac6f [core] codegen: Implement indexing for NDArray
Based on 8f9d2d82: core/ndstrides: implement ndarray indexing

The functionality for `...` and `np.newaxis` is there in IRRT, but there
is no implementation of them for @kernel Python expressions because of
M-Labs/nac3#486.
2024-12-13 15:23:31 +08:00
678e56c95d [core] irrt: rename NDIndex to NDIndexInt
Unfortunately the name `NDIndex` is used in later commits. Renaming this
typedef to `NDIndexInt` to avoid amending. `NDIndexInt` will be removed
anyway when ndarray strides is completed.
2024-12-13 15:23:31 +08:00
fdfc80ca5f [core] codegen: Implement Slice{Type,Value}, RustSlice
Based on 01c96396: core/irrt: add Slice and Range and part of
8f9d2d82: core/ndstrides: implement ndarray indexing.

Needed for implementing general ndarray indexing.

Currently IRRT slice and range have nothing to do with NAC3's slice
and range. The IRRT slice and range are currently there to implement
ndarray specific features. However, in the future their definitions may
be used to replace that of NAC3's. (NAC3's range is a [i32 x 3], IRRT's
range is a proper struct. NAC3 does not have a slice struct).
2024-12-13 15:23:31 +08:00
8b3429d62a [artiq] Reimplement get_obj_value for strided ndarray
Based on 7ef93472: artiq: reimplement get_obj_value to use ndarray with
strides
2024-12-13 15:23:31 +08:00
f4c5038b95 [artiq] codegen: Reimplement polymorphic_print for strided ndarray
Based on 2a6ee503: artiq: reimplement polymorphic_print for ndarray
2024-12-13 15:23:31 +08:00
ddd16738a6 [core] codegen: implement ndarray iterator NDIter
Based on 50f960ab: core/ndstrides: implement ndarray iterator NDIter

A necessary utility to iterate through all elements in a possibly
strided ndarray.
2024-12-13 15:23:31 +08:00
44c49dc102 [artiq] codegen: Reimplement polymorphic_print for strided ndarray
Based on 2a6ee503: artiq: reimplement polymorphic_print for ndarray
2024-12-13 15:23:31 +08:00
e4bd376587 [core] codegen: Implement ContiguousNDArray
Fixes compatibility with linalg algorithms. matrix_power is missing due
to the need for indexing support.
2024-12-13 15:23:29 +08:00
44498f22f6 [core] codegen: Implement NDArray functions from a0a1f35b 2024-12-13 15:22:11 +08:00
110416d07a [core] codegen/irrt: Add IRRT functions for strided-ndarray 2024-12-13 15:22:11 +08:00
08a7d01a13 [core] Add itemsize and strides to NDArray struct
Temporarily disable linalg ndarray tests as they are not ported to work
with strided-ndarray.
2024-12-13 15:22:09 +08:00
3cd36fddc3 [core] codegen/types: Add check_struct_type_matches_fields
Shorthand for checking if a type is representable by a StructFields
instance.
2024-12-12 11:40:44 +08:00
56a7a9e03d [core] codegen: Add helper functions for create+call functions
Replacement for various FnCall methods from legacy ndstrides
implementation.
2024-12-12 11:30:36 +08:00
574ae40f97 [core] codegen: Add call_memcpy_generic_array
Replacement for Instance<Ptr>::copy_from from legacy ndstrides
implementation.
2024-12-12 11:30:36 +08:00
aa293b6bea [core] codegen: Add type_aligned_alloca 2024-12-12 11:30:35 +08:00
eb4b881690 [core] Expose {types,values}::ndarray modules
Allows better encapsulation of members in these modules rather than
allowing them to leak into types/values mod.
2024-12-12 11:30:14 +08:00
3d0a1d281c [core] Expose irrt::ndarray 2024-12-10 12:49:49 +08:00
99 changed files with 10247 additions and 5959 deletions

111
Cargo.lock generated
View File

@ -126,9 +126,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]] [[package]]
name = "cc" name = "cc"
version = "1.2.3" version = "1.2.7"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "27f657647bcff5394bf56c7317665bbf790a137a50eaaa5c6bfbb9e27a518f2d" checksum = "a012a0df96dd6d06ba9a1b29d6402d1a5d77c6befd2566afdc26e10603dc93d7"
dependencies = [ dependencies = [
"shlex", "shlex",
] ]
@ -170,7 +170,7 @@ dependencies = [
"heck 0.5.0", "heck 0.5.0",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
@ -187,14 +187,14 @@ checksum = "5b63caa9aa9397e2d9480a9b13673856c78d8ac123288526c37d7839f2a86990"
[[package]] [[package]]
name = "console" name = "console"
version = "0.15.8" version = "0.15.10"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0e1f83fc076bd6dd27517eacdf25fef6c4dfe5f1d7448bafaaf3a26f13b5e4eb" checksum = "ea3c6ecd8059b57859df5c69830340ed3c41d30e3da0c1cbed90a96ac853041b"
dependencies = [ dependencies = [
"encode_unicode", "encode_unicode",
"lazy_static",
"libc", "libc",
"windows-sys 0.52.0", "once_cell",
"windows-sys 0.59.0",
] ]
[[package]] [[package]]
@ -221,18 +221,18 @@ dependencies = [
[[package]] [[package]]
name = "crossbeam-channel" name = "crossbeam-channel"
version = "0.5.13" version = "0.5.14"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "33480d6946193aa8033910124896ca395333cae7e2d1113d1fef6c3272217df2" checksum = "06ba6d68e24814cb8de6bb986db8222d3a027d15872cabc0d18817bc3c0e4471"
dependencies = [ dependencies = [
"crossbeam-utils", "crossbeam-utils",
] ]
[[package]] [[package]]
name = "crossbeam-deque" name = "crossbeam-deque"
version = "0.8.5" version = "0.8.6"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613f8cc01fe9cf1a3eb3d7f488fd2fa8388403e97039e2f73692932e291a770d" checksum = "9dd111b7b7f7d55b72c0a6ae361660ee5853c9af73f70c3c2ef6858b950e2e51"
dependencies = [ dependencies = [
"crossbeam-epoch", "crossbeam-epoch",
"crossbeam-utils", "crossbeam-utils",
@ -249,18 +249,18 @@ dependencies = [
[[package]] [[package]]
name = "crossbeam-queue" name = "crossbeam-queue"
version = "0.3.11" version = "0.3.12"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df0346b5d5e76ac2fe4e327c5fd1118d6be7c51dfb18f9b7922923f287471e35" checksum = "0f58bbc28f91df819d0aa2a2c00cd19754769c2fad90579b3592b1c9ba7a3115"
dependencies = [ dependencies = [
"crossbeam-utils", "crossbeam-utils",
] ]
[[package]] [[package]]
name = "crossbeam-utils" name = "crossbeam-utils"
version = "0.8.20" version = "0.8.21"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80" checksum = "d0a5c400df2834b80a4c3327b3aad3a4c4cd4de0629063962b03235697506a28"
[[package]] [[package]]
name = "crypto-common" name = "crypto-common"
@ -305,9 +305,9 @@ dependencies = [
[[package]] [[package]]
name = "encode_unicode" name = "encode_unicode"
version = "0.3.6" version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a357d28ed41a50f9c765dbfe56cbc04a64e53e5fc58ba79fbc34c10ef3df831f" checksum = "34aa73646ffb006b8f5147f3dc182bd4bcb190227ce861fc4a4844bf8e3cb2c0"
[[package]] [[package]]
name = "equivalent" name = "equivalent"
@ -378,9 +378,9 @@ dependencies = [
[[package]] [[package]]
name = "glob" name = "glob"
version = "0.3.1" version = "0.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2fabcfbdc87f4758337ca535fb41a6d701b65693ce38287d856d1674551ec9b" checksum = "a8d1add55171497b4705a648c6b583acafb01d58050a51727785f0b2c8e0a2b2"
[[package]] [[package]]
name = "hashbrown" name = "hashbrown"
@ -417,11 +417,11 @@ checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]] [[package]]
name = "home" name = "home"
version = "0.5.9" version = "0.5.11"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3d1354bf6b7235cb4a0576c2619fd4ed18183f689b12b006a0ee7329eeff9a5" checksum = "589533453244b0995c858700322199b2becb13b627df2851f64a2775d024abcf"
dependencies = [ dependencies = [
"windows-sys 0.52.0", "windows-sys 0.59.0",
] ]
[[package]] [[package]]
@ -472,7 +472,7 @@ checksum = "9dd28cfd4cfba665d47d31c08a6ba637eed16770abca2eccbbc3ca831fef1e44"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
@ -559,9 +559,9 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
[[package]] [[package]]
name = "libc" name = "libc"
version = "0.2.167" version = "0.2.169"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "09d6582e104315a817dff97f75133544b2e094ee22447d2acf4a74e189ba06fc" checksum = "b5aba8db14291edd000dfcc4d620c7ebfb122c613afb886ca8803fa4e128a20a"
[[package]] [[package]]
name = "libloading" name = "libloading"
@ -678,7 +678,7 @@ dependencies = [
"proc-macro-error", "proc-macro-error",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
"trybuild", "trybuild",
] ]
@ -799,7 +799,7 @@ dependencies = [
"phf_shared 0.11.2", "phf_shared 0.11.2",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
@ -927,7 +927,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"pyo3-macros-backend", "pyo3-macros-backend",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
@ -940,14 +940,14 @@ dependencies = [
"proc-macro2", "proc-macro2",
"pyo3-build-config", "pyo3-build-config",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
name = "quote" name = "quote"
version = "1.0.37" version = "1.0.38"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b5b9d34b8991d19d98081b46eacdd8eb58c6f2b201139f7c5f643cc155a633af" checksum = "0e4dccaaaf89514f546c693ddc140f729f958c247918a13380cccc6078391acc"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
] ]
@ -1004,9 +1004,9 @@ dependencies = [
[[package]] [[package]]
name = "redox_syscall" name = "redox_syscall"
version = "0.5.7" version = "0.5.8"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9b6dfecf2c74bce2466cabf93f6664d6998a69eb21e39f4207930065b27b771f" checksum = "03a862b389f93e68874fbf580b9de08dd02facb9a788ebadaf4a3fd33cf58834"
dependencies = [ dependencies = [
"bitflags", "bitflags",
] ]
@ -1062,9 +1062,9 @@ dependencies = [
[[package]] [[package]]
name = "rustversion" name = "rustversion"
version = "1.0.18" version = "1.0.19"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0e819f2bc632f285be6d7cd36e25940d45b2391dd6d9b939e79de557f7014248" checksum = "f7c45b9784283f1b2e7fb61b42047c2fd678ef0960d4f6f1eba131594cc369d4"
[[package]] [[package]]
name = "ryu" name = "ryu"
@ -1089,35 +1089,35 @@ checksum = "94143f37725109f92c262ed2cf5e59bce7498c01bcc1502d7b9afe439a4e9f49"
[[package]] [[package]]
name = "semver" name = "semver"
version = "1.0.23" version = "1.0.24"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b" checksum = "3cb6eb87a131f756572d7fb904f6e7b68633f09cca868c5df1c4b8d1a694bbba"
[[package]] [[package]]
name = "serde" name = "serde"
version = "1.0.215" version = "1.0.217"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6513c1ad0b11a9376da888e3e0baa0077f1aed55c17f50e7b2397136129fb88f" checksum = "02fc4265df13d6fa1d00ecff087228cc0a2b5f3c0e87e258d8b94a156e984c70"
dependencies = [ dependencies = [
"serde_derive", "serde_derive",
] ]
[[package]] [[package]]
name = "serde_derive" name = "serde_derive"
version = "1.0.215" version = "1.0.217"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ad1e866f866923f252f05c889987993144fb74e722403468a4ebd70c3cd756c0" checksum = "5a9bf7cf98d04a2b28aead066b7496853d4779c9cc183c440dbac457641e19a0"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
name = "serde_json" name = "serde_json"
version = "1.0.133" version = "1.0.134"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c7fceb2473b9166b2294ef05efcb65a3db80803f0b03ef86a5fc88a2b85ee377" checksum = "d00f4175c42ee48b15416f6193a959ba3a0d67fc699a0db9ad12df9f83991c7d"
dependencies = [ dependencies = [
"itoa", "itoa",
"memchr", "memchr",
@ -1226,7 +1226,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"rustversion", "rustversion",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
@ -1242,9 +1242,9 @@ dependencies = [
[[package]] [[package]]
name = "syn" name = "syn"
version = "2.0.90" version = "2.0.94"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "919d3b74a5dd0ccd15aeb8f93e7006bd9e14c295087c9896a110f490752bcf31" checksum = "987bc0be1cdea8b10216bd06e2ca407d40b9543468fafd3ddfb02f36e77f71f3"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
@ -1265,12 +1265,13 @@ checksum = "42a4d50cdb458045afc8131fd91b64904da29548bcb63c7236e0844936c13078"
[[package]] [[package]]
name = "tempfile" name = "tempfile"
version = "3.14.0" version = "3.15.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "28cce251fcbc87fac86a866eeb0d6c2d536fc16d06f184bb61aeae11aa4cee0c" checksum = "9a8a559c81686f576e8cd0290cd2a24a2a9ad80c98b3478856500fcbd7acd704"
dependencies = [ dependencies = [
"cfg-if", "cfg-if",
"fastrand", "fastrand",
"getrandom",
"once_cell", "once_cell",
"rustix", "rustix",
"windows-sys 0.59.0", "windows-sys 0.59.0",
@ -1278,9 +1279,9 @@ dependencies = [
[[package]] [[package]]
name = "term" name = "term"
version = "1.0.0" version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4df4175de05129f31b80458c6df371a15e7fc3fd367272e6bf938e5c351c7ea0" checksum = "a3bb6001afcea98122260987f8b7b5da969ecad46dbf0b5453702f776b491a41"
dependencies = [ dependencies = [
"home", "home",
"windows-sys 0.52.0", "windows-sys 0.52.0",
@ -1325,7 +1326,7 @@ checksum = "4fee6c4efc90059e10f81e6d42c60a18f76588c3d74cb83a0b242a2b6c7504c1"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]
[[package]] [[package]]
@ -1603,9 +1604,9 @@ checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec"
[[package]] [[package]]
name = "winnow" name = "winnow"
version = "0.6.20" version = "0.6.22"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "36c1fec1a2bb5866f07c25f68c26e565c4c200aebb96d7e55710c19d3e8ac49b" checksum = "39281189af81c07ec09db316b302a3e67bf9bd7cbf6c820b50e35fee9c2fa980"
dependencies = [ dependencies = [
"memchr", "memchr",
] ]
@ -1637,5 +1638,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.90", "syn 2.0.94",
] ]

6
flake.lock generated
View File

@ -2,11 +2,11 @@
"nodes": { "nodes": {
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1731319897, "lastModified": 1735834308,
"narHash": "sha256-PbABj4tnbWFMfBp6OcUK5iGy1QY+/Z96ZcLpooIbuEI=", "narHash": "sha256-dklw3AXr3OGO4/XT1Tu3Xz9n/we8GctZZ75ZWVqAVhk=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "dc460ec76cbff0e66e269457d7b728432263166c", "rev": "6df24922a1400241dae323af55f30e4318a6ca65",
"type": "github" "type": "github"
}, },
"original": { "original": {

View File

@ -0,0 +1,29 @@
from min_artiq import *
import numpy
from numpy import int32
@nac3
class NumpyBoolDecay:
core: KernelInvariant[Core]
np_true: KernelInvariant[bool]
np_false: KernelInvariant[bool]
np_int: KernelInvariant[int32]
np_float: KernelInvariant[float]
np_str: KernelInvariant[str]
def __init__(self):
self.core = Core()
self.np_true = numpy.True_
self.np_false = numpy.False_
self.np_int = numpy.int32(0)
self.np_float = numpy.float64(0.0)
self.np_str = numpy.str_("")
@kernel
def run(self):
pass
if __name__ == "__main__":
NumpyBoolDecay().run()

View File

@ -12,16 +12,17 @@ use pyo3::{
PyObject, PyResult, Python, PyObject, PyResult, Python,
}; };
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
use nac3core::{ use nac3core::{
codegen::{ codegen::{
expr::{destructure_range, gen_call}, expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size, llvm_intrinsics::{call_int_smax, call_memcpy, call_stackrestore, call_stacksave},
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with}, stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
types::NDArrayType, type_aligned_alloca,
types::ndarray::NDArrayType,
values::{ values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, ProxyValue, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue, RangeValue,
RangeValue, UntypedArrayLikeAccessor, UntypedArrayLikeAccessor,
}, },
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}, },
@ -34,12 +35,14 @@ use nac3core::{
}, },
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef}, nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
symbol_resolver::ValueEnum, symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall}, toplevel::{
helper::{extract_ndims, PrimDef},
numpy::unpack_ndarray_var_tys,
DefinitionId, GenCall,
},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap}, typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
}; };
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
/// The parallelism mode within a block. /// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)] #[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode { enum ParallelMode {
@ -159,7 +162,7 @@ impl<'a> ArtiqCodeGenerator<'a> {
} }
} }
impl<'b> CodeGenerator for ArtiqCodeGenerator<'b> { impl CodeGenerator for ArtiqCodeGenerator<'_> {
fn get_name(&self) -> &str { fn get_name(&self) -> &str {
&self.name &self.name
} }
@ -458,60 +461,49 @@ fn format_rpc_arg<'ctx>(
let llvm_i1 = ctx.ctx.bool_type(); let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty); let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty); let ndims = extract_ndims(&ctx.unifier, ndims);
let llvm_arg = NDArrayValue::from_pointer_value( let dtype = ctx.get_llvm_type(generator, elem_ty);
arg.into_pointer_value(), let ndarray = NDArrayType::new(generator, ctx.ctx, dtype, ndims)
llvm_elem_ty, .map_value(arg.into_pointer_value(), None);
llvm_usize,
None,
);
let llvm_usize_sizeof = ctx let ndims = llvm_usize.const_int(ndims, false);
.builder
.build_int_truncate_or_bit_cast(
llvm_arg.get_type().size_type().size_of(),
llvm_usize,
"",
)
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let dims_buf_sz = // `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap(); // the reader.
// Turning it into a ContiguousNDArray to get a `data` that is contiguous.
let carray = ndarray.make_contiguous_ndarray(generator, ctx);
let buffer_size = let sizeof_usize = llvm_usize.size_of();
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap(); let sizeof_usize =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap(); let sizeof_pdata = dtype.ptr_type(AddressSpace::default()).size_of();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg")); let sizeof_pdata =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_pdata, llvm_usize, "").unwrap();
call_memcpy_generic( let sizeof_buf_shape = ctx.builder.build_int_mul(sizeof_usize, ndims, "").unwrap();
ctx, let sizeof_buf = ctx.builder.build_int_add(sizeof_buf_shape, sizeof_pdata, "").unwrap();
buffer.base_ptr(ctx, generator),
llvm_arg.ptr_to_data(ctx),
llvm_pdata_sizeof,
llvm_i1.const_zero(),
);
let pbuffer_dims_begin = // buf = { data: void*, shape: [size_t; ndims]; }
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) }; let buf = ctx.builder.build_array_alloca(llvm_i8, sizeof_buf, "rpc.arg").unwrap();
call_memcpy_generic( let buf = ArraySliceValue::from_ptr_val(buf, sizeof_buf, Some("rpc.arg"));
ctx, let buf_data = buf.base_ptr(ctx, generator);
pbuffer_dims_begin, let buf_shape =
llvm_arg.shape().base_ptr(ctx, generator), unsafe { buf.ptr_offset_unchecked(ctx, generator, &sizeof_pdata, None) };
dims_buf_sz,
llvm_i1.const_zero(),
);
buffer.base_ptr(ctx, generator) // Write to `buf->data`
let carray_data = carray.load_data(ctx);
let carray_data = ctx.builder.build_pointer_cast(carray_data, llvm_pi8, "").unwrap();
call_memcpy(ctx, buf_data, carray_data, sizeof_pdata, llvm_i1.const_zero());
// Write to `buf->shape`
let carray_shape = ndarray.shape().base_ptr(ctx, generator);
let carray_shape_i8 =
ctx.builder.build_pointer_cast(carray_shape, llvm_pi8, "").unwrap();
call_memcpy(ctx, buf_shape, carray_shape_i8, sizeof_buf_shape, llvm_i1.const_zero());
buf.base_ptr(ctx, generator)
} }
_ => { _ => {
@ -552,6 +544,8 @@ fn format_rpc_ret<'ctx>(
let llvm_i32 = ctx.ctx.i32_type(); let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false); let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default()); let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| { let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None) ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
@ -572,8 +566,7 @@ fn format_rpc_ret<'ctx>(
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) { let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_i1 = ctx.ctx.bool_type(); let num_0 = llvm_usize.const_zero();
let llvm_usize = generator.get_size_type(ctx.ctx);
// Round `val` up to its modulo `power_of_two` // Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>, let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
@ -599,79 +592,49 @@ fn format_rpc_ret<'ctx>(
.unwrap() .unwrap()
}; };
// Setup types
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
// Allocate the resulting ndarray // Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off. // A condition after format_rpc_ret ensures this will not be popped this off.
let ndarray = llvm_ret_ty.alloca(generator, ctx, Some("rpc.result")); let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
let ndims = extract_ndims(&ctx.unifier, ndims);
let ndarray = NDArrayType::new(generator, ctx.ctx, dtype_llvm, ndims)
.construct_uninitialized(generator, ctx, None);
// Setup ndims // NOTE: Current content of `ndarray`:
let ndims = // - * `data` - **NOT YET** allocated.
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) { // - * `itemsize` - initialized to be size_of(dtype).
assert_eq!(values.len(), 1); // - * `ndims` - initialized.
// - * `shape` - allocated; has uninitialized values.
// - * `strides` - allocated; has uninitialized values.
u64::try_from(values[0].clone()).unwrap() let itemsize = ndarray.load_itemsize(ctx); // Same as doing a `ctx.get_llvm_type` on `dtype` and get its `size_of()`.
} else {
unreachable!();
};
// Set `ndarray.ndims`
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
// Allocate `ndarray.shape` [size_t; ndims]
ndarray.create_shape(ctx, llvm_usize, ndarray.load_ndims(ctx));
/*
ndarray now:
- .ndims: initialized
- .shape: allocated but uninitialized .shape
- .data: uninitialized
*/
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let llvm_elem_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
.unwrap();
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be // Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment // (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_dims = let sizeof_usize = llvm_usize.size_of();
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap(); let sizeof_usize =
ctx.builder.build_int_truncate_or_bit_cast(sizeof_usize, llvm_usize, "").unwrap();
let sizeof_ptr = llvm_i8.ptr_type(AddressSpace::default()).size_of();
let sizeof_ptr =
ctx.builder.build_int_z_extend_or_bit_cast(sizeof_ptr, llvm_usize, "").unwrap();
let sizeof_shape =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), sizeof_usize, "").unwrap();
// Size of the buffer for the initial `rpc_recv()`.
let unaligned_buffer_size = let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap(); ctx.builder.build_int_add(sizeof_ptr, sizeof_shape, "").unwrap();
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
let stackptr = call_stacksave(ctx, None); let stackptr = call_stacksave(ctx, None);
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment let buffer = type_aligned_alloca(
let buffer = ctx generator,
.builder ctx,
.build_array_alloca( llvm_i8_8,
llvm_i8_8, unaligned_buffer_size,
ctx.builder Some("rpc.buffer"),
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "") );
.unwrap(), let buffer = ArraySliceValue::from_ptr_val(buffer, unaligned_buffer_size, None);
"rpc.buffer",
)
.unwrap();
let buffer = ctx
.builder
.build_bit_cast(buffer, llvm_pi8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape] // The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
// //
@ -679,7 +642,7 @@ fn format_rpc_ret<'ctx>(
let ndarray_nbytes = ctx let ndarray_nbytes = ctx
.build_call_or_invoke( .build_call_or_invoke(
rpc_recv, rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims]. &[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]
"rpc.size.next", "rpc.size.next",
) )
.map(BasicValueEnum::into_int_value) .map(BasicValueEnum::into_int_value)
@ -687,16 +650,14 @@ fn format_rpc_ret<'ctx>(
// debug_assert(ndarray_nbytes > 0) // debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let cmp = ctx
.builder
.build_int_compare(IntPredicate::UGT, ndarray_nbytes, num_0, "")
.unwrap();
ctx.make_assert( ctx.make_assert(
generator, generator,
ctx.builder cmp,
.build_int_compare(
IntPredicate::UGT,
ndarray_nbytes,
ndarray_nbytes.get_type().const_zero(),
"",
)
.unwrap(),
"0:AssertionError", "0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next", "Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None], [None, None, None],
@ -705,49 +666,50 @@ fn format_rpc_ret<'ctx>(
} }
// Copy shape from the buffer to `ndarray.shape`. // Copy shape from the buffer to `ndarray.shape`.
let pbuffer_dims = // We need to skip the first `sizeof(uint8_t*)` bytes to skip the `pdata` in `[pdata, shape]`.
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) }; let pbuffer_shape =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &sizeof_ptr, None) };
let pbuffer_shape =
ctx.builder.build_pointer_cast(pbuffer_shape, llvm_pusize, "").unwrap();
// Copy shape from buffer to `ndarray.shape`
ndarray.copy_shape_from_array(generator, ctx, pbuffer_shape);
call_memcpy_generic(
ctx,
ndarray.shape().base_ptr(ctx, generator),
pbuffer_dims,
sizeof_dims,
llvm_i1.const_zero(),
);
// Restore stack from before allocation of buffer // Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr); call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`. // Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation // `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate) // (for ndarray.create_data() to know how many elements to allocate)
let num_elements = unsafe { ndarray.create_data(generator, ctx) }; // NOTE: the strides of `ndarray` has also been set to contiguous in `create_data`.
call_ndarray_calc_size(generator, ctx, &ndarray.shape(), (None, None));
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes) // debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None { if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let sizeof_data = let num_elements = ndarray.size(generator, ctx);
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
let expected_ndarray_nbytes =
ctx.builder.build_int_mul(num_elements, itemsize, "").unwrap();
let cmp = ctx
.builder
.build_int_compare(
IntPredicate::UGE,
expected_ndarray_nbytes,
ndarray_nbytes,
"",
)
.unwrap();
ctx.make_assert( ctx.make_assert(
generator, generator,
ctx.builder.build_int_compare(IntPredicate::UGE, cmp,
sizeof_data,
ndarray_nbytes,
"",
).unwrap(),
"0:AssertionError", "0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes", "Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(sizeof_data), Some(ndarray_nbytes), None], [Some(expected_ndarray_nbytes), Some(ndarray_nbytes), None],
ctx.current_loc, ctx.current_loc,
); );
} }
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
let ndarray_data = ndarray.data().base_ptr(ctx, generator); let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
// NOTE: Currently on `prehead_bb` // NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap(); ctx.builder.build_unconditional_branch(head_bb).unwrap();
@ -756,7 +718,7 @@ fn format_rpc_ret<'ctx>(
ctx.builder.position_at_end(head_bb); ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap(); let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]); phi.add_incoming(&[(&ndarray_data, prehead_bb)]);
let alloc_size = ctx let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next") .build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
@ -771,12 +733,13 @@ fn format_rpc_ret<'ctx>(
ctx.builder.position_at_end(alloc_bb); ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T) // Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof); let alloc_size = round_up(ctx, alloc_size, itemsize);
// TODO(Derppening): Candidate for refactor into type_aligned_alloca
let alloc_ptr = ctx let alloc_ptr = ctx
.builder .builder
.build_array_alloca( .build_array_alloca(
llvm_elem_ty, dtype_llvm,
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(), ctx.builder.build_int_unsigned_div(alloc_size, itemsize, "").unwrap(),
"rpc.alloc", "rpc.alloc",
) )
.unwrap(); .unwrap();
@ -1375,62 +1338,50 @@ fn polymorphic_print<'ctx>(
} }
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
fmt.push_str("array(["); fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
let val = NDArrayValue::from_pointer_value( let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
value.into_pointer_value(), let ndarray = NDArrayType::from_unifier_type(generator, ctx, ty)
llvm_elem_ty, .map_value(value.into_pointer_value(), None);
llvm_usize,
None,
);
let len = call_ndarray_calc_size(generator, ctx, &val.shape(), (None, None));
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
gen_for_callback_incrementing( let num_0 = llvm_usize.const_zero();
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
polymorphic_print( // Print `ndarray` as a flat list delimited by interspersed with ", \0"
ctx, ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
generator, let i = hdl.get_index(ctx);
&[(elem_ty, elem.into())], let scalar = hdl.get_scalar(ctx);
"",
None,
true,
as_rtio,
)?;
gen_if_callback( // if (i != 0) puts(", ");
generator, gen_if_callback(
ctx, generator,
|_, ctx| { ctx,
Ok(ctx |_, ctx| {
.builder let not_first = ctx
.build_int_compare(IntPredicate::ULT, i, last, "") .builder
.unwrap()) .build_int_compare(IntPredicate::NE, i, num_0, "")
}, .unwrap();
|generator, ctx| { Ok(not_first)
printf(ctx, generator, ", \0".into(), Vec::default()); },
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
Ok(())
},
|_, _| Ok(()),
)?;
Ok(()) // Print element
}, polymorphic_print(
|_, _| Ok(()), ctx,
)?; generator,
&[(dtype, scalar.into())],
Ok(()) "",
}, None,
llvm_usize.const_int(1, false), true,
)?; as_rtio,
)?;
Ok(())
})?;
fmt.push_str(")]"); fmt.push_str(")]");
flush(ctx, generator, &mut fmt, &mut args); flush(ctx, generator, &mut fmt, &mut args);
@ -1554,7 +1505,7 @@ pub fn call_rtio_log_impl<'ctx>(
/// Generates a call to `core_log`. /// Generates a call to `core_log`.
pub fn gen_core_log<'ctx>( pub fn gen_core_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>, obj: Option<&(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)], args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,
@ -1571,7 +1522,7 @@ pub fn gen_core_log<'ctx>(
/// Generates a call to `rtio_log`. /// Generates a call to `rtio_log`.
pub fn gen_rtio_log<'ctx>( pub fn gen_rtio_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>, obj: Option<&(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId), fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)], args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,

View File

@ -330,7 +330,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]), vars: into_var_map([arg_ty]),
}, },
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| { Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, &obj, fun, &args, generator)?; gen_core_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None) Ok(None)
}))), }))),
@ -360,7 +360,7 @@ impl Nac3 {
vars: into_var_map([arg_ty]), vars: into_var_map([arg_ty]),
}, },
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| { Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, &obj, fun, &args, generator)?; gen_rtio_log(ctx, obj.as_ref(), fun, &args, generator)?;
Ok(None) Ok(None)
}))), }))),

