forked from M-Labs/nac3
[core] codegen/ndarray: Add NDArrayOut, broadcast_map, map
Based on fbfc0b29
: core/ndstrides: add NDArrayOut, broadcast_map and map
This commit is contained in:
parent
2dc5e79a23
commit
e6dab25a57
187
nac3core/src/codegen/types/ndarray/map.rs
Normal file
187
nac3core/src/codegen/types/ndarray/map.rs
Normal file
@ -0,0 +1,187 @@
|
|||||||
|
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
stmt::gen_for_callback,
|
||||||
|
types::{
|
||||||
|
ndarray::{NDArrayType, NDIterType},
|
||||||
|
ProxyType,
|
||||||
|
},
|
||||||
|
values::{
|
||||||
|
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
|
||||||
|
ArrayLikeValue, ProxyValue,
|
||||||
|
},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayType<'ctx> {
|
||||||
|
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping`
|
||||||
|
/// elementwise.
|
||||||
|
///
|
||||||
|
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when
|
||||||
|
/// iterating through the input `ndarrays` after broadcasting. The output of `mapping` is the
|
||||||
|
/// result of the elementwise operation.
|
||||||
|
///
|
||||||
|
/// `out` specifies whether the result should be a new ndarray or to be written an existing
|
||||||
|
/// ndarray.
|
||||||
|
pub fn broadcast_starmap<'a, G, MappingFn>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
ndarrays: &[NDArrayValue<'ctx>],
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
mapping: MappingFn,
|
||||||
|
) -> Result<<Self as ProxyType<'ctx>>::Value, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
MappingFn: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
&[BasicValueEnum<'ctx>],
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
// Broadcast inputs
|
||||||
|
let broadcast_result = self.broadcast(generator, ctx, ndarrays);
|
||||||
|
|
||||||
|
let out_ndarray = match out {
|
||||||
|
NDArrayOut::NewNDArray { dtype } => {
|
||||||
|
// Create a new ndarray based on the broadcast shape.
|
||||||
|
let result_ndarray =
|
||||||
|
NDArrayType::new(generator, ctx.ctx, dtype, Some(broadcast_result.ndims))
|
||||||
|
.construct_uninitialized(generator, ctx, None);
|
||||||
|
result_ndarray.copy_shape_from_array(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
broadcast_result.shape.base_ptr(ctx, generator),
|
||||||
|
);
|
||||||
|
unsafe {
|
||||||
|
result_ndarray.create_data(generator, ctx);
|
||||||
|
}
|
||||||
|
result_ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||||
|
// Use an existing ndarray.
|
||||||
|
|
||||||
|
// Check that its shape is compatible with the broadcast shape.
|
||||||
|
result_ndarray.assert_can_be_written_by_out(generator, ctx, broadcast_result.shape);
|
||||||
|
result_ndarray
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Map element-wise and store results into `mapped_ndarray`.
|
||||||
|
let nditer = NDIterType::new(generator, ctx.ctx).construct(generator, ctx, out_ndarray);
|
||||||
|
gen_for_callback(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
Some("broadcast_starmap"),
|
||||||
|
|generator, ctx| {
|
||||||
|
// Create NDIters for all broadcasted input ndarrays.
|
||||||
|
let other_nditers = broadcast_result
|
||||||
|
.ndarrays
|
||||||
|
.iter()
|
||||||
|
.map(|ndarray| {
|
||||||
|
NDIterType::new(generator, ctx.ctx).construct(generator, ctx, *ndarray)
|
||||||
|
})
|
||||||
|
.collect_vec();
|
||||||
|
Ok((nditer, other_nditers))
|
||||||
|
},
|
||||||
|
|generator, ctx, (out_nditer, _in_nditers)| {
|
||||||
|
// We can simply use `out_nditer`'s `has_element()`.
|
||||||
|
// `in_nditers`' `has_element()`s should return the same value.
|
||||||
|
Ok(out_nditer.has_element(generator, ctx))
|
||||||
|
},
|
||||||
|
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||||
|
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||||
|
// and write to `out_ndarray`.
