use crate::regs::*; use crate::println; use super::slcr; use super::clocks::CpuClocks; pub mod phy; use phy::{Phy, PhyAccess}; mod regs; pub mod rx; pub mod tx; /// Size of all the buffers pub const MTU: usize = 1536; /// Maximum MDC clock const MAX_MDC: u32 = 2_500_000; const TX_10: u32 = 10_000_000; const TX_100: u32 = 25_000_000; /// Clock for GbE const TX_1000: u32 = 125_000_000; pub struct Eth<'r, RX, TX> { rx: RX, tx: TX, inner: EthInner<'r>, phy: Phy, } impl<'r> Eth<'r, (), ()> { pub fn default(macaddr: [u8; 6]) -> Self { slcr::RegisterBlock::unlocked(|slcr| { // Manual example: 0x0000_1280 // MDIO slcr.mio_pin_53.write( slcr::MioPin53::zeroed() .l3_sel(0b100) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // MDC slcr.mio_pin_52.write( slcr::MioPin52::zeroed() .l3_sel(0b100) .io_type(slcr::IoBufferType::Lvcmos18) .pullup(true) ); // Manual example: 0x0000_3902 // TX_CLK slcr.mio_pin_16.write( slcr::MioPin16::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TX_CTRL slcr.mio_pin_21.write( slcr::MioPin21::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD3 slcr.mio_pin_20.write( slcr::MioPin20::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD2 slcr.mio_pin_19.write( slcr::MioPin19::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD1 slcr.mio_pin_18.write( slcr::MioPin18::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // TXD0 slcr.mio_pin_17.write( slcr::MioPin17::zeroed() .l0_sel(true) .speed(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) .disable_rcvr(true) ); // Manual example: 0x0000_1903 // RX_CLK slcr.mio_pin_22.write( slcr::MioPin22::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RX_CTRL slcr.mio_pin_27.write( slcr::MioPin27::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD3 slcr.mio_pin_26.write( slcr::MioPin26::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD2 slcr.mio_pin_25.write( slcr::MioPin25::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD1 slcr.mio_pin_24.write( slcr::MioPin24::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // RXD0 slcr.mio_pin_23.write( slcr::MioPin23::zeroed() .tri_enable(true) .l0_sel(true) .io_type(slcr::IoBufferType::Hstl) .pullup(true) ); // VREF internal generator slcr.gpiob_ctrl.write( slcr::GpiobCtrl::zeroed() .vref_en(true) ); }); Self::gem0(macaddr) } pub fn gem0(macaddr: [u8; 6]) -> Self { Self::setup_gem0_clock(TX_1000); let regs = regs::RegisterBlock::gem0(); Self::from_regs(regs, macaddr) } pub fn gem1(macaddr: [u8; 6]) -> Self { Self::setup_gem1_clock(TX_1000); let regs = regs::RegisterBlock::gem1(); Self::from_regs(regs, macaddr) } fn from_regs(regs: &'r mut regs::RegisterBlock, macaddr: [u8; 6]) -> Self { let mut inner = EthInner { regs, link: None, }; inner.init(); inner.configure(macaddr); let phy = Phy::find(&mut inner).expect("phy"); phy.reset(&mut inner); phy.restart_autoneg(&mut inner); Eth { rx: (), tx: (), inner, phy, } } } impl<'r, RX, TX> Eth<'r, RX, TX> { pub fn setup_gem0_clock(tx_clock: u32) { let io_pll = CpuClocks::get().io; let d0 = ((tx_clock - 1 + io_pll) / tx_clock).max(1).min(63); let d1 = (io_pll / tx_clock / d0).max(1).min(63); slcr::RegisterBlock::unlocked(|slcr| { slcr.gem0_clk_ctrl.write( // 0x0050_0801: 8, 5: 100 Mb/s // ...: 8, 1: 1000 Mb/s slcr::GemClkCtrl::zeroed() .clkact(true) .srcsel(slcr::PllSource::IoPll) .divisor(d0 as u8) .divisor1(d1 as u8) ); // Enable gem0 recv clock slcr.gem0_rclk_ctrl.write( // 0x0000_0801 slcr::RclkCtrl::zeroed() .clkact(true) ); }); } pub fn setup_gem1_clock(tx_clock: u32) { let io_pll = CpuClocks::get().io; let d0 = ((tx_clock - 1 + io_pll) / tx_clock).max(1).min(63); let d1 = (io_pll / tx_clock / d0).max(1).min(63); slcr::RegisterBlock::unlocked(|slcr| { slcr.gem1_clk_ctrl.write( slcr::GemClkCtrl::zeroed() .clkact(true) .srcsel(slcr::PllSource::IoPll) .divisor(d0 as u8) .divisor1(d1 as u8) ); // Enable gem1 recv clock slcr.gem1_rclk_ctrl.write( // 0x0000_0801 slcr::RclkCtrl::zeroed() .clkact(true) ); }); } pub fn start_rx<'rx>(self, rx_list: &'rx mut [rx::DescEntry], rx_buffers: &'rx mut [[u8; MTU]]) -> Eth<'r, rx::DescList<'rx>, TX> { let new_self = Eth { rx: rx::DescList::new(rx_list, rx_buffers), tx: self.tx, inner: self.inner, phy: self.phy, }; let list_addr = new_self.rx.list_addr(); assert!