View File

@ -10,12 +10,14 @@ use itertools::Itertools;
use parking_lot::RwLock; use parking_lot::RwLock;
use pyo3::{ use pyo3::{
types::{PyDict, PyTuple}, types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python, PyAny, PyErr, PyObject, PyResult, Python,
}; };
use super::PrimitivePythonId;
use nac3core::{ use nac3core::{
codegen::{ codegen::{
types::{NDArrayType, ProxyType}, types::{ndarray::NDArrayType, ProxyType},
values::ndarray::make_contiguous_strides,
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}, },
inkwell::{ inkwell::{
@ -37,8 +39,6 @@ use nac3core::{
}, },
}; };
use super::PrimitivePythonId;
pub enum PrimitiveValue { pub enum PrimitiveValue {
I32(i32), I32(i32),
I64(i64), I64(i64),
@ -931,10 +931,13 @@ impl InnerResolver {
|_| Ok(Ok(extracted_ty)), |_| Ok(Ok(extracted_ty)),
) )
} else if unifier.unioned(extracted_ty, primitives.bool) { } else if unifier.unioned(extracted_ty, primitives.bool) {
obj.extract::<bool>().map_or_else( if obj.extract::<bool>().is_ok()
|_| Ok(Err(format!("{obj} is not in the range of bool"))), || obj.call_method("__bool__", (), None)?.extract::<bool>().is_ok()
|_| Ok(Ok(extracted_ty)), {
) Ok(Ok(extracted_ty))
} else {
Ok(Err(format!("{obj} is not in the range of bool")))
}
} else if unifier.unioned(extracted_ty, primitives.float) { } else if unifier.unioned(extracted_ty, primitives.float) {
obj.extract::<f64>().map_or_else( obj.extract::<f64>().map_or_else(
|_| Ok(Err(format!("{obj} is not in the range of float64"))), |_| Ok(Err(format!("{obj} is not in the range of float64"))),
@ -974,10 +977,14 @@ impl InnerResolver {
let val: u64 = obj.extract().unwrap(); let val: u64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::U64(val));
Ok(Some(ctx.ctx.i64_type().const_int(val, false).into())) Ok(Some(ctx.ctx.i64_type().const_int(val, false).into()))
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ { } else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract().unwrap(); let val: bool = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into())) Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Bool(val));
Ok(Some(ctx.ctx.i8_type().const_int(u64::from(val), false).into()))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap(); let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone())); self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
@ -1085,18 +1092,19 @@ impl InnerResolver {
} else { } else {
unreachable!("must be ndarray") unreachable!("must be ndarray")
}; };
let (ndarray_dtype, ndarray_ndims) = let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype); let llvm_ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty);
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty); let dtype = llvm_ndarray.element_type();
{ {
if self.global_value_ids.read().contains_key(&id) { if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global( ctx.module.add_global(
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(), llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
) )
@ -1106,40 +1114,44 @@ impl InnerResolver {
self.global_value_ids.write().insert(id, obj.into()); self.global_value_ids.write().insert(id, obj.into());
} }
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndarray_ndims) let ndims = llvm_ndarray.ndims();
else {
unreachable!("Expected Literal for ndarray_ndims")
};
let ndarray_ndims = if values.len() == 1 {
values[0].clone()
} else {
todo!("Unpacking literal of more than one element unimplemented")
};
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
unreachable!("Expected u64 value for ndarray_ndims")
};
// Obtain the shape of the ndarray // Obtain the shape of the ndarray
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?; let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
assert_eq!(shape_tuple.len(), ndarray_ndims as usize); assert_eq!(shape_tuple.len(), ndims as usize);
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
// The Rust type inferencer cannot figure this out
let shape_values = shape_tuple
.iter() .iter()
.enumerate() .enumerate()
.map(|(i, elem)| { .map(|(i, elem)| {
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err( let value = self
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")), .get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
) .map_err(|e| {
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})?
.unwrap();
let value = ctx
.builder
.build_int_z_extend(value.into_int_value(), llvm_usize, "")
.unwrap();
Ok(value)
}) })
.collect(); .collect::<Result<Vec<_>, PyErr>>()?;
let shape_values = shape_values?.unwrap();
let shape_values = llvm_usize.const_array( // Also use this opportunity to get the constant values of `shape_values` for calculating strides.
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(), let shape_u64s = shape_values
); .iter()
.map(|dim| {
assert!(dim.is_const());
dim.get_zero_extended_constant().unwrap()
})
.collect_vec();
let shape_values = llvm_usize.const_array(&shape_values);
// create a global for ndarray.shape and initialize it using the shape // create a global for ndarray.shape and initialize it using the shape
let shape_global = ctx.module.add_global( let shape_global = ctx.module.add_global(
llvm_usize.array_type(ndarray_ndims as u32), llvm_usize.array_type(ndims as u32),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".shape"), &(id_str.clone() + ".shape"),
); );
@ -1147,17 +1159,25 @@ impl InnerResolver {
// Obtain the (flattened) elements of the ndarray // Obtain the (flattened) elements of the ndarray
let sz: usize = obj.getattr("size")?.extract()?; let sz: usize = obj.getattr("size")?.extract()?;
let data: Result<Option<Vec<_>>, _> = (0..sz) let data: Vec<_> = (0..sz)
.map(|i| { .map(|i| {
obj.getattr("flat")?.get_item(i).and_then(|elem| { obj.getattr("flat")?.get_item(i).and_then(|elem| {
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| { let value = self
super::CompileError::new_err(format!("Error getting element {i}: {e}")) .get_obj_value(py, elem, ctx, generator, ndarray_dtype)
}) .map_err(|e| {
super::CompileError::new_err(format!(
"Error getting element {i}: {e}"
))
})?
.unwrap();
assert_eq!(value.get_type(), dtype);
Ok(value)
}) })
}) })
.collect(); .try_collect()?;
let data = data?.unwrap().into_iter(); let data = data.into_iter();
let data = match ndarray_dtype_llvm_ty { let data = match dtype {
BasicTypeEnum::ArrayType(ty) => { BasicTypeEnum::ArrayType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec()) ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
} }
@ -1182,38 +1202,97 @@ impl InnerResolver {
}; };
// create a global for ndarray.data and initialize it using the elements // create a global for ndarray.data and initialize it using the elements
//
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
// We will have to cast it to an `u8*` later.
let data_global = ctx.module.add_global( let data_global = ctx.module.add_global(
ndarray_dtype_llvm_ty.array_type(sz as u32), dtype.array_type(sz as u32),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".data"), &(id_str.clone() + ".data"),
); );
data_global.set_initializer(&data); data_global.set_initializer(&data);
// Get the constant itemsize.
//
// NOTE: dtype.size_of() may return a non-constant, where `TargetData::get_store_size`
// will always return a constant size.
let itemsize = ctx
.registry
.llvm_options
.create_target_machine()
.map(|tm| tm.get_target_data().get_store_size(&dtype))
.unwrap();
assert_ne!(itemsize, 0);
// Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
let strides =
strides.into_iter().map(|stride| llvm_usize.const_int(stride, false)).collect_vec();
let strides = llvm_usize.const_array(&strides);
// create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global(
llvm_usize.array_type(ndims as u32),
Some(AddressSpace::default()),
&format!("${id_str}.strides"),
);
strides_global.set_initializer(&strides);
// create a global for the ndarray object and initialize it // create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty
// NOTE: data_global is an array of dtype, we want a `u8*`.
let ndarray_data = data_global.as_pointer_value();
let ndarray_data = ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
let ndarray_itemsize = llvm_usize.const_int(itemsize, false);
let ndarray_ndims = llvm_usize.const_int(ndims, false);
// calling as_pointer_value on shape and strides returns [i64 x ndims]*
// convert into i64* to conform with expected layout of ndarray
let ndarray_shape = shape_global.as_pointer_value();
let ndarray_shape = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_shape,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray_strides = strides_global.as_pointer_value();
let ndarray_strides = unsafe {
ctx.builder
.build_in_bounds_gep(
ndarray_strides,
&[llvm_usize.const_zero(), llvm_usize.const_zero()],
"",
)
.unwrap()
};
let ndarray = llvm_ndarray
.as_base_type() .as_base_type()
.get_element_type() .get_element_type()
.into_struct_type() .into_struct_type()
.const_named_struct(&[ .const_named_struct(&[
llvm_usize.const_int(ndarray_ndims, false).into(), ndarray_itemsize.into(),
shape_global ndarray_ndims.into(),
.as_pointer_value() ndarray_shape.into(),
.const_cast(llvm_usize.ptr_type(AddressSpace::default())) ndarray_strides.into(),
.into(), ndarray_data.into(),
data_global
.as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
.into(),
]); ]);
let ndarray = ctx.module.add_global( let ndarray_global = ctx.module.add_global(
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(), llvm_ndarray.as_base_type().get_element_type().into_struct_type(),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
); );
ndarray.set_initializer(&value); ndarray_global.set_initializer(&ndarray);
Ok(Some(ndarray.as_pointer_value().into())) Ok(Some(ndarray_global.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple { } else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty); let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else { let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
@ -1373,9 +1452,12 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.uint64 { } else if ty_id == self.primitive_ids.uint64 {
let val: u64 = obj.extract()?; let val: u64 = obj.extract()?;
Ok(SymbolValue::U64(val)) Ok(SymbolValue::U64(val))
} else if ty_id == self.primitive_ids.bool || ty_id == self.primitive_ids.np_bool_ { } else if ty_id == self.primitive_ids.bool {
let val: bool = obj.extract()?; let val: bool = obj.extract()?;
Ok(SymbolValue::Bool(val)) Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.np_bool_ {
let val: bool = obj.call_method("__bool__", (), None)?.extract()?;
Ok(SymbolValue::Bool(val))
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract()?; let val: String = obj.extract()?;
Ok(SymbolValue::Str(val)) Ok(SymbolValue::Str(val))

View File

@ -1,5 +1,15 @@
#include "irrt/exception.hpp" #include "irrt/exception.hpp"
#include "irrt/list.hpp" #include "irrt/list.hpp"
#include "irrt/math.hpp" #include "irrt/math.hpp"
#include "irrt/ndarray.hpp" #include "irrt/range.hpp"
#include "irrt/slice.hpp" #include "irrt/slice.hpp"
#include "irrt/string.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"

View File

@ -21,7 +21,5 @@ using uint64_t = unsigned _ExtInt(64);
#endif #endif
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`. // The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t; using SliceIndex = int32_t;

View File

@ -2,6 +2,21 @@
#include "irrt/int_types.hpp" #include "irrt/int_types.hpp"
#include "irrt/math_util.hpp" #include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template<typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
} // namespace
extern "C" { extern "C" {
// Handle list assignment and dropping part of the list when // Handle list assignment and dropping part of the list when

View File

@ -1,5 +1,7 @@
#pragma once #pragma once
#include "irrt/int_types.hpp"
namespace { namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c // adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function // need to make sure `exp >= 0` before calling this function

View File

@ -1,144 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
} // namespace

View File

@ -0,0 +1,132 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::array {
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
/**
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
*
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
*
* # Notes on `ndarray`
* The caller is responsible for allocating space for `ndarray`.
* Here is what this function expects from `ndarray` when called:
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
* - `ndarray->itemsize` has to be initialized.
* - `ndarray->ndims` has to be initialized.
* - `ndarray->shape` has to be initialized.
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = static_cast<uint8_t*>(ndarray->data) + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
/**
* @brief See `write_list_to_array_helper`.
*/
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace ndarray::array
} // namespace
extern "C" {
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -0,0 +1,340 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Return the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The length.
*/
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
if (ndarray->ndims != 0) {
return ndarray->shape[0];
}
// numpy prohibits `__len__` on unsized objects
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
__builtin_unreachable();
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices` along the ndarray's axes.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
void* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element = static_cast<uint8_t*>(element) + indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Return the pointer to the nth (0-based) element of `ndarray` in flattened view.
*
* This function does no bound check.
*/
template<typename SizeT>
void* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
void* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element = static_cast<uint8_t*>(element) + ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape` to be contiguous.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, void* pelement, const void* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace ndarray::basic
} // namespace
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
void* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
void* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,165 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
namespace {
template<typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace {
namespace ndarray::broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace ndarray::broadcast
} // namespace
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -0,0 +1,51 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst#pyarrayinterface
*
* Note that this implementation is based on `PyArrayInterface` rather of `PyArrayObject`. The
* difference between `PyArrayInterface` and `PyArrayObject` (relevant to our implementation) is
* that `PyArrayInterface` *has* `itemsize` and uses `void*` for its `data`, whereas `PyArrayObject`
* does not require `itemsize` (probably using `strides[-1]` instead) and uses `char*` for its
* `data`. There are also minor differences in the struct layout.
*/
template<typename SizeT>
struct NDArray {
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT* shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values or contain 0.
*/
SizeT* strides;
/**
* @brief The underlying data this `ndarray` is pointing to.
*/
void* data;
};
} // namespace