|
||||||
|
let in_scalars =
|
||||||
|
in_nditers.iter().map(|nditer| nditer.get_scalar(ctx)).collect_vec();
|
||||||
|
|
||||||
|
let result = mapping(generator, ctx, &in_scalars)?;
|
||||||
|
|
||||||
|
let p = out_nditer.get_pointer(ctx);
|
||||||
|
ctx.builder.build_store(p, result).unwrap();
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
|generator, ctx, (out_nditer, in_nditers)| {
|
||||||
|
// Advance all iterators
|
||||||
|
out_nditer.next(generator, ctx);
|
||||||
|
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
|
||||||
|
Ok(())
|
||||||
|
},
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(out_ndarray)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||||
|
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a
|
||||||
|
/// scalar.
|
||||||
|
///
|
||||||
|
/// This function is very helpful when implementing NumPy functions that takes on either scalars
|
||||||
|
/// or ndarrays or a mix of them as their inputs and produces either an ndarray with broadcast,
|
||||||
|
/// or a scalar if all its inputs are all scalars.
|
||||||
|
///
|
||||||
|
/// For example ,this function can be used to implement `np.add`, which has the following
|
||||||
|
/// behaviors:
|
||||||
|
///
|
||||||
|
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
|
||||||
|
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is
|
||||||
|
/// converted into an ndarray and broadcasted.
|
||||||
|
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) ->
|
||||||
|
/// ndarray; there is broadcasting.
|
||||||
|
///
|
||||||
|
/// ## Details:
|
||||||
|
///
|
||||||
|
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a
|
||||||
|
/// [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
|
||||||
|
///
|
||||||
|
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be
|
||||||
|
/// 'as-ndarray'-ed into ndarrays, then all inputs (now all ndarrays) will be passed to
|
||||||
|
/// [`NDArrayValue::broadcasting_starmap`] and **create** a new ndarray with dtype `ret_dtype`.
|
||||||
|
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
inputs: &[ScalarOrNDArray<'ctx>],
|
||||||
|
ret_dtype: BasicTypeEnum<'ctx>,
|
||||||
|
mapping: MappingFn,
|
||||||
|
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
MappingFn: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
&[BasicValueEnum<'ctx>],
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
// Check if all inputs are Scalars
|
||||||
|
let all_scalars: Option<Vec<_>> =
|
||||||
|
inputs.iter().map(BasicValueEnum::<'ctx>::try_from).try_collect().ok();
|
||||||
|
|
||||||
|
if let Some(scalars) = all_scalars {
|
||||||
|
let scalars = scalars.iter().copied().collect_vec();
|
||||||
|
let value = mapping(generator, ctx, &scalars)?;
|
||||||
|
|
||||||
|
Ok(ScalarOrNDArray::Scalar(value))
|
||||||
|
} else {
|
||||||
|
// Promote all input to ndarrays and map through them.
|
||||||
|
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
|
||||||
|
let ndarray = NDArrayType::new_broadcast(
|
||||||
|
generator,
|
||||||
|
ctx.ctx,
|
||||||
|
ret_dtype,
|
||||||
|
&inputs.iter().map(NDArrayValue::get_type).collect_vec(),
|
||||||
|
)
|
||||||
|
.broadcast_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&inputs,
|
||||||
|
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||||
|
mapping,
|
||||||
|
)?;
|
||||||
|
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -30,6 +30,7 @@ mod broadcast;
|
|||||||
mod contiguous;
|
mod contiguous;
|
||||||
pub mod factory;
|
pub mod factory;
|
||||||
mod indexing;
|
mod indexing;
|
||||||
|
mod map;
|
||||||
mod nditer;
|
mod nditer;
|
||||||
|
|
||||||
/// Proxy type for a `ndarray` type in LLVM.
|
/// Proxy type for a `ndarray` type in LLVM.
|
||||||
|
69
nac3core/src/codegen/values/ndarray/map.rs
Normal file
69
nac3core/src/codegen/values/ndarray/map.rs
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
use inkwell::{types::BasicTypeEnum, values::BasicValueEnum};
|
||||||
|
|
||||||
|
use crate::codegen::{
|
||||||
|
values::{
|
||||||
|
ndarray::{NDArrayOut, NDArrayValue, ScalarOrNDArray},
|
||||||
|
ProxyValue,
|
||||||
|
},
|
||||||
|
CodeGenContext, CodeGenerator,
|
||||||
|
};
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayValue<'ctx> {
|
||||||
|
/// Map through this ndarray with an elementwise function.
