diff --git a/nac3core/irrt/irrt.cpp b/nac3core/irrt/irrt.cpp index b72f5f4..96718ea 100644 --- a/nac3core/irrt/irrt.cpp +++ b/nac3core/irrt/irrt.cpp @@ -7,6 +7,7 @@ #include #include #include +#include #include #include #include \ No newline at end of file diff --git a/nac3core/irrt/irrt/ndarray/reshape.hpp b/nac3core/irrt/irrt/ndarray/reshape.hpp new file mode 100644 index 0000000..aab363e --- /dev/null +++ b/nac3core/irrt/irrt/ndarray/reshape.hpp @@ -0,0 +1,125 @@ +#pragma once + +#include +#include + +namespace +{ +namespace ndarray +{ +namespace reshape +{ +/** + * @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(, new_shape)` + * + * If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be + * modified to contain the resolved dimension. + * + * To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual + * `` object itself, but only the `.size` of the ``. + * + * @param size The `.size` of `` + * @param new_ndims Number of elements in `new_shape` + * @param new_shape Target shape to reshape to + */ +template void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape) +{ + // Is there a -1 in `new_shape`? + bool neg1_exists = false; + // Location of -1, only initialized if `neg1_exists` is true + SizeT neg1_axis_i; + // The computed ndarray size of `new_shape` + SizeT new_size = 1; + + for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) + { + SizeT dim = new_shape[axis_i]; + if (dim < 0) + { + if (dim == -1) + { + if (neg1_exists) + { + // Multiple `-1` found. Throw an error. + raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM, + NO_PARAM, NO_PARAM); + } + else + { + neg1_exists = true; + neg1_axis_i = axis_i; + } + } + else + { + // TODO: What? In `np.reshape` any negative dimensions is + // treated like its `-1`. + // + // Try running `np.zeros((3, 4)).reshape((-999, 2))` + // + // It is not documented by numpy. + // Throw an error for now... + + raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i, + NO_PARAM); + } + } + else + { + new_size *= dim; + } + } + + bool can_reshape; + if (neg1_exists) + { + // Let `x` be the unknown dimension + // Solve `x * = ` + if (new_size == 0 && size == 0) + { + // `x` has infinitely many solutions + can_reshape = false; + } + else if (new_size == 0 && size != 0) + { + // `x` has no solutions + can_reshape = false; + } + else if (size % new_size != 0) + { + // `x` has no integer solutions + can_reshape = false; + } + else + { + can_reshape = true; + new_shape[neg1_axis_i] = size / new_size; // Resolve dimension + } + } + else + { + can_reshape = (new_size == size); + } + + if (!can_reshape) + { + raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM, + NO_PARAM); + } +} +} // namespace reshape +} // namespace ndarray +} // namespace + +extern "C" +{ + void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape) + { + ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape); + } + + void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape) + { + ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape); + } +} diff --git a/nac3core/src/codegen/irrt/mod.rs b/nac3core/src/codegen/irrt/mod.rs index c37782c..7bcf633 100644 --- a/nac3core/src/codegen/irrt/mod.rs +++ b/nac3core/src/codegen/irrt/mod.rs @@ -1168,3 +1168,22 @@ pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Siz ); CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void(); } + +pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>( + generator: &mut G, + ctx: &mut CodeGenContext<'ctx, '_>, + size: Instance<'ctx, Int>, + new_ndims: Instance<'ctx, Int>, + new_shape: Instance<'ctx, Ptr>>, +) { + let name = get_sizet_dependent_function_name( + generator, + ctx, + "__nac3_ndarray_reshape_resolve_and_check_new_shape", + ); + CallFunction::begin(generator, ctx, &name) + .arg(size) + .arg(new_ndims) + .arg(new_shape) + .returning_void(); +} diff --git a/nac3core/src/codegen/numpy.rs b/nac3core/src/codegen/numpy.rs index 56b08bf..d7ea4fb 100644 --- a/nac3core/src/codegen/numpy.rs +++ b/nac3core/src/codegen/numpy.rs @@ -2096,292 +2096,6 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>( } } -/// LLVM-typed implementation for generating the implementation for `ndarray.reshape`. -/// -/// * `x1` - `NDArray` to reshape. -/// * `shape` - The `shape` parameter used to construct the new `NDArray`. -/// Just like numpy, the `shape` argument can be: -/// 1. A list of `int32`; e.g., `np.reshape(arr, [600, -1, 3])` -/// 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))` -/// 3. A scalar `int32`; e.g., `np.reshape(arr, 3)` -/// -/// Note that unlike other generating functions, one of the dimensions in the