View File

@ -0,0 +1,219 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
namespace {
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `int32_t`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `Slice<int32_t>`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*
* That is:
* ```
* my_ndarray[::-1, 3, ..., np.newaxis]
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/
struct NDIndex {
/**
* @brief Enum tag to specify the type of index.
*
* Please see the comment of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see the comment of each enum constant.
*/
uint8_t* data;
};
} // namespace
namespace {
namespace ndarray::indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
*
* This function also does proper assertions on `indices` to check for out of bounds access and more.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data`.
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`.
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template<typename SizeT>
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1) {
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++) {
const NDIndex* index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data = static_cast<uint8_t*>(dst_ndarray->data) + k * src_ndarray->strides[src_axis];
src_axis++;
} else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data =
static_cast<uint8_t*>(dst_ndarray->data) + (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
} else {
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace ndarray::indexing
} // namespace
extern "C" {
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices,
NDIndex* indices,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices,
NDIndex* indices,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,146 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
SizeT* strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT* indices;
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is 0.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*
* Initially this points to first element of the ndarray.
*/
void* element;
/**
* @brief Cache for the product of shape.
*
* Could be 0 if `shape` has 0s in it.
*/
SizeT size;
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, void* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) - strides[axis] * (shape[axis] - 1));
} else {
element = static_cast<void*>(reinterpret_cast<uint8_t*>(element) + strides[axis]);
break;
}
}
nth++;
}
};
} // namespace
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -0,0 +1,98 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace {
namespace ndarray::matmul {
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace ndarray::matmul
} // namespace
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -0,0 +1,97 @@
#pragma once
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace {
namespace ndarray::reshape {
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template<typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
SizeT dim = new_shape[axis_i];
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
} else {
neg1_exists = true;
neg1_axis_i = axis_i;
}
} else {
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
} else {
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists) {
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions
can_reshape = false;
} else if (new_size == 0 && size != 0) {
// `x` has no solutions
can_reshape = false;
} else if (size % new_size != 0) {
// `x` has no integer solutions
can_reshape = false;
} else {
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
} else {
can_reshape = (new_size == size);
}
if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
}
} // namespace ndarray::reshape
} // namespace
extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -0,0 +1,143 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace {
namespace ndarray::transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace ndarray::transpose
} // namespace
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -0,0 +1,47 @@
#pragma once
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
}
} // namespace range
/**
* @brief A Python range.
*/
template<typename T>
struct Range {
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template<typename SizeT>
T len() {
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,6 +1,145 @@
#pragma once #pragma once
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp" #include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/range.hpp"
namespace {
namespace slice {
/**
* @brief Resolve a possibly negative index in a list of a known length.
*
* Returns -1 if the resolved index is out of the list's bounds.
*/
template<typename T>
T resolve_index_in_length(T length, T index) {
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length) {
return resolved;
} else {
return -1;
}
}
/**
* @brief Resolve a slice as a range.
*
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/
template<typename T>
void indices(bool start_defined,
T start,
bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative) {
lower = -1;
upper = length - 1;
} else {
lower = 0;
upper = length;
}
if (start_defined) {
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
} else {
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined) {
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
} else {
*range_stop = step_is_negative ? lower : upper;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template<typename T>
struct Slice {
bool start_defined;
T start;
bool stop_defined;
T stop;
bool step_defined;
T step;
Slice() { this->reset(); }
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start) {
this->start_defined = true;
this->start = start;
}
void set_stop(T stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step) {
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template<typename SizeT>
Range<T> indices(T length) {
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template<typename SizeT>
Range<T> indices_checked(T length) {
// TODO: Switch to `SizeT length`
if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices<SizeT>(length);
}
};
} // namespace
extern "C" { extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) { SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
@ -14,15 +153,4 @@ SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
} }
return i; return i;
} }
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
} }
} // namespace

View File

@ -0,0 +1,23 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
bool __nac3_str_eq_impl(const char* str1, SizeT len1, const char* str2, SizeT len2) {
if (len1 != len2) {
return 0;
}
return __builtin_memcmp(str1, str2, static_cast<SizeT>(len1)) == 0;
}
} // namespace
extern "C" {
bool nac3_str_eq(const char* str1, uint32_t len1, const char* str2, uint32_t len2) {
return __nac3_str_eq_impl<uint32_t>(str1, len1, str2, len2);
}
bool nac3_str_eq64(const char* str1, uint64_t len1, const char* str2, uint64_t len2) {
return __nac3_str_eq_impl<uint64_t>(str1, len1, str2, len2);
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -17,6 +17,7 @@ pub trait CodeGenerator {
/// Return the module name for the code generator. /// Return the module name for the code generator.
fn get_name(&self) -> &str; fn get_name(&self) -> &str;
/// Return an instance of [`IntType`] corresponding to the type of `size_t` for this instance.
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>; fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
/// Generate function call and returns the function return value. /// Generate function call and returns the function return value.

View File

@ -24,42 +24,52 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
src_arr: ListValue<'ctx>, src_arr: ListValue<'ctx>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>), src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) { ) {
let size_ty = generator.get_size_type(ctx.ctx); let llvm_usize = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default()); let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type(); let llvm_i32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
assert_eq!(dest_idx.0.get_type(), llvm_i32);
assert_eq!(dest_idx.1.get_type(), llvm_i32);
assert_eq!(dest_idx.2.get_type(), llvm_i32);
assert_eq!(src_idx.0.get_type(), llvm_i32);
assert_eq!(src_idx.1.get_type(), llvm_i32);
assert_eq!(src_idx.2.get_type(), llvm_i32);
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", llvm_pi8);
let slice_assign_fun = { let slice_assign_fun = {
let ty_vec = vec![ let ty_vec = vec![
int32.into(), // dest start idx llvm_i32.into(), // dest start idx
int32.into(), // dest end idx llvm_i32.into(), // dest end idx
int32.into(), // dest step llvm_i32.into(), // dest step
elem_ptr_type.into(), // dest arr ptr elem_ptr_type.into(), // dest arr ptr
int32.into(), // dest arr len llvm_i32.into(), // dest arr len
int32.into(), // src start idx llvm_i32.into(), // src start idx
int32.into(), // src end idx llvm_i32.into(), // src end idx
int32.into(), // src step llvm_i32.into(), // src step
elem_ptr_type.into(), // src arr ptr elem_ptr_type.into(), // src arr ptr
int32.into(), // src arr len llvm_i32.into(), // src arr len
int32.into(), // size llvm_i32.into(), // size
]; ];
ctx.module.get_function(fun_symbol).unwrap_or_else(|| { ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
let fn_t = int32.fn_type(ty_vec.as_slice(), false); let fn_t = llvm_i32.fn_type(ty_vec.as_slice(), false);
ctx.module.add_function(fun_symbol, fn_t, None) ctx.module.add_function(fun_symbol, fn_t, None)
}) })
}; };
let zero = int32.const_zero(); let zero = llvm_i32.const_zero();
let one = int32.const_int(1, false); let one = llvm_i32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator); let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr = let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap(); ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len")); let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap(); let dest_len =
ctx.builder.build_int_truncate_or_bit_cast(dest_len, llvm_i32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator); let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
let src_arr_ptr = let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap(); ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len")); let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap(); let src_len =
ctx.builder.build_int_truncate_or_bit_cast(src_len, llvm_i32, "srclen32").unwrap();
// index in bound and positive should be done // index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and // assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
@ -136,7 +146,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
BasicTypeEnum::StructType(t) => t.size_of().unwrap(), BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx), _ => codegen_unreachable!(ctx),
}; };
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap() ctx.builder.build_int_truncate_or_bit_cast(s, llvm_i32, "size").unwrap()
} }
.into(), .into(),
]; ];
@ -147,6 +157,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
.map(Either::unwrap_left) .map(Either::unwrap_left)
.unwrap() .unwrap()
}; };
// update length // update length
let need_update = let need_update =
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap(); ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
@ -155,7 +166,8 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
let cont_bb = ctx.ctx.append_basic_block(current, "cont"); let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap(); ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb); ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap(); let new_len =
ctx.builder.build_int_z_extend_or_bit_cast(new_len, llvm_usize, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len); dest_arr.store_size(ctx, generator, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap(); ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb); ctx.builder.position_at_end(cont_bb);

View File

@ -62,8 +62,13 @@ pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>, v: FloatValue<'ctx>,
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| { let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false); let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isinf", fn_type, None) ctx.module.add_function("__nac3_isinf", fn_type, None)
}); });
@ -84,8 +89,13 @@ pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
v: FloatValue<'ctx>, v: FloatValue<'ctx>,
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| { let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false); let fn_type = llvm_i32.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_isnan", fn_type, None) ctx.module.add_function("__nac3_isnan", fn_type, None)
}); });
@ -104,6 +114,8 @@ pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> { pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type(); let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| { let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false); let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gamma", fn_type, None) ctx.module.add_function("__nac3_gamma", fn_type, None)
@ -121,6 +133,8 @@ pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) ->
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> { pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type(); let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| { let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false); let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_gammaln", fn_type, None) ctx.module.add_function("__nac3_gammaln", fn_type, None)
@ -138,6 +152,8 @@ pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> { pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
let llvm_f64 = ctx.ctx.f64_type(); let llvm_f64 = ctx.ctx.f64_type();
assert_eq!(v.get_type(), llvm_f64);
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| { let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false); let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
ctx.module.add_function("__nac3_j0", fn_type, None) ctx.module.add_function("__nac3_j0", fn_type, None)

View File

@ -13,13 +13,16 @@ use super::{CodeGenContext, CodeGenerator};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type}; use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
pub use list::*; pub use list::*;
pub use math::*; pub use math::*;
pub use ndarray::*; pub use range::*;
pub use slice::*; pub use slice::*;
pub use string::*;
mod list; mod list;
mod math; mod math;
mod ndarray; pub mod ndarray;
mod range;
mod slice; mod slice;
mod string;
#[must_use] #[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> { pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
@ -60,6 +63,27 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
irrt_mod irrt_mod
} }
/// Returns the name of a function which contains variants for 32-bit and 64-bit `size_t`.
///
/// - When [`TypeContext::size_type`] is 32-bits, the function name is `fn_name}`.
/// - When [`TypeContext::size_type`] is 64-bits, the function name is `{fn_name}64`.
#[must_use]
pub fn get_usize_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
/// NOTE: the output value of the end index of this function should be compared ***inclusively***, /// NOTE: the output value of the end index of this function should be compared ***inclusively***,
/// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to /// because python allows `a[2::-1]`, whose semantic is `[a[2], a[1], a[0]]`, which is equivalent to
/// NO numeric slice in python. /// NO numeric slice in python.
@ -108,10 +132,11 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
generator: &mut G, generator: &mut G,
length: IntValue<'ctx>, length: IntValue<'ctx>,
) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> { ) -> Result<Option<(IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>)>, String> {
let int32 = ctx.ctx.i32_type(); let llvm_i32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let one = int32.const_int(1, false); let zero = llvm_i32.const_zero();
let length = ctx.builder.build_int_truncate_or_bit_cast(length, int32, "leni32").unwrap(); let one = llvm_i32.const_int(1, false);
let length = ctx.builder.build_int_truncate_or_bit_cast(length, llvm_i32, "leni32").unwrap();
Ok(Some(match (start, end, step) { Ok(Some(match (start, end, step) {
(s, e, None) => ( (s, e, None) => (
if let Some(s) = s.as_ref() { if let Some(s) = s.as_ref() {
@ -120,7 +145,7 @@ pub fn handle_slice_indices<'ctx, G: CodeGenerator>(
None => return Ok(None), None => return Ok(None),
} }
} else { } else {
int32.const_zero() llvm_i32.const_zero()
}, },
{ {
let e = if let Some(s) = e.as_ref() { let e = if let Some(s) = e.as_ref() {

View File

@ -1,384 +0,0 @@
use inkwell::{
types::IntType,
values::{BasicValueEnum, CallSiteValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use crate::codegen::{
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
values::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, NDArrayValue, TypedArrayLikeAccessor,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.shape();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
rhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.shape().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.shape().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.shape().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
}

View File

@ -0,0 +1,80 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ListValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_array_set_and_validate_list_shape`.
///
/// Deduces the target shape of the `ndarray` from the provided `list`, raising an exception if
/// there is any issue with the resultant `shape`.
///
/// `shape` must be pre-allocated by the caller of this function to `[usize; ndims]`, and must be
/// initialized to all `-1`s.
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndims: IntValue<'ctx>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
assert_eq!(ndims.get_type(), llvm_usize);
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndims.into(), shape.base_ptr(ctx, generator).into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_array_write_list_to_array`.
///
/// Copies the contents stored in `list` into `ndarray`.
///
/// The `ndarray` must fulfill the following preconditions:
///
/// - `ndarray.itemsize`: Must be initialized.
/// - `ndarray.ndims`: Must be initialized.
/// - `ndarray.shape`: Must be initialized.
/// - `ndarray.data`: Must be allocated and contiguous.
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
list: ListValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(list.get_type().element_type().unwrap(), ctx.ctx.i8_type().into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
infer_and_call_function(
ctx,
&name,
None,
&[list.as_base_value().into(), ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -0,0 +1,310 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_util_assert_shape_no_negative`.
///
/// Assets that `shape` does not contain negative dimensions.
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), shape.size(ctx, generator).into()),
(llvm_pusize.into(), shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_util_assert_shape_output_shape_same`.
///
/// Asserts that `ndarray_shape` and `output_shape` are the same in the context of writing output to
/// an `ndarray`.
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
output_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(ndarray_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(output_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[
(llvm_usize.into(), ndarray_shape.size(ctx, generator).into()),
(llvm_pusize.into(), ndarray_shape.base_ptr(ctx, generator).into()),
(llvm_usize.into(), output_shape.size(ctx, generator).into()),
(llvm_pusize.into(), output_shape.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_size`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of elements of an
/// `ndarray`, corresponding to the value of `ndarray.size`.
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("size"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_nbytes`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the number of bytes consumed by the
/// data of the `ndarray`, corresponding to the value of `ndarray.nbytes`.
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("nbytes"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_len`.
///
/// Returns a [`usize`][CodeGenerator::get_size_type] value of the size of the topmost dimension of
/// the `ndarray`, corresponding to the value of `ndarray.__len__`.
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
create_and_call_function(
ctx,
&name,
Some(llvm_usize.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("len"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_is_c_contiguous`.
///
/// Returns an `i1` value indicating whether the `ndarray` is C-contiguous.
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_ndarray = ndarray.get_type().as_base_type();
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
create_and_call_function(
ctx,
&name,
Some(llvm_i1.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
Some("is_c_contiguous"),
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_nth_pelement`.
///
/// Returns a [`PointerValue`] to the `index`-th flattened element of the `ndarray`.
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
index: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(index.get_type(), llvm_usize);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[(llvm_ndarray.into(), ndarray.as_base_value().into()), (llvm_usize.into(), index.into())],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_get_pelement_by_indices`.
///
/// `indices` must have the same number of elements as the number of dimensions in `ndarray`.
///
/// Returns a [`PointerValue`] to the element indexed by `indices`.
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let llvm_ndarray = ndarray.get_type().as_base_type();
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
create_and_call_function(
ctx,
&name,
Some(llvm_pi8.into()),
&[
(llvm_ndarray.into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
Some("pelement"),
None,
)
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
/// Generates a call to `__nac3_ndarray_set_strides_by_shape`.
///
/// Sets `ndarray.strides` assuming that `ndarray.shape` is C-contiguous.
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) {
let llvm_ndarray = ndarray.get_type().as_base_type();
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
create_and_call_function(
ctx,
&name,
None,
&[(llvm_ndarray.into(), ndarray.as_base_value().into())],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_copy_data`.
///
/// Copies all elements from `src_ndarray` to `dst_ndarray` using their flattened views. The number
/// of elements in `src_ndarray` must be greater than or equal to the number of elements in
/// `dst_ndarray`.
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}

View File

@ -0,0 +1,82 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
types::{ndarray::ShapeEntryType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor,
TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_broadcast_to`.
///
/// Attempts to broadcast `src_ndarray` to the new shape defined by `dst_ndarray`.
///
/// `dst_ndarray` must meet the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and matching the length of `dst_ndarray.shape`.
/// - `dst_ndarray.shape` must be initialized and contains the target broadcast shape.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
infer_and_call_function(
ctx,
&name,
None,
&[src_ndarray.as_base_value().into(), dst_ndarray.as_base_value().into()],
None,
None,
);
}
/// Generates a call to `__nac3_ndarray_broadcast_shapes`.
///
/// Attempts to calculate the resultant shape from broadcasting all shapes in `shape_entries`,
/// writing the result to `dst_shape`.
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G, Shape>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
num_shape_entries: IntValue<'ctx>,
shape_entries: ArraySliceValue<'ctx>,
dst_ndims: IntValue<'ctx>,
dst_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(num_shape_entries.get_type(), llvm_usize);
assert!(ShapeEntryType::is_type(
generator,
ctx.ctx,
shape_entries.base_ptr(ctx, generator).get_type()
)
.is_ok());
assert_eq!(dst_ndims.get_type(), llvm_usize);
assert_eq!(dst_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
num_shape_entries.into(),
shape_entries.base_ptr(ctx, generator).into(),
dst_ndims.into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -0,0 +1,34 @@
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_index`.
///
/// Performs [basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
/// on `src_ndarray` using `indices`, writing the result to `dst_ndarray`, corresponding to the
/// operation `dst_ndarray = src_ndarray[indices]`.
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
indices: ArraySliceValue<'ctx>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
infer_and_call_function(
ctx,
&name,
None,
&[
indices.size(ctx, generator).into(),
indices.base_ptr(ctx, generator).into(),
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
],
None,
None,
);
}

View File

@ -0,0 +1,86 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::codegen::{
expr::{create_and_call_function, infer_and_call_function},
irrt::get_usize_dependent_function_name,
types::ProxyType,
values::{
ndarray::{NDArrayValue, NDIterValue},
ProxyValue, TypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_nditer_initialize`.
///
/// Initializes the `iter` object.
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
indices: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
assert_eq!(
BasicTypeEnum::try_from(indices.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
create_and_call_function(
ctx,
&name,
None,
&[
(iter.get_type().as_base_type().into(), iter.as_base_value().into()),
(ndarray.get_type().as_base_type().into(), ndarray.as_base_value().into()),
(llvm_pusize.into(), indices.base_ptr(ctx, generator).into()),
],
None,
None,
);
}
/// Generates a call to `__nac3_nditer_initialize_has_element`.
///
/// Returns an `i1` value indicating whether there are elements left to traverse for the `iter`
/// object.
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) -> IntValue<'ctx> {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
infer_and_call_function(
ctx,
&name,
Some(ctx.ctx.bool_type().into()),
&[iter.as_base_value().into()],
None,
None,
)
.map(BasicValueEnum::into_int_value)
.unwrap()
}
/// Generates a call to `__nac3_nditer_next`.
///
/// Moves `iter` to point to the next element.
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
iter: NDIterValue<'ctx>,
) {
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_nditer_next");
infer_and_call_function(ctx, &name, None, &[iter.as_base_value().into()], None, None);
}

View File

@ -0,0 +1,66 @@
use inkwell::{types::BasicTypeEnum, values::IntValue};
use crate::codegen::{
expr::infer_and_call_function, irrt::get_usize_dependent_function_name,
values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_matmul_calculate_shapes`.
///
/// Calculates the broadcasted shapes for `a`, `b`, and the `ndarray` holding the final values of
/// `a @ b`.
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
final_ndims: IntValue<'ctx>,
new_a_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
new_b_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
dst_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(
BasicTypeEnum::try_from(a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_a_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(new_b_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
assert_eq!(
BasicTypeEnum::try_from(dst_shape.element_type(ctx, generator)).unwrap(),
llvm_usize.into()
);
let name =
get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
infer_and_call_function(
ctx,
&name,
None,
&[
a_shape.size(ctx, generator).into(),
a_shape.base_ptr(ctx, generator).into(),
b_shape.size(ctx, generator).into(),
b_shape.base_ptr(ctx, generator).into(),
final_ndims.into(),
new_a_shape.base_ptr(ctx, generator).into(),
new_b_shape.base_ptr(ctx, generator).into(),
dst_shape.base_ptr(ctx, generator).into(),
],
None,
None,
);
}

View File

@ -0,0 +1,17 @@
pub use array::*;
pub use basic::*;
pub use broadcast::*;
pub use indexing::*;
pub use iter::*;
pub use matmul::*;
pub use reshape::*;
pub use transpose::*;
mod array;
mod basic;
mod broadcast;
mod indexing;
mod iter;
mod matmul;
mod reshape;
mod transpose;

View File

@ -0,0 +1,40 @@
use inkwell::values::IntValue;
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ArrayLikeValue, ArraySliceValue},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_reshape_resolve_and_check_new_shape`.
///
/// Resolves unknown dimensions in `new_shape` for `numpy.reshape(<ndarray>, new_shape)`, raising an
/// assertion if multiple dimensions are unknown (`-1`).
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
new_ndims: IntValue<'ctx>,
new_shape: ArraySliceValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert_eq!(size.get_type(), llvm_usize);
assert_eq!(new_ndims.get_type(), llvm_usize);
assert_eq!(new_shape.element_type(ctx, generator), llvm_usize.into());
let name = get_usize_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
infer_and_call_function(
ctx,
&name,
None,
&[size.into(), new_ndims.into(), new_shape.base_ptr(ctx, generator).into()],
None,
None,
);
}

View File

@ -0,0 +1,48 @@
use inkwell::{values::IntValue, AddressSpace};
use crate::codegen::{
expr::infer_and_call_function,
irrt::get_usize_dependent_function_name,
values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeAccessor},
CodeGenContext, CodeGenerator,
};
/// Generates a call to `__nac3_ndarray_transpose`.
///
/// Creates a transpose view of `src_ndarray` and writes the result to `dst_ndarray`.
///
/// `dst_ndarray` must fulfill the following preconditions:
///
/// - `dst_ndarray.ndims` must be initialized and must be equal to `src_ndarray.ndims`.
/// - `dst_ndarray.shape` must be allocated and may contain uninitialized values.
/// - `dst_ndarray.strides` must be allocated and may contain uninitialized values.
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
dst_ndarray: NDArrayValue<'ctx>,
axes: Option<&impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
assert!(axes.is_none_or(|axes| axes.size(ctx, generator).get_type() == llvm_usize));
assert!(axes.is_none_or(|axes| axes.element_type(ctx, generator) == llvm_usize.into()));
let name = get_usize_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
infer_and_call_function(
ctx,
&name,
None,
&[
src_ndarray.as_base_value().into(),
dst_ndarray.as_base_value().into(),
axes.map_or(llvm_usize.const_zero(), |axes| axes.size(ctx, generator)).into(),
axes.map_or(llvm_usize.ptr_type(AddressSpace::default()).const_null(), |axes| {
axes.base_ptr(ctx, generator)
})
.into(),
],
None,
None,
);
}

View File

@ -0,0 +1,56 @@
use inkwell::{
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Invokes the `__nac3_range_slice_len` in IRRT.
///
/// - `start`: The `i32` start value for the slice.
/// - `end`: The `i32` end value for the slice.
/// - `step`: The `i32` step value for the slice.
///
/// Returns an `i32` value of the length of the slice.
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let llvm_i32 = ctx.ctx.i32_type();
assert_eq!(start.get_type(), llvm_i32);
assert_eq!(end.get_type(), llvm_i32);
assert_eq!(step.get_type(), llvm_i32);
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let fn_t = llvm_i32.fn_type(&[llvm_i32.into(), llvm_i32.into(), llvm_i32.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,8 +1,6 @@
use inkwell::{ use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue};
values::{BasicValueEnum, CallSiteValue, IntValue},
IntPredicate,
};
use itertools::Either; use itertools::Either;
use nac3parser::ast::Expr; use nac3parser::ast::Expr;
use crate::{ use crate::{
@ -39,38 +37,3 @@ pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
.unwrap(), .unwrap(),
)) ))
} }
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
start: IntValue<'ctx>,
end: IntValue<'ctx>,
step: IntValue<'ctx>,
) -> IntValue<'ctx> {
const SYMBOL: &str = "__nac3_range_slice_len";
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
let i32_t = ctx.ctx.i32_type();
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
ctx.module.add_function(SYMBOL, fn_t, None)
});
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"step must not be zero",
[None, None, None],
ctx.current_loc,
);
ctx.builder
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -0,0 +1,46 @@
use inkwell::values::{BasicValueEnum, CallSiteValue, IntValue, PointerValue};
use itertools::Either;
use super::get_usize_dependent_function_name;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// Generates a call to string equality comparison. Returns an `i1` representing whether the strings are equal.
pub fn call_string_eq<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
str1_ptr: PointerValue<'ctx>,
str1_len: IntValue<'ctx>,
str2_ptr: PointerValue<'ctx>,
str2_len: IntValue<'ctx>,
) -> IntValue<'ctx> {
let llvm_i1 = ctx.ctx.bool_type();
let func_name = get_usize_dependent_function_name(generator, ctx, "nac3_str_eq");
let func = ctx.module.get_function(&func_name).unwrap_or_else(|| {
ctx.module.add_function(
&func_name,
llvm_i1.fn_type(
&[
str1_ptr.get_type().into(),
str1_len.get_type().into(),
str2_ptr.get_type().into(),
str2_len.get_type().into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
func,
&[str1_ptr.into(), str1_len.into(), str2_ptr.into(), str2_len.into()],
"str_eq_call",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -1,7 +1,6 @@
use inkwell::{ use inkwell::{
context::Context,
intrinsics::Intrinsic, intrinsics::Intrinsic,
types::{AnyTypeEnum::IntType, FloatType}, types::AnyTypeEnum::IntType,
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue}, values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace, AddressSpace,
}; };
@ -9,34 +8,6 @@ use itertools::Either;
use super::CodeGenContext; use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
// Standard LLVM floating-point types
if ft == ctx.f16_type() {
return "f16";
}
if ft == ctx.f32_type() {
return "f32";
}
if ft == ctx.f64_type() {
return "f64";
}
if ft == ctx.f128_type() {
return "f128";
}
// Non-standard floating-point types
if ft == ctx.x86_f80_type() {
return "f80";
}
if ft == ctx.ppc_f128_type() {
return "ppcf128";
}
unreachable!()
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic) /// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic. /// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) { pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
@ -54,7 +25,7 @@ pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap(); ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
} }
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic) /// Invokes the [`llvm.va_end`](https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic)
/// intrinsic. /// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) { pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end"; const FN_NAME: &str = "llvm.va_end";
@ -201,6 +172,49 @@ pub fn call_memcpy_generic<'ctx>(
call_memcpy(ctx, dest, src, len, is_volatile); call_memcpy(ctx, dest, src, len, is_volatile);
} }
/// Invokes the `llvm.memcpy` intrinsic.
///
/// Unlike [`call_memcpy`], this function accepts any type of pointer value. If `dest` or `src` is
/// not a pointer to an integer, the pointer(s) will be cast to `i8*` before invoking `memcpy`.
/// Moreover, `len` now refers to the number of elements to copy (rather than number of bytes to
/// copy).
pub fn call_memcpy_generic_array<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
dest: PointerValue<'ctx>,
src: PointerValue<'ctx>,
len: IntValue<'ctx>,
is_volatile: IntValue<'ctx>,
) {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_sizeof_expr_t = llvm_i8.size_of().get_type();
let dest_elem_t = dest.get_type().get_element_type();
let src_elem_t = src.get_type().get_element_type();
let dest = if matches!(dest_elem_t, IntType(t) if t.get_bit_width() == 8) {
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let src = if matches!(src_elem_t, IntType(t) if t.get_bit_width() == 8) {
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
let len = ctx.builder.build_int_z_extend_or_bit_cast(len, llvm_sizeof_expr_t, "").unwrap();
let len = ctx.builder.build_int_mul(len, src_elem_t.size_of().unwrap(), "").unwrap();
call_memcpy(ctx, dest, src, len, is_volatile);
}
/// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function) /// Macro to find and generate build call for llvm intrinsic (body of llvm intrinsic function)
/// ///
/// Arguments: /// Arguments:
@ -343,3 +357,25 @@ pub fn call_float_powi<'ctx>(
.map(Either::unwrap_left) .map(Either::unwrap_left)
.unwrap() .unwrap()
} }
/// Invokes the [`llvm.ctpop`](https://llvm.org/docs/LangRef.html#llvm-ctpop-intrinsic) intrinsic.
pub fn call_int_ctpop<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
src: IntValue<'ctx>,
name: Option<&str>,
) -> IntValue<'ctx> {
const FN_NAME: &str = "llvm.ctpop";
let llvm_src_t = src.get_type();
let intrinsic_fn = Intrinsic::find(FN_NAME)
.and_then(|intrinsic| intrinsic.get_declaration(&ctx.module, &[llvm_src_t.into()]))
.unwrap();
ctx.builder
.build_call(intrinsic_fn, &[src.into()], name.unwrap_or_default())
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
}

View File

@ -30,7 +30,11 @@ use nac3parser::ast::{Location, Stmt, StrRef};
use crate::{ use crate::{
symbol_resolver::{StaticValue, SymbolResolver}, symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef}, toplevel::{
helper::{extract_ndims, PrimDef},
numpy::unpack_ndarray_var_tys,
TopLevelContext, TopLevelDef,
},
typecheck::{ typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore}, type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier}, typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
@ -38,7 +42,7 @@ use crate::{
}; };
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore}; use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator}; pub use generator::{CodeGenerator, DefaultCodeGenerator};
use types::{ListType, NDArrayType, ProxyType, RangeType}; use types::{ndarray::NDArrayType, ListType, ProxyType, RangeType, TupleType};
pub mod builtin_fns; pub mod builtin_fns;
pub mod concrete_type; pub mod concrete_type;
@ -224,7 +228,7 @@ pub struct CodeGenContext<'ctx, 'a> {
pub current_loc: Location, pub current_loc: Location,
} }
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> { impl CodeGenContext<'_, '_> {
/// Whether the [current basic block][Builder::get_insert_block] referenced by `builder` /// Whether the [current basic block][Builder::get_insert_block] referenced by `builder`
/// contains a [terminator statement][BasicBlock::get_terminator]. /// contains a [terminator statement][BasicBlock::get_terminator].
pub fn is_terminated(&self) -> bool { pub fn is_terminated(&self) -> bool {
@ -510,12 +514,13 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
} }
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty); let (dtype, ndims) = unpack_ndarray_var_tys(unifier, ty);
let ndims = extract_ndims(unifier, ndims);
let element_type = get_llvm_type( let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype, ctx, module, generator, unifier, top_level, type_cache, dtype,
); );
NDArrayType::new(generator, ctx, element_type).as_base_type().into() NDArrayType::new(generator, ctx, element_type, ndims).as_base_type().into()
} }
_ => unreachable!( _ => unreachable!(
@ -569,7 +574,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty) get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, *ty)
}) })
.collect_vec(); .collect_vec();
ctx.struct_type(&fields, false).into() TupleType::new(generator, ctx, &fields).as_base_type().into()
} }
TVirtual { .. } => unimplemented!(), TVirtual { .. } => unimplemented!(),
_ => unreachable!("{}", ty_enum.get_type_name()), _ => unreachable!("{}", ty_enum.get_type_name()),
@ -1119,3 +1124,106 @@ fn gen_in_range_check<'ctx>(
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef { fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into() format!("__{}_va_count", &arg_name).into()
} }
/// Returns the alignment of the type.
///
/// This is necessary as `get_alignment` is not implemented as part of [`BasicType`].
pub fn get_type_alignment<'ctx>(ty: impl Into<BasicTypeEnum<'ctx>>) -> IntValue<'ctx> {
match ty.into() {
BasicTypeEnum::ArrayType(ty) => ty.get_alignment(),
BasicTypeEnum::FloatType(ty) => ty.get_alignment(),
BasicTypeEnum::IntType(ty) => ty.get_alignment(),
BasicTypeEnum::PointerType(ty) => ty.get_alignment(),
BasicTypeEnum::StructType(ty) => ty.get_alignment(),
BasicTypeEnum::VectorType(ty) => ty.get_alignment(),
}
}
/// Inserts an `alloca` instruction with allocation `size` given in bytes and the alignment of the
/// given type.
///
/// The returned [`PointerValue`] will have a type of `i8*`, a size of at least `size`, and will be
/// aligned with the alignment of `align_ty`.
pub fn type_aligned_alloca<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
align_ty: impl Into<BasicTypeEnum<'ctx>>,
size: IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
/// Round `val` up to its modulo `power_of_two`.
fn round_up<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>,
) -> IntValue<'ctx> {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width(),
"`val` ({}) and `power_of_two` ({}) must be the same type",
val.get_type(),
power_of_two.get_type(),
);
let llvm_val_t = val.get_type();
let max_rem =
ctx.builder.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "").unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
}
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let llvm_usize = generator.get_size_type(ctx.ctx);
let align_ty = align_ty.into();
let size = ctx.builder.build_int_truncate_or_bit_cast(size, llvm_usize, "").unwrap();