(list_addr & 0b11 == 0); new_self.inner.regs.rx_qbar.write( regs::RxQbar::zeroed() .rx_q_baseaddr(list_addr >> 2) ); new_self.inner.regs.net_ctrl.modify(|_, w| w.rx_en(true) ); new_self } pub fn start_tx<'tx>(self, tx_list: &'tx mut [tx::DescEntry], tx_buffers: &'tx mut [[u8; MTU]]) -> Eth<'r, RX, tx::DescList<'tx>> { let new_self = Eth { rx: self.rx, tx: tx::DescList::new(tx_list, tx_buffers), inner: self.inner, phy: self.phy, }; let list_addr = &new_self.tx.list_addr(); assert!(list_addr & 0b11 == 0); new_self.inner.regs.tx_qbar.write( regs::TxQbar::zeroed() .tx_q_baseaddr(list_addr >> 2) ); new_self.inner.regs.net_ctrl.modify(|_, w| w.tx_en(true) ); new_self } } impl<'r, 'rx, TX> Eth<'r, rx::DescList<'rx>, TX> { pub fn recv_next<'s: 'p, 'p>(&'s mut self) -> Result>, rx::Error> { let status = self.inner.regs.rx_status.read(); if status.hresp_not_ok() { // Clear self.inner.regs.rx_status.write( regs::RxStatus::zeroed() .hresp_not_ok(true) ); return Err(rx::Error::HrespNotOk); } if status.rx_overrun() { // Clear self.inner.regs.rx_status.write( regs::RxStatus::zeroed() .rx_overrun(true) ); return Err(rx::Error::RxOverrun); } if status.buffer_not_avail() { // Clear self.inner.regs.rx_status.write( regs::RxStatus::zeroed() .buffer_not_avail(true) ); return Err(rx::Error::BufferNotAvail); } if status.frame_recd() { let result = self.rx.recv_next(); match result { Ok(None) => { // No packet, clear status bit self.inner.regs.rx_status.write( regs::RxStatus::zeroed() .frame_recd(true) ); } _ => {} } result } else { self.inner.check_link_change(&self.phy); Ok(None) } } } impl<'r, 'tx, RX> Eth<'r, RX, tx::DescList<'tx>> { pub fn send<'s: 'p, 'p>(&'s mut self, length: usize) -> Option> { self.tx.send(self.inner.regs, length) } } impl<'r, 'rx, 'tx: 'a, 'a> smoltcp::phy::Device<'a> for &mut Eth<'r, rx::DescList<'rx>, tx::DescList<'tx>> { type RxToken = rx::PktRef<'a>; type TxToken = tx::Token<'a, 'tx>; fn capabilities(&self) -> smoltcp::phy::DeviceCapabilities { use smoltcp::phy::{DeviceCapabilities, ChecksumCapabilities, Checksum}; let mut checksum_caps = ChecksumCapabilities::default(); checksum_caps.ipv4 = Checksum::Both; checksum_caps.tcp = Checksum::Both; checksum_caps.udp = Checksum::Both; let mut caps = DeviceCapabilities::default(); caps.max_transmission_unit = MTU; caps.checksum = checksum_caps; caps } fn receive(&'a mut self) -> Option<(Self::RxToken, Self::TxToken)> { match self.rx.recv_next() { Ok(Some(pktref)) => { let tx_token = tx::Token { regs: self.inner.regs, desc_list: &mut self.tx, }; Some((pktref, tx_token)) } Ok(None) => { self.inner.check_link_change(&self.phy); None } Err(e) => { println!("eth recv error: {:?}", e); None } } } fn transmit(&'a mut self) -> Option { Some(tx::Token { regs: self.inner.regs, desc_list: &mut self.tx, }) } } struct EthInner<'r> { regs: &'r mut regs::RegisterBlock, link: Option, } impl<'r> EthInner<'r> { fn init(&mut self) { // Clear the Network Control register. self.regs.net_ctrl.write(regs::NetCtrl::zeroed()); self.regs.net_ctrl.write(regs::NetCtrl::zeroed().clear_stat_regs(true)); // Clear the Status