diff --git a/nac3standalone/demo/src/ndarray.py b/nac3standalone/demo/src/ndarray.py index 9664b3f..b5baecc 100644 --- a/nac3standalone/demo/src/ndarray.py +++ b/nac3standalone/demo/src/ndarray.py @@ -68,6 +68,19 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]): for c in range(len(n[r])): output_float64(n[r][c]) +def output_ndarray_float_3(n: ndarray[float, Literal[3]]): + for d in range(len(n)): + for r in range(len(n[d])): + for c in range(len(n[d][r])): + output_float64(n[d][r][c]) + +def output_ndarray_float_4(n: ndarray[float, Literal[4]]): + for x in range(len(n)): + for y in range(len(n[x])): + for z in range(len(n[x][y])): + for w in range(len(n[x][y][z])): + output_float64(n[x][y][z][w]) + def consume_ndarray_1(n: ndarray[float, Literal[1]]): pass @@ -186,6 +199,68 @@ def test_ndarray_nd_idx(): output_float64(x[1, 0]) output_float64(x[1, 1]) +def test_ndarray_transpose(): + x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]]) + y = np_transpose(x) + z = np_transpose(y) + + output_ndarray_float_2(x) + output_ndarray_float_2(y) + +def test_ndarray_reshape(): + w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) + x = np_reshape(w, (1, 2, 1, -1)) + y = np_reshape(x, [2, -1]) + z = np_reshape(y, 10) + + x1: ndarray[int32, 1] = np_array([1, 2, 3, 4]) + x2: ndarray[int32, 2] = np_reshape(x1, (2, 2)) + + output_ndarray_float_1(w) + output_ndarray_float_2(y) + output_ndarray_float_1(z) + +def test_ndarray_broadcast_to(): + xs = np_array([1.0, 2.0, 3.0]) + ys = np_broadcast_to(xs, (1, 3)) + zs = np_broadcast_to(ys, (2, 4, 3)) + + output_ndarray_float_1(xs) + output_ndarray_float_2(ys) + output_ndarray_float_3(zs) + +def test_ndarray_subscript_assignment(): + xs = np_array([[11.0, 22.0, 33.0, 44.0], [55.0, 66.0, 77.0, 88.0]]) + + xs[0, 0] = 99.0 + output_ndarray_float_2(xs) + + xs[0] = 100.0 + output_ndarray_float_2(xs) + + xs[:, ::2] = 101.0 + output_ndarray_float_2(xs) + + xs[1:, 0] = 102.0 + output_ndarray_float_2(xs) + + xs[0] = np_array([-1.0, -2.0, -3.0, -4.0]) + output_ndarray_float_2(xs) + + xs[:] = np_array([-5.0, -6.0, -7.0, -8.0]) + output_ndarray_float_2(xs) + + # Test assignment with memory sharing + ys1 = np_reshape(xs, (2, 4)) + ys2 = np_transpose(ys1) + ys3 = ys2[::-1, 0] + ys3[0] = -999.0 + + output_ndarray_float_2(xs) + output_ndarray_float_2(ys1) + output_ndarray_float_2(ys2) + output_ndarray_float_1(ys3) + def test_ndarray_add(): x = np_identity(2) y = x + np_ones([2, 2]) @@ -530,11 +605,59 @@ def test_ndarray_ipow_broadcast_scalar(): output_ndarray_float_2(x) def test_ndarray_matmul(): - x = np_identity(2) - y = x @ np_ones([2, 2]) + # 2D @ 2D -> 2D + a1 = np_array([[2.0, 3.0], [5.0, 7.0]]) + b1 = np_array([[11.0, 13.0], [17.0, 23.0]]) + c1 = a1 @ b1 + output_int32(np_shape(c1)[0]) + output_int32(np_shape(c1)[1]) + output_ndarray_float_2(c1) - output_ndarray_float_2(x) - output_ndarray_float_2(y) + # 1D @ 1D -> Scalar + a2 = np_array([2.0, 3.0, 5.0]) + b2 = np_array([7.0, 11.0, 13.0]) + c2 = a2 @ b2 + output_float64(c2) + + # 2D @ 1D -> 1D + a3 = np_array([[1.0, 2.0, 3.0], [7.0, 8.0, 9.0]]) + b3 = np_array([4.0, 5.0, 6.0]) + c3 = a3 @ b3 + output_int32(np_shape(c3)[0]) + output_ndarray_float_1(c3) + + # 1D @ 2D -> 1D + a4 = np_array([1.0, 2.0, 3.0]) + b4 = np_array([[4.0, 5.0], [6.0, 7.0], [8.0, 9.0]]) + c4 = a4 @ b4 + output_int32(np_shape(c4)[0]) + output_ndarray_float_1(c4) + + # Broadcasting + a5 = np_array([ + [[ 0.0, 1.0, 2.0, 3.0], + [ 4.0, 5.0, 6.0, 7.0]], + [[ 8.0, 9.0, 10.0, 11.0], + [12.0, 13.0, 14.0, 15.0]], + [[16.0, 17.0, 18.0, 19.0], + [20.0, 21.0, 22.0, 23.0]] + ]) + b5 = np_array([ + [[[ 0.0, 1.0, 2.0], + [ 3.0, 4.0, 5.0], + [ 6.0, 7.0, 8.0], + [ 9.0, 10.0, 11.0]]], + [[[12.0, 13.0, 14.0], + [15.0, 16.0, 17.0], + [18.0, 19.0, 20.0], + [21.0, 22.0, 23.0]]] + ]) + c5 = a5 @ b5 + output_int32(np_shape(c5)[0]) + output_int32(np_shape(c5)[1]) + output_int32(np_shape(c5)[2]) + output_int32(np_shape(c5)[3]) + output_ndarray_float_4(c5) def test_ndarray_imatmul(): x = np_identity(2) @@ -1429,27 +1552,6 @@ def test_ndarray_nextafter_broadcast_rhs_scalar(): output_ndarray_float_2(nextafter_x_zeros) output_ndarray_float_2(nextafter_x_ones) -def test_ndarray_transpose(): - x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]]) - y = np_transpose(x) - z = np_transpose(y) - - output_ndarray_float_2(x) - output_ndarray_float_2(y) - -def test_ndarray_reshape(): - w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) - x = np_reshape(w, (1, 2, 1, -1)) - y = np_reshape(x, [2, -1]) - z = np_reshape(y, 10) - - x1: ndarray[int32, 1] = np_array([1, 2, 3, 4]) - x2: ndarray[int32, 2] = np_reshape(x1, (2, 2)) - - output_ndarray_float_1(w) - output_ndarray_float_2(y) - output_ndarray_float_1(z) - def test_ndarray_dot(): x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0]) y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0]) @@ -1581,6 +1683,11 @@ def run() -> int32: test_ndarray_slices() test_ndarray_nd_idx() + test_ndarray_transpose() + test_ndarray_reshape() + test_ndarray_broadcast_to() + test_ndarray_subscript_assignment() + test_ndarray_add() test_ndarray_add_broadcast() test_ndarray_add_broadcast_lhs_scalar() @@ -1744,8 +1851,6 @@ def run() -> int32: test_ndarray_nextafter_broadcast() test_ndarray_nextafter_broadcast_lhs_scalar() test_ndarray_nextafter_broadcast_rhs_scalar() - test_ndarray_transpose() - test_ndarray_reshape() test_ndarray_dot() test_ndarray_cholesky()