debug_assert_eq!(
size.get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected size_t ({}) for parameter `size` of `aligned_alloca`, got {}",
llvm_usize,
size.get_type(),
);
let alignment = get_type_alignment(align_ty);
let alignment = ctx.builder.build_int_truncate_or_bit_cast(alignment, llvm_usize, "").unwrap();
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let alignment_bitcount = llvm_intrinsics::call_int_ctpop(ctx, alignment, None);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::EQ,
alignment_bitcount,
alignment_bitcount.get_type().const_int(1, false),
"",
)
.unwrap(),
"0:AssertionError",
"Expected power-of-two alignment for aligned_alloca, got {0}",
[Some(alignment), None, None],
ctx.current_loc,
);
}
let buffer_size = round_up(ctx, size, alignment);
let aligned_slices = ctx.builder.build_int_unsigned_div(buffer_size, alignment, "").unwrap();
// Just to be absolutely sure, alloca in [i8 x alignment] slices
let buffer = ctx.builder.build_array_alloca(align_ty, aligned_slices, "").unwrap();
ctx.builder
.build_bit_cast(buffer, llvm_pi8, name.unwrap_or_default())
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}

File diff suppressed because it is too large Load Diff

View File

@ -16,7 +16,11 @@ use super::{
gen_in_range_check, gen_in_range_check,
irrt::{handle_slice_indices, list_slice_assignment}, irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable, macros::codegen_unreachable,
values::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue}, types::ndarray::NDArrayType,
values::{
ndarray::{RustNDIndex, ScalarOrNDArray},
ArrayLikeIndexer, ArraySliceValue, ListValue, ProxyValue, RangeValue,
},
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}; };
use crate::{ use crate::{
@ -411,7 +415,52 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() => if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{ {
// Handle NDArray item assignment // Handle NDArray item assignment
todo!("ndarray subscript assignment is not yet implemented"); // Process target
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?;
// Process key
let key = RustNDIndex::from_subscript_expr(generator, ctx, key)?;
// Process value
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
// Reference code:
// ```python
// target = target[key]
// value = np.asarray(value)
//
// shape = np.broadcast_shape((target, value))
//
// target = np.broadcast_to(target, shape)
// value = np.broadcast_to(value, shape)
//
// # ...and finally copy 1-1 from value to target.
// ```
let target = NDArrayType::from_unifier_type(generator, ctx, target_ty)
.map_value(target.into_pointer_value(), None);
let target = target.index(generator, ctx, &key);
let value = ScalarOrNDArray::from_value(generator, ctx, (value_ty, value))
.to_ndarray(generator, ctx);
let broadcast_ndims =
[target.get_type().ndims(), value.get_type().ndims()].into_iter().max().unwrap();
let broadcast_result = NDArrayType::new(
generator,
ctx.ctx,
value.get_type().element_type(),
broadcast_ndims,
)
.broadcast(generator, ctx, &[target, value]);
let target = broadcast_result.ndarrays[0];
let value = broadcast_result.ndarrays[1];
target.copy_data_from(generator, ctx, value);
} }
_ => { _ => {
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty)); panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));

View File

@ -17,7 +17,7 @@ use parking_lot::RwLock;
use super::{ use super::{
concrete_type::ConcreteTypeStore, concrete_type::ConcreteTypeStore,
types::{ListType, NDArrayType, ProxyType, RangeType}, types::{ndarray::NDArrayType, ListType, ProxyType, RangeType},
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry, DefaultCodeGenerator, WithCall, WorkerRegistry,
}; };
@ -36,7 +36,6 @@ use crate::{
struct Resolver { struct Resolver {
id_to_type: HashMap<StrRef, Type>, id_to_type: HashMap<StrRef, Type>,
id_to_def: RwLock<HashMap<StrRef, DefinitionId>>, id_to_def: RwLock<HashMap<StrRef, DefinitionId>>,
class_names: HashMap<StrRef, Type>,
} }
impl Resolver { impl Resolver {
@ -104,11 +103,9 @@ fn test_primitives() {
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone()); unifier.top_level = Some(top_level.clone());
let resolver = Arc::new(Resolver { let resolver =
id_to_type: HashMap::new(), Arc::new(Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) })
id_to_def: RwLock::new(HashMap::new()), as Arc<dyn SymbolResolver + Send + Sync>;
class_names: HashMap::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>;
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()]; let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature { let signature = FunSignature {
@ -298,11 +295,7 @@ fn test_simple_call() {
loc: None, loc: None,
}))); })));
let resolver = Resolver { let resolver = Resolver { id_to_type: HashMap::new(), id_to_def: RwLock::new(HashMap::new()) };
id_to_type: HashMap::new(),
id_to_def: RwLock::new(HashMap::new()),
class_names: HashMap::default(),
};
resolver.add_id_def("foo".into(), DefinitionId(foo_id)); resolver.add_id_def("foo".into(), DefinitionId(foo_id));
let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>; let resolver = Arc::new(resolver) as Arc<dyn SymbolResolver + Send + Sync>;
@ -471,6 +464,6 @@ fn test_classes_ndarray_type_new() {
let llvm_i32 = ctx.i32_type(); let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx); let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into()); let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into(), 2);
assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok()); assert!(NDArrayType::is_representable(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
} }

View File

@ -1,69 +1,113 @@
use inkwell::{ use inkwell::{
context::Context, context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType}, types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue, values::{IntValue, PointerValue},
AddressSpace, AddressSpace, IntPredicate, OptimizationLevel,
}; };
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType; use super::ProxyType;
use crate::codegen::{ use crate::{
values::{ArraySliceValue, ListValue, ProxyValue}, codegen::{
CodeGenContext, CodeGenerator, types::structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
values::{ListValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
}; };
/// Proxy type for a `list` type in LLVM. /// Proxy type for a `list` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)] #[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ListType<'ctx> { pub struct ListType<'ctx> {
ty: PointerType<'ctx>, ty: PointerType<'ctx>,
item: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
} }
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ListStructFields<'ctx> {
/// Array pointer to content.
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub items: StructField<'ctx, PointerValue<'ctx>>,
/// Number of items in the array.
#[value_type(usize)]
pub len: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> ListStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ListStructFields {
items: StructField::create(
&mut counter,
"items",
item.ptr_type(AddressSpace::default()),
),
len: StructField::create(&mut counter, "len", llvm_usize),
}
}
}
impl<'ctx> ListType<'ctx> { impl<'ctx> ListType<'ctx> {
/// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not. /// Checks whether `llvm_ty` represents a `list` type, returning [Err] if it does not.
pub fn is_representable( pub fn is_representable(
llvm_ty: PointerType<'ctx>, llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
) -> Result<(), String> { ) -> Result<(), String> {
let llvm_list_ty = llvm_ty.get_element_type(); let ctx = llvm_ty.get_context();
let AnyTypeEnum::StructType(llvm_list_ty) = llvm_list_ty else {
return Err(format!("Expected struct type for `list` type, got {llvm_list_ty}"));
};
if llvm_list_ty.count_fields() != 2 {
return Err(format!(
"Expected 2 fields in `list`, got {}",
llvm_list_ty.count_fields()
));
}
let list_size_ty = llvm_list_ty.get_field_type_at_index(0).unwrap(); let llvm_ty = llvm_ty.get_element_type();
let Ok(_) = PointerType::try_from(list_size_ty) else { let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected pointer type for `list.0`, got {list_size_ty}")); return Err(format!("Expected struct type for `list` type, got {llvm_ty}"));
}; };
let list_data_ty = llvm_list_ty.get_field_type_at_index(1).unwrap(); let fields = ListStructFields::new(ctx, llvm_usize);
let Ok(list_data_ty) = IntType::try_from(list_data_ty) else {
return Err(format!("Expected int type for `list.1`, got {list_data_ty}"));
};
if list_data_ty.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected {}-bit int type for `list.1`, got {}-bit int",
llvm_usize.get_bit_width(),
list_data_ty.get_bit_width()
));
}
Ok(()) check_struct_type_matches_fields(
fields,
llvm_ty,
"list",
&[(fields.items.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `list.items`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> ListStructFields<'ctx> {
ListStructFields::new_typed(item, llvm_usize)
}
/// See [`ListType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, _ctx: &impl AsContextRef<'ctx>) -> ListStructFields<'ctx> {
Self::fields(self.item.unwrap_or(self.llvm_usize.into()), self.llvm_usize)
} }
/// Creates an LLVM type corresponding to the expected structure of a `List`. /// Creates an LLVM type corresponding to the expected structure of a `List`.
#[must_use] #[must_use]
fn llvm_type( fn llvm_type(
ctx: &'ctx Context, ctx: &'ctx Context,
element_type: BasicTypeEnum<'ctx>, element_type: Option<BasicTypeEnum<'ctx>>,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> { ) -> PointerType<'ctx> {
// struct List { data: T*, size: size_t } let element_type = element_type.unwrap_or(llvm_usize.into());
let field_tys = [element_type.ptr_type(AddressSpace::default()).into(), llvm_usize.into()];
let field_tys =
Self::fields(element_type, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default()) ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
} }
@ -76,9 +120,50 @@ impl<'ctx> ListType<'ctx> {
element_type: BasicTypeEnum<'ctx>, element_type: BasicTypeEnum<'ctx>,
) -> Self { ) -> Self {
let llvm_usize = generator.get_size_type(ctx); let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, element_type, llvm_usize); let llvm_list = Self::llvm_type(ctx, Some(element_type), llvm_usize);
ListType::from_type(llvm_list, llvm_usize) Self { ty: llvm_list, item: Some(element_type), llvm_usize }
}
/// Creates an instance of [`ListType`] with an unknown element type.
#[must_use]
pub fn new_untyped<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_list = Self::llvm_type(ctx, None, llvm_usize);
Self { ty: llvm_list, item: None, llvm_usize }
}
/// Creates an [`ListType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
// Check unifier type and extract `item_type`
let elem_type = match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty
}
_ => panic!("Expected `list` type, but got {}", ctx.unifier.stringify(ty)),
};
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_elem_type = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
None
} else {
Some(ctx.get_llvm_type(generator, elem_type))
};
Self {
ty: Self::llvm_type(ctx.ctx, llvm_elem_type, llvm_usize),
item: llvm_elem_type,
llvm_usize,
}
} }
/// Creates an [`ListType`] from a [`PointerType`]. /// Creates an [`ListType`] from a [`PointerType`].
@ -86,47 +171,141 @@ impl<'ctx> ListType<'ctx> {
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self { pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok()); debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
ListType { ty: ptr_ty, llvm_usize } let ctx = ptr_ty.get_context();
// We are just searching for the index off a field - Slot an arbitrary element type in.
let item_field_idx =
Self::fields(ctx.i8_type().into(), llvm_usize).index_of_field(|f| f.items);
let item = unsafe {
ptr_ty
.get_element_type()
.into_struct_type()
.get_field_type_at_index_unchecked(item_field_idx)
.into_pointer_type()
.get_element_type()
};
let item = BasicTypeEnum::try_from(item).unwrap_or_else(|()| {
panic!(
"Expected BasicTypeEnum for list element type, got {}",
ptr_ty.get_element_type().print_to_string()
)
});
ListType { ty: ptr_ty, item: Some(item), llvm_usize }
} }
/// Returns the type of the `size` field of this `list` type. /// Returns the type of the `size` field of this `list` type.
#[must_use] #[must_use]
pub fn size_type(&self) -> IntType<'ctx> { pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type() self.llvm_usize
.get_element_type()
.into_struct_type()
.get_field_type_at_index(1)
.map(BasicTypeEnum::into_int_type)
.unwrap()
} }
/// Returns the element type of this `list` type. /// Returns the element type of this `list` type.
#[must_use] #[must_use]
pub fn element_type(&self) -> AnyTypeEnum<'ctx> { pub fn element_type(&self) -> Option<BasicTypeEnum<'ctx>> {
self.as_base_type() self.item
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_pointer_type)
.map(PointerType::get_element_type)
.unwrap()
} }
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type. /// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use] #[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>( pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ListValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self, &self,
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>, name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value { ) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value( <Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name), self.raw_alloca_var(generator, ctx, name),
self.llvm_usize, self.llvm_usize,
name, name,
) )
} }
/// Allocates a [`ListValue`] on the stack using `item` of this [`ListType`] instance.
///
/// The returned list will contain:
///
/// - `data`: Allocated with `len` number of elements.
/// - `len`: Initialized to the value of `len` passed to this function.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let len = ctx.builder.build_int_z_extend(len, self.llvm_usize, "").unwrap();
// Generate a runtime assertion if allocating a non-empty list with unknown element type
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None && self.item.is_none() {
let len_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, len, self.llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
len_eqz,
"0:AssertionError",
"Cannot allocate a non-empty list with unknown element type",
[None, None, None],
ctx.current_loc,
);
}
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, len);
let item = self.item.unwrap_or(self.llvm_usize.into());
plist.create_data(ctx, item, None);
plist
}
/// Convenience function for creating a list with zero elements.
///
/// This function is preferred over [`ListType::construct`] if the length is known to always be
/// 0, as this function avoids injecting an IR assertion for checking if a non-empty untyped
/// list is being allocated.
///
/// The returned list will contain:
///
/// - `data`: Initialized to `(T*) 0`.
/// - `len`: Initialized to `0`.
#[must_use]
pub fn construct_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let plist = self.alloca_var(generator, ctx, name);
plist.store_size(ctx, generator, self.llvm_usize.const_zero());
plist.create_data(ctx, self.item.unwrap_or(self.llvm_usize.into()), None);
plist
}
/// Converts an existing value into a [`ListValue`]. /// Converts an existing value into a [`ListValue`].
#[must_use] #[must_use]
pub fn map_value( pub fn map_value(
@ -162,36 +341,8 @@ impl<'ctx> ProxyType<'ctx> for ListType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx)) Self::is_representable(llvm_ty, generator.get_size_type(ctx))
} }
fn raw_alloca<G: CodeGenerator + ?Sized>( fn alloca_type(&self) -> impl BasicType<'ctx> {
&self, self.as_base_type().get_element_type().into_struct_type()
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
} }
fn as_base_type(&self) -> Self::Base { fn as_base_type(&self) -> Self::Base {

View File

@ -16,20 +16,26 @@
//! the returned object. This is similar to a `new` expression in C++ but the object is allocated //! the returned object. This is similar to a `new` expression in C++ but the object is allocated
//! on the stack. //! on the stack.
use inkwell::{context::Context, types::BasicType, values::IntValue}; use inkwell::{
context::Context,
types::BasicType,
values::{IntValue, PointerValue},
};
use super::{ use super::{
values::{ArraySliceValue, ProxyValue}, values::{ArraySliceValue, ProxyValue},
{CodeGenContext, CodeGenerator}, {CodeGenContext, CodeGenerator},
}; };
pub use list::*; pub use list::*;
pub use ndarray::*;
pub use range::*; pub use range::*;
pub use tuple::*;
mod list; mod list;
mod ndarray; pub mod ndarray;
mod range; mod range;
pub mod structure; pub mod structure;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a corresponding type in NAC3. /// A LLVM type that is used to represent a corresponding type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> { pub trait ProxyType<'ctx>: Into<Self::Base> {
@ -53,23 +59,66 @@ pub trait ProxyType<'ctx>: Into<Self::Base> {
llvm_ty: Self::Base, llvm_ty: Self::Base,
) -> Result<(), String>; ) -> Result<(), String>;
/// Creates a new value of this type, returning the LLVM instance of this value. /// Returns the type that should be used in `alloca` IR statements.
fn raw_alloca<G: CodeGenerator + ?Sized>( fn alloca_type(&self) -> impl BasicType<'ctx>;
/// Creates a new value of this type by invoking `alloca` at the current builder location,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> PointerValue<'ctx> {
ctx.builder
.build_alloca(self.alloca_type().as_basic_type_enum(), name.unwrap_or_default())
.unwrap()
}
/// Creates a new value of this type by invoking `alloca` at the beginning of the function,
/// returning a [`PointerValue`] instance representing the allocated value.
fn raw_alloca_var<G: CodeGenerator + ?Sized>(
&self, &self,
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>, name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base; ) -> PointerValue<'ctx> {
generator.gen_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), name).unwrap()
}
/// Creates a new array value of this type, returning an [`ArraySliceValue`] encapsulating the /// Creates a new array value of this type by invoking `alloca` at the current builder location,
/// resulting array. /// returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca<G: CodeGenerator + ?Sized>( fn array_alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
ArraySliceValue::from_ptr_val(
ctx.builder
.build_array_alloca(
self.alloca_type().as_basic_type_enum(),
size,
name.unwrap_or_default(),
)
.unwrap(),
size,
name,
)
}
/// Creates a new array value of this type by invoking `alloca` at the beginning of the
/// function, returning an [`ArraySliceValue`] encapsulating the resulting array.
fn array_alloca_var<G: CodeGenerator + ?Sized>(
&self, &self,
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>, size: IntValue<'ctx>,
name: Option<&'ctx str>, name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx>; ) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(ctx, self.alloca_type().as_basic_type_enum(), size, name)
.unwrap()
}
/// Returns the [base type][Self::Base] of this proxy. /// Returns the [base type][Self::Base] of this proxy.
fn as_base_type(&self) -> Self::Base; fn as_base_type(&self) -> Self::Base;

View File

@ -0,0 +1,243 @@
use inkwell::{
types::BasicTypeEnum,
values::{BasicValueEnum, IntValue},
AddressSpace,
};
use crate::{
codegen::{
irrt,
stmt::gen_if_else_expr_callback,
types::{ndarray::NDArrayType, ListType, ProxyType},
values::{
ndarray::NDArrayValue, ArrayLikeValue, ArraySliceValue, ListValue, ProxyValue,
TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(<list>)`.
fn get_list_object_dtype_and_ndims<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
list_ty: Type,
) -> (BasicTypeEnum<'ctx>, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list_ty);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list_ty);
(ctx.get_llvm_type(generator, dtype), ndims)
}
impl<'ctx> NDArrayType<'ctx> {
/// Implementation of `np_array(<list>, copy=True)`
fn construct_numpy_array_from_list_copy_true_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
assert!(self.ndims >= ndims_int);
assert_eq!(dtype, self.dtype);
let list_value = list.as_i8_list(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = self.llvm_usize.const_int(ndims_int, false);
let shape = ctx.builder.build_array_alloca(self.llvm_usize, ndims, "").unwrap();
let shape = ArraySliceValue::from_ptr_val(shape, ndims, None);
let shape = TypedArrayLikeAdapter::from(
shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
irrt::ndarray::call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, &shape,
);
let ndarray = Self::new(generator, ctx.ctx, dtype, ndims_int)
.construct_uninitialized(generator, ctx, name);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
// Copy all contents from the list.
irrt::ndarray::call_nac3_ndarray_array_write_list_to_array(
generator, ctx, list_value, ndarray,
);
ndarray
}
/// Implementation of `np_array(<list>, copy=None)`
fn construct_numpy_array_from_list_copy_none_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
if ndims == 1 {
// `list` is not nested
assert_eq!(ndims, 1);
assert!(self.ndims >= ndims);
assert_eq!(dtype, self.dtype);
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let ndarray = Self::new(generator, ctx.ctx, dtype, 1)
.construct_uninitialized(generator, ctx, name);
// Set data
let data = ctx
.builder
.build_pointer_cast(list.data().base_ptr(ctx, generator), llvm_pi8, "")
.unwrap();
ndarray.store_data(ctx, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.shape();
let list_len = list.load_size(ctx, None);
unsafe {
shape.set_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), list_len);
}
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
)
}
}
/// Implementation of `np_array(<list>, copy=copy)`
fn construct_numpy_array_list_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(list_ty, list): (Type, ListValue<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let (dtype, ndims) = get_list_object_dtype_and_ndims(generator, ctx, list_ty);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_true_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
|generator, ctx| {
let ndarray = self.construct_numpy_array_from_list_copy_none_impl(
generator,
ctx,
(list_ty, list),
name,
);
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
NDArrayType::new(generator, ctx.ctx, dtype, ndims).map_value(ndarray, None)
}
/// Implementation of `np_array(<ndarray>, copy=copy)`.
pub fn construct_numpy_array_ndarray_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(ndarray.get_type().dtype, self.dtype);
assert!(self.ndims >= ndarray.get_type().ndims);
assert_eq!(copy.get_type(), ctx.ctx.bool_type());
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.as_base_value()))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.as_base_value()))
},
)
.unwrap()
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ndarray.get_type().map_value(ndarray_val, name)
}
/// Create a new ndarray like
/// [`np.array()`](https://numpy.org/doc/stable/reference/generated/numpy.array.html).
///
/// Note that the returned [`NDArrayValue`] may have fewer dimensions than is specified by this
/// instance. Use [`NDArrayValue::atleast_nd`] on the returned value if an `ndarray` instance
/// with the exact number of dimensions is needed.
pub fn construct_numpy_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(object_ty, object): (Type, BasicValueEnum<'ctx>),
copy: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
match &*ctx.unifier.get_ty_immutable(object_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_list_impl(generator, ctx, (object_ty, list), copy, name)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
self.construct_numpy_array_ndarray_impl(generator, ctx, ndarray, copy, name)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object_ty)), // Typechecker ensures this
}
}
}

View File

@ -0,0 +1,176 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{ndarray::ShapeEntryValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ShapeEntryType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ShapeEntryStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ShapeEntryType<'ctx> {
/// Checks whether `llvm_ty` represents a [`ShapeEntryType`], returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!(
"Expected struct type for `ShapeEntry` type, got {llvm_ndarray_ty}"
));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDArray",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ShapeEntryStructFields<'ctx> {
ShapeEntryStructFields::new(ctx, llvm_usize)
}
/// See [`ShapeEntryStructFields::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> ShapeEntryStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of a `ShapeEntry`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ShapeEntryType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ty = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ty, llvm_usize }
}
/// Creates a [`ShapeEntryType`] from a [`PointerType`] representing an `ShapeEntry`.
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ShapeEntryValue`] as if by calling `alloca` on the base type.
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ShapeEntryValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for ShapeEntryType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ShapeEntryValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ShapeEntryType<'ctx>> for PointerType<'ctx> {
fn from(value: ShapeEntryType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,250 @@
use inkwell::{
context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::{
codegen::{
types::{
structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
ProxyType,
},
values::{ndarray::ContiguousNDArrayValue, ProxyValue},
CodeGenContext, CodeGenerator,
},
toplevel::numpy::unpack_ndarray_var_tys,
typecheck::typedef::Type,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct ContiguousNDArrayType<'ctx> {
ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct ContiguousNDArrayStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> ContiguousNDArrayStructFields<'ctx> {
#[must_use]
pub fn new_typed(item: BasicTypeEnum<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let mut counter = FieldIndexCounter::default();
ContiguousNDArrayStructFields {
ndims: StructField::create(&mut counter, "ndims", llvm_usize),
shape: StructField::create(
&mut counter,
"shape",
llvm_usize.ptr_type(AddressSpace::default()),
),
data: StructField::create(&mut counter, "data", item.ptr_type(AddressSpace::default())),
}
}
}
impl<'ctx> ContiguousNDArrayType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndarray` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = ContiguousNDArrayStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(
fields,
llvm_ty,
"ContiguousNDArray",
&[(fields.data.name(), &|ty| {
if ty.is_pointer_type() {
Ok(())
} else {
Err(format!("Expected T* for `ContiguousNDArray.data`, got {ty}"))
}
})],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> ContiguousNDArrayStructFields<'ctx> {
ContiguousNDArrayStructFields::new_typed(item, llvm_usize)
}
/// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self) -> ContiguousNDArrayStructFields<'ctx> {
Self::fields(self.item, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use]
fn llvm_type(
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> PointerType<'ctx> {
let field_tys =
Self::fields(item, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`ContiguousNDArrayType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
item: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_cndarray = Self::llvm_type(ctx, item, llvm_usize);
Self { ty: llvm_cndarray, item, llvm_usize }
}
/// Creates an [`ContiguousNDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let llvm_usize = generator.get_size_type(ctx.ctx);
Self { ty: Self::llvm_type(ctx.ctx, llvm_dtype, llvm_usize), item: llvm_dtype, llvm_usize }
}
/// Creates an [`ContiguousNDArrayType`] from a [`PointerType`] representing an `NDArray`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, item, llvm_usize }
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`ContiguousNDArrayValue`] as if by calling `alloca` on the base
/// type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.item,
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ContiguousNDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.item,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for ContiguousNDArrayType<'ctx> {
type Base = PointerType<'ctx>;
type Value = ContiguousNDArrayValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<ContiguousNDArrayType<'ctx>> for PointerType<'ctx> {
fn from(value: ContiguousNDArrayType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,236 @@
use inkwell::{
values::{BasicValueEnum, IntValue},
IntPredicate,
};
use super::NDArrayType;
use crate::{
codegen::{
irrt, types::ProxyType, values::TypedArrayLikeAccessor, CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayType<'ctx> {
/// Create an ndarray like
/// [`np.empty`](https://numpy.org/doc/stable/reference/generated/numpy.empty.html).
pub fn construct_numpy_empty<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_uninitialized(generator, ctx, name);
// Validate `shape`
irrt::ndarray::call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape);
ndarray.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { ndarray.create_data(generator, ctx) };
ndarray
}
/// Create an ndarray like
/// [`np.full`](https://numpy.org/doc/stable/reference/generated/numpy.full.html).
pub fn construct_numpy_full<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
fill_value: BasicValueEnum<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.construct_numpy_empty(generator, ctx, shape, name);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like
/// [`np.zero`](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html).
pub fn construct_numpy_zeros<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_zero_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.ones`](https://numpy.org/doc/stable/reference/generated/numpy.ones.html).
pub fn construct_numpy_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
let fill_value = ndarray_one_value(generator, ctx, dtype);
self.construct_numpy_full(generator, ctx, shape, fill_value, name)
}
/// Create an ndarray like
/// [`np.eye`](https://numpy.org/doc/stable/reference/generated/numpy.eye.html).
#[allow(clippy::too_many_arguments)]
pub fn construct_numpy_eye<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: IntValue<'ctx>,
ncols: IntValue<'ctx>,
offset: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(
ctx.get_llvm_type(generator, dtype),
self.dtype,
"Expected LLVM dtype={} but got {}",
self.dtype.print_to_string(),
ctx.get_llvm_type(generator, dtype).print_to_string(),
);
assert_eq!(nrows.get_type(), self.llvm_usize);
assert_eq!(ncols.get_type(), self.llvm_usize);
assert_eq!(offset.get_type(), self.llvm_usize);
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = self.construct_dyn_shape(generator, ctx, &[nrows, ncols], name);
// Create data and make the matrix like look np.eye()
unsafe {
ndarray.create_data(generator, ctx);
}
ndarray
.foreach(generator, ctx, |generator, ctx, _, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
let indices = nditer.get_indices();
let row_i = unsafe {
indices.get_typed_unchecked(ctx, generator, &self.llvm_usize.const_zero(), None)
};
let col_i = unsafe {
indices.get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(1, false),
None,
)
};
let be_one = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
ctx.builder.build_int_add(row_i, offset, "").unwrap(),
col_i,
"",
)
.unwrap();
let value = ctx.builder.build_select(be_one, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like
/// [`np.identity`](https://numpy.org/doc/stable/reference/generated/numpy.identity.html).
pub fn construct_numpy_identity<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let offset = self.llvm_usize.const_zero();
self.construct_numpy_eye(generator, ctx, dtype, size, size, offset, name)
}
}

View File

@ -0,0 +1,205 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType,
},
values::{
ndarray::{NDIndexValue, RustNDIndex},
ArrayLikeIndexer, ArraySliceValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDIndexType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDIndexStructFields<'ctx> {
#[value_type(i8_type())]
pub type_: StructField<'ctx, IntValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>,
}
impl<'ctx> NDIndexType<'ctx> {
/// Checks whether `llvm_ty` represents a `ndindex` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!(
"Expected struct type for `ContiguousNDArray` type, got {llvm_ty}"
));
};
let fields = NDIndexStructFields::new(ctx, llvm_usize);
check_struct_type_matches_fields(fields, llvm_ty, "NDIndex", &[])
}
#[must_use]
fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDIndexStructFields<'ctx> {
NDIndexStructFields::new(ctx, llvm_usize)
}
#[must_use]
pub fn get_fields(&self) -> NDIndexStructFields<'ctx> {
Self::fields(self.ty.get_context(), self.llvm_usize)
}
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndindex = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_ndindex, llvm_usize }
}
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIndexValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.llvm_usize,
name,
)
}
/// Serialize a list of [`RustNDIndex`] as a newly allocated LLVM array of [`NDIndexValue`].
#[must_use]
pub fn construct_ndindices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> ArraySliceValue<'ctx> {
// Allocate the LLVM ndindices.
let num_ndindices = self.llvm_usize.const_int(in_ndindices.len() as u64, false);
let ndindices = self.array_alloca_var(generator, ctx, num_ndindices, None);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = unsafe {
ndindices.ptr_offset_unchecked(
ctx,
generator,
&ctx.ctx.i64_type().const_int(u64::try_from(i).unwrap(), false),
None,
)
};
in_ndindex.write_to_ndindex(
generator,
ctx,
NDIndexValue::from_pointer_value(pndindex, self.llvm_usize, None),
);
}
ndindices
}
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for NDIndexType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDIndexValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDIndexType<'ctx>> for PointerType<'ctx> {
fn from(value: NDIndexType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,187 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use itertools::Itertools;
use crate::codegen::{
stmt::gen_for_callback,
types::{
ndarray::{NDArrayType, NDIterType},
ProxyType,
},
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ArrayLikeValue, ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayType<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
/// elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
/// result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing
/// ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[NDArrayValue<'ctx>],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray =
NDArrayType::new(generator, ctx.ctx, dtype, broadcast_result.ndims)
.construct_uninitialized(generator, ctx, None);
result_ndarray.copy_shape_from_array(
generator,
ctx,
broadcast_result.shape.base_ptr(ctx, generator),
);
unsafe {
result_ndarray.create_data(generator, ctx);
}
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| {
NDIterType::new(generator, ctx.ctx).construct(generator, ctx, *ndarray)
})
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_element()`.
// `in_nditers`' `has_element()`s should return the same value.
Ok(out_nditer.has_element(generator, ctx))
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars =
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
/// scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
/// or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following
/// behaviors:
///
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
/// converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
/// ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: BasicTypeEnum<'ctx>,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> =
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().copied().collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(value))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayType::new_broadcast(
generator,
ctx.ctx,
ret_dtype,
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
)
.broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
}

View File

@ -1,7 +1,7 @@
use inkwell::{ use inkwell::{
context::Context, context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType}, types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue}, values::{BasicValue, IntValue, PointerValue},
AddressSpace, AddressSpace,
}; };
use itertools::Itertools; use itertools::Itertools;
@ -9,28 +9,54 @@ use itertools::Itertools;
use nac3core_derive::StructFields; use nac3core_derive::StructFields;
use super::{ use super::{
structure::{StructField, StructFields}, structure::{check_struct_type_matches_fields, StructField, StructFields},
ProxyType, ProxyType,
}; };
use crate::codegen::{ use crate::{
values::{ArraySliceValue, NDArrayValue, ProxyValue}, codegen::{
{CodeGenContext, CodeGenerator}, values::{ndarray::NDArrayValue, ProxyValue, TypedArrayLikeMutator},
{CodeGenContext, CodeGenerator},
},
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys},
typecheck::typedef::Type,
}; };
pub use broadcast::*;
pub use contiguous::*;
pub use indexing::*;
pub use nditer::*;
mod array;
mod broadcast;
mod contiguous;
pub mod factory;
mod indexing;
mod map;
mod nditer;
/// Proxy type for a `ndarray` type in LLVM. /// Proxy type for a `ndarray` type in LLVM.
#[derive(Debug, PartialEq, Eq, Clone, Copy)] #[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDArrayType<'ctx> { pub struct NDArrayType<'ctx> {
ty: PointerType<'ctx>, ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>, dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
} }
#[derive(PartialEq, Eq, Clone, Copy, StructFields)] #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDArrayStructFields<'ctx> { pub struct NDArrayStructFields<'ctx> {
/// The size of each `NDArray` element in bytes.
#[value_type(usize)]
pub itemsize: StructField<'ctx, IntValue<'ctx>>,
/// Number of dimensions in the array.
#[value_type(usize)] #[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>, pub ndims: StructField<'ctx, IntValue<'ctx>>,
/// Pointer to an array containing the shape of the `NDArray`.
#[value_type(usize.ptr_type(AddressSpace::default()))] #[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>, pub shape: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array indicating the number of bytes between each element at a dimension
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub strides: StructField<'ctx, PointerValue<'ctx>>,
/// Pointer to an array containing the array data
#[value_type(i8_type().ptr_type(AddressSpace::default()))] #[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub data: StructField<'ctx, PointerValue<'ctx>>, pub data: StructField<'ctx, PointerValue<'ctx>>,
} }
@ -41,90 +67,40 @@ impl<'ctx> NDArrayType<'ctx> {
llvm_ty: PointerType<'ctx>, llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
) -> Result<(), String> { ) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ndarray_ty = llvm_ty.get_element_type(); let llvm_ndarray_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else { let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ndarray_ty else {
return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}")); return Err(format!("Expected struct type for `NDArray` type, got {llvm_ndarray_ty}"));
}; };
if llvm_ndarray_ty.count_fields() != 3 {
return Err(format!(
"Expected 3 fields in `NDArray`, got {}",
llvm_ndarray_ty.count_fields()
));
}
let ndarray_ndims_ty = llvm_ndarray_ty.get_field_type_at_index(0).unwrap(); check_struct_type_matches_fields(
let Ok(ndarray_ndims_ty) = IntType::try_from(ndarray_ndims_ty) else { Self::fields(ctx, llvm_usize),
return Err(format!("Expected int type for `ndarray.0`, got {ndarray_ndims_ty}")); llvm_ndarray_ty,
}; "NDArray",
if ndarray_ndims_ty.get_bit_width() != llvm_usize.get_bit_width() { &[],
return Err(format!( )
"Expected {}-bit int type for `ndarray.0`, got {}-bit int",
llvm_usize.get_bit_width(),
ndarray_ndims_ty.get_bit_width()
));
}
let ndarray_dims_ty = llvm_ndarray_ty.get_field_type_at_index(1).unwrap();
let Ok(ndarray_pdims) = PointerType::try_from(ndarray_dims_ty) else {
return Err(format!("Expected pointer type for `ndarray.1`, got {ndarray_dims_ty}"));
};
let ndarray_dims = ndarray_pdims.get_element_type();
let Ok(ndarray_dims) = IntType::try_from(ndarray_dims) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.1`, got pointer-to-{ndarray_dims}"
));
};
if ndarray_dims.get_bit_width() != llvm_usize.get_bit_width() {
return Err(format!(
"Expected pointer-to-{}-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
llvm_usize.get_bit_width(),
ndarray_dims.get_bit_width()
));
}
let ndarray_data_ty = llvm_ndarray_ty.get_field_type_at_index(2).unwrap();
let Ok(ndarray_pdata) = PointerType::try_from(ndarray_data_ty) else {
return Err(format!("Expected pointer type for `ndarray.2`, got {ndarray_data_ty}"));
};
let ndarray_data = ndarray_pdata.get_element_type();
let Ok(ndarray_data) = IntType::try_from(ndarray_data) else {
return Err(format!(
"Expected pointer-to-int type for `ndarray.2`, got pointer-to-{ndarray_data}"
));
};
if ndarray_data.get_bit_width() != 8 {
return Err(format!(
"Expected pointer-to-8-bit int type for `ndarray.1`, got pointer-to-{}-bit int",
ndarray_data.get_bit_width()
));
}
Ok(())
} }
/// Returns an instance of [`StructFields`] containing all field accessors for this type. /// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use] #[must_use]
fn fields(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> NDArrayStructFields<'ctx> { fn fields(
