core/ndstrides: implement np_array()

It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.
This commit is contained in:
lyken 2024-08-20 15:10:39 +08:00
parent da23bb1417
commit b158ec80b4
No known key found for this signature in database
GPG Key ID: 3BD5FC6AC8325DD8
8 changed files with 422 additions and 45 deletions

View File

@ -2,6 +2,7 @@
#include <irrt/int_types.hpp> #include <irrt/int_types.hpp>
#include <irrt/list.hpp> #include <irrt/list.hpp>
#include <irrt/math_util.hpp> #include <irrt/math_util.hpp>
#include <irrt/ndarray/array.hpp>
#include <irrt/ndarray/basic.hpp> #include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp> #include <irrt/ndarray/def.hpp>
#include <irrt/ndarray/indexing.hpp> #include <irrt/ndarray/indexing.hpp>

View File

@ -0,0 +1,157 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace array
{
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0], [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the responsibility to
* allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because of implementation details.
*/
template <typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
{
if (shape[axis] == -1)
{
// Dimension is unspecified. Set it.
shape[axis] = list->len;
}
else
{
// Dimension is specified. Check.
if (shape[axis] != list->len)
{
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims)
{
// `list` has type `list[ItemType]`
// Do nothing
}
else
{
// `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
/**
* @brief In the context of `np.array(<list>)`, copied the contents stored in `list` to `ndarray`.
*
* `list` is assumed to be "legal". (i.e., no inconsistent dimensions)
*
* # Notes on `ndarray`
* The caller is responsible for allocating space for `ndarray`.
* Here is what this function expects from `ndarray` when called:
* - `ndarray->data` has to be allocated, contiguous, and may contain uninitialized values.
* - `ndarray->itemsize` has to be initialized.
* - `ndarray->ndims` has to be initialized.
* - `ndarray->shape` has to be initialized.
* - `ndarray->strides` is ignored, but note that `ndarray->data` is contiguous.
* When this function call ends:
* - `ndarray->data` is written with contents from `<list>`.
*/
template <typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
{
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL)
{
if (!ndarray::basic::is_c_contiguous(ndarray))
{
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims)
{
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
}
else
{
// `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
/**
* @brief See `write_list_to_array_helper`.
*/
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
{
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace array
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
}

View File

@ -7,7 +7,10 @@ use super::{
}, },
llvm_intrinsics, llvm_intrinsics,
model::*, model::*,
object::ndarray::{indexing::NDIndex, nditer::NDIter, NDArray}, object::{
list::List,
ndarray::{indexing::NDIndex, nditer::NDIter, NDArray},
},
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}; };
use crate::codegen::classes::TypedArrayLikeAccessor; use crate::codegen::classes::TypedArrayLikeAccessor;
@ -1136,3 +1139,32 @@ pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
.arg(dst_ndarray) .arg(dst_ndarray)
.returning_void(); .returning_void();
} }
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
}

View File

@ -178,6 +178,15 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
Ptr(new_item).pointer_cast(generator, ctx, self.value) Ptr(new_item).pointer_cast(generator, ctx, self.value)
} }
/// Cast this pointer to `uint8_t*`
pub fn cast_to_pi8<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
Ptr(Int(Byte)).pointer_cast(generator, ctx, self.value)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`]. /// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> { pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap(); let value = ctx.builder.build_is_null(self.value, "").unwrap();