shape can be negative. -pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>( - generator: &mut G, - ctx: &mut CodeGenContext<'ctx, '_>, - x1: (Type, BasicValueEnum<'ctx>), - shape: (Type, BasicValueEnum<'ctx>), -) -> Result, String> { - const FN_NAME: &str = "ndarray_reshape"; - let (x1_ty, x1) = x1; - let (_, shape) = shape; - - let llvm_usize = generator.get_size_type(ctx.ctx); - - if let BasicValueEnum::PointerValue(n1) = x1 { - let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty); - let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None); - let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None)); - - let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; - let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; - ctx.builder.build_store(acc, llvm_usize.const_int(1, false)).unwrap(); - ctx.builder.build_store(num_neg, llvm_usize.const_zero()).unwrap(); - - let out = match shape { - BasicValueEnum::PointerValue(shape_list_ptr) - if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() => - { - // 1. A list of ints; e.g., `np.reshape(arr, [int64(600), int64(800, -1])` - - let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None); - // Check for -1 in dimensions - gen_for_callback_incrementing( - generator, - ctx, - None, - llvm_usize.const_zero(), - (shape_list.load_size(ctx, None), false), - |generator, ctx, _, idx| { - let ele = - shape_list.data().get(ctx, generator, &idx, None).into_int_value(); - let ele = ctx.builder.build_int_s_extend(ele, llvm_usize, "").unwrap(); - - gen_if_else_expr_callback( - generator, - ctx, - |_, ctx| { - Ok(ctx - .builder - .build_int_compare( - IntPredicate::SLT, - ele, - llvm_usize.const_zero(), - "", - ) - .unwrap()) - }, - |_, ctx| -> Result, String> { - let num_neg_value = - ctx.builder.build_load(num_neg, "").unwrap().into_int_value(); - let num_neg_value = ctx - .builder - .build_int_add( - num_neg_value, - llvm_usize.const_int(1, false), - "", - ) - .unwrap(); - ctx.builder.build_store(num_neg, num_neg_value).unwrap(); - Ok(None) - }, - |_, ctx| { - let acc_value = - ctx.builder.build_load(acc, "").unwrap().into_int_value(); - let acc_value = - ctx.builder.build_int_mul(acc_value, ele, "").unwrap(); - ctx.builder.build_store(acc, acc_value).unwrap(); - Ok(None) - }, - )?; - Ok(()) - }, - llvm_usize.const_int(1, false), - )?; - let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value(); - let rem = ctx.builder.build_int_unsigned_div(n_sz, acc_val, "").unwrap(); - // Generate the output shape by filling -1 with `rem` - create_ndarray_dyn_shape( - generator, - ctx, - elem_ty, - &shape_list, - |_, ctx, _| Ok(shape_list.load_size(ctx, None)), - |generator, ctx, shape_list, idx| { - let dim = - shape_list.data().get(ctx, generator, &idx, None).into_int_value(); - let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap(); - - Ok(gen_if_else_expr_callback( - generator, - ctx, - |_, ctx| { - Ok(ctx - .builder - .build_int_compare( - IntPredicate::SLT, - dim, - llvm_usize.const_zero(), - "", - ) - .unwrap()) - }, - |_, _| Ok(Some(rem)), - |_, _| Ok(Some(dim)), - )? - .unwrap() - .into_int_value()) - }, - ) - } - BasicValueEnum::StructValue(shape_tuple) => { - // 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))` - - let ndims = shape_tuple.get_type().count_fields(); - // Check for -1 in dims - for dim_i in 0..ndims { - let dim = ctx - .builder - .build_extract_value(shape_tuple, dim_i, "") - .unwrap() - .into_int_value(); - let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap(); - - gen_if_else_expr_callback( - generator, - ctx, - |_, ctx| { - Ok(ctx - .builder - .build_int_compare( - IntPredicate::SLT, - dim, - llvm_usize.const_zero(), - "", - ) - .unwrap()) - }, - |_, ctx| -> Result, String> { - let num_negs = - ctx.builder.build_load(num_neg, "").unwrap().into_int_value(); - let num_negs = ctx - .builder - .build_int_add(num_negs, llvm_usize.const_int(1, false), "") - .unwrap(); - ctx.builder.build_store(num_neg, num_negs).unwrap(); - Ok(None) - }, - |_, ctx| { - let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value(); - let acc_val = ctx.builder.build_int_mul(acc_val, dim, "").unwrap(); - ctx.builder.build_store(acc, acc_val).unwrap(); - Ok(None) - }, - )?; - } - - let acc_val = ctx.builder.build_load(acc, "").unwrap().into_int_value(); - let rem = ctx.builder.build_int_unsigned_div(n_sz, acc_val, "").unwrap(); - let mut shape = Vec::with_capacity(ndims as usize); - - // Reconstruct shape filling negatives with rem - for dim_i in 0..ndims { - let dim = ctx - .builder - .build_extract_value(shape_tuple, dim_i, "") - .unwrap() - .into_int_value(); - let