ctx: impl AsContextRef<'ctx>,
llvm_usize: IntType<'ctx>,
) -> NDArrayStructFields<'ctx> {
NDArrayStructFields::new(ctx, llvm_usize) NDArrayStructFields::new(ctx, llvm_usize)
} }
/// See [`NDArrayType::fields`]. /// See [`NDArrayType::fields`].
// TODO: Move this into e.g. StructProxyType // TODO: Move this into e.g. StructProxyType
#[must_use] #[must_use]
pub fn get_fields(&self, ctx: &'ctx Context) -> NDArrayStructFields<'ctx> { pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDArrayStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize) Self::fields(ctx, self.llvm_usize)
} }
/// Creates an LLVM type corresponding to the expected structure of an `NDArray`. /// Creates an LLVM type corresponding to the expected structure of an `NDArray`.
#[must_use] #[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> { fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
// struct NDArray { num_dims: size_t, dims: size_t*, data: i8* }
//
// * data : Pointer to an array containing the array data
// * itemsize: The size of each NDArray elements in bytes
// * ndims : Number of dimensions in the array
// * shape : Pointer to an array containing the shape of the NDArray
// * strides : Pointer to an array indicating the number of bytes between each element at a dimension
let field_tys = let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec(); Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
@ -137,11 +113,60 @@ impl<'ctx> NDArrayType<'ctx> {
generator: &G, generator: &G,
ctx: &'ctx Context, ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>, dtype: BasicTypeEnum<'ctx>,
ndims: u64,
) -> Self { ) -> Self {
let llvm_usize = generator.get_size_type(ctx); let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize); let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, llvm_usize } NDArrayType { ty: llvm_ndarray, dtype, ndims, llvm_usize }
}
/// Creates an instance of [`NDArrayType`] as a result of a broadcast operation over one or more
/// `ndarray` operands.
#[must_use]
pub fn new_broadcast<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
inputs: &[NDArrayType<'ctx>],
) -> Self {
assert!(!inputs.is_empty());
Self::new(generator, ctx, dtype, inputs.iter().map(NDArrayType::ndims).max().unwrap())
}
/// Creates an instance of [`NDArrayType`] with `ndims` of 0.
#[must_use]
pub fn new_unsized<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_ndarray = Self::llvm_type(ctx, llvm_usize);
NDArrayType { ty: llvm_ndarray, dtype, ndims: 0, llvm_usize }
}
/// Creates an [`NDArrayType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let llvm_dtype = ctx.get_llvm_type(generator, dtype);
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndims = extract_ndims(&ctx.unifier, ndims);
NDArrayType {
ty: Self::llvm_type(ctx.ctx, llvm_usize),
dtype: llvm_dtype,
ndims,
llvm_usize,
}
} }
/// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`. /// Creates an [`NDArrayType`] from a [`PointerType`] representing an `NDArray`.
@ -149,22 +174,18 @@ impl<'ctx> NDArrayType<'ctx> {
pub fn from_type( pub fn from_type(
ptr_ty: PointerType<'ctx>, ptr_ty: PointerType<'ctx>,
dtype: BasicTypeEnum<'ctx>, dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
) -> Self { ) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok()); debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
NDArrayType { ty: ptr_ty, dtype, llvm_usize } NDArrayType { ty: ptr_ty, dtype, ndims, llvm_usize }
} }
/// Returns the type of the `size` field of this `ndarray` type. /// Returns the type of the `size` field of this `ndarray` type.
#[must_use] #[must_use]
pub fn size_type(&self) -> IntType<'ctx> { pub fn size_type(&self) -> IntType<'ctx> {
self.as_base_type() self.llvm_usize
.get_element_type()
.into_struct_type()
.get_field_type_at_index(0)
.map(BasicTypeEnum::into_int_type)
.unwrap()
} }
/// Returns the element type of this `ndarray` type. /// Returns the element type of this `ndarray` type.
@ -173,22 +194,207 @@ impl<'ctx> NDArrayType<'ctx> {
self.dtype self.dtype
} }
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type. /// Returns the number of dimensions of this `ndarray` type.
#[must_use] #[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>( pub fn ndims(&self) -> u64 {
self.ndims
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.dtype,
self.ndims,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDArrayValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self, &self,
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>, name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value { ) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value( <Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name), self.raw_alloca_var(generator, ctx, name),
self.dtype, self.dtype,
self.ndims,
self.llvm_usize, self.llvm_usize,
name, name,
) )
} }
/// Allocates an [`NDArrayValue`] on the stack and initializes all fields as follows:
///
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `self.dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
fn construct_impl<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndims: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndarray = self.alloca_var(generator, ctx, name);
let itemsize = ctx
.builder
.build_int_truncate_or_bit_cast(self.dtype.size_of().unwrap(), self.llvm_usize, "")
.unwrap();
ndarray.store_itemsize(ctx, generator, itemsize);
ndarray.store_ndims(ctx, generator, ndims);
ndarray.create_shape(ctx, self.llvm_usize, ndims);
ndarray.create_strides(ctx, self.llvm_usize, ndims);
ndarray
}
/// Allocate an [`NDArrayValue`] on the stack using `dtype` and `ndims` of this [`NDArrayType`]
/// instance.
///
/// The returned ndarray's content will be:
/// - `data`: uninitialized.
/// - `itemsize`: set to the size of `dtype`.
/// - `ndims`: set to the value of `self.ndims`.
/// - `shape`: allocated on the stack with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated on the stack with an array of length `ndims` with uninitialized
/// values.
#[must_use]
pub fn construct_uninitialized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let ndims = self.llvm_usize.const_int(self.ndims, false);
self.construct_impl(generator, ctx, ndims, name)
}
/// Convenience function. Allocate an [`NDArrayValue`] with a statically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_const_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[u64],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
let dim = llvm_usize.const_int(*dim, false);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
dim,
);
}
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayValue`] with a dynamically known shape.
///
/// The returned [`NDArrayValue`]'s `data` and `strides` are uninitialized.
#[must_use]
pub fn construct_dyn_shape<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: &[IntValue<'ctx>],
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
assert_eq!(shape.len() as u64, self.ndims);
let ndarray = Self::new(generator, ctx.ctx, self.dtype, shape.len() as u64)
.construct_uninitialized(generator, ctx, name);
let llvm_usize = generator.get_size_type(ctx.ctx);
// Write shape
let ndarray_shape = ndarray.shape();
for (i, dim) in shape.iter().enumerate() {
assert_eq!(
dim.get_type(),
llvm_usize,
"Expected {} but got {}",
llvm_usize.print_to_string(),
dim.get_type().print_to_string()
);
unsafe {
ndarray_shape.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
*dim,
);
}
}
ndarray
}
/// Create an unsized ndarray to contain `value`.
#[must_use]
pub fn construct_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: &impl BasicValue<'ctx>,
name: Option<&'ctx str>,
) -> NDArrayValue<'ctx> {
let value = value.as_basic_value_enum();
assert_eq!(value.get_type(), self.dtype);
assert_eq!(self.ndims, 0);
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(value.get_type(), "construct_unsized").unwrap();
ctx.builder.build_store(data, value).unwrap();
let data = ctx
.builder
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap();
let ndarray = Self::new_unsized(generator, ctx.ctx, value.get_type())
.construct_uninitialized(generator, ctx, name);
ctx.builder.build_store(ndarray.ptr_to_data(ctx), data).unwrap();
ndarray
}
/// Converts an existing value into a [`NDArrayValue`]. /// Converts an existing value into a [`NDArrayValue`].
#[must_use] #[must_use]
pub fn map_value( pub fn map_value(
@ -199,6 +405,7 @@ impl<'ctx> NDArrayType<'ctx> {
<Self as ProxyType<'ctx>>::Value::from_pointer_value( <Self as ProxyType<'ctx>>::Value::from_pointer_value(
value, value,
self.dtype, self.dtype,
self.ndims,
self.llvm_usize, self.llvm_usize,
name, name,
) )
@ -229,36 +436,8 @@ impl<'ctx> ProxyType<'ctx> for NDArrayType<'ctx> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx)) Self::is_representable(llvm_ty, generator.get_size_type(ctx))
} }
fn raw_alloca<G: CodeGenerator + ?Sized>( fn alloca_type(&self) -> impl BasicType<'ctx> {
&self, self.as_base_type().get_element_type().into_struct_type()
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
} }
fn as_base_type(&self) -> Self::Base { fn as_base_type(&self) -> Self::Base {

View File

@ -0,0 +1,237 @@
use inkwell::{
context::{AsContextRef, Context},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use super::ProxyType;
use crate::codegen::{
irrt,
types::structure::{check_struct_type_matches_fields, StructField, StructFields},
values::{
ndarray::{NDArrayValue, NDIterValue},
ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAdapter,
},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct NDIterType<'ctx> {
ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct NDIterStructFields<'ctx> {
#[value_type(usize)]
pub ndims: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub shape: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub strides: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize.ptr_type(AddressSpace::default()))]
pub indices: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
pub nth: StructField<'ctx, IntValue<'ctx>>,
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
pub element: StructField<'ctx, PointerValue<'ctx>>,
#[value_type(usize)]
pub size: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> NDIterType<'ctx> {
/// Checks whether `llvm_ty` represents a `nditer` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ndarray_ty) = llvm_ty else {
return Err(format!("Expected struct type for `NDIter` type, got {llvm_ty}"));
};
check_struct_type_matches_fields(
Self::fields(ctx, llvm_usize),
llvm_ndarray_ty,
"NDIter",
&[],
)
}
/// Returns an instance of [`StructFields`] containing all field accessors for this type.
#[must_use]
fn fields(ctx: impl AsContextRef<'ctx>, llvm_usize: IntType<'ctx>) -> NDIterStructFields<'ctx> {
NDIterStructFields::new(ctx, llvm_usize)
}
/// See [`NDIterType::fields`].
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self, ctx: impl AsContextRef<'ctx>) -> NDIterStructFields<'ctx> {
Self::fields(ctx, self.llvm_usize)
}
/// Creates an LLVM type corresponding to the expected structure of an `NDIter`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, llvm_usize: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys =
Self::fields(ctx, llvm_usize).into_iter().map(|field| field.1).collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`NDIter`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_nditer = Self::llvm_type(ctx, llvm_usize);
Self { ty: llvm_nditer, llvm_usize }
}
/// Creates an [`NDIterType`] from a [`PointerType`] representing an `NDIter`.
#[must_use]
pub fn from_type(ptr_ty: PointerType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(ptr_ty, llvm_usize).is_ok());
Self { ty: ptr_ty, llvm_usize }
}
/// Returns the type of the `size` field of this `nditer` type.
#[must_use]
pub fn size_type(&self) -> IntType<'ctx> {
self.llvm_usize
}
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
parent,
indices,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`NDIterValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
parent,
indices,
self.llvm_usize,
name,
)
}
/// Allocate an [`NDIter`] that iterates through the given `ndarray`.
///
/// Note: This function allocates an array on the stack at the current builder location, which
/// may lead to stack explosion if called in a hot loop. Therefore, callers are recommended to
/// call `llvm.stacksave` before calling this function and call `llvm.stackrestore` after the
/// [`NDIter`] is no longer needed.
#[must_use]
pub fn construct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
) -> <Self as ProxyType<'ctx>>::Value {
let nditer = self.raw_alloca_var(generator, ctx, None);
let ndims = self.llvm_usize.const_int(ndarray.get_type().ndims(), false);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices =
generator.gen_array_var_alloc(ctx, self.llvm_usize.into(), ndims, None).unwrap();
let indices =
TypedArrayLikeAdapter::from(indices, |_, _, v| v.into_int_value(), |_, _, v| v.into());
let nditer = self.map_value(nditer, ndarray, indices.as_slice_value(ctx, generator), None);
irrt::ndarray::call_nac3_nditer_initialize(generator, ctx, nditer, ndarray, &indices);
nditer
}
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
parent,
indices,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for NDIterType<'ctx> {
type Base = PointerType<'ctx>;
type Value = NDIterValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<NDIterType<'ctx>> for PointerType<'ctx> {
fn from(value: NDIterType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -1,13 +1,12 @@
use inkwell::{ use inkwell::{
context::Context, context::Context,
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType}, types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace, AddressSpace,
}; };
use super::ProxyType; use super::ProxyType;
use crate::codegen::{ use crate::codegen::{
values::{ArraySliceValue, ProxyValue, RangeValue}, values::{ProxyValue, RangeValue},
{CodeGenContext, CodeGenerator}, {CodeGenContext, CodeGenerator},
}; };
@ -78,15 +77,29 @@ impl<'ctx> RangeType<'ctx> {
} }
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type. /// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use] #[must_use]
pub fn alloca<G: CodeGenerator + ?Sized>( pub fn alloca<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(self.raw_alloca(ctx, name), name)
}
/// Allocates an instance of [`RangeValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self, &self,
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>, name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value { ) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value( <Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(generator, ctx, name), self.raw_alloca_var(generator, ctx, name),
name, name,
) )
} }
@ -126,36 +139,8 @@ impl<'ctx> ProxyType<'ctx> for RangeType<'ctx> {
Self::is_representable(llvm_ty) Self::is_representable(llvm_ty)
} }
fn raw_alloca<G: CodeGenerator + ?Sized>( fn alloca_type(&self) -> impl BasicType<'ctx> {
&self, self.as_base_type().get_element_type().into_struct_type()
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self::Value as ProxyValue<'ctx>>::Base {
generator
.gen_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
name,
)
.unwrap()
}
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> ArraySliceValue<'ctx> {
generator
.gen_array_var_alloc(
ctx,
self.as_base_type().get_element_type().into_struct_type().into(),
size,
name,
)
.unwrap()
} }
fn as_base_type(&self) -> Self::Base { fn as_base_type(&self) -> Self::Base {

View File

@ -2,9 +2,10 @@ use std::marker::PhantomData;
use inkwell::{ use inkwell::{
context::AsContextRef, context::AsContextRef,
types::{BasicTypeEnum, IntType}, types::{BasicTypeEnum, IntType, StructType},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue}, values::{BasicValue, BasicValueEnum, IntValue, PointerValue, StructValue},
}; };
use itertools::Itertools;
use crate::codegen::CodeGenContext; use crate::codegen::CodeGenContext;
@ -55,6 +56,20 @@ pub trait StructFields<'ctx>: Eq + Copy {
{ {
self.into_vec().into_iter() self.into_vec().into_iter()
} }
/// Returns the field index of a field in this structure.
fn index_of_field<V>(&self, name: impl FnOnce(&Self) -> StructField<'ctx, V>) -> u32
where
V: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>, Error = ()>,
{
let field_name = name(self).name;
self.index_of_field_name(field_name).unwrap()
}
/// Returns the field index of a field with the given name in this structure.
fn index_of_field_name(&self, field_name: &str) -> Option<u32> {
self.iter().find_position(|(name, _)| *name == field_name).map(|(idx, _)| idx as u32)
}
} }
/// A single field of an LLVM structure. /// A single field of an LLVM structure.
@ -103,6 +118,12 @@ where
StructField { index, name, ty: ty.into(), _value_ty: PhantomData } StructField { index, name, ty: ty.into(), _value_ty: PhantomData }
} }
/// Returns the name of this field.
#[must_use]
pub fn name(&self) -> &'static str {
self.name
}
/// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32 /// Creates a pointer to this field in an arbitrary structure by performing a `getelementptr i32
/// {idx...}, i32 {self.index}`. /// {idx...}, i32 {self.index}`.
pub fn ptr_by_array_gep( pub fn ptr_by_array_gep(
@ -201,3 +222,49 @@ impl FieldIndexCounter {
v v
} }
} }
type FieldTypeVerifier<'ctx> = dyn Fn(BasicTypeEnum<'ctx>) -> Result<(), String>;
/// Checks whether [`llvm_ty`][StructType] contains the fields described by the given
/// [`StructFields`] instance.
///
/// By default, this function will compare the type of each field in `expected_fields` against
/// `llvm_ty`. To override this behavior for individual fields, pass in overrides to
/// `custom_verifiers`, which will use the specified verifier when a field with the matching field
/// name is being checked.
pub(super) fn check_struct_type_matches_fields<'ctx>(
expected_fields: impl StructFields<'ctx>,
llvm_ty: StructType<'ctx>,
ty_name: &'static str,
custom_verifiers: &[(&str, &FieldTypeVerifier<'ctx>)],
) -> Result<(), String> {
let expected_fields = expected_fields.to_vec();
if llvm_ty.count_fields() != u32::try_from(expected_fields.len()).unwrap() {
return Err(format!(
"Expected {} fields in `{ty_name}`, got {}",
expected_fields.len(),
llvm_ty.count_fields(),
));
}
expected_fields
.into_iter()
.enumerate()
.map(|(i, (field_name, expected_ty))| {
(field_name, expected_ty, llvm_ty.get_field_type_at_index(i as u32).unwrap())
})
.try_for_each(|(field_name, expected_ty, actual_ty)| {
if let Some((_, verifier)) =
custom_verifiers.iter().find(|verifier| verifier.0 == field_name)
{
verifier(actual_ty)
} else if expected_ty == actual_ty {
Ok(())
} else {
Err(format!("Expected {expected_ty} for `{ty_name}.{field_name}`, got {actual_ty}"))
}
})?;
Ok(())
}

View File

@ -0,0 +1,184 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, IntType, StructType},
values::BasicValueEnum,
};
use itertools::Itertools;
use super::ProxyType;
use crate::{
codegen::{
values::{ProxyValue, TupleValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct TupleType<'ctx> {
ty: StructType<'ctx>,
llvm_usize: IntType<'ctx>,
}
impl<'ctx> TupleType<'ctx> {
/// Checks whether `llvm_ty` represents any tuple type, returning [Err] if it does not.
pub fn is_representable(_value: StructType<'ctx>) -> Result<(), String> {
Ok(())
}
/// Creates an LLVM type corresponding to the expected structure of a tuple.
#[must_use]
fn llvm_type(ctx: &'ctx Context, tys: &[BasicTypeEnum<'ctx>]) -> StructType<'ctx> {
ctx.struct_type(tys, false)
}
/// Creates an instance of [`TupleType`].
#[must_use]
pub fn new<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
tys: &[BasicTypeEnum<'ctx>],
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
let llvm_tuple = Self::llvm_type(ctx, tys);
Self { ty: llvm_tuple, llvm_usize }
}
/// Creates an [`TupleType`] from a [unifier type][Type].
#[must_use]
pub fn from_unifier_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: Type,
) -> Self {
let llvm_usize = generator.get_size_type(ctx.ctx);
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty_immutable(ty) else {
panic!("Expected type to be a TypeEnum::TTuple, got {}", ctx.unifier.stringify(ty));
};
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
Self { ty: Self::llvm_type(ctx.ctx, &llvm_tys), llvm_usize }
}
/// Creates an [`TupleType`] from a [`StructType`].
#[must_use]
pub fn from_type(struct_ty: StructType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
debug_assert!(Self::is_representable(struct_ty).is_ok());
TupleType { ty: struct_ty, llvm_usize }
}
/// Returns the number of elements present in this [`TupleType`].
#[must_use]
pub fn num_elements(&self) -> u32 {
self.ty.count_fields()
}
/// Returns the type of the tuple element at the given `index`, or [`None`] if `index` is out of
/// range.
#[must_use]
pub fn type_at_index(&self, index: u32) -> Option<BasicTypeEnum<'ctx>> {
if index < self.num_elements() {
Some(unsafe { self.type_at_index_unchecked(index) })
} else {
None
}
}
/// Returns the type of the tuple element at the given `index`.
///
/// # Safety
///
/// The caller must ensure that the index is valid.
#[must_use]
pub unsafe fn type_at_index_unchecked(&self, index: u32) -> BasicTypeEnum<'ctx> {
self.ty.get_field_type_at_index_unchecked(index)
}
/// Constructs a [`TupleValue`] from this type by zero-initializing the tuple value.
#[must_use]
pub fn construct(
&self,
ctx: &CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
self.map_value(Self::llvm_type(ctx.ctx, &self.ty.get_field_types()).const_zero(), name)
}
/// Constructs a [`TupleValue`] from `objects`. The resulting tuple preserves the order of
/// objects.
#[must_use]
pub fn construct_from_objects<I: IntoIterator<Item = BasicValueEnum<'ctx>>>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
objects: I,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
let values = objects.into_iter().collect_vec();
assert_eq!(values.len(), self.num_elements() as usize);
assert!(values
.iter()
.enumerate()
.all(|(i, v)| { v.get_type() == unsafe { self.type_at_index_unchecked(i as u32) } }));
let mut value = self.construct(ctx, name);
for (i, val) in values.into_iter().enumerate() {
value.store_element(ctx, i as u32, val);
}
value
}
/// Converts an existing value into a [`ListValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_struct_value(value, self.llvm_usize, name)
}
}
impl<'ctx> ProxyType<'ctx> for TupleType<'ctx> {
type Base = StructType<'ctx>;
type Value = TupleValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::StructType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected struct type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
_generator: &G,
_ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty)
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<TupleType<'ctx>> for StructType<'ctx> {
fn from(value: TupleType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -0,0 +1,3 @@
pub use slice::*;
mod slice;

View File

@ -0,0 +1,245 @@
use inkwell::{
context::{AsContextRef, Context, ContextRef},
types::{AnyTypeEnum, BasicType, BasicTypeEnum, IntType, PointerType},
values::IntValue,
AddressSpace,
};
use itertools::Itertools;
use nac3core_derive::StructFields;
use crate::codegen::{
types::{
structure::{
check_struct_type_matches_fields, FieldIndexCounter, StructField, StructFields,
},
ProxyType,
},
values::{utils::SliceValue, ProxyValue},
CodeGenContext, CodeGenerator,
};
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct SliceType<'ctx> {
ty: PointerType<'ctx>,
int_ty: IntType<'ctx>,
llvm_usize: IntType<'ctx>,
}
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
pub struct SliceFields<'ctx> {
#[value_type(bool_type())]
pub start_defined: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize)]
pub start: StructField<'ctx, IntValue<'ctx>>,
#[value_type(bool_type())]
pub stop_defined: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize)]
pub stop: StructField<'ctx, IntValue<'ctx>>,
#[value_type(bool_type())]
pub step_defined: StructField<'ctx, IntValue<'ctx>>,
#[value_type(usize)]
pub step: StructField<'ctx, IntValue<'ctx>>,
}
impl<'ctx> SliceFields<'ctx> {
/// Creates a new instance of [`SliceFields`] with a custom integer type for its range values.
#[must_use]
pub fn new_sized(ctx: &impl AsContextRef<'ctx>, int_ty: IntType<'ctx>) -> Self {
let ctx = unsafe { ContextRef::new(ctx.as_ctx_ref()) };
let mut counter = FieldIndexCounter::default();
SliceFields {
start_defined: StructField::create(&mut counter, "start_defined", ctx.bool_type()),
start: StructField::create(&mut counter, "start", int_ty),
stop_defined: StructField::create(&mut counter, "stop_defined", ctx.bool_type()),
stop: StructField::create(&mut counter, "stop", int_ty),
step_defined: StructField::create(&mut counter, "step_defined", ctx.bool_type()),
step: StructField::create(&mut counter, "step", int_ty),
}
}
}
impl<'ctx> SliceType<'ctx> {
/// Checks whether `llvm_ty` represents a `slice` type, returning [Err] if it does not.
pub fn is_representable(
llvm_ty: PointerType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
let ctx = llvm_ty.get_context();
let fields = SliceFields::new(ctx, llvm_usize);
let llvm_ty = llvm_ty.get_element_type();
let AnyTypeEnum::StructType(llvm_ty) = llvm_ty else {
return Err(format!("Expected struct type for `Slice` type, got {llvm_ty}"));
};
check_struct_type_matches_fields(
fields,
llvm_ty,
"Slice",
&[
(fields.start.name(), &|ty| {
if ty.is_int_type() {
Ok(())
} else {
Err(format!("Expected int type for `Slice.start`, got {ty}"))
}
}),
(fields.stop.name(), &|ty| {
if ty.is_int_type() {
Ok(())
} else {
Err(format!("Expected int type for `Slice.stop`, got {ty}"))
}
}),
(fields.step.name(), &|ty| {
if ty.is_int_type() {
Ok(())
} else {
Err(format!("Expected int type for `Slice.step`, got {ty}"))
}
}),
],
)
}
// TODO: Move this into e.g. StructProxyType
#[must_use]
pub fn get_fields(&self) -> SliceFields<'ctx> {
SliceFields::new_sized(&self.int_ty.get_context(), self.int_ty)
}
/// Creates an LLVM type corresponding to the expected structure of a `Slice`.
#[must_use]
fn llvm_type(ctx: &'ctx Context, int_ty: IntType<'ctx>) -> PointerType<'ctx> {
let field_tys = SliceFields::new_sized(&int_ty.get_context(), int_ty)
.into_iter()
.map(|field| field.1)
.collect_vec();
ctx.struct_type(&field_tys, false).ptr_type(AddressSpace::default())
}
/// Creates an instance of [`SliceType`] with `int_ty` as its backing integer type.
#[must_use]
pub fn new(ctx: &'ctx Context, int_ty: IntType<'ctx>, llvm_usize: IntType<'ctx>) -> Self {
let llvm_ty = Self::llvm_type(ctx, int_ty);
Self { ty: llvm_ty, int_ty, llvm_usize }
}
/// Creates an instance of [`SliceType`] with `usize` as its backing integer type.
#[must_use]
pub fn new_usize<G: CodeGenerator + ?Sized>(generator: &G, ctx: &'ctx Context) -> Self {
let llvm_usize = generator.get_size_type(ctx);
Self::new(ctx, llvm_usize, llvm_usize)
}
/// Creates an [`SliceType`] from a [`PointerType`] representing a `slice`.
#[must_use]
pub fn from_type(
ptr_ty: PointerType<'ctx>,
int_ty: IntType<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Self {
debug_assert!(Self::is_representable(ptr_ty, int_ty).is_ok());
Self { ty: ptr_ty, int_ty, llvm_usize }
}
#[must_use]
pub fn element_type(&self) -> IntType<'ctx> {
self.int_ty
}
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca`].
#[must_use]
pub fn alloca(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca(ctx, name),
self.int_ty,
self.llvm_usize,
name,
)
}
/// Allocates an instance of [`SliceValue`] as if by calling `alloca` on the base type.
///
/// See [`ProxyType::raw_alloca_var`].
#[must_use]
pub fn alloca_var<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
self.raw_alloca_var(generator, ctx, name),
self.int_ty,
self.llvm_usize,
name,
)
}
/// Converts an existing value into a [`ContiguousNDArrayValue`].
#[must_use]
pub fn map_value(
&self,
value: <<Self as ProxyType<'ctx>>::Value as ProxyValue<'ctx>>::Base,
name: Option<&'ctx str>,
) -> <Self as ProxyType<'ctx>>::Value {
<Self as ProxyType<'ctx>>::Value::from_pointer_value(
value,
self.int_ty,
self.llvm_usize,
name,
)
}
}
impl<'ctx> ProxyType<'ctx> for SliceType<'ctx> {
type Base = PointerType<'ctx>;
type Value = SliceValue<'ctx>;
fn is_type<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: impl BasicType<'ctx>,
) -> Result<(), String> {
if let BasicTypeEnum::PointerType(ty) = llvm_ty.as_basic_type_enum() {
<Self as ProxyType<'ctx>>::is_representable(generator, ctx, ty)
} else {
Err(format!("Expected pointer type, got {llvm_ty:?}"))
}
}
fn is_representable<G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &'ctx Context,
llvm_ty: Self::Base,
) -> Result<(), String> {
Self::is_representable(llvm_ty, generator.get_size_type(ctx))
}
fn alloca_type(&self) -> impl BasicType<'ctx> {
self.as_base_type().get_element_type().into_struct_type()
}
fn as_base_type(&self) -> Self::Base {
self.ty
}
}
impl<'ctx> From<SliceType<'ctx>> for PointerType<'ctx> {
fn from(value: SliceType<'ctx>) -> Self {
value.as_base_type()
}
}

View File

@ -51,8 +51,8 @@ pub trait ArrayLikeIndexer<'ctx, Index = IntValue<'ctx>>: ArrayLikeValue<'ctx> {
/// This function should be called with a valid index. /// This function should be called with a valid index.
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>( unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &Index, idx: &Index,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx>; ) -> PointerValue<'ctx>;
@ -76,8 +76,8 @@ pub trait UntypedArrayLikeAccessor<'ctx, Index = IntValue<'ctx>>:
/// This function should be called with a valid index. /// This function should be called with a valid index.
unsafe fn get_unchecked<G: CodeGenerator + ?Sized>( unsafe fn get_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &Index, idx: &Index,
name: Option<&str>, name: Option<&str>,
) -> BasicValueEnum<'ctx> { ) -> BasicValueEnum<'ctx> {
@ -107,8 +107,8 @@ pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
/// This function should be called with a valid index. /// This function should be called with a valid index.
unsafe fn set_unchecked<G: CodeGenerator + ?Sized>( unsafe fn set_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &Index, idx: &Index,
value: BasicValueEnum<'ctx>, value: BasicValueEnum<'ctx>,
) { ) {
@ -130,32 +130,33 @@ pub trait UntypedArrayLikeMutator<'ctx, Index = IntValue<'ctx>>:
} }
/// An array-like value that can have its array elements accessed as an arbitrary type `T`. /// An array-like value that can have its array elements accessed as an arbitrary type `T`.
pub trait TypedArrayLikeAccessor<'ctx, T, Index = IntValue<'ctx>>: pub trait TypedArrayLikeAccessor<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
UntypedArrayLikeAccessor<'ctx, Index> UntypedArrayLikeAccessor<'ctx, Index>
{ {
/// Casts an element from [`BasicValueEnum`] into `T`. /// Casts an element from [`BasicValueEnum`] into `T`.
fn downcast_to_type( fn downcast_to_type(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: BasicValueEnum<'ctx>, value: BasicValueEnum<'ctx>,
) -> T; ) -> T;
/// # Safety /// # Safety
/// ///
/// This function should be called with a valid index. /// This function should be called with a valid index.
unsafe fn get_typed_unchecked<G: CodeGenerator + ?Sized>( unsafe fn get_typed_unchecked(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &Index, idx: &Index,
name: Option<&str>, name: Option<&str>,
) -> T { ) -> T {
let value = unsafe { self.get_unchecked(ctx, generator, idx, name) }; let value = unsafe { self.get_unchecked(ctx, generator, idx, name) };
self.downcast_to_type(ctx, value) self.downcast_to_type(ctx, generator, value)
} }
/// Returns the data at the `idx`-th index. /// Returns the data at the `idx`-th index.
fn get_typed<G: CodeGenerator + ?Sized>( fn get_typed(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &mut G,
@ -163,62 +164,63 @@ pub trait TypedArrayLikeAccessor<'ctx, T, Index = IntValue<'ctx>>:
name: Option<&str>, name: Option<&str>,
) -> T { ) -> T {
let value = self.get(ctx, generator, idx, name); let value = self.get(ctx, generator, idx, name);
self.downcast_to_type(ctx, value) self.downcast_to_type(ctx, generator, value)
} }
} }
/// An array-like value that can have its array elements mutated as an arbitrary type `T`. /// An array-like value that can have its array elements mutated as an arbitrary type `T`.
pub trait TypedArrayLikeMutator<'ctx, T, Index = IntValue<'ctx>>: pub trait TypedArrayLikeMutator<'ctx, G: CodeGenerator + ?Sized, T, Index = IntValue<'ctx>>:
UntypedArrayLikeMutator<'ctx, Index> UntypedArrayLikeMutator<'ctx, Index>
{ {
/// Casts an element from T into [`BasicValueEnum`]. /// Casts an element from T into [`BasicValueEnum`].
fn upcast_from_type( fn upcast_from_type(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: T, value: T,
) -> BasicValueEnum<'ctx>; ) -> BasicValueEnum<'ctx>;
/// # Safety /// # Safety
/// ///
/// This function should be called with a valid index. /// This function should be called with a valid index.
unsafe fn set_typed_unchecked<G: CodeGenerator + ?Sized>( unsafe fn set_typed_unchecked(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &Index, idx: &Index,
value: T, value: T,
) { ) {
let value = self.upcast_from_type(ctx, value); let value = self.upcast_from_type(ctx, generator, value);
unsafe { self.set_unchecked(ctx, generator, idx, value) } unsafe { self.set_unchecked(ctx, generator, idx, value) }
} }
/// Sets the data at the `idx`-th index. /// Sets the data at the `idx`-th index.
fn set_typed<G: CodeGenerator + ?Sized>( fn set_typed(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &mut G,
idx: &Index, idx: &Index,
value: T, value: T,
) { ) {
let value = self.upcast_from_type(ctx, value); let value = self.upcast_from_type(ctx, generator, value);
self.set(ctx, generator, idx, value); self.set(ctx, generator, idx, value);
} }
} }
/// Type alias for a function that casts a [`BasicValueEnum`] into a `T`.
type ValueDowncastFn<'ctx, T> =
Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, BasicValueEnum<'ctx>) -> T>;
/// Type alias for a function that casts a `T` into a [`BasicValueEnum`].
type ValueUpcastFn<'ctx, T> = Box<dyn Fn(&mut CodeGenContext<'ctx, '_>, T) -> BasicValueEnum<'ctx>>;
/// An adapter for constraining untyped array values as typed values. /// An adapter for constraining untyped array values as typed values.
pub struct TypedArrayLikeAdapter<'ctx, T, Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>> { #[derive(Copy, Clone)]
pub struct TypedArrayLikeAdapter<
'ctx,
G: CodeGenerator + ?Sized,
T,
Adapted: ArrayLikeValue<'ctx> = ArraySliceValue<'ctx>,
> {
adapted: Adapted, adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>, downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
upcast_fn: ValueUpcastFn<'ctx, T>, upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
} }
impl<'ctx, T, Adapted> TypedArrayLikeAdapter<'ctx, T, Adapted> impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where where
Adapted: ArrayLikeValue<'ctx>, Adapted: ArrayLikeValue<'ctx>,
{ {
@ -229,61 +231,70 @@ where
/// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`]. /// * `upcast_fn` - The function converting a T into a [`BasicValueEnum`].
pub fn from( pub fn from(
adapted: Adapted, adapted: Adapted,
downcast_fn: ValueDowncastFn<'ctx, T>, downcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, BasicValueEnum<'ctx>) -> T,
upcast_fn: ValueUpcastFn<'ctx, T>, upcast_fn: fn(&CodeGenContext<'ctx, '_>, &G, T) -> BasicValueEnum<'ctx>,
) -> Self { ) -> Self {
TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn } TypedArrayLikeAdapter { adapted, downcast_fn, upcast_fn }
} }
} }
impl<'ctx, T, Adapted> ArrayLikeValue<'ctx> for TypedArrayLikeAdapter<'ctx, T, Adapted> impl<'ctx, G: CodeGenerator + ?Sized, T, Adapted> ArrayLikeValue<'ctx>
for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where where
Adapted: ArrayLikeValue<'ctx>, Adapted: ArrayLikeValue<'ctx>,
{ {
fn element_type<G: CodeGenerator + ?Sized>( fn element_type<CG: CodeGenerator + ?Sized>(
&self, &self,
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G, generator: &CG,
) -> AnyTypeEnum<'ctx> { ) -> AnyTypeEnum<'ctx> {
self.adapted.element_type(ctx, generator) self.adapted.element_type(ctx, generator)
} }
fn base_ptr<G: CodeGenerator + ?Sized>( fn base_ptr<CG: CodeGenerator + ?Sized>(
&self, &self,
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G, generator: &CG,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {
self.adapted.base_ptr(ctx, generator) self.adapted.base_ptr(ctx, generator)
} }
fn size<G: CodeGenerator + ?Sized>( fn size<CG: CodeGenerator + ?Sized>(
&self, &self,
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G, generator: &CG,
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
self.adapted.size(ctx, generator) self.adapted.size(ctx, generator)
} }
fn as_slice_value<CG: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &CG,
) -> ArraySliceValue<'ctx> {
self.adapted.as_slice_value(ctx, generator)
}
} }
impl<'ctx, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index> impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> ArrayLikeIndexer<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted> for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where where
Adapted: ArrayLikeIndexer<'ctx, Index>, Adapted: ArrayLikeIndexer<'ctx, Index>,
{ {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>( unsafe fn ptr_offset_unchecked<CG: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &CG,
idx: &Index, idx: &Index,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {
unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) } unsafe { self.adapted.ptr_offset_unchecked(ctx, generator, idx, name) }
} }
fn ptr_offset<G: CodeGenerator + ?Sized>( fn ptr_offset<CG: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &mut CG,
idx: &Index, idx: &Index,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {
@ -291,44 +302,46 @@ where
} }
} }
impl<'ctx, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index> impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeAccessor<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted> for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>, Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{ {
} }
impl<'ctx, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index> impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> UntypedArrayLikeMutator<'ctx, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted> for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where where
Adapted: UntypedArrayLikeMutator<'ctx, Index>, Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{ {
} }
impl<'ctx, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, T, Index> impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeAccessor<'ctx, G, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted> for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where where
Adapted: UntypedArrayLikeAccessor<'ctx, Index>, Adapted: UntypedArrayLikeAccessor<'ctx, Index>,
{ {
fn downcast_to_type( fn downcast_to_type(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: BasicValueEnum<'ctx>, value: BasicValueEnum<'ctx>,
) -> T { ) -> T {
(self.downcast_fn)(ctx, value) (self.downcast_fn)(ctx, generator, value)
} }
} }
impl<'ctx, T, Index, Adapted> TypedArrayLikeMutator<'ctx, T, Index> impl<'ctx, G: CodeGenerator + ?Sized, T, Index, Adapted> TypedArrayLikeMutator<'ctx, G, T, Index>
for TypedArrayLikeAdapter<'ctx, T, Adapted> for TypedArrayLikeAdapter<'ctx, G, T, Adapted>
where where
Adapted: UntypedArrayLikeMutator<'ctx, Index>, Adapted: UntypedArrayLikeMutator<'ctx, Index>,
{ {
fn upcast_from_type( fn upcast_from_type(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
value: T, value: T,
) -> BasicValueEnum<'ctx> { ) -> BasicValueEnum<'ctx> {
(self.upcast_fn)(ctx, value) (self.upcast_fn)(ctx, generator, value)
} }
} }
@ -384,12 +397,12 @@ impl<'ctx> ArrayLikeValue<'ctx> for ArraySliceValue<'ctx> {
impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> { impl<'ctx> ArrayLikeIndexer<'ctx> for ArraySliceValue<'ctx> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>( unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &IntValue<'ctx>, idx: &IntValue<'ctx>,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default(); let var_name = name.or(self.2).map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe { unsafe {
ctx.builder ctx.builder

View File

@ -8,7 +8,7 @@ use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator, ArrayLikeIndexer, ArrayLikeValue, ProxyValue, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
}; };
use crate::codegen::{ use crate::codegen::{
types::ListType, types::{structure::StructField, ListType, ProxyType},
{CodeGenContext, CodeGenerator}, {CodeGenContext, CodeGenerator},
}; };
@ -42,48 +42,26 @@ impl<'ctx> ListValue<'ctx> {
ListValue { value: ptr, llvm_usize, name } ListValue { value: ptr, llvm_usize, name }
} }
fn items_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).items
}
/// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr` /// Returns the double-indirection pointer to the `data` array, as if by calling `getelementptr`
/// on the field. /// on the field.
fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> { fn pptr_to_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type(); self.items_field(ctx).ptr_by_gep(ctx, self.value, self.name)
let var_name = self.name.map(|v| format!("{v}.data.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
var_name.as_str(),
)
.unwrap()
}
}
/// Returns the pointer to the field storing the size of this `list`.
fn ptr_to_size(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let var_name = self.name.map(|v| format!("{v}.size.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(
self.as_base_value(),
&[llvm_i32.const_zero(), llvm_i32.const_int(1, true)],
var_name.as_str(),
)
.unwrap()
}
} }
/// Stores the array of data elements `data` into this instance. /// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) { fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