|
||||||
|
pub fn map<'a, G, Mapping>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
out: NDArrayOut<'ctx>,
|
||||||
|
mapping: Mapping,
|
||||||
|
) -> Result<Self, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Mapping: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BasicValueEnum<'ctx>,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
self.get_type().broadcast_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[*self],
|
||||||
|
out,
|
||||||
|
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||||
|
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
|
||||||
|
///
|
||||||
|
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a
|
||||||
|
/// [`ScalarOrNDArray::Scalar`] of that result.
|
||||||
|
///
|
||||||
|
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new
|
||||||
|
/// ndarray of the results will be created and returned as a [`ScalarOrNDArray::NDArray`].
|
||||||
|
pub fn map<'a, G, Mapping>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||||
|
ret_dtype: BasicTypeEnum<'ctx>,
|
||||||
|
mapping: Mapping,
|
||||||
|
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||||
|
where
|
||||||
|
G: CodeGenerator + ?Sized,
|
||||||
|
Mapping: FnOnce(
|
||||||
|
&mut G,
|
||||||
|
&mut CodeGenContext<'ctx, 'a>,
|
||||||
|
BasicValueEnum<'ctx>,
|
||||||
|
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||||
|
{
|
||||||
|
ScalarOrNDArray::broadcasting_starmap(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&[*self],
|
||||||
|
ret_dtype,
|
||||||
|
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
@ -31,6 +31,7 @@ pub use nditer::*;
|
|||||||
mod broadcast;
|
mod broadcast;
|
||||||
mod contiguous;
|
mod contiguous;
|
||||||
mod indexing;
|
mod indexing;
|
||||||
|
mod map;
|
||||||
mod nditer;
|
mod nditer;
|
||||||
pub mod shape;
|
pub mod shape;
|
||||||
mod view;
|
mod view;
|
||||||
@ -540,6 +541,26 @@ impl<'ctx> NDArrayValue<'ctx> {
|
|||||||
ScalarOrNDArray::NDArray(*self)
|
ScalarOrNDArray::NDArray(*self)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
|
||||||
|
///
|
||||||
|
/// Raise an exception if the shapes do not match.
|
||||||
|
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
|
||||||
|
&self,
|
||||||
|
generator: &mut G,
|
||||||
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||||
|
out_shape: impl TypedArrayLikeAccessor<'ctx, G, IntValue<'ctx>>,
|
||||||
|
) {
|
||||||
|
let ndarray_shape = self.shape();
|
||||||
|
let output_shape = out_shape;
|
||||||
|
|
||||||
|
irrt::ndarray::call_nac3_ndarray_util_assert_output_shape_same(
|
||||||
|
generator,
|
||||||
|
ctx,
|
||||||
|
&ndarray_shape,
|
||||||
|
&output_shape,
|
||||||
|
);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
|
impl<'ctx> ProxyValue<'ctx> for NDArrayValue<'ctx> {
|
||||||
@ -1081,3 +1102,27 @@ impl<'ctx> ScalarOrNDArray<'ctx> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// An helper enum specifying how a function should produce its output.
|
||||||
|
///
|
||||||
|
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
|
||||||
|
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a
|
||||||
|
/// function will create a new ndarray and store the result in it.
|
||||||
|
#[derive(Clone, Copy)]
|
||||||
|
pub enum NDArrayOut<'ctx> {
|
||||||
|
/// Tell a function should create a new ndarray with the expected element type `dtype`.
|
||||||
|
NewNDArray { dtype: BasicTypeEnum<'ctx> },
|
||||||
|
/// Tell a function to write the result to `ndarray`.
|
||||||
|
WriteToNDArray { ndarray: NDArrayValue<'ctx> },
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'ctx> NDArrayOut<'ctx> {
|
||||||
|
/// Get the dtype of this output.
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_dtype(&self) -> BasicTypeEnum<'ctx> {
|
||||||
|
match self {
|
||||||
|
NDArrayOut::NewNDArray { dtype } => *dtype,
|
||||||
|
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user