dim = ctx.builder.build_int_s_extend(dim, llvm_usize, "").unwrap(); - - let dim = gen_if_else_expr_callback( - generator, - ctx, - |_, ctx| { - Ok(ctx - .builder - .build_int_compare( - IntPredicate::SLT, - dim, - llvm_usize.const_zero(), - "", - ) - .unwrap()) - }, - |_, _| Ok(Some(rem)), - |_, _| Ok(Some(dim)), - )? - .unwrap() - .into_int_value(); - shape.push(dim); - } - create_ndarray_const_shape(generator, ctx, elem_ty, shape.as_slice()) - } - BasicValueEnum::IntValue(shape_int) => { - // 3. A scalar `int32`; e.g., `np.reshape(arr, 3)` - let shape_int = gen_if_else_expr_callback( - generator, - ctx, - |_, ctx| { - Ok(ctx - .builder - .build_int_compare( - IntPredicate::SLT, - shape_int, - llvm_usize.const_zero(), - "", - ) - .unwrap()) - }, - |_, _| Ok(Some(n_sz)), - |_, ctx| { - Ok(Some(ctx.builder.build_int_s_extend(shape_int, llvm_usize, "").unwrap())) - }, - )? - .unwrap() - .into_int_value(); - create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int]) - } - _ => unreachable!(), - } - .unwrap(); - - // Only allow one dimension to be negative - let num_negs = ctx.builder.build_load(num_neg, "").unwrap().into_int_value(); - ctx.make_assert( - generator, - ctx.builder - .build_int_compare(IntPredicate::ULT, num_negs, llvm_usize.const_int(2, false), "") - .unwrap(), - "0:ValueError", - "can only specify one unknown dimension", - [None, None, None], - ctx.current_loc, - ); - - // The new shape must be compatible with the old shape - let out_sz = call_ndarray_calc_size(generator, ctx, &out.dim_sizes(), (None, None)); - ctx.make_assert( - generator, - ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(), - "0:ValueError", - "cannot reshape array of size {0} into provided shape of size {1}", - [Some(n_sz), Some(out_sz), None], - ctx.current_loc, - ); - - gen_for_callback_incrementing( - generator, - ctx, - None, - llvm_usize.const_zero(), - (n_sz, false), - |generator, ctx, _, idx| { - let elem = unsafe { n1.data().get_unchecked(ctx, generator, &idx, None) }; - unsafe { out.data().set_unchecked(ctx, generator, &idx, elem) }; - Ok(()) - }, - llvm_usize.const_int(1, false), - )?; - - Ok(out.as_base_value().into()) - } else { - unreachable!( - "{FN_NAME}() not supported for '{}'", - format!("'{}'", ctx.unifier.stringify(x1_ty)) - ) - } -} - /// Generates LLVM IR for `ndarray.dot`. /// Calculate inner product of two vectors or literals /// For matrix multiplication use `np_matmul` diff --git a/nac3core/src/codegen/object/ndarray/view.rs b/nac3core/src/codegen/object/ndarray/view.rs index 8776d94..f08e05a 100644 --- a/nac3core/src/codegen/object/ndarray/view.rs +++ b/nac3core/src/codegen/object/ndarray/view.rs @@ -1,4 +1,7 @@ -use crate::codegen::{CodeGenContext, CodeGenerator}; +use crate::codegen::{ + irrt::call_nac3_ndarray_reshape_resolve_and_check_new_shape, model::*, CodeGenContext, + CodeGenerator, +}; use super::{indexing::RustNDIndex, NDArrayObject}; @@ -26,4 +29,61 @@ impl<'ctx> NDArrayObject<'ctx> { *self } } + + /// Create a reshaped view on this ndarray like `np.reshape()`. + /// + /// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result. + /// + /// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents. + /// + /// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`]. + /// * `new_shape` - The target shape to do `np.reshape()`. + #[must_use] + pub fn reshape_or_copy( + &self, + generator: &mut G, + ctx: &mut CodeGenContext<'ctx, '_>, + new_ndims: u64, + new_shape: Instance<'ctx, Ptr>>, + ) -> Self { + // TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`, + // but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped + // without copying data. Look into how numpy does it. + + let current_bb = ctx.builder.get_insert_block().unwrap(); + let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb"); + let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb"); + let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb"); + + let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims); + dst_ndarray.copy_shape_from_array(generator, ctx, new_shape); + + // Reolsve negative indices + let size = self.size(generator, ctx); + let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx); + let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape); + call_nac3_ndarray_reshape_resolve_and_check_new_shape( + generator, ctx, size, dst_ndims, dst_shape, + ); + + let is_c_contiguous = self.is_c_contiguous(generator, ctx); + ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap(); + + // Inserting into then_bb: reshape is possible without copying + ctx.builder.position_at_end(then_bb); + dst_ndarray.set_strides_contiguous(generator, ctx); + dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data)); + ctx.builder.build_unconditional_branch(end_bb).unwrap(); + + // Inserting into else_bb: reshape is impossible without copying + ctx.builder.position_at_end(else_bb); + dst_ndarray.create_data(generator, ctx); + dst_ndarray.copy_data_from(generator, ctx, *self); + ctx.builder.build_unconditional_branch(end_bb).unwrap(); + + // Reposition for continuation + ctx.builder.position_at_end(end_bb); + + dst_ndarray + } } diff --git a/nac3core/src/toplevel/builtins.rs b/nac3core/src/toplevel/builtins.rs index 7a5bf3f..b2a6da1 100644 --- a/nac3core/src/toplevel/builtins.rs +++ b/nac3core/src/toplevel/builtins.rs @@ -1,6 +1,6 @@ use std::iter::once; -use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails}; +use helper::{debug_assert_prim_is_allowed, extract_ndims, make_exception_fields, PrimDefDetails}; use indexmap::IndexMap; use inkwell::{ attributes::{Attribute, AttributeLoc}, @@ -9,6 +9,7 @@ use inkwell::{ IntPredicate, }; use itertools::Either; +use numpy::unpack_ndarray_var_tys; use strum::IntoEnumIterator; use crate::{ @@ -17,7 +18,10 @@ use crate::{ classes::{ProxyValue, RangeValue}, model::*, numpy::*, - object::{any::AnyObject, ndarray::NDArrayObject}, + object::{ + any::AnyObject, + ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject}, + }, stmt::exn_constructor, }, symbol_resolver::SymbolValue, @@ -1467,27 +1471,25 @@ impl<'a> BuiltinBuilder<'a> { fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]); + let in_ndarray_ty = self.unifier.get_fresh_var_with_range( + &[self.primitives.ndarray], + Some("T".into()), + None, + ); + match prim { - PrimDef::FunNpTranspose => { - let ndarray_ty = self.unifier.get_fresh_var_with_range( - &[self.ndarray_num_ty], - Some("T".into()), - None, - ); - create_fn_by_codegen( - self.unifier, - &into_var_map([ndarray_ty]), - prim.name(), - self.ndarray_num_ty, - &[(self.ndarray_num_ty, "x")], - Box::new(move |ctx, _, fun, args, generator| { - let arg_ty = fun.0.args[0].ty; - let arg_val = - args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; - Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?)) - }), - ) - } + PrimDef::FunNpTranspose => create_fn_by_codegen( + self.unifier, + &into_var_map([in_ndarray_ty]), + prim.name(), + in_ndarray_ty.ty, + &[(in_ndarray_ty.ty, "x")], + Box::new(move |ctx, _, fun, args, generator| { + let arg_ty = fun.0.args[0].ty; + let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; + Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?)) + }), + ), // NOTE: on `ndarray_factory_fn_shape_arg_tvar` and // the `param_ty` for `create_fn_by_codegen`. @@ -1495,20 +1497,42 @@ impl<'a> BuiltinBuilder<'a> { // Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking // to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`], // and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`. - PrimDef::FunNpReshape => create_fn_by_codegen( - self.unifier, - &VarMap::new(), - prim.name(), - self.ndarray_num_ty, - &[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")], - Box::new(move |ctx, _, fun, args, generator| { - let x1_ty = fun.0.args[0].ty; - let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; - let x2_ty = fun.0.args[1].ty; - let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?; - Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?)) - }), - ), + PrimDef::FunNpReshape => { + let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding + + create_fn_by_codegen( + self.unifier, + &VarMap::new(), + prim.name(), + ret_ty, + &[ + (in_ndarray_ty.ty, "x"), + (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape"), // Handled by special folding + ], + Box::new(move |ctx, _, fun, args, generator| { + let ndarray_ty = fun.0.args[0].ty; + let ndarray_val = + args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?; + + let shape_ty = fun.0.args[1].ty; + let shape_val = + args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?; + + let ndarray = AnyObject { value: ndarray_val, ty: ndarray_ty }; + let ndarray = NDArrayObject::from_object(generator, ctx, ndarray); + + let shape = AnyObject { value: shape_val, ty: shape_ty }; + let (_, shape) = parse_numpy_int_sequence(generator, ctx, shape); + + // The ndims after reshaping is gotten from the return type of the call. + let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret); + let ndims = extract_ndims(&ctx.unifier, ndims); + + let new_ndarray = ndarray.reshape_or_copy(generator, ctx, ndims, shape); + Ok(Some(new_ndarray.instance.value.as_basic_value_enum())) + }), + ) + } _ => unreachable!(), }