ctx.builder.build_store(self.pptr_to_data(ctx), data).unwrap(); self.items_field(ctx).set(ctx, self.value, data, self.name);
} }
/// Convenience method for creating a new array storing data elements with the given element /// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`. /// type `elem_ty` and `size`.
/// ///
/// If `size` is [None], the size stored in the field of this instance is used instead. /// If `size` is [None], the size stored in the field of this instance is used instead. If
/// `size` is resolved to `0` at runtime, `(T*) 0` will be assigned to `data`.
pub fn create_data( pub fn create_data(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
@ -114,6 +92,10 @@ impl<'ctx> ListValue<'ctx> {
ListDataProxy(self) ListDataProxy(self)
} }
fn len_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(&ctx.ctx).len
}
/// Stores the `size` of this `list` into this instance. /// Stores the `size` of this `list` into this instance.
pub fn store_size<G: CodeGenerator + ?Sized>( pub fn store_size<G: CodeGenerator + ?Sized>(
&self, &self,
@ -123,22 +105,33 @@ impl<'ctx> ListValue<'ctx> {
) { ) {
debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx)); debug_assert_eq!(size.get_type(), generator.get_size_type(ctx.ctx));
let psize = self.ptr_to_size(ctx); self.len_field(ctx).set(ctx, self.value, size, self.name);
ctx.builder.build_store(psize, size).unwrap();
} }
/// Returns the size of this `list` as a value. /// Returns the size of this `list` as a value.
pub fn load_size(&self, ctx: &CodeGenContext<'ctx, '_>, name: Option<&str>) -> IntValue<'ctx> { pub fn load_size(
let psize = self.ptr_to_size(ctx); &self,
let var_name = name ctx: &CodeGenContext<'ctx, '_>,
.map(ToString::to_string) name: Option<&'ctx str>,
.or_else(|| self.name.map(|v| format!("{v}.size"))) ) -> IntValue<'ctx> {
.unwrap_or_default(); self.len_field(ctx).get(ctx, self.value, name)
}
ctx.builder /// Returns an instance of [`ListValue`] with the `items` pointer cast to `i8*`.
.build_load(psize, var_name.as_str()) #[must_use]
.map(BasicValueEnum::into_int_value) pub fn as_i8_list<G: CodeGenerator + ?Sized>(
.unwrap() &self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> ListValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_list_i8 = <Self as ProxyValue>::Type::new(generator, ctx.ctx, llvm_i8.into());
Self::from_pointer_value(
ctx.builder.build_pointer_cast(self.value, llvm_list_i8.as_base_type(), "").unwrap(),
self.llvm_usize,
self.name,
)
} }
} }
@ -199,8 +192,8 @@ impl<'ctx> ArrayLikeValue<'ctx> for ListDataProxy<'ctx, '_> {
impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> { impl<'ctx> ArrayLikeIndexer<'ctx> for ListDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>( unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &IntValue<'ctx>, idx: &IntValue<'ctx>,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {

View File

@ -4,13 +4,15 @@ use super::types::ProxyType;
use crate::codegen::CodeGenerator; use crate::codegen::CodeGenerator;
pub use array::*; pub use array::*;
pub use list::*; pub use list::*;
pub use ndarray::*;
pub use range::*; pub use range::*;
pub use tuple::*;
mod array; mod array;
mod list; mod list;
mod ndarray; pub mod ndarray;
mod range; mod range;
mod tuple;
pub mod utils;
/// A LLVM type that is used to represent a non-primitive value in NAC3. /// A LLVM type that is used to represent a non-primitive value in NAC3.
pub trait ProxyValue<'ctx>: Into<Self::Base> { pub trait ProxyValue<'ctx>: Into<Self::Base> {

View File

@ -0,0 +1,243 @@
use inkwell::{
types::IntType,
values::{IntValue, PointerValue},
};
use itertools::Itertools;
use crate::codegen::{
irrt,
types::{
ndarray::{NDArrayType, ShapeEntryType},
structure::StructField,
ProxyType,
},
values::{
ndarray::NDArrayValue, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ProxyValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
};
#[derive(Copy, Clone)]
pub struct ShapeEntryValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ShapeEntryValue<'ctx> {
/// Checks whether `value` is an instance of `ShapeEntry`, returning [Err] if `value` is
/// not an instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ShapeEntryValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, llvm_usize, name }
}
fn ndims_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(self.value.get_type().get_context()).ndims
}
/// Stores the number of dimensions into this value.
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
self.ndims_field().set(ctx, self.value, value, self.name);
}
fn shape_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(self.value.get_type().get_context()).shape
}
/// Stores the shape into this value.
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.shape_field().set(ctx, self.value, value, self.name);
}
}
impl<'ctx> ProxyValue<'ctx> for ShapeEntryValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ShapeEntryType<'ctx>;
fn get_type(&self) -> Self::Type {
Self::Type::from_type(self.value.get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ShapeEntryValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ShapeEntryValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Create a broadcast view on this ndarray with a target shape.
///
/// The input shape will be checked to make sure that it contains no negative values.
///
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
/// The caller has to figure this out for this function.
/// * `target_shape` - An array pointer pointing to the target shape.
#[must_use]
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target_ndims: u64,
target_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> Self {
assert!(self.ndims <= target_ndims);
assert_eq!(target_shape.element_type(ctx, generator), self.llvm_usize.into());
let broadcast_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, target_ndims)
.construct_uninitialized(generator, ctx, None);
broadcast_ndarray.copy_shape_from_array(
generator,
ctx,
target_shape.base_ptr(ctx, generator),
);
irrt::ndarray::call_nac3_ndarray_broadcast_to(generator, ctx, *self, broadcast_ndarray);
broadcast_ndarray
}
}
/// A result produced by [`broadcast_all_ndarrays`]
#[derive(Clone)]
pub struct BroadcastAllResult<'ctx, G: CodeGenerator + ?Sized> {
/// The statically known `ndims` of the broadcast result.
pub ndims: u64,
/// The broadcasting shape.
pub shape: TypedArrayLikeAdapter<'ctx, G, IntValue<'ctx>>,
/// Broadcasted views on the inputs.
///
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
/// is the same as the input.
pub ndarrays: Vec<NDArrayValue<'ctx>>,
}
/// Helper function to call [`irrt::ndarray::call_nac3_ndarray_broadcast_shapes`].
fn broadcast_shapes<'ctx, G, Shape>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_shape_entries: &[(ArraySliceValue<'ctx>, u64)], // (shape, shape's length/ndims)
broadcast_ndims: u64,
broadcast_shape: &Shape,
) where
G: CodeGenerator + ?Sized,
Shape: TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
+ TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_shape_ty = ShapeEntryType::new(generator, ctx.ctx);
assert!(in_shape_entries
.iter()
.all(|entry| entry.0.element_type(ctx, generator) == llvm_usize.into()));
assert_eq!(broadcast_shape.element_type(ctx, generator), llvm_usize.into());
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries =
llvm_usize.const_int(u64::try_from(in_shape_entries.len()).unwrap(), false);
let shape_entries = llvm_shape_ty.array_alloca(ctx, num_shape_entries, None);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = unsafe {
shape_entries.ptr_offset_unchecked(
ctx,
generator,
&llvm_usize.const_int(i as u64, false),
None,
)
};
let shape_entry = llvm_shape_ty.map_value(pshape_entry, None);
let in_ndims = llvm_usize.const_int(*in_ndims, false);
shape_entry.store_ndims(ctx, in_ndims);
shape_entry.store_shape(ctx, in_shape.base_ptr(ctx, generator));
}
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims, false);
irrt::ndarray::call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
num_shape_entries,
shape_entries,
broadcast_ndims,
broadcast_shape,
);
}
impl<'ctx> NDArrayType<'ctx> {
/// Broadcast all ndarrays according to
/// [`np.broadcast()`](https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html)
/// and return a [`BroadcastAllResult`] containing all the information of the result of the
/// broadcast operation.
pub fn broadcast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarrays: &[NDArrayValue<'ctx>],
) -> BroadcastAllResult<'ctx, G> {
assert!(!ndarrays.is_empty());
let llvm_usize = generator.get_size_type(ctx.ctx);
// Infer the broadcast output ndims.
let broadcast_ndims_int =
ndarrays.iter().map(|ndarray| ndarray.get_type().ndims()).max().unwrap();
assert!(self.ndims() >= broadcast_ndims_int);
let broadcast_ndims = llvm_usize.const_int(broadcast_ndims_int, false);
let broadcast_shape = ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, broadcast_ndims, "").unwrap(),
broadcast_ndims,
None,
);
let broadcast_shape = TypedArrayLikeAdapter::from(
broadcast_shape,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let shape_entries = ndarrays
.iter()
.map(|ndarray| {
(ndarray.shape().as_slice_value(ctx, generator), ndarray.get_type().ndims())
})
.collect_vec();
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, &broadcast_shape);
// Broadcast all the inputs to shape `dst_shape`.
let broadcast_ndarrays = ndarrays
.iter()
.map(|ndarray| {
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, &broadcast_shape)
})
.collect_vec();
BroadcastAllResult {
ndims: broadcast_ndims_int,
shape: broadcast_shape,
ndarrays: broadcast_ndarrays,
}
}
}

View File

@ -0,0 +1,200 @@
use inkwell::{
types::{BasicType, BasicTypeEnum, IntType},
values::{IntValue, PointerValue},
AddressSpace,
};
use super::{ArrayLikeValue, NDArrayValue, ProxyValue};
use crate::codegen::{
stmt::gen_if_callback,
types::{
ndarray::{ContiguousNDArrayType, NDArrayType},
structure::StructField,
},
CodeGenContext, CodeGenerator,
};
#[derive(Copy, Clone)]
pub struct ContiguousNDArrayValue<'ctx> {
value: PointerValue<'ctx>,
item: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> ContiguousNDArrayValue<'ctx> {
/// Checks whether `value` is an instance of `ContiguousNDArray`, returning [Err] if `value` is
/// not an instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`ContiguousNDArrayValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, item: dtype, llvm_usize, name }
}
fn ndims_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().ndims
}
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
self.ndims_field().set(ctx, self.as_base_value(), value, self.name);
}
fn shape_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields().shape
}
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.shape_field().set(ctx, self.as_base_value(), value, self.name);
}
pub fn load_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.shape_field().get(ctx, self.value, self.name)
}
fn data_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields().data
}
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.data_field().set(ctx, self.as_base_value(), value, self.name);
}
pub fn load_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.data_field().get(ctx, self.value, self.name)
}
}
impl<'ctx> ProxyValue<'ctx> for ContiguousNDArrayValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = ContiguousNDArrayType<'ctx>;
fn get_type(&self) -> Self::Type {
<Self as ProxyValue<'ctx>>::Type::from_type(
self.as_base_value().get_type(),
self.item,
self.llvm_usize,
)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<ContiguousNDArrayValue<'ctx>> for PointerValue<'ctx> {
fn from(value: ContiguousNDArrayValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Create a [`ContiguousNDArrayValue`] from the contents of this ndarray.
///
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
///
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the
/// `data` field of the returned [`ContiguousNDArrayValue`] and copy contents of this ndarray to
/// there.
///
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created
/// [`ContiguousNDArrayValue`] will share memory with this ndarray.
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ContiguousNDArrayValue<'ctx> {
let result = ContiguousNDArrayType::new(generator, ctx.ctx, self.dtype)
.alloca_var(generator, ctx, self.name);
// Set ndims and shape.
let ndims = self.llvm_usize.const_int(self.ndims, false);
result.store_ndims(ctx, ndims);
let shape = self.shape();
result.store_shape(ctx, shape.base_ptr(ctx, generator));
gen_if_callback(
generator,
ctx,
|generator, ctx| Ok(self.is_c_contiguous(generator, ctx)),
|_, ctx| {
// This ndarray is contiguous.
let data = self.data_field(ctx).get(ctx, self.as_base_value(), self.name);
let data = ctx
.builder
.build_pointer_cast(data, result.item.ptr_type(AddressSpace::default()), "")
.unwrap();
result.store_data(ctx, data);
Ok(())
},
|generator, ctx| {
// This ndarray is not contiguous. Do a full-copy on `data`. `make_copy` produces an
// ndarray with contiguous `data`.
let copied_ndarray = self.make_copy(generator, ctx);
let data = copied_ndarray.data().base_ptr(ctx, generator);
let data = ctx
.builder
.build_pointer_cast(data, result.item.ptr_type(AddressSpace::default()), "")
.unwrap();
result.store_data(ctx, data);
Ok(())
},
)
.unwrap();
result
}
/// Create an [`NDArrayValue`] from a [`ContiguousNDArrayValue`].
///
/// The operation is cheap. The newly created [`NDArrayValue`] will share the same memory as the
/// [`ContiguousNDArrayValue`].
///
/// `ndims` has to be provided as [`NDArrayValue`] requires a statically known `ndims` value,
/// despite the fact that the information should be contained within the
/// [`ContiguousNDArrayValue`].
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
carray: ContiguousNDArrayValue<'ctx>,
ndims: u64,
) -> Self {
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
// Allocate the resulting ndarray.
let ndarray = NDArrayType::new(generator, ctx.ctx, carray.item, ndims)
.construct_uninitialized(generator, ctx, carray.name);
// Copy shape and update strides
let shape = carray.load_shape(ctx);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.set_strides_contiguous(generator, ctx);
// Share data
let data = carray.load_data(ctx);
ndarray.store_data(
ctx,
ctx.builder
.build_pointer_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
.unwrap(),
);
ndarray
}
}

View File

@ -0,0 +1,260 @@
use inkwell::{
types::IntType,
values::{IntValue, PointerValue},
AddressSpace,
};
use itertools::Itertools;
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{
irrt,
types::{
ndarray::{NDArrayType, NDIndexType},
structure::StructField,
utils::SliceType,
},
values::{ndarray::NDArrayValue, utils::RustSlice, ProxyValue},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// An IRRT representation of an ndarray subscript index.
#[derive(Copy, Clone)]
pub struct NDIndexValue<'ctx> {
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> NDIndexValue<'ctx> {
/// Checks whether `value` is an instance of `ndindex`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`NDIndexValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, llvm_usize, name }
}
fn type_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().type_
}
pub fn load_type(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.type_field().get(ctx, self.value, self.name)
}
pub fn store_type(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
self.type_field().set(ctx, self.value, value, self.name);
}
fn data_field(&self) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields().data
}
pub fn load_data(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
self.data_field().get(ctx, self.value, self.name)
}
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
self.data_field().set(ctx, self.value, value, self.name);
}
}
impl<'ctx> ProxyValue<'ctx> for NDIndexValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = NDIndexType<'ctx>;
fn get_type(&self) -> Self::Type {
Self::Type::from_type(self.value.get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<NDIndexValue<'ctx>> for PointerValue<'ctx> {
fn from(value: NDIndexValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Get the expected `ndims` after indexing with `indices`.
#[must_use]
fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indices {
match index {
RustNDIndex::SingleElement(_) => {
ndims -= 1; // Single elements decrements ndims
}
RustNDIndex::NewAxis => {
ndims += 1; // `np.newaxis` / `none` adds a new axis
}
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
}
}
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
///
/// This function behaves like NumPy's ndarray indexing, but if the indices index
/// into a single element, an unsized ndarray is returned.
#[must_use]
pub fn index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: &[RustNDIndex<'ctx>],
) -> Self {
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, dst_ndims)
.construct_uninitialized(generator, ctx, None);
let indices =
NDIndexType::new(generator, ctx.ctx).construct_ndindices(generator, ctx, indices);
irrt::ndarray::call_nac3_ndarray_index(generator, ctx, indices, *self, dst_ndarray);
dst_ndarray
}
}
/// A convenience enum representing a [`NDIndexValue`].
// TODO: Rename to CTConstNDIndex
#[derive(Debug, Clone)]
pub enum RustNDIndex<'ctx> {
SingleElement(IntValue<'ctx>),
Slice(RustSlice<'ctx>),
NewAxis,
Ellipsis,
}
impl<'ctx> RustNDIndex<'ctx> {
/// Generate LLVM code to transform an ndarray subscript expression to
/// its list of [`RustNDIndex`]
///
/// i.e.,
/// ```python
/// my_ndarray[::3, 1, :2:]
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
/// ```
pub fn from_subscript_expr<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
subscript: &Expr<Option<Type>>,
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// So we first "flatten" out the slice expression
let index_exprs = match &subscript.node {
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
_ => vec![subscript],
};
// Process all index expressions
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
for index_expr in index_exprs {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let slice = RustSlice::from_slice_expr(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(slice)
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
ctx,
generator,
ctx.primitives.int32, // Must be int32, this checks for illegal values
)?;
let index = index.into_int_value();
RustNDIndex::SingleElement(index)
};
rust_ndindices.push(ndindex);
}
Ok(rust_ndindices)
}
/// Get the value to set `NDIndex::type` for this variant.
#[must_use]
pub fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
RustNDIndex::NewAxis => 2,
RustNDIndex::Ellipsis => 3,
}
}
/// Serialize this [`RustNDIndex`] by writing it into an LLVM [`NDIndexValue`].
pub fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_ndindex: NDIndexValue<'ctx>,
) {
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
// Set `dst_ndindex.type`
dst_ndindex.store_type(ctx, ctx.ctx.i8_type().const_int(self.get_type_id(), false));
// Set `dst_ndindex_ptr->data`
match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = ctx.builder.build_alloca(ctx.ctx.i32_type(), "").unwrap();
ctx.builder.build_store(index_ptr, *in_index).unwrap();
dst_ndindex.store_data(
ctx,
ctx.builder.build_pointer_cast(index_ptr, llvm_pi8, "").unwrap(),
);
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr =
SliceType::new(ctx.ctx, ctx.ctx.i32_type(), generator.get_size_type(ctx.ctx))
.alloca_var(generator, ctx, None);
in_rust_slice.write_to_slice(ctx, user_slice_ptr);
dst_ndindex.store_data(
ctx,
ctx.builder.build_pointer_cast(user_slice_ptr.into(), llvm_pi8, "").unwrap(),
);
}
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
}
}
}

View File

@ -0,0 +1,69 @@
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
use crate::codegen::{
values::{
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
ProxyValue,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayValue<'ctx> {
/// Map through this ndarray with an elementwise function.
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
out: NDArrayOut<'ctx>,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
self.get_type().broadcast_starmap(
generator,
ctx,
&[*self],
out,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
///
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a
/// [`ScalarOrNDArray::Scalar`] of that result.
///
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new
/// ndarray of the results will be created and returned as a [`ScalarOrNDArray::NDArray`].
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_dtype: BasicTypeEnum<'ctx>,
mapping: Mapping,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ScalarOrNDArray::broadcasting_starmap(
generator,
ctx,
&[*self],
ret_dtype,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}

View File

@ -0,0 +1,323 @@
use std::cmp::max;
use nac3parser::ast::Operator;
use super::{NDArrayOut, NDArrayValue, RustNDIndex};
use crate::{
codegen::{
expr::gen_binop_expr_with_values,
irrt,
stmt::gen_for_callback_incrementing,
types::ndarray::NDArrayType,
values::{
ArrayLikeValue, ArraySliceValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
CodeGenContext, CodeGenerator,
},
toplevel::helper::arraylike_flatten_element_type,
typecheck::{magic_methods::Binop, typedef::Type},
};
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_dtype: Type,
(in_a_ty, in_a): (Type, NDArrayValue<'ctx>),
(in_b_ty, in_b): (Type, NDArrayValue<'ctx>),
) -> NDArrayValue<'ctx> {
assert!(in_a.ndims >= 2, "in_a (which is {}) must be >= 2", in_a.ndims);
assert!(in_b.ndims >= 2, "in_b (which is {}) must be >= 2", in_b.ndims);
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_a_ty);
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, in_b_ty);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_dst_dtype = ctx.get_llvm_type(generator, dst_dtype);
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = llvm_usize.const_int(ndims_int, false);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
let (lhs, rhs, dst) = {
let in_lhs_ndims = llvm_usize.const_int(in_a.ndims, false);
let in_lhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
in_a.shape().base_ptr(ctx, generator),
in_lhs_ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let in_rhs_ndims = llvm_usize.const_int(in_b.ndims, false);
let in_rhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
in_b.shape().base_ptr(ctx, generator),
in_rhs_ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let lhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let rhs_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let dst_shape = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(
ctx.builder.build_array_alloca(llvm_usize, ndims, "").unwrap(),
ndims,
None,
),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
// Matmul dimension compatibility is checked here.
irrt::ndarray::call_nac3_ndarray_matmul_calculate_shapes(
generator,
ctx,
&in_lhs_shape,
&in_rhs_shape,
ndims,
&lhs_shape,
&rhs_shape,
&dst_shape,
);
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, &lhs_shape);
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, &rhs_shape);
let dst = NDArrayType::new(generator, ctx.ctx, llvm_dst_dtype, ndims_int)
.construct_uninitialized(generator, ctx, None);
dst.copy_shape_from_array(generator, ctx, dst_shape.base_ptr(ctx, generator));
unsafe {
dst.create_data(generator, ctx);
}
(lhs, rhs, dst)
};
let len = unsafe {
lhs.shape().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(ndims_int - 1, false),
None,
)
};
let at_row = i64::try_from(ndims_int - 2).unwrap();
let at_col = i64::try_from(ndims_int - 1).unwrap();
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
let pdst_ij = hdl.get_pointer(ctx);
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
let indices = hdl.get_indices::<G>();
let i = unsafe {
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_row as u64, true), None)
};
let j = unsafe {
indices.get_unchecked(ctx, generator, &llvm_usize.const_int(at_col as u64, true), None)
};
let num_0 = llvm_usize.const_int(0, false);
let num_1 = llvm_usize.const_int(1, false);
gen_for_callback_incrementing(
generator,
ctx,
None,
num_0,
(len, false),
|generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
i,
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
k.into(),
);
}
let a_ik = unsafe { lhs.data().get_unchecked(ctx, generator, &indices, None) };
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
k.into(),
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
j,
);
}
let b_kj = unsafe { rhs.data().get_unchecked(ctx, generator, &indices, None) };
// Restore `indices`.
unsafe {
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_row as u64, true),
i,
);
indices.set_unchecked(
ctx,
generator,
&llvm_usize.const_int(at_col as u64, true),
j,
);
}
// x = a_[...]ik * b_[...]kj
let x = gen_binop_expr_with_values(
generator,
ctx,
(&Some(lhs_dtype), a_ik),
Binop::normal(Operator::Mult),
(&Some(rhs_dtype), b_kj),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
// dst_[...]ij += x
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
let dst_ij = gen_binop_expr_with_values(
generator,
ctx,
(&Some(dst_dtype), dst_ij),
Binop::normal(Operator::Add),
(&Some(dst_dtype), x),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
Ok(())
},
num_1,
)
})
.unwrap();
dst
}
impl<'ctx> NDArrayValue<'ctx> {
/// Perform [`np.matmul`](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
///
/// This function always return an [`NDArrayValue`]. You may want to use
/// [`NDArrayValue::split_unsized`] to handle when the output could be a scalar.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
#[must_use]
pub fn matmul<G: CodeGenerator>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
self_ty: Type,
(other_ty, other): (Type, Self),
(out_dtype, out): (Type, NDArrayOut<'ctx>),
) -> Self {
// Sanity check, but type inference should prevent this.
assert!(self.ndims > 0 && other.ndims > 0, "np.matmul disallows scalar input");
// If both arguments are 2-D they are multiplied like conventional matrices.
//
// If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the
// last two indices and broadcast accordingly.
//
// If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its
// dimensions. After matrix multiplication the prepended 1 is removed.
//
// If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its
// dimensions. After matrix multiplication the appended 1 is removed.
let new_a = if self.ndims == 1 {
// Prepend 1 to its dimensions
self.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
} else {
*self
};
let new_b = if other.ndims == 1 {
// Append 1 to its dimensions
other.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
} else {
other
};
// NOTE: `result` will always be a newly allocated ndarray.
// Current implementation cannot do in-place matrix muliplication.
let mut result =
matmul_at_least_2d(generator, ctx, out_dtype, (self_ty, new_a), (other_ty, new_b));
// Postprocessing on the result to remove prepended/appended axes.
let mut postindices = vec![];
let zero = ctx.ctx.i32_type().const_zero();
if self.ndims == 1 {
// Remove the prepended 1
postindices.push(RustNDIndex::SingleElement(zero));
}
if other.ndims == 1 {
// Remove the appended 1
postindices.push(RustNDIndex::Ellipsis);
postindices.push(RustNDIndex::SingleElement(zero));
}
if !postindices.is_empty() {
result = result.index(generator, ctx, &postindices);
}
match out {
NDArrayOut::NewNDArray { .. } => result,
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
let result_shape = result.shape();
out_ndarray.assert_can_be_written_by_out(generator, ctx, result_shape);
out_ndarray.copy_data_from(generator, ctx, result);
out_ndarray
}
}
}
}

View File

@ -1,26 +1,48 @@
use std::iter::repeat_n;
use inkwell::{ use inkwell::{
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType}, types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue}, values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, AddressSpace, IntPredicate,
}; };
use itertools::Itertools;
use super::{ use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeMutator, ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TupleValue, TypedArrayLikeAccessor,
UntypedArrayLikeAccessor, UntypedArrayLikeMutator, TypedArrayLikeAdapter, TypedArrayLikeMutator, UntypedArrayLikeAccessor,
UntypedArrayLikeMutator,
}; };
use crate::codegen::{ use crate::{
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index}, codegen::{
llvm_intrinsics::call_int_umin, irrt,
stmt::gen_for_callback_incrementing, llvm_intrinsics::{call_int_umin, call_memcpy_generic_array},
types::{structure::StructField, NDArrayType}, stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator, type_aligned_alloca,
types::{ndarray::NDArrayType, structure::StructField, TupleType},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
}; };
pub use broadcast::*;
pub use contiguous::*;
pub use indexing::*;
pub use nditer::*;
mod broadcast;
mod contiguous;
mod indexing;
mod map;
mod matmul;
mod nditer;
pub mod shape;
mod view;
/// Proxy type for accessing an `NDArray` value in LLVM. /// Proxy type for accessing an `NDArray` value in LLVM.
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
pub struct NDArrayValue<'ctx> { pub struct NDArrayValue<'ctx> {
value: PointerValue<'ctx>, value: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>, dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>, name: Option<&'ctx str>,
} }
@ -40,12 +62,13 @@ impl<'ctx> NDArrayValue<'ctx> {
pub fn from_pointer_value( pub fn from_pointer_value(
ptr: PointerValue<'ctx>, ptr: PointerValue<'ctx>,
dtype: BasicTypeEnum<'ctx>, dtype: BasicTypeEnum<'ctx>,
ndims: u64,
llvm_usize: IntType<'ctx>, llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>, name: Option<&'ctx str>,
) -> Self { ) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok()); debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
NDArrayValue { value: ptr, dtype, llvm_usize, name } NDArrayValue { value: ptr, dtype, ndims, llvm_usize, name }
} }
fn ndims_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> { fn ndims_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
@ -76,14 +99,29 @@ impl<'ctx> NDArrayValue<'ctx> {
ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap() ctx.builder.build_load(pndims, "").map(BasicValueEnum::into_int_value).unwrap()
} }
fn shape_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> { fn itemsize_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).shape self.get_type().get_fields(ctx.ctx).itemsize
} }
/// Returns the double-indirection pointer to the `shape` array, as if by calling /// Stores the size of each element `itemsize` into this instance.
/// `getelementptr` on the field. pub fn store_itemsize<G: CodeGenerator + ?Sized>(
fn ptr_to_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> { &self,
self.shape_field(ctx).ptr_by_gep(ctx, self.value, self.name) ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
itemsize: IntValue<'ctx>,
) {
debug_assert_eq!(itemsize.get_type(), generator.get_size_type(ctx.ctx));
self.itemsize_field(ctx).set(ctx, self.value, itemsize, self.name);
}
/// Returns the size of each element of this `NDArray` as a value.
pub fn load_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.itemsize_field(ctx).get(ctx, self.value, self.name)
}
fn shape_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).shape
} }
/// Stores the array of dimension sizes `dims` into this instance. /// Stores the array of dimension sizes `dims` into this instance.
@ -107,6 +145,34 @@ impl<'ctx> NDArrayValue<'ctx> {
NDArrayShapeProxy(self) NDArrayShapeProxy(self)
} }
fn strides_field(
&self,
ctx: &CodeGenContext<'ctx, '_>,
) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).strides
}
/// Stores the array of stride sizes `strides` into this instance.
fn store_strides(&self, ctx: &CodeGenContext<'ctx, '_>, strides: PointerValue<'ctx>) {
self.strides_field(ctx).set(ctx, self.as_base_value(), strides, self.name);
}
/// Convenience method for creating a new array storing the stride with the given `size`.
pub fn create_strides(
&self,
ctx: &CodeGenContext<'ctx, '_>,
llvm_usize: IntType<'ctx>,
size: IntValue<'ctx>,
) {
self.store_strides(ctx, ctx.builder.build_array_alloca(llvm_usize, size, "").unwrap());
}
/// Returns a proxy object to the field storing the stride of each dimension of this `NDArray`.
#[must_use]
pub fn strides(&self) -> NDArrayStridesProxy<'ctx, '_> {
NDArrayStridesProxy(self)
}
fn data_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> { fn data_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).data self.get_type().get_fields(ctx.ctx).data
} }
@ -118,7 +184,7 @@ impl<'ctx> NDArrayValue<'ctx> {
} }
/// Stores the array of data elements `data` into this instance. /// Stores the array of data elements `data` into this instance.
fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) { pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, data: PointerValue<'ctx>) {
let data = ctx let data = ctx
.builder .builder
.build_bit_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "") .build_bit_cast(data, ctx.ctx.i8_type().ptr_type(AddressSpace::default()), "")
@ -128,23 +194,23 @@ impl<'ctx> NDArrayValue<'ctx> {
/// Convenience method for creating a new array storing data elements with the given element /// Convenience method for creating a new array storing data elements with the given element
/// type `elem_ty` and `size`. /// type `elem_ty` and `size`.
pub fn create_data( ///
/// The data buffer will be allocated on the stack, and is considered to be owned by this ndarray instance.
///
/// # Safety
///
/// The caller must ensure that `shape` and `itemsize` of this ndarray instance is initialized.
pub unsafe fn create_data<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &CodeGenContext<'ctx, '_>, generator: &mut G,
elem_ty: BasicTypeEnum<'ctx>, ctx: &mut CodeGenContext<'ctx, '_>,
size: IntValue<'ctx>,
) { ) {
let itemsize = ctx let nbytes = self.nbytes(generator, ctx);
.builder
.build_int_z_extend_or_bit_cast(elem_ty.size_of().unwrap(), size.get_type(), "")
.unwrap();
let nbytes = ctx.builder.build_int_mul(size, itemsize, "").unwrap();
// TODO: What about alignment? let data = type_aligned_alloca(generator, ctx, self.dtype, nbytes, None);
self.store_data( self.store_data(ctx, data);
ctx,
ctx.builder.build_array_alloca(ctx.ctx.i8_type(), nbytes, "").unwrap(), self.set_strides_contiguous(generator, ctx);
);
} }
/// Returns a proxy object to the field storing the data of this `NDArray`. /// Returns a proxy object to the field storing the data of this `NDArray`.
@ -152,6 +218,298 @@ impl<'ctx> NDArrayValue<'ctx> {
pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> { pub fn data(&self) -> NDArrayDataProxy<'ctx, '_> {
NDArrayDataProxy(self) NDArrayDataProxy(self)
} }
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
shape: PointerValue<'ctx>,
) {
let num_items = self.load_ndims(ctx);
call_memcpy_generic_array(
ctx,
self.shape().base_ptr(ctx, generator),
shape,
num_items,
ctx.ctx.bool_type().const_zero(),
);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.shape().base_ptr(ctx, generator);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
strides: PointerValue<'ctx>,
) {
let num_items = self.load_ndims(ctx);
call_memcpy_generic_array(
ctx,
self.strides().base_ptr(ctx, generator),
strides,
num_items,
ctx.ctx.bool_type().const_zero(),
);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayValue<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.strides().base_ptr(ctx, generator);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_size(generator, ctx, *self)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_nbytes(generator, ctx, *self)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_len(generator, ctx, *self)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_ndarray_is_c_contiguous(generator, ctx, *self)
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) {
irrt::ndarray::call_nac3_ndarray_set_strides_by_shape(generator, ctx, *self);
}
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and
/// copy the contents over.
///
/// The new ndarray will own its data and will be C-contiguous.
#[must_use]
pub fn make_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Self {
let clone = self.get_type().construct_uninitialized(generator, ctx, None);
let shape = self.shape();
clone.copy_shape_from_array(generator, ctx, shape.base_ptr(ctx, generator));
unsafe { clone.create_data(generator, ctx) };
clone.copy_data_from(generator, ctx, *self);
clone
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
src: NDArrayValue<'ctx>,
) {
assert_eq!(self.dtype, src.dtype, "self and src dtype should match");
irrt::ndarray::call_nac3_ndarray_copy_data(generator, ctx, src, *self);
}
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
// TODO: It is possible to optimize this by exploiting contiguous strides with memset.
// Probably best to implement in IRRT.
self.foreach(generator, ctx, |_, ctx, _, nditer| {
let p = nditer.get_pointer(ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
}
/// Create the shape tuple of this ndarray like
/// [`np.shape(<ndarray>)`](https://numpy.org/doc/stable/reference/generated/numpy.shape.html).
///
/// All elements in the tuple are `i32`.
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let objects = (0..self.ndims)
.map(|i| {
let dim = unsafe {
self.shape().get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i, false),
None,
)
};
ctx.builder.build_int_truncate_or_bit_cast(dim, llvm_i32, "").unwrap()
})
.map(|obj| obj.as_basic_value_enum())
.collect_vec();
TupleType::new(
generator,
ctx.ctx,
&repeat_n(llvm_i32.into(), self.ndims as usize).collect_vec(),
)
.construct_from_objects(ctx, objects, None)
}
/// Create the strides tuple of this ndarray like
/// [`<ndarray>.strides`](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html).
///
/// All elements in the tuple are `i32`.
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleValue<'ctx> {
let llvm_i32 = ctx.ctx.i32_type();
let objects = (0..self.ndims)
.map(|i| {
let dim = unsafe {
self.strides().get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i, false),
None,
)
};
ctx.builder.build_int_truncate_or_bit_cast(dim, llvm_i32, "").unwrap()
})
.map(|obj| obj.as_basic_value_enum())
.collect_vec();
TupleType::new(
generator,
ctx.ctx,
&repeat_n(llvm_i32.into(), self.ndims as usize).collect_vec(),
)
.construct_from_objects(ctx, objects, None)
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> bool {
self.ndims == 0
}
/// Returns the element present in this `ndarray` if this is unsized.
pub fn get_unsized_element<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Option<BasicValueEnum<'ctx>> {
if self.is_unsized() {
// NOTE: `np.size(self) == 0` here is never possible.
let zero = generator.get_size_type(ctx.ctx).const_zero();
let value = unsafe { self.data().get_unchecked(ctx, generator, &zero, None) };
Some(value)
} else {
None
}
}
/// If this ndarray is unsized, return its sole value as an [`BasicValueEnum`].
/// Otherwise, do nothing and return the ndarray itself.
pub fn split_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ScalarOrNDArray<'ctx> {
if let Some(unsized_elem) = self.get_unsized_element(generator, ctx) {
ScalarOrNDArray::Scalar(unsized_elem)
} else {
ScalarOrNDArray::NDArray(*self)
}
}
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
///
/// Raise an exception if the shapes do not match.
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
out_shape: impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) {
let ndarray_shape = self.shape();
let output_shape = out_shape;
irrt::ndarray::call_nac3_ndarray_util_assert_output_shape_same(
generator,
ctx,
&ndarray_shape,
&output_shape,
);
}
} }
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> { impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
@ -159,7 +517,12 @@ impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
type Type = NDArrayType<'ctx>; type Type = NDArrayType<'ctx>;
fn get_type(&self) -> Self::Type { fn get_type(&self) -> Self::Type {
NDArrayType::from_type(self.as_base_value().get_type(), self.dtype, self.llvm_usize) NDArrayType::from_type(
self.as_base_value().get_type(),
self.dtype,
self.ndims,
self.llvm_usize,
)
} }
fn as_base_value(&self) -> Self::Base { fn as_base_value(&self) -> Self::Base {
@ -173,7 +536,7 @@ impl<'ctx> From<NDArrayValue<'ctx>> for PointerValue<'ctx> {
} }
} }
/// Proxy type for accessing the `dims` array of an `NDArray` instance in LLVM. /// Proxy type for accessing the `shape` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
pub struct NDArrayShapeProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>); pub struct NDArrayShapeProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
@ -206,8 +569,8 @@ impl<'ctx> ArrayLikeValue<'ctx> for NDArrayShapeProxy<'ctx, '_> {
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> { impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>( unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &IntValue<'ctx>, idx: &IntValue<'ctx>,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {
@ -245,20 +608,124 @@ impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {} impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {} impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> {}
impl<'ctx> TypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> { impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
for NDArrayShapeProxy<'ctx, '_>
{
fn downcast_to_type( fn downcast_to_type(
&self, &self,
_: &mut CodeGenContext<'ctx, '_>, _: &CodeGenContext<'ctx, '_>,
_: &G,
value: BasicValueEnum<'ctx>, value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
value.into_int_value() value.into_int_value()
} }
} }
impl<'ctx> TypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayShapeProxy<'ctx, '_> { impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>
for NDArrayShapeProxy<'ctx, '_>
{
fn upcast_from_type( fn upcast_from_type(
&self, &self,
_: &mut CodeGenContext<'ctx, '_>, _: &CodeGenContext<'ctx, '_>,
_: &G,