View File

@ -12,6 +12,7 @@ use crate::{
call_ndarray_calc_size, call_ndarray_calc_size,
}, },
llvm_intrinsics::{self, call_memcpy_generic}, llvm_intrinsics::{self, call_memcpy_generic},
model::*,
object::{ object::{
any::AnyObject, any::AnyObject,
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject}, ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
@ -21,13 +22,13 @@ use crate::{
}, },
symbol_resolver::ValueEnum, symbol_resolver::ValueEnum,
toplevel::{ toplevel::{
helper::{extract_ndims, PrimDef}, helper::extract_ndims,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys}, numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
DefinitionId, DefinitionId,
}, },
typecheck::{ typecheck::{
magic_methods::Binop, magic_methods::Binop,
typedef::{FunSignature, Type, TypeEnum}, typedef::{FunSignature, Type},
}, },
}; };
use inkwell::{ use inkwell::{
@ -1839,26 +1840,6 @@ pub fn gen_ndarray_array<'ctx>(
assert!(matches!(args.len(), 1..=3)); assert!(matches!(args.len(), 1..=3));
let obj_ty = fun.0.args[0].ty; let obj_ty = fun.0.args[0].ty;
let obj_elem_ty = match &*context.unifier.get_ty(obj_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
unpack_ndarray_var_tys(&mut context.unifier, obj_ty).0
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let mut ty = *params.iter().next().unwrap().1;
while let TypeEnum::TObj { obj_id, params, .. } = &*context.unifier.get_ty_immutable(ty)
{
if *obj_id != PrimDef::List.id() {
break;
}
ty = *params.iter().next().unwrap().1;
}
ty
}
_ => obj_ty,
};
let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?; let obj_arg = args[0].1.clone().to_basic_value_enum(context, generator, obj_ty)?;
let copy_arg = if let Some(arg) = let copy_arg = if let Some(arg) =
@ -1874,28 +1855,18 @@ pub fn gen_ndarray_array<'ctx>(
) )
}; };
let ndmin_arg = if let Some(arg) = // The ndmin argument is ignored. We can simply force the ndarray's number of dimensions to be
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name)) // the `ndims` of the function return type.
{ let (_, ndims) = unpack_ndarray_var_tys(&mut context.unifier, fun.0.ret);
let ndmin_ty = fun.0.args[2].ty; let ndims = extract_ndims(&context.unifier, ndims);
arg.1.clone().to_basic_value_enum(context, generator, ndmin_ty)?
} else {
context.gen_symbol_val(
generator,
fun.0.args[2].default_value.as_ref().unwrap(),
fun.0.args[2].ty,
)
};
call_ndarray_array_impl( let object = AnyObject { value: obj_arg, ty: obj_ty };
generator, // NAC3 booleans are i8.
context, let copy = Int(Bool).truncate(generator, context, copy_arg.into_int_value());
obj_elem_ty, let ndarray = NDArrayObject::make_np_array(generator, context, object, copy)
obj_arg, .atleast_nd(generator, context, ndims);
copy_arg.into_int_value(),
ndmin_arg.into_int_value(), Ok(ndarray.instance.value)
)
.map(NDArrayValue::into)
} }
/// Generates LLVM IR for `ndarray.eye`. /// Generates LLVM IR for `ndarray.eye`.

View File

@ -31,6 +31,17 @@ impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
} }
} }
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Struct<List<Item>>>> {
/// Cast the items pointer to `uint8_t*`.
pub fn with_pi8_items<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
self.pointer_cast(generator, ctx, Struct(List { item: Int(Byte) }))
}
}
/// A NAC3 Python List object. /// A NAC3 Python List object.
#[derive(Debug, Clone, Copy)] #[derive(Debug, Clone, Copy)]
pub struct ListObject<'ctx> { pub struct ListObject<'ctx> {

View File

@ -0,0 +1,184 @@
use super::NDArrayObject;
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_array_set_and_validate_list_shape,
call_nac3_ndarray_array_write_list_to_array,
},
model::*,
object::{any::AnyObject, list::ListObject},
stmt::gen_if_else_expr_callback,
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
/// Get the expected `dtype` and `ndims` of the ndarray returned by `np_array(list)`.
fn get_list_object_dtype_and_ndims<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> (Type, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
let ndims = ndims + 1; // To count `list` itself.
(dtype, ndims)
}
impl<'ctx> NDArrayObject<'ctx> {
/// Implementation of `np_array(<list>, copy=True)`
fn make_np_array_list_copy_true_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
let list_value = list.instance.with_pi8_items(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, shape,
);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
// Copy all contents from the list.
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
ndarray
}
/// Implementation of `np_array(<list>, copy=None)`
fn make_np_array_list_copy_none_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
if ndims == 1 {
// `list` is not nested
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
// Set data
let data = list.instance.get(generator, ctx, |f| f.items).cast_to_pi8(generator, ctx);
ndarray.instance.set(ctx, |f| f.data, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
let list_len = list.instance.get(generator, ctx, |f| f.len);
shape.set_index_const(ctx, 0, list_len);
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list)
}
}
/// Implementation of `np_array(<list>, copy=copy)`
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray =
NDArrayObject::make_np_array_list_copy_true_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
|generator, ctx| {
let ndarray =
NDArrayObject::make_np_array_list_copy_none_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
}
/// Implementation of `np_array(<ndarray>, copy=copy)`.
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.instance.value))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(
generator,
ctx,
ndarray_val,
ndarray.dtype,
ndarray.ndims,
)
}
/// Create a new ndarray like `np.array()`.
///
/// NOTE: The `ndmin` argument is not here. You may want to
/// do [`NDArrayObject::atleast_nd`] to achieve that.
pub fn make_np_array<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
}
}
}

View File

@ -1,3 +1,4 @@
pub mod array;
pub mod factory; pub mod factory;
pub mod indexing; pub mod indexing;
pub mod nditer; pub mod nditer;
@ -74,8 +75,19 @@ impl<'ctx> NDArrayObject<'ctx> {
) -> NDArrayObject<'ctx> { ) -> NDArrayObject<'ctx> {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty); let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims); let ndims = extract_ndims(&ctx.unifier, ndims);
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
}
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, object.value).unwrap(); /// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
/// `dtype` and `ndims`.
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: V,
dtype: Type,
ndims: u64,
) -> Self {
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
NDArrayObject { dtype, ndims, instance: value } NDArrayObject { dtype, ndims, instance: value }
} }