registers. self.regs.rx_status.write( regs::RxStatus::zeroed() .buffer_not_avail(true) .frame_recd(true) .rx_overrun(true) .hresp_not_ok(true) ); self.regs.tx_status.write( regs::TxStatus::zeroed() .used_bit_read(true) .collision(true) .retry_limit_exceeded(true) .tx_go(true) .tx_corr_ahb_err(true) .tx_complete(true) .tx_under_run(true) .late_collision(true) // not in the manual: .hresp_not_ok(true) ); // Disable all interrupts. self.regs.intr_dis.write( regs::IntrDis::zeroed() .mgmt_done(true) .rx_complete(true) .rx_used_read(true) .tx_used_read(true) .tx_underrun(true) .retry_ex_late_collisn(true) .tx_corrupt_ahb_err(true) .tx_complete(true) .link_chng(true) .rx_overrun(true) .hresp_not_ok(true) .pause_nonzeroq(true) .pause_zero(true) .pause_tx(true) .ex_intr(true) .autoneg_complete(true) .partner_pg_rx(true) .delay_req_rx(true) .sync_rx(true) .delay_req_tx(true) .sync_tx(true) .pdelay_req_rx(true) .pdelay_resp_rx(true) .pdelay_req_tx(true) .pdelay_resp_tx(true) .tsu_sec_incr(true) ); // Clear the buffer queues. self.regs.rx_qbar.write( regs::RxQbar::zeroed() ); self.regs.tx_qbar.write( regs::TxQbar::zeroed() ); } fn configure(&mut self, macaddr: [u8; 6]) { let clocks = CpuClocks::get(); let mdc_clk_div = (clocks.cpu_1x() / MAX_MDC) + 1; self.regs.net_cfg.write( regs::NetCfg::zeroed() .full_duplex(true) .gige_en(true) .speed(true) .no_broadcast(false) .multi_hash_en(true) // Promiscuous mode (TODO?) .copy_all(true) // Remove 4-byte Frame CheckSum .fcs_remove(true) // RX checksum offload .rx_chksum_offld_en(true) // One of the slower speeds .mdc_clk_div((mdc_clk_div >> 4).min(0b111) as u8) ); let macaddr_msbs = (u16::from(macaddr[0]) << 8) | u16::from(macaddr[1]); let macaddr_lsbs = (u32::from(macaddr[2]) << 24) | (u32::from(macaddr[3]) << 16) | (u32::from(macaddr[4]) << 8) | u32::from(macaddr[5]); self.regs.spec_addr1_top.write( regs::SpecAddrTop::zeroed() .addr_msbs(macaddr_msbs) ); self.regs.spec_addr1_bot.write( regs::SpecAddrBot::zeroed() .addr_lsbs(macaddr_lsbs) ); self.regs.dma_cfg.write( regs::DmaCfg::zeroed() // 1536 bytes .ahb_mem_rx_buf_size((MTU >> 6) as u8) // 8 KB .rx_pktbuf_memsz_sel(0x3) // 4 KB .tx_pktbuf_memsz_sel(true) // TX checksum offload .csum_gen_offload_en(true) // Little-endian .ahb_endian_swp_mgmt_en(false) // INCR16 AHB burst .ahb_fixed_burst_len(0x10) ); self.regs.net_ctrl.write( regs::NetCtrl::zeroed() .mgmt_port_en(true) ); } fn wait_phy_idle(&self) { while !self.regs.net_status.read().phy_mgmt_idle() {} } fn check_link_change(&mut self, phy: &Phy) { // As the PHY access takes some time, exit early if there was // already a link. TODO: check once per second. if self.link.is_some() { return } let link = phy.get_link(self); // Check link state transition if self.link != link { match &link { Some(link) => { println!("eth: got {:?}", link); use phy::LinkSpeed::*; let txclock = match link.speed { S10 => TX_10, S100 => TX_100, S1000 => TX_1000, }; Eth::<(), ()>::setup_gem0_clock(txclock); /* .full_duplex(false) doesn't work even if half duplex has been negotiated. */ self.regs.net_cfg.modify(|_, w| w .full_duplex(true) .gige_en(link.speed == S1000) .speed(link.speed != S10) ); } None => { println!("eth: link lost"); phy.modify_control(self, |control| control.set_autoneg_enable(true) .set_restart_autoneg(true) ); } } self.link = link; } } } impl<'r> PhyAccess for EthInner<'r> { fn read_phy(&mut self, addr: u8, reg: u8) -> u16 { self.wait_phy_idle(); self.regs.phy_maint.write( regs::PhyMaint::zeroed() .clause_22(true) .operation(regs::PhyOperation::Read) .phy_addr(addr) .reg_addr(reg) .must_10(0b10) ); self.wait_phy_idle(); self.regs.phy_maint.read().data() } fn write_phy(&mut self, addr: u8, reg: u8, data: u16) { self.wait_phy_idle(); self.regs.phy_maint.write( regs::PhyMaint::zeroed() .clause_22(true) .operation(regs::PhyOperation::Write) .phy_addr(addr) .reg_addr(reg) .must_10(0b10) .data(data) ); self.wait_phy_idle(); } }