value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> {
value.into()
}
}
/// Proxy type for accessing the `strides` array of an `NDArray` instance in LLVM.
#[derive(Copy, Clone)]
pub struct NDArrayStridesProxy<'ctx, 'a>(&'a NDArrayValue<'ctx>);
impl<'ctx> ArrayLikeValue<'ctx> for NDArrayStridesProxy<'ctx, '_> {
fn element_type<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
) -> AnyTypeEnum<'ctx> {
self.0.strides().base_ptr(ctx, generator).get_type().get_element_type()
}
fn base_ptr<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> PointerValue<'ctx> {
self.0.strides_field(ctx).get(ctx, self.0.as_base_value(), self.0.name)
}
fn size<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
_: &G,
) -> IntValue<'ctx> {
self.0.load_ndims(ctx)
}
}
impl<'ctx> ArrayLikeIndexer<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
generator: &G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let var_name = name.map(|v| format!("{v}.addr")).unwrap_or_default();
unsafe {
ctx.builder
.build_in_bounds_gep(self.base_ptr(ctx, generator), &[*idx], var_name.as_str())
.unwrap()
}
}
fn ptr_offset<G: CodeGenerator + ?Sized>(
&self,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut G,
idx: &IntValue<'ctx>,
name: Option<&str>,
) -> PointerValue<'ctx> {
let size = self.size(ctx, generator);
let in_range = ctx.builder.build_int_compare(IntPredicate::ULT, *idx, size, "").unwrap();
ctx.make_assert(
generator,
in_range,
"0:IndexError",
"index {0} is out of bounds for axis 0 with size {1}",
[Some(*idx), Some(self.0.load_ndims(ctx)), None],
ctx.current_loc,
);
unsafe { self.ptr_offset_unchecked(ctx, generator, idx, name) }
}
}
impl<'ctx> UntypedArrayLikeAccessor<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {}
impl<'ctx> UntypedArrayLikeMutator<'ctx, IntValue<'ctx>> for NDArrayStridesProxy<'ctx, '_> {}
impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>
for NDArrayStridesProxy<'ctx, '_>
{
fn downcast_to_type(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
value: BasicValueEnum<'ctx>,
) -> IntValue<'ctx> {
value.into_int_value()
}
}
impl<'ctx, G: CodeGenerator + ?Sized> TypedArrayLikeMutator<'ctx, G, IntValue<'ctx>>
for NDArrayStridesProxy<'ctx, '_>
{
fn upcast_from_type(
&self,
_: &CodeGenContext<'ctx, '_>,
_: &G,
value: IntValue<'ctx>, value: IntValue<'ctx>,
) -> BasicValueEnum<'ctx> { ) -> BasicValueEnum<'ctx> {
value.into() value.into()
@ -291,36 +758,19 @@ impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
ctx: &CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &G, generator: &G,
) -> IntValue<'ctx> { ) -> IntValue<'ctx> {
call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None)) irrt::ndarray::call_nac3_ndarray_len(generator, ctx, *self.0)
} }
} }
impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> { impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>( unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
idx: &IntValue<'ctx>, idx: &IntValue<'ctx>,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {
let sizeof_elem = ctx let ptr = irrt::ndarray::call_nac3_ndarray_get_nth_pelement(generator, ctx, *self.0, *idx);
.builder
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
idx.get_type(),
"",
)
.unwrap();
let idx = ctx.builder.build_int_mul(*idx, sizeof_elem, "").unwrap();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.base_ptr(ctx, generator),
&[idx],
name.unwrap_or_default(),
)
.unwrap()
};
// Current implementation is transparent - The returned pointer type is // Current implementation is transparent - The returned pointer type is
// already cast into the expected type, allowing for immediately // already cast into the expected type, allowing for immediately
@ -331,7 +781,7 @@ impl<'ctx> ArrayLikeIndexer<'ctx> for NDArrayDataProxy<'ctx, '_> {
BasicTypeEnum::try_from(self.element_type(ctx, generator)) BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap() .unwrap()
.ptr_type(AddressSpace::default()), .ptr_type(AddressSpace::default()),
"", name.unwrap_or_default(),
) )
.unwrap() .unwrap()
} }
@ -379,55 +829,33 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
{ {
unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>( unsafe fn ptr_offset_unchecked<G: CodeGenerator + ?Sized>(
&self, &self,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &CodeGenContext<'ctx, '_>,
generator: &mut G, generator: &G,
indices: &Index, indices: &Index,
name: Option<&str>, name: Option<&str>,
) -> PointerValue<'ctx> { ) -> PointerValue<'ctx> {
let llvm_usize = generator.get_size_type(ctx.ctx); assert_eq!(indices.element_type(ctx, generator), generator.get_size_type(ctx.ctx).into());
let indices_elem_ty = indices let indices = TypedArrayLikeAdapter::from(
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None) indices.as_slice_value(ctx, generator),
.get_type() |_, _, v| v.into_int_value(),
.get_element_type(); |_, _, v| v.into(),
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
panic!("Expected list[int32] but got {indices_elem_ty}")
};
assert_eq!(
indices_elem_ty.get_bit_width(),
32,
"Expected list[int32] but got list[int{}]",
indices_elem_ty.get_bit_width()
); );
let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices); let ptr = irrt::ndarray::call_nac3_ndarray_get_pelement_by_indices(
let sizeof_elem = ctx generator, ctx, *self.0, &indices,
.builder );
.build_int_truncate_or_bit_cast(
self.element_type(ctx, generator).size_of().unwrap(),
index.get_type(),
"",
)
.unwrap();
let index = ctx.builder.build_int_mul(index, sizeof_elem, "").unwrap();
let ptr = unsafe { // Current implementation is transparent - The returned pointer type is
ctx.builder // already cast into the expected type, allowing for immediately
.build_in_bounds_gep( // load/store.
self.base_ptr(ctx, generator),
&[index],
name.unwrap_or_default(),
)
.unwrap()
};
// TODO: Current implementation is transparent
ctx.builder ctx.builder
.build_pointer_cast( .build_pointer_cast(
ptr, ptr,
BasicTypeEnum::try_from(self.element_type(ctx, generator)) BasicTypeEnum::try_from(self.element_type(ctx, generator))
.unwrap() .unwrap()
.ptr_type(AddressSpace::default()), .ptr_type(AddressSpace::default()),
"", name.unwrap_or_default(),
) )
.unwrap() .unwrap()
} }
@ -516,3 +944,133 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx,
for NDArrayDataProxy<'ctx, '_> for NDArrayDataProxy<'ctx, '_>
{ {
} }
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
///
/// This function is used generating strides for globally defined contiguous ndarrays.
#[must_use]
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
let mut strides = vec![0u64; ndims as usize];
let mut stride_product = 1u64;
for axis in (0..ndims).rev() {
strides[axis as usize] = stride_product * itemsize;
stride_product *= shape[axis as usize];
}
strides
}
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
#[derive(Clone, Copy)]
pub enum ScalarOrNDArray<'ctx> {
Scalar(BasicValueEnum<'ctx>),
NDArray(NDArrayValue<'ctx>),
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for BasicValueEnum<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
ScalarOrNDArray::NDArray(_) => Err(()),
}
}
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayValue<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(_) => Err(()),
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
}
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Split on `object` either into a scalar or an ndarray.
///
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
///
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
pub fn from_value<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(object_ty, object): (Type, BasicValueEnum<'ctx>),
) -> ScalarOrNDArray<'ctx> {
match &*ctx.unifier.get_ty(object_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayType::from_unifier_type(generator, ctx, object_ty)
.map_value(object.into_pointer_value(), None);
ScalarOrNDArray::NDArray(ndarray)
}
_ => ScalarOrNDArray::Scalar(object),
}
}
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
#[must_use]
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
match self {
ScalarOrNDArray::Scalar(scalar) => scalar,
ScalarOrNDArray::NDArray(ndarray) => ndarray.as_base_value().into(),
}
}
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
///
/// - If this is an ndarray, the ndarray is returned.
/// - If this is a scalar, this function returns new ndarray created with
/// [`NDArrayType::construct_unsized`].
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayValue<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
ScalarOrNDArray::Scalar(scalar) => {
NDArrayType::new_unsized(generator, ctx.ctx, scalar.get_type())
.construct_unsized(generator, ctx, scalar, None)
}
}
}
/// Get the dtype of the ndarray created if this were called with
/// [`ScalarOrNDArray::to_ndarray`].
#[must_use]
pub fn get_dtype(&self) -> BasicTypeEnum<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
ScalarOrNDArray::Scalar(scalar) => scalar.get_type(),
}
}
}
/// An helper enum specifying how a function should produce its output.
///
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a
/// function will create a new ndarray and store the result in it.
#[derive(Clone, Copy)]
pub enum NDArrayOut<'ctx> {
/// Tell a function should create a new ndarray with the expected element type `dtype`.
NewNDArray { dtype: BasicTypeEnum<'ctx> },
/// Tell a function to write the result to `ndarray`.
WriteToNDArray { ndarray: NDArrayValue<'ctx> },
}
impl<'ctx> NDArrayOut<'ctx> {
/// Get the dtype of this output.
#[must_use]
pub fn get_dtype(&self) -> BasicTypeEnum<'ctx> {
match self {
NDArrayOut::NewNDArray { dtype } => *dtype,
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
}
}
}

View File

@ -0,0 +1,178 @@
use inkwell::{
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace,
};
use super::{NDArrayValue, ProxyValue};
use crate::codegen::{
irrt,
stmt::{gen_for_callback, BreakContinueHooks},
types::{ndarray::NDIterType, structure::StructField},
values::{ArraySliceValue, TypedArrayLikeAdapter},
CodeGenContext, CodeGenerator,
};
#[derive(Copy, Clone)]
pub struct NDIterValue<'ctx> {
value: PointerValue<'ctx>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> NDIterValue<'ctx> {
/// Checks whether `value` is an instance of `NDArray`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`NDArrayValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
parent: NDArrayValue<'ctx>,
indices: ArraySliceValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, parent, indices, llvm_usize, name }
}
/// Is the current iteration valid?
///
/// If true, then `element`, `indices` and `nth` contain details about the current element.
///
/// If `ndarray` is unsized, this returns true only for the first iteration.
/// If `ndarray` is 0-sized, this always returns false.
#[must_use]
pub fn has_element<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> {
irrt::ndarray::call_nac3_nditer_has_element(generator, ctx, *self)
}
/// Go to the next element. If `has_element()` is false, then this has undefined behavior.
///
/// If `ndarray` is unsized, this can only be called once.
/// If `ndarray` is 0-sized, this can never be called.
pub fn next<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &CodeGenContext<'ctx, '_>) {
irrt::ndarray::call_nac3_nditer_next(generator, ctx, *self);
}
fn element_field(
&self,
ctx: &CodeGenContext<'ctx, '_>,
) -> StructField<'ctx, PointerValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).element
}
/// Get pointer to the current element.
#[must_use]
pub fn get_pointer(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let elem_ty = self.parent.dtype;
let p = self.element_field(ctx).get(ctx, self.as_base_value(), self.name);
ctx.builder
.build_pointer_cast(p, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
/// Get the value of the current element.
#[must_use]
pub fn get_scalar(&self, ctx: &CodeGenContext<'ctx, '_>) -> BasicValueEnum<'ctx> {
let p = self.get_pointer(ctx);
ctx.builder.build_load(p, "value").unwrap()
}
fn nth_field(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields(ctx.ctx).nth
}
/// Get the index of the current element if this ndarray were a flat ndarray.
#[must_use]
pub fn get_index(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.nth_field(ctx).get(ctx, self.as_base_value(), self.name)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices<G: CodeGenerator + ?Sized>(
&self,
) -> TypedArrayLikeAdapter<'ctx, G, IntValue<'ctx>> {
TypedArrayLikeAdapter::from(
self.indices,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
)
}
}
impl<'ctx> ProxyValue<'ctx> for NDIterValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = NDIterType<'ctx>;
fn get_type(&self) -> Self::Type {
NDIterType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<NDIterValue<'ctx>> for PointerValue<'ctx> {
fn from(value: NDIterValue<'ctx>) -> Self {
value.as_base_value()
}
}
impl<'ctx> NDArrayValue<'ctx> {
/// Iterate through every element in the ndarray.
///
/// `body` has access to [`BreakContinueHooks`] to short-circuit and [`NDIterValue`] to
/// get properties of the current iteration (e.g., the current element, indices, etc.)
///
/// Note: The caller is recommended to call `llvm.stacksave` and `llvm.stackrestore` before and
/// after invoking this function respectively. See [`NDIterType::construct`] for an explanation
/// on why this is suggested.
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterValue<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| {
Ok(NDIterType::new(generator, ctx.ctx).construct(generator, ctx, *self))
},
|generator, ctx, nditer| Ok(nditer.has_element(generator, ctx)),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
}

View File

@ -0,0 +1,152 @@
use inkwell::values::{BasicValueEnum, IntValue};
use crate::{
codegen::{
stmt::gen_for_callback_incrementing,
types::{ListType, TupleType},
values::{
ArraySliceValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
TypedArrayLikeMutator, UntypedArrayLikeAccessor,
},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to
/// `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
(input_seq_ty, input_seq): (Type, BasicValueEnum<'ctx>),
) -> impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let zero = llvm_usize.const_zero();
let one = llvm_usize.const_int(1, false);
// The result `list` to return.
match &*ctx.unifier.get_ty_immutable(input_seq_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
let input_seq = ListType::from_unifier_type(generator, ctx, input_seq_ty)
.map_value(input_seq.into_pointer_value(), None);
let len = input_seq.load_size(ctx, None);
// TODO: Find a way to remove this mid-BB allocation
let result = ctx.builder.build_array_alloca(llvm_usize, len, "").unwrap();
let result = TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(result, len, None),
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_callback_incrementing(
generator,
ctx,
None,
zero,
(len, false),
|generator, ctx, _, i| {
// Load the i-th int32 in the input sequence
let int = unsafe {
input_seq.data().get_unchecked(ctx, generator, &i, None).into_int_value()
};
// Cast to SizeT
let int =
ctx.builder.build_int_s_extend_or_bit_cast(int, llvm_usize, "").unwrap();
// Store
unsafe { result.set_typed_unchecked(ctx, generator, &i, int) };
Ok(())
},
one,
)
.unwrap();
result
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_seq = TupleType::from_unifier_type(generator, ctx, input_seq_ty)
.map_value(input_seq.into_struct_value(), None);
let len = input_seq.get_type().num_elements();
let result = generator
.gen_array_var_alloc(
ctx,
llvm_usize.into(),
llvm_usize.const_int(u64::from(len), false),
None,
)
.unwrap();
let result = TypedArrayLikeAdapter::from(
result,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
for i in 0..input_seq.get_type().num_elements() {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_seq.load_element(ctx, i).into_int_value();
let int = ctx.builder.build_int_s_extend_or_bit_cast(int, llvm_usize, "").unwrap();
unsafe {
result.set_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(u64::from(i), false),
int,
);
}
}
result
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_seq.into_int_value();
let len = one;
let result = generator.gen_array_var_alloc(ctx, llvm_usize.into(), len, None).unwrap();
let result = TypedArrayLikeAdapter::from(
result,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
);
let int =
ctx.builder.build_int_s_extend_or_bit_cast(input_int, llvm_usize, "").unwrap();
// Storing into result[0]
unsafe {
result.set_typed_unchecked(ctx, generator, &zero, int);
}
result
}
_ => panic!("encountered unknown sequence type: {}", ctx.unifier.stringify(input_seq_ty)),
}
}

View File

@ -0,0 +1,154 @@
use std::iter::{once, repeat_n};
use inkwell::values::{IntValue, PointerValue};
use itertools::Itertools;
use crate::codegen::{
irrt,
stmt::gen_if_callback,
types::ndarray::NDArrayType,
values::{
ndarray::{NDArrayValue, RustNDIndex},
ArrayLikeValue, ArraySliceValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
},
CodeGenContext, CodeGenerator,
};
impl<'ctx> NDArrayValue<'ctx> {
/// Make sure the ndarray is at least `ndmin`-dimensional.
///
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended
/// to the shape. Otherwise, this function does nothing and return this ndarray.
#[must_use]
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndmin: u64,
) -> Self {
let ndims = self.ndims;
if ndims < ndmin {
// Extend the dimensions with np.newaxis.
let indices = repeat_n(RustNDIndex::NewAxis, (ndmin - ndims) as usize)
.chain(once(RustNDIndex::Ellipsis))
.collect_vec();
self.index(generator, ctx, &indices)
} else {
*self
}
}
/// Create a reshaped view on this ndarray like
/// [`np.reshape()`](https://numpy.org/doc/stable/reference/generated/numpy.reshape.html).
///
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be
/// modified as a result.
///
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy
/// contents.
///
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
/// * `new_shape` - The target shape to do `np.reshape()`.
#[must_use]
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
new_ndims: u64,
new_shape: &impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
) -> Self {
assert_eq!(new_shape.element_type(ctx, generator), self.llvm_usize.into());
// TODO: The current criterion for whether to do a full copy or not is by checking
// `is_c_contiguous`, but this is not optimal - there are cases when the ndarray is
// not contiguous but could be reshaped without copying data. Look into how numpy does
// it.
let dst_ndarray = NDArrayType::new(generator, ctx.ctx, self.dtype, new_ndims)
.construct_uninitialized(generator, ctx, None);
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape.base_ptr(ctx, generator));
// Resolve negative indices
let size = self.size(generator, ctx);
let dst_ndims = self.llvm_usize.const_int(dst_ndarray.get_type().ndims(), false);
let dst_shape = dst_ndarray.shape();
irrt::ndarray::call_nac3_ndarray_reshape_resolve_and_check_new_shape(
generator,
ctx,
size,
dst_ndims,
dst_shape.as_slice_value(ctx, generator),
);
gen_if_callback(
generator,
ctx,
|generator, ctx| Ok(self.is_c_contiguous(generator, ctx)),
|generator, ctx| {
// Reshape is possible without copying
dst_ndarray.set_strides_contiguous(generator, ctx);
dst_ndarray.store_data(ctx, self.data().base_ptr(ctx, generator));
Ok(())
},
|generator, ctx| {
// Reshape is impossible without copying
unsafe {
dst_ndarray.create_data(generator, ctx);
}
dst_ndarray.copy_data_from(generator, ctx, *self);
Ok(())
},
)
.unwrap();
dst_ndarray
}
/// Create a transposed view on this ndarray like
/// [`np.transpose(<ndarray>, <axes> = None)`](https://numpy.org/doc/stable/reference/generated/numpy.transpose.html).
///
/// * `axes` - If specified, should be an array of the permutation (negative indices are
/// **allowed**).
#[must_use]
pub fn transpose<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
axes: Option<PointerValue<'ctx>>,
) -> Self {
assert!(
axes.is_none_or(|axes| axes.get_type().get_element_type() == self.llvm_usize.into())
);
// Define models
let transposed_ndarray = self.get_type().construct_uninitialized(generator, ctx, None);
let axes = if let Some(axes) = axes {
let num_axes = self.llvm_usize.const_int(self.ndims, false);
// `axes = nullptr` if `axes` is unspecified.
let axes = ArraySliceValue::from_ptr_val(axes, num_axes, None);
Some(TypedArrayLikeAdapter::from(
axes,
|_, _, val| val.into_int_value(),
|_, _, val| val.into(),
))
} else {
None
};
irrt::ndarray::call_nac3_ndarray_transpose(
generator,
ctx,
*self,
transposed_ndarray,
axes.as_ref(),
);
transposed_ndarray
}
}

View File

@ -0,0 +1,85 @@
use inkwell::{
types::IntType,
values::{BasicValue, BasicValueEnum, StructValue},
};
use super::ProxyValue;
use crate::codegen::{types::TupleType, CodeGenContext};
#[derive(Copy, Clone)]
pub struct TupleValue<'ctx> {
value: StructValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> TupleValue<'ctx> {
/// Checks whether `value` is an instance of `tuple`, returning [Err] if `value` is not an
/// instance.
pub fn is_representable(
value: StructValue<'ctx>,
_llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
TupleType::is_representable(value.get_type())
}
/// Creates an [`TupleValue`] from a [`StructValue`].
#[must_use]
pub fn from_struct_value(
value: StructValue<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(value, llvm_usize).is_ok());
Self { value, llvm_usize, name }
}
/// Stores a value into the tuple element at the given `index`.
pub fn store_element(
&mut self,
ctx: &CodeGenContext<'ctx, '_>,
index: u32,
element: impl BasicValue<'ctx>,
) {
assert_eq!(element.as_basic_value_enum().get_type(), unsafe {
self.get_type().type_at_index_unchecked(index)
});
let new_value = ctx
.builder
.build_insert_value(self.value, element, index, self.name.unwrap_or_default())
.unwrap();
self.value = new_value.into_struct_value();
}
/// Loads a value from the tuple element at the given `index`.
pub fn load_element(&self, ctx: &CodeGenContext<'ctx, '_>, index: u32) -> BasicValueEnum<'ctx> {
ctx.builder
.build_extract_value(
self.value,
index,
&format!("{}[{{i}}]", self.name.unwrap_or("tuple")),
)
.unwrap()
}
}
impl<'ctx> ProxyValue<'ctx> for TupleValue<'ctx> {
type Base = StructValue<'ctx>;
type Type = TupleType<'ctx>;
fn get_type(&self) -> Self::Type {
TupleType::from_type(self.as_base_value().get_type(), self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<TupleValue<'ctx>> for StructValue<'ctx> {
fn from(value: TupleValue<'ctx>) -> Self {
value.as_base_value()
}
}

View File

@ -0,0 +1,3 @@
pub use slice::*;
mod slice;

View File

@ -0,0 +1,231 @@
use inkwell::{
types::IntType,
values::{IntValue, PointerValue},
};
use nac3parser::ast::Expr;
use crate::{
codegen::{
types::{structure::StructField, utils::SliceType},
values::ProxyValue,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
/// An IRRT representation of an (unresolved) slice.
#[derive(Copy, Clone)]
pub struct SliceValue<'ctx> {
value: PointerValue<'ctx>,
int_ty: IntType<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
}
impl<'ctx> SliceValue<'ctx> {
/// Checks whether `value` is an instance of `ContiguousNDArray`, returning [Err] if `value` is
/// not an instance.
pub fn is_representable(
value: PointerValue<'ctx>,
llvm_usize: IntType<'ctx>,
) -> Result<(), String> {
<Self as ProxyValue<'ctx>>::Type::is_representable(value.get_type(), llvm_usize)
}
/// Creates an [`SliceValue`] from a [`PointerValue`].
#[must_use]
pub fn from_pointer_value(
ptr: PointerValue<'ctx>,
int_ty: IntType<'ctx>,
llvm_usize: IntType<'ctx>,
name: Option<&'ctx str>,
) -> Self {
debug_assert!(Self::is_representable(ptr, llvm_usize).is_ok());
Self { value: ptr, int_ty, llvm_usize, name }
}
fn start_defined_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().start_defined
}
pub fn load_start_defined(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.start_defined_field().get(ctx, self.value, self.name)
}
fn start_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().start
}
pub fn load_start(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.start_field().get(ctx, self.value, self.name)
}
pub fn store_start(&self, ctx: &CodeGenContext<'ctx, '_>, value: Option<IntValue<'ctx>>) {
match value {
Some(start) => {
self.start_defined_field().set(
ctx,
self.value,
ctx.ctx.bool_type().const_all_ones(),
self.name,
);
self.start_field().set(ctx, self.value, start, self.name);
}
None => self.start_defined_field().set(
ctx,
self.value,
ctx.ctx.bool_type().const_zero(),
self.name,
),
}
}
fn stop_defined_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().stop_defined
}
pub fn load_stop_defined(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.stop_defined_field().get(ctx, self.value, self.name)
}
fn stop_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().stop
}
pub fn load_stop(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.stop_field().get(ctx, self.value, self.name)
}
pub fn store_stop(&self, ctx: &CodeGenContext<'ctx, '_>, value: Option<IntValue<'ctx>>) {
match value {
Some(stop) => {
self.stop_defined_field().set(
ctx,
self.value,
ctx.ctx.bool_type().const_all_ones(),
self.name,
);
self.stop_field().set(ctx, self.value, stop, self.name);
}
None => self.stop_defined_field().set(
ctx,
self.value,
ctx.ctx.bool_type().const_zero(),
self.name,
),
}
}
fn step_defined_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().step_defined
}
pub fn load_step_defined(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.step_defined_field().get(ctx, self.value, self.name)
}
fn step_field(&self) -> StructField<'ctx, IntValue<'ctx>> {
self.get_type().get_fields().step
}
pub fn load_step(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
self.step_field().get(ctx, self.value, self.name)
}
pub fn store_step(&self, ctx: &CodeGenContext<'ctx, '_>, value: Option<IntValue<'ctx>>) {
match value {
Some(step) => {
self.step_defined_field().set(
ctx,
self.value,
ctx.ctx.bool_type().const_all_ones(),
self.name,
);
self.step_field().set(ctx, self.value, step, self.name);
}
None => self.step_defined_field().set(
ctx,
self.value,
ctx.ctx.bool_type().const_zero(),
self.name,
),
}
}
}
impl<'ctx> ProxyValue<'ctx> for SliceValue<'ctx> {
type Base = PointerValue<'ctx>;
type Type = SliceType<'ctx>;
fn get_type(&self) -> Self::Type {
Self::Type::from_type(self.value.get_type(), self.int_ty, self.llvm_usize)
}
fn as_base_value(&self) -> Self::Base {
self.value
}
}
impl<'ctx> From<SliceValue<'ctx>> for PointerValue<'ctx> {
fn from(value: SliceValue<'ctx>) -> Self {
value.as_base_value()
}
}
/// A slice represented in compile-time by `start`, `stop` and `step`, all held as LLVM values.
// TODO: Rename this to CTConstSlice
#[derive(Debug, Copy, Clone)]
pub struct RustSlice<'ctx> {
int_ty: IntType<'ctx>,
start: Option<IntValue<'ctx>>,
stop: Option<IntValue<'ctx>>,
step: Option<IntValue<'ctx>>,
}
impl<'ctx> RustSlice<'ctx> {
/// Generate LLVM IR for an [`ExprKind::Slice`] and convert it into a [`RustSlice`].
#[allow(clippy::type_complexity)]
pub fn from_slice_expr<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lower: &Option<Box<Expr<Option<Type>>>>,
upper: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
) -> Result<RustSlice<'ctx>, String> {
let mut value_mapper = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
Ok(match value_expr {
None => None,
Some(value_expr) => {
let value_expr = generator
.gen_expr(ctx, value_expr)?
.map(|value| {
value.to_basic_value_enum(ctx, generator, ctx.primitives.int32)
})
.unwrap()?;
Some(value_expr.into_int_value())
}
})
};
let start = value_mapper(lower)?;
let stop = value_mapper(upper)?;
let step = value_mapper(step)?;
Ok(RustSlice { int_ty: ctx.ctx.i32_type(), start, stop, step })
}
/// Write the contents to an LLVM [`SliceValue`].
pub fn write_to_slice(&self, ctx: &CodeGenContext<'ctx, '_>, dst_slice_ptr: SliceValue<'ctx>) {
assert_eq!(self.int_ty, dst_slice_ptr.int_ty);
dst_slice_ptr.store_start(ctx, self.start);
dst_slice_ptr.store_stop(ctx, self.stop);
dst_slice_ptr.store_step(ctx, self.step);
}
}

View File

@ -6,7 +6,7 @@ use std::{
}; };
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue}; use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools}; use itertools::{izip, Itertools};
use parking_lot::RwLock; use parking_lot::RwLock;
use nac3parser::ast::{Constant, Expr, Location, StrRef}; use nac3parser::ast::{Constant, Expr, Location, StrRef};
@ -452,11 +452,11 @@ pub fn parse_type_annotation<T>(
type_vars.len() type_vars.len()
)])); )]));
} }
let fields = chain( let fields = fields
fields.iter().map(|(k, v, m)| (*k, (*v, *m))), .iter()
methods.iter().map(|(k, v, _)| (*k, (*v, false))), .map(|(k, v, m)| (*k, (*v, *m)))
) .chain(methods.iter().map(|(k, v, _)| (*k, (*v, false))))
.collect(); .collect();
Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: VarMap::default() })) Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: VarMap::default() }))
} else { } else {
Err(HashSet::from([format!("Cannot use function name as type at {loc}")])) Err(HashSet::from([format!("Cannot use function name as type at {loc}")]))

View File

@ -1,18 +1,14 @@
use std::iter::once; use std::iter::once;
use indexmap::IndexMap; use indexmap::IndexMap;
use inkwell::{ use inkwell::{values::BasicValue, IntPredicate};
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType},
values::{BasicMetadataValueEnum, BasicValue, CallSiteValue},
IntPredicate,
};
use itertools::Either;
use strum::IntoEnumIterator; use strum::IntoEnumIterator;
use super::{ use super::{
helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDef, PrimDefDetails}, helper::{
numpy::make_ndarray_ty, debug_assert_prim_is_allowed, extract_ndims, make_exception_fields, PrimDef, PrimDefDetails,
},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
*, *,
}; };
use crate::{ use crate::{
@ -20,7 +16,8 @@ use crate::{
builtin_fns, builtin_fns,
numpy::*, numpy::*,
stmt::exn_constructor, stmt::exn_constructor,
values::{ProxyValue, RangeValue}, types::ndarray::NDArrayType,
values::{ndarray::shape::parse_numpy_int_sequence, ProxyValue, RangeValue},
}, },
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap}, typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
@ -148,144 +145,6 @@ fn create_fn_by_codegen(
} }
} }
/// Creates a NumPy [`TopLevelDef`] function using an LLVM intrinsic.
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `intrinsic_fn`: The fully-qualified name of the LLVM intrinsic function.
fn create_fn_by_intrinsic(
unifier: &mut Unifier,
var_map: &VarMap,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
intrinsic_fn: &'static str,
) -> TopLevelDef {
let param_tys = params.iter().map(|p| p.0).collect_vec();
create_fn_by_codegen(
unifier,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys
.iter()
.zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty
.iter()
.zip_eq(args.iter())
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(intrinsic_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let param_llvm_ty = param_tys
.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
ctx.module.add_function(intrinsic_fn, fn_type, None)
});
let val = ctx
.builder
.build_call(intrinsic_fn, args_val.as_slice(), name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap();
Ok(val.into())
}),
)
}
/// Creates a unary NumPy [`TopLevelDef`] function using an extern function (e.g. from `libc` or
/// `libm`).
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `extern_fn`: The fully-qualified name of the extern function used as the implementation.
/// * `attrs`: The list of attributes to apply to this function declaration. Note that `nounwind` is
/// already implied by the C ABI.
fn create_fn_by_extern(
unifier: &mut Unifier,
var_map: &VarMap,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
extern_fn: &'static str,
attrs: &'static [&str],
) -> TopLevelDef {
let param_tys = params.iter().map(|p| p.0).collect_vec();
create_fn_by_codegen(
unifier,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys
.iter()
.zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty
.iter()
.zip_eq(args.iter())
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(extern_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let param_llvm_ty = param_tys
.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
let func = ctx.module.add_function(extern_fn, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
for attr in attrs {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let val = ctx
.builder
.build_call(intrinsic_fn, &args_val, name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap();
Ok(val.into())
}),
)
}
pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> BuiltinInfo { pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> BuiltinInfo {
BuiltinBuilder::new(unifier, primitives) BuiltinBuilder::new(unifier, primitives)
.build_all_builtins() .build_all_builtins()
@ -336,7 +195,6 @@ struct BuiltinBuilder<'a> {
ndarray_float: Type, ndarray_float: Type,
ndarray_float_2d: Type, ndarray_float_2d: Type,
ndarray_num_ty: Type,
float_or_ndarray_ty: TypeVar, float_or_ndarray_ty: TypeVar,
float_or_ndarray_var_map: VarMap, float_or_ndarray_var_map: VarMap,
@ -450,7 +308,6 @@ impl<'a> BuiltinBuilder<'a> {
ndarray_float, ndarray_float,
ndarray_float_2d, ndarray_float_2d,
ndarray_num_ty,
float_or_ndarray_ty, float_or_ndarray_ty,
float_or_ndarray_var_map, float_or_ndarray_var_map,
@ -512,6 +369,14 @@ impl<'a> BuiltinBuilder<'a> {
| PrimDef::FunNpEye | PrimDef::FunNpEye
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim), | PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
PrimDef::FunNpSize | PrimDef::FunNpShape | PrimDef::FunNpStrides => {
self.build_ndarray_property_getter_function(prim)
}
PrimDef::FunNpBroadcastTo | PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
self.build_ndarray_view_function(prim)
}
PrimDef::FunStr => self.build_str_function(), PrimDef::FunStr => self.build_str_function(),
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => { PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
@ -577,10 +442,6 @@ impl<'a> BuiltinBuilder<'a> {
| PrimDef::FunNpHypot | PrimDef::FunNpHypot
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim), | PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
self.build_np_sp_ndarray_function(prim)
}
PrimDef::FunNpDot PrimDef::FunNpDot
| PrimDef::FunNpLinalgCholesky | PrimDef::FunNpLinalgCholesky
| PrimDef::FunNpLinalgQr | PrimDef::FunNpLinalgQr
@ -1386,6 +1247,176 @@ impl<'a> BuiltinBuilder<'a> {
} }
} }
fn build_ndarray_property_getter_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpSize, PrimDef::FunNpShape, PrimDef::FunNpStrides],
);
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.primitives.ndarray],
Some("T".into()),
None,
);
match prim {
PrimDef::FunNpSize => create_fn_by_codegen(
self.unifier,
&into_var_map([in_ndarray_ty]),
prim.name(),
self.primitives.int32,
&[(in_ndarray_ty.ty, "a")],
Box::new(|ctx, obj, fun, args, generator| {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty)
.map_value(ndarray.into_pointer_value(), None);
let size = ctx
.builder
.build_int_truncate_or_bit_cast(
ndarray.size(generator, ctx),
ctx.ctx.i32_type(),
"",
)
.unwrap();
Ok(Some(size.into()))
}),
),
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
// The function signatures of `np_shape` an `np_size` are the same.
// Mixed together for convenience.
// The return type is a tuple of variable length depending on the ndims of the input ndarray.
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special folding
create_fn_by_codegen(
self.unifier,
&into_var_map([in_ndarray_ty]),
prim.name(),
ret_ty,
&[(in_ndarray_ty.ty, "a")],
Box::new(move |ctx, obj, fun, args, generator| {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty)
.map_value(ndarray.into_pointer_value(), None);
let result_tuple = match prim {
PrimDef::FunNpShape => ndarray.make_shape_tuple(generator, ctx),
PrimDef::FunNpStrides => ndarray.make_strides_tuple(generator, ctx),
_ => unreachable!(),
};
Ok(Some(result_tuple.as_base_value().into()))
}),
)
}
_ => unreachable!(),
}
}
/// Build np/sp functions that take as input `NDArray` only
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpBroadcastTo, PrimDef::FunNpTranspose, PrimDef::FunNpReshape],
);
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.primitives.ndarray],
Some("T".into()),
None,
);
match prim {
PrimDef::FunNpTranspose => create_fn_by_codegen(
self.unifier,
&into_var_map([in_ndarray_ty]),
prim.name(),
in_ndarray_ty.ty,
&[(in_ndarray_ty.ty, "x")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, arg_ty)
.map_value(arg_val.into_pointer_value(), None);
let ndarray = ndarray.transpose(generator, ctx, None); // TODO: Add axes argument
Ok(Some(ndarray.as_base_value().into()))
}),
),
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
// the `param_ty` for `create_fn_by_codegen`.
//
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
PrimDef::FunNpBroadcastTo | PrimDef::FunNpReshape => {
// These two functions have the same function signature.
// Mixed together for convenience.
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
ret_ty,
&[
(in_ndarray_ty.ty, "x"),
(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape"), // Handled by special folding
],
Box::new(move |ctx, _, fun, args, generator| {
let ndarray_ty = fun.0.args[0].ty;
let ndarray_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let shape_ty = fun.0.args[1].ty;
let shape_val =
args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty)
.map_value(ndarray_val.into_pointer_value(), None);
let shape = parse_numpy_int_sequence(generator, ctx, (shape_ty, shape_val));
// The ndims after reshaping is gotten from the return type of the call.
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
let ndims = extract_ndims(&ctx.unifier, ndims);
let new_ndarray = match prim {
PrimDef::FunNpBroadcastTo => {
ndarray.broadcast_to(generator, ctx, ndims, &shape)
}
PrimDef::FunNpReshape => {
ndarray.reshape_or_copy(generator, ctx, ndims, &shape)
}
_ => unreachable!(),
};
Ok(Some(new_ndarray.as_base_value().as_basic_value_enum()))
}),
)
}
_ => unreachable!(),
}
}
/// Build the `str()` function. /// Build the `str()` function.
fn build_str_function(&mut self) -> TopLevelDef { fn build_str_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunStr; let prim = PrimDef::FunStr;
@ -1873,57 +1904,6 @@ impl<'a> BuiltinBuilder<'a> {
} }
} }
/// Build np/sp functions that take as input `NDArray` only
fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
match prim {
PrimDef::FunNpTranspose => {
let ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.ndarray_num_ty],
Some("T".into()),
None,
);
create_fn_by_codegen(
self.unifier,
&into_var_map([ndarray_ty]),
prim.name(),
ndarray_ty.ty,
&[(ndarray_ty.ty, "x")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
}),
)
}
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
// the `param_ty` for `create_fn_by_codegen`.
//
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
PrimDef::FunNpReshape => create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
self.ndarray_num_ty,
&[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
Box::new(move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_ty = fun.0.args[1].ty;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
}),
),
_ => unreachable!(),
}
}
/// Build `np_linalg` and `sp_linalg` functions /// Build `np_linalg` and `sp_linalg` functions
/// ///
/// The input to these functions must be floating point `NDArray` /// The input to these functions must be floating point `NDArray`
@ -1955,10 +1935,12 @@ impl<'a> BuiltinBuilder<'a> {
Box::new(move |ctx, _, fun, args, generator| { Box::new(move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty; let x1_ty = fun.0.args[0].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_ty = fun.0.args[1].ty; let x2_ty = fun.0.args[1].ty;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?; let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?)) let result = ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?;
Ok(Some(result))
}), }),
), ),

View File

@ -1052,7 +1052,7 @@ impl TopLevelComposer {
} }
let mut result = Vec::new(); let mut result = Vec::new();
let no_defaults = args.args.len() - args.defaults.len() - 1; let no_defaults = args.args.len() - args.defaults.len() - 1;
for (idx, x) in itertools::enumerate(args.args.iter().skip(1)) { for (idx, x) in args.args.iter().skip(1).enumerate() {
let type_ann = { let type_ann = {
let Some(annotation_expr) = x.node.annotation.as_ref() else {return Err(HashSet::from([format!("type annotation needed for `{}` (at {})", x.node.arg, x.location)]));}; let Some(annotation_expr) = x.node.annotation.as_ref() else {return Err(HashSet::from([format!("type annotation needed for `{}` (at {})", x.node.arg, x.location)]));};
parse_ast_to_type_annotation_kinds( parse_ast_to_type_annotation_kinds(

View File

@ -54,6 +54,16 @@ pub enum PrimDef {
FunNpEye, FunNpEye,
FunNpIdentity, FunNpIdentity,
// NumPy ndarray property getters
FunNpSize,
FunNpShape,
FunNpStrides,
// NumPy ndarray view functions
FunNpBroadcastTo,
FunNpTranspose,
FunNpReshape,
// Miscellaneous NumPy & SciPy functions // Miscellaneous NumPy & SciPy functions
FunNpRound, FunNpRound,
FunNpFloor, FunNpFloor,
@ -101,8 +111,6 @@ pub enum PrimDef {
FunNpLdExp, FunNpLdExp,
FunNpHypot, FunNpHypot,
FunNpNextAfter, FunNpNextAfter,
FunNpTranspose,
FunNpReshape,
// Linalg functions // Linalg functions
FunNpDot, FunNpDot,
@ -240,6 +248,16 @@ impl PrimDef {
PrimDef::FunNpEye => fun("np_eye", None), PrimDef::FunNpEye => fun("np_eye", None),
PrimDef::FunNpIdentity => fun("np_identity", None), PrimDef::FunNpIdentity => fun("np_identity", None),
// NumPy NDArray property getters,
PrimDef::FunNpSize => fun("np_size", None),
PrimDef::FunNpShape => fun("np_shape", None),
PrimDef::FunNpStrides => fun("np_strides", None),
// NumPy NDArray view functions
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Miscellaneous NumPy & SciPy functions // Miscellaneous NumPy & SciPy functions
PrimDef::FunNpRound => fun("np_round", None), PrimDef::FunNpRound => fun("np_round", None),
PrimDef::FunNpFloor => fun("np_floor", None), PrimDef::FunNpFloor => fun("np_floor", None),
@ -287,8 +305,6 @@ impl PrimDef {
PrimDef::FunNpLdExp => fun("np_ldexp", None), PrimDef::FunNpLdExp => fun("np_ldexp", None),
PrimDef::FunNpHypot => fun("np_hypot", None), PrimDef::FunNpHypot => fun("np_hypot", None),
PrimDef::FunNpNextAfter => fun("np_nextafter", None), PrimDef::FunNpNextAfter => fun("np_nextafter", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Linalg functions // Linalg functions
PrimDef::FunNpDot => fun("np_dot", None), PrimDef::FunNpDot => fun("np_dot", None),

View File

@ -8,5 +8,5 @@ expression: res_vec
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n", "Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(246)]\n}\n", "Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(261)]\n}\n",
] ]

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n", "Class {\nname: \"B\",\nancestors: [\"B[typevar245]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar245\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n", "Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,8 +5,8 @@ expression: res_vec
[ [
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n", "Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n", "Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(258)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(263)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n", "Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",

View File

@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec expression: res_vec
--- ---
[ [
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n", "Class {\nname: \"A\",\nancestors: [\"A[typevar244, typevar245]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar244\", \"typevar245\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n", "Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(264)]\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n", "Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n", "Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(272)]\n}\n",
] ]

View File

@ -15,14 +15,13 @@ use crate::{
symbol_resolver::{SymbolResolver, ValueEnum}, symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{ typecheck::{
type_inferencer::PrimitiveStore, type_inferencer::PrimitiveStore,
typedef::{into_var_map, Type, Unifier}, typedef::{Type, Unifier},
}, },
}; };
struct ResolverInternal { struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>, id_to_type: Mutex<HashMap<StrRef, Type>>,
id_to_def: Mutex<HashMap<StrRef, DefinitionId>>, id_to_def: Mutex<HashMap<StrRef, DefinitionId>>,
class_names: Mutex<HashMap<StrRef, Type>>,
} }
impl ResolverInternal { impl ResolverInternal {
@ -179,11 +178,8 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
let mut composer = let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0; TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = Arc::new(ResolverInternal { let internal_resolver =
id_to_def: Mutex::default(), Arc::new(ResolverInternal { id_to_def: Mutex::default(), id_to_type: Mutex::default() });
id_to_type: Mutex::default(),
class_names: Mutex::default(),
});
let resolver = let resolver =
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>; Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
@ -784,13 +780,6 @@ fn make_internal_resolver_with_tvar(
unifier: &mut Unifier, unifier: &mut Unifier,
print: bool, print: bool,
) -> Arc<ResolverInternal> { ) -> Arc<ResolverInternal> {
let list_elem_tvar = unifier.get_fresh_var(Some("list_elem".into()), None);
let list = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::List.id(),
fields: HashMap::new(),
params: into_var_map([list_elem_tvar]),
});
let res: Arc<ResolverInternal> = ResolverInternal { let res: Arc<ResolverInternal> = ResolverInternal {
id_to_def: Mutex::new(HashMap::from([("list".into(), PrimDef::List.id())])), id_to_def: Mutex::new(HashMap::from([("list".into(), PrimDef::List.id())])),
id_to_type: tvars id_to_type: tvars
@ -806,7 +795,6 @@ fn make_internal_resolver_with_tvar(
}) })
.collect::<HashMap<_, _>>() .collect::<HashMap<_, _>>()
.into(), .into(),
class_names: Mutex::new(HashMap::from([("list".into(), list)])),
} }
.into(); .into();
if print { if print {
@ -819,7 +807,7 @@ struct TypeToStringFolder<'a> {
unifier: &'a mut Unifier, unifier: &'a mut Unifier,
} }
impl<'a> Fold<Option<Type>> for TypeToStringFolder<'a> { impl Fold<Option<Type>> for TypeToStringFolder<'_> {
type TargetU = String; type TargetU = String;
type Error = String; type Error = String;
fn map_user(&mut self, user: Option<Type>) -> Result<Self::TargetU, Self::Error> { fn map_user(&mut self, user: Option<Type>) -> Result<Self::TargetU, Self::Error> {

View File

@ -15,7 +15,7 @@ use super::{
}; };
use crate::toplevel::helper::PrimDef; use crate::toplevel::helper::PrimDef;
impl<'a> Inferencer<'a> { impl Inferencer<'_> {
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> { fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
if matches!(expr.custom, Some(ty) if self.unifier.unioned(ty, self.primitives.none)) { if matches!(expr.custom, Some(ty) if self.unifier.unioned(ty, self.primitives.none)) {
Err(HashSet::from([format!("Error at {}: cannot have value none", expr.location)])) Err(HashSet::from([format!("Error at {}: cannot have value none", expr.location)]))
@ -94,7 +94,7 @@ impl<'a> Inferencer<'a> {
// there are some cases where the custom field is None // there are some cases where the custom field is None
if let Some(ty) = &expr.custom { if let Some(ty) = &expr.custom {
if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. }) if !matches!(&expr.node, ExprKind::Constant { value: Constant::Ellipsis, .. })
&& !ty.obj_id(self.unifier).is_some_and(|id| id == PrimDef::List.id()) && ty.obj_id(self.unifier).is_none_or(|id| id != PrimDef::List.id())
&& !self.unifier.is_concrete(*ty, &self.function_data.bound_variables) && !self.unifier.is_concrete(*ty, &self.function_data.bound_variables)
{ {
return Err(HashSet::from([format!( return Err(HashSet::from([format!(

View File

@ -7,12 +7,12 @@ use nac3parser::ast::{Cmpop, Operator, StrRef, Unaryop};
use super::{ use super::{
type_inferencer::*, type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap}, typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
}; };
use crate::{ use crate::{
symbol_resolver::SymbolValue, symbol_resolver::SymbolValue,
toplevel::{ toplevel::{
helper::PrimDef, helper::{extract_ndims, PrimDef},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys}, numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
}, },
}; };
@ -175,19 +175,8 @@ pub fn impl_binop(
ops: &[Operator], ops: &[Operator],
) { ) {
with_fields(unifier, ty, |unifier, fields| { with_fields(unifier, ty, |unifier, fields| {
let (other_ty, other_var_id) = if other_ty.len() == 1 { let other_tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
(other_ty[0], None) let function_vars = into_var_map([other_tvar]);
} else {
let tvar = unifier.get_fresh_var_with_range(other_ty, Some("N".into()), None);
(tvar.ty, Some(tvar.id))
};
let function_vars = if let Some(var_id) = other_var_id {
vec![(var_id, other_ty)].into_iter().collect::<VarMap>()
} else {
VarMap::new()
};
let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty); let ret_ty = ret_ty.unwrap_or_else(|| unifier.get_fresh_var(None, None).ty);
for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) { for (base_op, variant) in iproduct!(ops, [BinopVariant::Normal, BinopVariant::AugAssign]) {
@ -198,7 +187,7 @@ pub fn impl_binop(
ret: ret_ty, ret: ret_ty,
vars: function_vars.clone(), vars: function_vars.clone(),
args: vec![FuncArg { args: vec![FuncArg {
ty: other_ty, ty: other_tvar.ty,
default_value: None, default_value: None,
name: "other".into(), name: "other".into(),
is_vararg: false, is_vararg: false,
@ -541,36 +530,43 @@ pub fn typeof_binop(
} }
} }
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs); let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) { let lhs_ndims = extract_ndims(unifier, lhs_ndims);
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1); let (rhs_dtype, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
u64::try_from(values[0].clone()).unwrap() let rhs_ndims = extract_ndims(unifier, rhs_ndims);
if !(unifier.unioned(lhs_dtype, primitives.float)
&& unifier.unioned(rhs_dtype, primitives.float))
{
return Err(format!(
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
unifier.stringify(lhs),
unifier.stringify(rhs)
));
}
// Deduce the ndims of the resulting ndarray.
// If this is 0 (an unsized ndarray), matmul returns a scalar just like NumPy.
let result_ndims = match (lhs_ndims, rhs_ndims) {
(0, _) | (_, 0) => {
return Err(
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
)
} }
_ => unreachable!(), (1, 1) => 0,
}; (1, _) => rhs_ndims - 1,
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs); (_, 1) => lhs_ndims - 1,
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) { (m, n) => max(m, n),
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
}
_ => unreachable!(),
}; };
match (lhs_ndims, rhs_ndims) { if result_ndims == 0 {
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?, // If the result is unsized, NumPy returns a scalar.
(lhs, rhs) if lhs == 0 || rhs == 0 => { primitives.float
return Err(format!( } else {
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})", let result_ndims_ty =
u8::from(rhs == 0) unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
)) make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
}
(lhs, rhs) => {
return Err(format!(
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
))
}
} }
} }
@ -773,7 +769,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None); impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None); impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None); impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t)); impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], None);
impl_sign(unifier, store, ndarray_t, Some(ndarray_t)); impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
impl_invert(unifier, store, ndarray_t, Some(ndarray_t)); impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None); impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);

View File

@ -94,7 +94,7 @@ fn loc_to_str(loc: Option<Location>) -> String {
} }
} }
impl<'a> Display for DisplayTypeError<'a> { impl Display for DisplayTypeError<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
use TypeErrorKind::*; use TypeErrorKind::*;
let mut notes = Some(HashMap::new()); let mut notes = Some(HashMap::new());

View File

@ -3,7 +3,7 @@ use std::{
cmp::max, cmp::max,
collections::{HashMap, HashSet}, collections::{HashMap, HashSet},
convert::{From, TryInto}, convert::{From, TryInto},
iter::once, iter::{once, repeat_n},
sync::Arc, sync::Arc,
}; };
@ -187,7 +187,7 @@ fn fix_assignment_target_context(node: &mut ast::Located<ExprKind>) {
} }
} }
impl<'a> Fold<()> for Inferencer<'a> { impl Fold<()> for Inferencer<'_> {
type TargetU = Option<Type>; type TargetU = Option<Type>;
type Error = InferenceError; type Error = InferenceError;
@ -657,7 +657,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
type InferenceResult = Result<Type, InferenceError>; type InferenceResult = Result<Type, InferenceError>;
impl<'a> Inferencer<'a> { impl Inferencer<'_> {
/// Constrain a <: b /// Constrain a <: b
/// Currently implemented as unification /// Currently implemented as unification
fn constrain(&mut self, a: Type, b: Type, location: &Location) -> Result<(), InferenceError> { fn constrain(&mut self, a: Type, b: Type, location: &Location) -> Result<(), InferenceError> {
@ -1234,6 +1234,45 @@ impl<'a> Inferencer<'a> {
})); }));
} }
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
let ndarray = self.fold_expr(args.remove(0))?;
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
// Make a tuple of size `ndims` full of int32 (TODO: Make it usize)
let ret_ty = TypeEnum::TTuple {
ty: repeat_n(self.primitives.int32, ndims as usize).collect_vec(),
is_vararg_ctx: false,
};
let ret_ty = self.unifier.add_ty(ret_ty);
let func_ty = TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "a".into(),
default_value: None,
ty: ndarray.custom.unwrap(),
is_vararg: false,
}],
ret: ret_ty,
vars: VarMap::new(),
});
let func_ty = self.unifier.add_ty(func_ty);
return Ok(Some(Located {
location,
custom: Some(ret_ty),
node: ExprKind::Call {
func: Box::new(Located {
custom: Some(func_ty),
location: func.location,
node: ExprKind::Name { id: *id, ctx: *ctx },
}),
args: vec![ndarray],
keywords: vec![],
},
}));
}
if id == &"np_dot".into() { if id == &"np_dot".into() {
let arg0 = self.fold_expr(args.remove(0))?; let arg0 = self.fold_expr(args.remove(0))?;
let arg1 = self.fold_expr(args.remove(0))?; let arg1 = self.fold_expr(args.remove(0))?;
@ -1555,7 +1594,7 @@ impl<'a> Inferencer<'a> {
})); }));
} }
// 2-argument ndarray n-dimensional factory functions // 2-argument ndarray n-dimensional factory functions
if id == &"np_reshape".into() && args.len() == 2 { if ["np_reshape".into(), "np_broadcast_to".into()].contains(id) && args.len() == 2 {
let arg0 = self.fold_expr(args.remove(0))?; let arg0 = self.fold_expr(args.remove(0))?;
let shape_expr = args.remove(0); let shape_expr = args.remove(0);

View File

@ -18,7 +18,6 @@ use crate::{
struct Resolver { struct Resolver {
id_to_type: HashMap<StrRef, Type>, id_to_type: HashMap<StrRef, Type>,
id_to_def: HashMap<StrRef, DefinitionId>, id_to_def: HashMap<StrRef, DefinitionId>,
class_names: HashMap<StrRef, Type>,
} }
impl SymbolResolver for Resolver { impl SymbolResolver for Resolver {
@ -198,7 +197,6 @@ impl TestEnvironment {
let resolver = Arc::new(Resolver { let resolver = Arc::new(Resolver {
id_to_type: identifier_mapping.clone(), id_to_type: identifier_mapping.clone(),
id_to_def: HashMap::default(), id_to_def: HashMap::default(),
class_names: HashMap::default(),
}) as Arc<dyn SymbolResolver + Send + Sync>; }) as Arc<dyn SymbolResolver + Send + Sync>;
TestEnvironment { TestEnvironment {
@ -454,7 +452,6 @@ impl TestEnvironment {
vars: IndexMap::default(), vars: IndexMap::default(),
})), })),
); );
let class_names: HashMap<_, _> = [("Bar".into(), bar), ("Bar2".into(), bar2)].into();
let id_to_name = [ let id_to_name = [
"int32".into(), "int32".into(),
@ -492,7 +489,6 @@ impl TestEnvironment {
("Bar2".into(), DefinitionId(defs + 3)), ("Bar2".into(), DefinitionId(defs + 3)),
] ]
.into(), .into(),
class_names,
}) as Arc<dyn SymbolResolver + Send + Sync>; }) as Arc<dyn SymbolResolver + Send + Sync>;
TestEnvironment { TestEnvironment {

View File

@ -3,13 +3,13 @@ use std::{
cell::RefCell, cell::RefCell,
collections::{HashMap, HashSet}, collections::{HashMap, HashSet},
fmt::{self, Display}, fmt::{self, Display},
iter::{repeat, zip}, iter::{repeat, repeat_n, zip},
rc::Rc, rc::Rc,
sync::{Arc, Mutex}, sync::{Arc, Mutex},
}; };
use indexmap::IndexMap; use indexmap::IndexMap;
use itertools::{repeat_n, Itertools}; use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop}; use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};

View File

@ -30,7 +30,7 @@ pub struct DwarfReader<'a> {
pub virt_addr: u32, pub virt_addr: u32,
} }
impl<'a> DwarfReader<'a> { impl DwarfReader<'_> {
pub fn new(slice: &[u8], virt_addr: u32) -> DwarfReader { pub fn new(slice: &[u8], virt_addr: u32) -> DwarfReader {
DwarfReader { slice, virt_addr } DwarfReader { slice, virt_addr }
} }
@ -113,7 +113,7 @@ pub struct DwarfWriter<'a> {
pub offset: usize, pub offset: usize,
} }
impl<'a> DwarfWriter<'a> { impl DwarfWriter<'_> {
pub fn new(slice: &mut [u8]) -> DwarfWriter { pub fn new(slice: &mut [u8]) -> DwarfWriter {
DwarfWriter { slice, offset: 0 } DwarfWriter { slice, offset: 0 }
} }
@ -375,7 +375,7 @@ pub struct FDE_Records<'a> {
available: usize, available: usize,
} }
impl<'a> Iterator for FDE_Records<'a> { impl Iterator for FDE_Records<'_> {
type Item = (u32, u32); type Item = (u32, u32);
fn next(&mut self) -> Option<Self::Item> { fn next(&mut self) -> Option<Self::Item> {
@ -423,7 +423,7 @@ pub struct EH_Frame_Hdr<'a> {
fdes: Vec<(u32, u32)>, fdes: Vec<(u32, u32)>,
} }
impl<'a> EH_Frame_Hdr<'a> { impl EH_Frame_Hdr<'_> {
/// Create a [EH_Frame_Hdr] object, and write out the fixed fields of `.eh_frame_hdr` to memory. /// Create a [EH_Frame_Hdr] object, and write out the fixed fields of `.eh_frame_hdr` to memory.
/// ///
/// Load address is not known at this point. /// Load address is not known at this point.

View File

@ -159,7 +159,7 @@ struct SymbolTableReader<'a> {
strtab: &'a [u8], strtab: &'a [u8],
} }
impl<'a> SymbolTableReader<'a> { impl SymbolTableReader<'_> {
pub fn find_index_by_name(&self, sym_name: &[u8]) -> Option<usize> { pub fn find_index_by_name(&self, sym_name: &[u8]) -> Option<usize> {
self.symtab.iter().position(|sym| { self.symtab.iter().position(|sym| {
if let Ok(dynsym_name) = name_starting_at_slice(self.strtab, sym.st_name as usize) { if let Ok(dynsym_name) = name_starting_at_slice(self.strtab, sym.st_name as usize) {

View File

@ -67,7 +67,7 @@ def _bool(x):
def _float(x): def _float(x):
if isinstance(x, np.ndarray): if isinstance(x, np.ndarray):
return np.float_(x) return np.float64(x)
else: else:
return float(x) return float(x)
@ -111,6 +111,9 @@ def patch(module):
def output_strln(x): def output_strln(x):
print(x, end='') print(x, end='')
def output_int32_list(x):
print([int(e) for e in x])
def dbg_stack_address(_): def dbg_stack_address(_):
return 0 return 0
@ -126,11 +129,12 @@ def patch(module):
return output_float return output_float
elif name == "output_str": elif name == "output_str":
return output_strln return output_strln
elif name == "output_int32_list":
return output_int32_list
elif name in { elif name in {
"output_bool", "output_bool",
"output_int32", "output_int32",
"output_int64", "output_int64",
"output_int32_list",
"output_uint32", "output_uint32",
"output_uint64", "output_uint64",
"output_strln", "output_strln",
@ -179,6 +183,16 @@ def patch(module):
module.np_identity = np.identity module.np_identity = np.identity
module.np_array = np.array module.np_array = np.array
# NumPy NDArray view functions
module.np_broadcast_to = np.broadcast_to
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# NumPy NDArray property getters
module.np_size = np.size
module.np_shape = np.shape
module.np_strides = lambda ndarray: ndarray.strides
# NumPy Math functions # NumPy Math functions
module.np_isnan = np.isnan module.np_isnan = np.isnan
module.np_isinf = np.isinf module.np_isinf = np.isinf
@ -218,8 +232,6 @@ def patch(module):
module.np_ldexp = np.ldexp module.np_ldexp = np.ldexp
module.np_hypot = np.hypot module.np_hypot = np.hypot
module.np_nextafter = np.nextafter module.np_nextafter = np.nextafter
module.np_transpose = np.transpose
module.np_reshape = np.reshape
# SciPy Math functions # SciPy Math functions
module.sp_spec_erf = special.erf module.sp_spec_erf = special.erf

View File

@ -68,6 +68,19 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
for c in range(len(n[r])): for c in range(len(n[r])):
output_float64(n[r][c]) output_float64(n[r][c])
def output_ndarray_float_3(n: ndarray[float, Literal[3]]):
for d in range(len(n)):
for r in range(len(n[d])):
for c in range(len(n[d][r])):
output_float64(n[d][r][c])
def output_ndarray_float_4(n: ndarray[float, Literal[4]]):
for x in range(len(n)):
for y in range(len(n[x])):
for z in range(len(n[x][y])):
for w in range(len(n[x][y][z])):
output_float64(n[x][y][z][w])
def consume_ndarray_1(n: ndarray[float, Literal[1]]): def consume_ndarray_1(n: ndarray[float, Literal[1]]):
pass pass
@ -197,6 +210,104 @@ def test_ndarray_nd_idx():
output_float64(x[1, 0]) output_float64(x[1, 0])
output_float64(x[1, 1]) output_float64(x[1, 1])
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_int32(np_shape(x)[0])
output_int32(np_shape(x)[1])
output_ndarray_float_2(x)
output_int32(np_shape(y)[0])
output_int32(np_shape(y)[1])
output_ndarray_float_2(y)
output_int32(np_shape(z)[0])
output_int32(np_shape(z)[1])
output_ndarray_float_2(z)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
output_int32(np_shape(w)[0])
output_ndarray_float_1(w)
output_int32(np_shape(x)[0])
output_int32(np_shape(x)[1])
output_int32(np_shape(x)[2])
output_int32(np_shape(x)[3])
output_ndarray_float_4(x)
output_int32(np_shape(y)[0])
output_int32(np_shape(y)[1])
output_ndarray_float_2(y)
output_int32(np_shape(z)[0])
output_ndarray_float_1(z)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_int32(np_shape(x1)[0])
output_ndarray_int32_1(x1)
output_int32(np_shape(x2)[0])
output_int32(np_shape(x2)[1])
output_ndarray_int32_2(x2)
def test_ndarray_broadcast_to():
xs = np_array([1.0, 2.0, 3.0])
ys = np_broadcast_to(xs, (1, 3))
zs = np_broadcast_to(ys, (2, 4, 3))
output_int32(np_shape(xs)[0])
output_ndarray_float_1(xs)
output_int32(np_shape(ys)[0])
output_int32(np_shape(ys)[1])
output_ndarray_float_2(ys)
output_int32(np_shape(zs)[0])
output_int32(np_shape(zs)[1])
output_int32(np_shape(zs)[2])
output_ndarray_float_3(zs)
def test_ndarray_subscript_assignment():
xs = np_array([[11.0, 22.0, 33.0, 44.0], [55.0, 66.0, 77.0, 88.0]])
xs[0, 0] = 99.0
output_ndarray_float_2(xs)
xs[0] = 100.0
output_ndarray_float_2(xs)
xs[:, ::2] = 101.0
output_ndarray_float_2(xs)
xs[1:, 0] = 102.0
output_ndarray_float_2(xs)
xs[0] = np_array([-1.0, -2.0, -3.0, -4.0])
output_ndarray_float_2(xs)
xs[:] = np_array([-5.0, -6.0, -7.0, -8.0])
output_ndarray_float_2(xs)
# Test assignment with memory sharing
ys1 = np_reshape(xs, (2, 4))
ys2 = np_transpose(ys1)
ys3 = ys2[::-1, 0]
ys3[0] = -999.0
output_ndarray_float_2(xs)
output_ndarray_float_2(ys1)
output_ndarray_float_2(ys2)
output_ndarray_float_1(ys3)
def test_ndarray_add(): def test_ndarray_add():
x = np_identity(2) x = np_identity(2)
y = x + np_ones([2, 2]) y = x + np_ones([2, 2])
@ -1440,27 +1551,6 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
output_ndarray_float_2(nextafter_x_zeros) output_ndarray_float_2(nextafter_x_zeros)
output_ndarray_float_2(nextafter_x_ones) output_ndarray_float_2(nextafter_x_ones)
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_ndarray_float_1(w)
output_ndarray_float_2(y)
output_ndarray_float_1(z)
def test_ndarray_dot(): def test_ndarray_dot():
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0]) x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0]) y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
@ -1592,6 +1682,11 @@ def run() -> int32:
test_ndarray_slices() test_ndarray_slices()
test_ndarray_nd_idx() test_ndarray_nd_idx()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_broadcast_to()
test_ndarray_subscript_assignment()
test_ndarray_add() test_ndarray_add()
test_ndarray_add_broadcast() test_ndarray_add_broadcast()
test_ndarray_add_broadcast_lhs_scalar() test_ndarray_add_broadcast_lhs_scalar()
@ -1755,8 +1850,6 @@ def run() -> int32:
test_ndarray_nextafter_broadcast() test_ndarray_nextafter_broadcast()
test_ndarray_nextafter_broadcast_lhs_scalar() test_ndarray_nextafter_broadcast_lhs_scalar()
test_ndarray_nextafter_broadcast_rhs_scalar() test_ndarray_nextafter_broadcast_rhs_scalar()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_dot() test_ndarray_dot()
test_ndarray_cholesky() test_ndarray_cholesky()

View File

@ -29,10 +29,10 @@ def u32_max() -> uint32:
return ~uint32(0) return ~uint32(0)
def i32_min() -> int32: def i32_min() -> int32:
return int32(1 << 31) return int32(-(1 << 31))
def i32_max() -> int32: def i32_max() -> int32:
return int32(~(1 << 31)) return int32((1 << 31)-1)
def u64_min() -> uint64: def u64_min() -> uint64:
return uint64(0) return uint64(0)
@ -63,8 +63,9 @@ def test_conv_from_i32():
i32_max() i32_max()
]: ]:
output_int64(int64(x)) output_int64(int64(x))
output_uint32(uint32(x)) if x >= 0:
output_uint64(uint64(x)) output_uint32(uint32(x))
output_uint64(uint64(x))
output_float64(float(x)) output_float64(float(x))
def test_conv_from_u32(): def test_conv_from_u32():
@ -108,7 +109,6 @@ def test_conv_from_u64():
def test_f64toi32(): def test_f64toi32():
for x in [ for x in [
float(i32_min()) - 1.0,
float(i32_min()), float(i32_min()),
float(i32_min()) + 1.0, float(i32_min()) + 1.0,
-1.5, -1.5,
@ -117,7 +117,6 @@ def test_f64toi32():
1.5, 1.5,
float(i32_max()) - 1.0, float(i32_max()) - 1.0,
float(i32_max()), float(i32_max()),
float(i32_max()) + 1.0
]: ]:
output_int32(int32(x)) output_int32(int32(x))
@ -138,24 +137,17 @@ def test_f64toi64():
def test_f64tou32(): def test_f64tou32():
for x in [ for x in [
-1.5,
float(u32_min()) - 1.0,
-0.5,
float(u32_min()), float(u32_min()),
0.5, 0.5,
float(u32_min()) + 1.0, float(u32_min()) + 1.0,
1.5, 1.5,
float(u32_max()) - 1.0, float(u32_max()) - 1.0,
float(u32_max()), float(u32_max()),
float(u32_max()) + 1.0
]: ]:
output_uint32(uint32(x)) output_uint32(uint32(x))
def test_f64tou64(): def test_f64tou64():
for x in [ for x in [
-1.5,
float(u64_min()) - 1.0,
-0.5,
float(u64_min()), float(u64_min()),
0.5, 0.5,
float(u64_min()) + 1.0, float(u64_min()) + 1.0,

View File

@ -1,15 +1,15 @@
{ pkgs } : [ { pkgs } : [
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libunwind-18.1.8-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libunwind-19.1.4-1-any.pkg.tar.zst";
sha256 = "0f9m76dx40iy794nfks0360gvjhdg6yngb2lyhwp4xd76rn5081m"; sha256 = "0frb5k16bbxdf8g379d16vl3qrh7n9pydn83gpfxpvwf3qlvnzyl";
name = "mingw-w64-clang-x86_64-libunwind-18.1.8-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libunwind-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libc++-18.1.8-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libc++-19.1.4-1-any.pkg.tar.zst";
sha256 = "17savj9wys9my2ji7vyba7wwqkvzdjwnkb3k4858wxrjbzbfa6lk"; sha256 = "0wh5km0v8j50pqz9bxb4f0w7r8zhsvssrjvc94np53iq8wjagk86";
name = "mingw-w64-clang-x86_64-libc++-18.1.8-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libc++-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -31,9 +31,9 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-xz-5.6.2-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-xz-5.6.3-3-any.pkg.tar.zst";
sha256 = "0phb9hwqksk1rg29yhwlc7si78zav19c2kac0i841pc7mc2n9gzx"; sha256 = "1a7gc462gnrjy5qb0zfkr9qm8bsnnf02y6wp3c59n618dhsq7rcf";
name = "mingw-w64-clang-x86_64-xz-5.6.2-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-xz-5.6.3-3-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -43,9 +43,9 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libxml2-2.12.9-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libxml2-2.12.9-2-any.pkg.tar.zst";
sha256 = "0cjz2vj9yz6k5xj601cp0yk631rrr0z94ciamwqrvclb0yhakf25"; sha256 = "1b1r5llgqv88id8iwhqh23qwqmn5ic9hdamdc8xzij9hmcvdmmci";
name = "mingw-w64-clang-x86_64-libxml2-2.12.9-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libxml2-2.12.9-2-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -55,75 +55,87 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-libs-18.1.8-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-libs-19.1.4-1-any.pkg.tar.zst";
sha256 = "0rpbgvvinsqflhd3nhfxk0g0yy8j80zzw5yx6573ak0m78a9fa06"; sha256 = "1clrbm8dk893byj8s15pgcgqqijm2zkd10zgyakamd8m354kj9q4";
name = "mingw-w64-clang-x86_64-llvm-libs-18.1.8-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-llvm-libs-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-18.1.8-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-19.1.4-1-any.pkg.tar.zst";
sha256 = "185g5h8q3x3rav9lp2njln58ny2idh2067fd02j3nsbik6glshpf"; sha256 = "1iz2c9475h8p20ydpp0znbhyb62rlrk7wr7xl7cmwbam7wkwr8rn";
name = "mingw-w64-clang-x86_64-llvm-18.1.8-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-llvm-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-libs-18.1.8-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-libs-19.1.4-1-any.pkg.tar.zst";
sha256 = "089hji3yd7wsd03v9mdfgc99l5k1dql8kg7p3hy13vrbgfsabxhc"; sha256 = "1hidciwlakxrp4kyb0j2v6g4lv76nn834g6b88w1j94fk3qc765d";
name = "mingw-w64-clang-x86_64-clang-libs-18.1.8-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-clang-libs-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-compiler-rt-18.1.8-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-compiler-rt-19.1.4-1-any.pkg.tar.zst";
sha256 = "1dwcxnv1k5ljim5ys4h1c3jlrdpi0054z094ynav7if65i8zjj4a"; sha256 = "1m1yhjkgzlbk10sv966qk4yji009ga0lr25gpgj2w7mcd2wixcr3";
name = "mingw-w64-clang-x86_64-compiler-rt-18.1.8-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-compiler-rt-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-headers-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-headers-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
sha256 = "0163jzjlvq7inpafy3h48pkwag3ysk6x56xm84yfcz5q52fnfzq5"; sha256 = "08gxc7h2achckknn6fz3p6yi7gxxvbaday8fpm4j56c4sa04n0df";
name = "mingw-w64-clang-x86_64-headers-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-headers-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-crt-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-crt-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
sha256 = "00cn1mi29mfys7qy4hvgnjd0smqvnkdn3ibnrr6a3wy1h2vaykgq"; sha256 = "0fxd1pb197ki0gzw6z8gmd6wgpd9d28js6cp5d31d55kw7d1vz13";
name = "mingw-w64-clang-x86_64-crt-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-crt-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-lld-18.1.8-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-lld-19.1.4-1-any.pkg.tar.zst";
sha256 = "1vpij5d06m4kjy3qv8bizwlkl21gcv6fv0r2f1j9bclgm6k3144x"; sha256 = "1a8pjyhrzpc2z3784xxwix4i7yrz03ygnsk1wv9k0yq8m8wi9nbw";
name = "mingw-w64-clang-x86_64-lld-18.1.8-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-lld-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libwinpthread-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libwinpthread-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
sha256 = "1zkzqqd31xpkv817wja3qssjjx891bsdxw07037hv2sk0qr4ffn9"; sha256 = "140m312jx1sywqjkvfij69d268m4jpdmilq5bb8khkf0ayb16036";
name = "mingw-w64-clang-x86_64-libwinpthread-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libwinpthread-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-winpthreads-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-winpthreads-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
sha256 = "02ynia88ad3l03r08nyldmnajwqkyxcjd191lyamkbj4d6zck323"; sha256 = "017j4h511wg37bacym73f8g6s0jcfgzbzabzxpc6anr3gy4kkpbg";
name = "mingw-w64-clang-x86_64-winpthreads-git-12.0.0.r250.gc6bf4bdf6-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-winpthreads-git-12.0.0.r423.g8bcd5fc1a-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-18.1.8-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-clang-19.1.4-1-any.pkg.tar.zst";
sha256 = "1qny934nv4g75k9gb5sf31v24bgafkg6qw7r35xv3in491w6annq"; sha256 = "11f4i4ai2bzvq6f06vxk1ymv7056c9707vdw489f1i2bdrf0c0ii";
name = "mingw-w64-clang-x86_64-clang-18.1.8-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-clang-19.1.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-c-ares-1.33.1-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-rust-1.83.0-3-any.pkg.tar.zst";
sha256 = "14r6jjsvfbapbkv2zqp2yglva4vz4srzkgk7f186ri3kcafjspgq"; sha256 = "0nxs571vb4f1i5vp91134p5blns9ml2r25nx6kdlg0zhd5x85kvm";
name = "mingw-w64-clang-x86_64-c-ares-1.33.1-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-rust-1.83.0-3-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-brotli-1.1.0-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-cppdap-1.65-1-any.pkg.tar.zst";
sha256 = "1q01lz9lcyrjmkhv9rddgjazmk7warlcmwhc4qkq9y6h0yfsb71n"; sha256 = "0phhwkcqp30dsyj5vr6w99sgm1jfm5rzg0w5x5mv9md4x7lm9lmh";
name = "mingw-w64-clang-x86_64-brotli-1.1.0-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-cppdap-1.65-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-c-ares-1.34.3-1-any.pkg.tar.zst";
sha256 = "1mpn397qsdz3l2fav6ymwjlj96ialn9m8sldii3ymbcyhranl3xx";
name = "mingw-w64-clang-x86_64-c-ares-1.34.3-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-brotli-1.1.0-4-any.pkg.tar.zst";
sha256 = "0hx9gjzibacfx3fzk11n2vzz2pmnb956babh2ig8avx3hk7vlqrg";
name = "mingw-w64-clang-x86_64-brotli-1.1.0-4-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -139,9 +151,9 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libpsl-0.21.5-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libpsl-0.21.5-3-any.pkg.tar.zst";
sha256 = "1mpx77q5g8pj45s8wgc52c4ww2r93080p6d559p56f558a3cl317"; sha256 = "0hb7wgdliic3d7fa0cvr5pj946pmwfc0apmyb0yfb5d0hc1afwsc";
name = "mingw-w64-clang-x86_64-libpsl-0.21.5-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libpsl-0.21.5-3-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -163,57 +175,45 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openssl-3.3.2-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openssl-3.4.0-1-any.pkg.tar.zst";
sha256 = "1djgpcz447yvhdy1yq5wh8l5d0821izxklx9afyszbw0pbr7f24y"; sha256 = "0cgiqjmgdnwnv9r88z634dmqrzh06dmsfncyzymw0s16nnv2k7k2";
name = "mingw-w64-clang-x86_64-openssl-3.3.2-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-openssl-3.4.0-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libssh2-1.11.0-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libssh2-1.11.1-1-any.pkg.tar.zst";
sha256 = "0l2m823gm1rvnjmqm5ads17mxz1bhpzai5ixyhnkpzrsjxd1ygy5"; sha256 = "01l23cn5brficjzba7ldscqkdvk4rdcvvdyybd90qr2hqzligmhn";
name = "mingw-w64-clang-x86_64-libssh2-1.11.0-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libssh2-1.11.1-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-nghttp2-1.63.0-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-nghttp2-1.64.0-1-any.pkg.tar.zst";
sha256 = "0lfqrlmapsc7ilxjmhr7hxi578vclqlhpqimbvzq0c70c0iwk864"; sha256 = "1hv8fp496l018s5dx5v8nvxc0a6rswskwk1jsrfd94rh3kbq2ilc";
name = "mingw-w64-clang-x86_64-nghttp2-1.63.0-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-nghttp2-1.64.0-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-nghttp3-1.5.0-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-nghttp3-1.6.0-1-any.pkg.tar.zst";
sha256 = "1ljl9kdasf91bxkqcmbbjchp5g00ahv8jn2zab38899z6j3x43nz"; sha256 = "1p7q47fin12vzyf126v1azbbpgpa0y6ighfh6mbfdb6zcyq74kbd";
name = "mingw-w64-clang-x86_64-nghttp3-1.5.0-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-nghttp3-1.6.0-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-curl-8.9.1-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-curl-8.11.1-1-any.pkg.tar.zst";
sha256 = "1zr6kgqp9i4qqrfckh3kfmz4x1cwv4xis9sfqsx7xji88priax64"; sha256 = "16yvyqjzxyzawgv26r1g145wphvhjil2b0pyhy4nj7v5d19n6wvh";
name = "mingw-w64-clang-x86_64-curl-8.9.1-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-curl-8.11.1-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-rust-1.80.1-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-expat-2.6.4-1-any.pkg.tar.zst";
sha256 = "1dm4vlrfi9m6xl09zpn0yjr7qcjjr4x738z1rjfwysfnc0awq4x8"; sha256 = "03fp2yacv7gk0g049lffz6pbj93vpjmzqxxa312d4gxczi57nqdv";
name = "mingw-w64-clang-x86_64-rust-1.80.1-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-expat-2.6.4-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-cppdap-1.65-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-jsoncpp-1.9.6-3-any.pkg.tar.zst";
sha256 = "0phhwkcqp30dsyj5vr6w99sgm1jfm5rzg0w5x5mv9md4x7lm9lmh"; sha256 = "1ipilhiza17vz5dhgi61l80w2klw9f21w6jbyhi9wmfd6nxqv13c";
name = "mingw-w64-clang-x86_64-cppdap-1.65-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-jsoncpp-1.9.6-3-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-expat-2.6.3-1-any.pkg.tar.zst";
sha256 = "19xfl1q78q1k8j0lr5aspcf668pmfg01fgib73zq7ff7y5y5fcyi";
name = "mingw-w64-clang-x86_64-expat-2.6.3-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-jsoncpp-1.9.5-3-any.pkg.tar.zst";
sha256 = "1a8mdn4ram9pgqpx5fwxmhcmzc6bh1fq1s4m37xh0d8p6fpncv10";
name = "mingw-w64-clang-x86_64-jsoncpp-1.9.5-3-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -235,27 +235,27 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libtre-git-r177.07e66d0-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libtre-0.9.0-1-any.pkg.tar.zst";
sha256 = "0fc9hxsdks1xy5fv0rcna433hlzf6jhs77hg0hfzkzhn06f9alp4"; sha256 = "1y5d2cbkpd0ngqlsv6hvz47nxb1wry33i5s1clg2k53yhgjkg8vv";
name = "mingw-w64-clang-x86_64-libtre-git-r177.07e66d0-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libtre-0.9.0-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libsystre-1.0.1-5-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libsystre-1.0.1-6-any.pkg.tar.zst";
sha256 = "05qsn8fkks4f93jkas43s47axqqgx5m64b45p462si3nlb8cjirq"; sha256 = "19c71fs5gqjrf88mv7l702fjg228xd9lfbxg0mkzm3ljvv4ljn0q";
name = "mingw-w64-clang-x86_64-libsystre-1.0.1-5-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libsystre-1.0.1-6-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libarchive-3.7.4-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libarchive-3.7.7-1-any.pkg.tar.zst";
sha256 = "1ykw6imllgxv6lsgwxx1miqjr4l1iryqkrj286jcbfrb8ghpzhv5"; sha256 = "01glychb0k1yd878aq4y2fn08lqh2bjydh90xmq03z5qhig66mmn";
name = "mingw-w64-clang-x86_64-libarchive-3.7.4-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libarchive-3.7.7-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libuv-1.48.0-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-libuv-1.49.2-1-any.pkg.tar.zst";
sha256 = "0kfzanvx7hg7bvy35h2z2vcfxvwn44sikd36mvzhkv6c3c6y84sn"; sha256 = "1b9slshbcprxjaj2qqypaywr0f2pgajg1bgspjk83hk65sx6sklb";
name = "mingw-w64-clang-x86_64-libuv-1.48.0-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-libuv-1.49.2-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -277,9 +277,9 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-cmake-3.30.3-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-cmake-3.31.2-3-any.pkg.tar.zst";
sha256 = "0fjwf6xxzli6rcsbzr1razldmm538ibkyf5kw132lpaz5wma9bj8"; sha256 = "139f91r392c68hsajm0c81690pmzkywb0p4x8ms8ms53ncxnz6gz";
name = "mingw-w64-clang-x86_64-cmake-3.30.3-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-cmake-3.31.2-3-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -289,9 +289,9 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-ncurses-6.4.20231217-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-ncurses-6.5.20240831-1-any.pkg.tar.zst";
sha256 = "00046d52zsr8zjifl7h22jfihhh53h20ipvbqmvf9myssw2fwjza"; sha256 = "1hlfj9g4s767s502sawwbcv4a0xd3ym3ip4jswmhq48wh5050iyb";
name = "mingw-w64-clang-x86_64-ncurses-6.4.20231217-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-ncurses-6.5.20240831-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -307,15 +307,15 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-tcl-8.6.13-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-sqlite3-3.47.2-1-any.pkg.tar.zst";
sha256 = "0paaqwk0sfy2zxwlxkmxf2bqq46lyg0sx7cqgzknvazwx8xa2z4x"; sha256 = "10pavblv9yjirlm5hix9aikpswhiamry097clba6jcvsajlx4azy";
name = "mingw-w64-clang-x86_64-tcl-8.6.13-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-sqlite3-3.47.2-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-sqlite3-3.46.1-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-tcl-8.6.13-1-any.pkg.tar.zst";
sha256 = "1axplxyjnaz411qzjjqwbj55fbrh4akq3plm2p1sx64jp844xpyq"; sha256 = "0paaqwk0sfy2zxwlxkmxf2bqq46lyg0sx7cqgzknvazwx8xa2z4x";
name = "mingw-w64-clang-x86_64-sqlite3-3.46.1-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-tcl-8.6.13-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
@ -325,44 +325,38 @@
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-tzdata-2024a-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-tzdata-2024b-1-any.pkg.tar.zst";
sha256 = "1lsfn3759cyf56zlmfvgy6ihs4iks6zhlnrbfmnq5wml02k936ji"; sha256 = "0jihnr1i7vyzczxz60ds1x3gcm3p4ad2pq9d5vvpwjdwrxkvxmkc";
name = "mingw-w64-clang-x86_64-tzdata-2024a-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-tzdata-2024b-1-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python3.12-3.12.1-2-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-3.12.7-3-any.pkg.tar.zst";
sha256 = "0wmd39wl9z237w093a7c6hl5pclca9yvwxn0kiw6i2njk3sjv51a"; sha256 = "1v15j2pzy9wj4n1rjngdi2hf8h0l9z4lri3xb86yvdv1xl2msj6h";
name = "mingw-w64-clang-x86_64-python3.12-3.12.1-2-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-python-3.12.7-3-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-3.11.9-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-openmp-19.1.4-2-any.pkg.tar.zst";
sha256 = "0ah1idjqxg7jc07a1gz9z766rjjd0f0c6ri4hpcsimsrbj1zjd3c"; sha256 = "1pn1fbj74rx837s9z8gqs4b0cr7kqi5m1m2mi9ibjpw64m1aqwxv";
name = "mingw-w64-clang-x86_64-python-3.11.9-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-llvm-openmp-19.1.4-2-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-llvm-openmp-18.1.8-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openblas-0.3.28-2-any.pkg.tar.zst";
sha256 = "0cy2v0l4af24j34mzj5q5nlzcqhackfajlfj1rpf6mb3rbz23qw9"; sha256 = "18p1zhf7h3k3phf3bl483jg3k7y9zq375z6ww75g62158ic9lfyc";
name = "mingw-w64-clang-x86_64-llvm-openmp-18.1.8-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-openblas-0.3.28-2-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-openblas-0.3.28-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-numpy-2.1.1-2-any.pkg.tar.zst";
sha256 = "1pskcqc1lg9p8m8rk7bw3mz7mn7vw5fpl7zxa23bhjn02p5b79qq"; sha256 = "1kiy7ail04ias47xbbhl9vpsz02g0g3f29ncgx5gcks9vgqldp6m";
name = "mingw-w64-clang-x86_64-openblas-0.3.28-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-python-numpy-2.1.1-2-any.pkg.tar.zst";
}) })
(pkgs.fetchurl { (pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-numpy-2.0.1-1-any.pkg.tar.zst"; url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-setuptools-75.6.0-1-any.pkg.tar.zst";
sha256 = "0ks6q8v58h4wmr2pzsjl2xm4f63g0psvfm0jwlz24mqfxp8gqfcc"; sha256 = "03l04kjmy5p9whaw0h619gdg7yw1gxbz8phifq4pzh3c1wlw7yfd";
name = "mingw-w64-clang-x86_64-python-numpy-2.0.1-1-any.pkg.tar.zst"; name = "mingw-w64-clang-x86_64-python-setuptools-75.6.0-1-any.pkg.tar.zst";
})
(pkgs.fetchurl {
url = "https://mirror.msys2.org/mingw/clang64/mingw-w64-clang-x86_64-python-setuptools-74.0.0-1-any.pkg.tar.zst";
sha256 = "0xc95z5jzzjf5lw35bs4yn5rlwkrkmrh78yi5rranqpz5nn0wsa0";
name = "mingw-w64-clang-x86_64-python-setuptools-74.0.0-1-any.pkg.tar.zst";
}) })
] ]