Compare commits

..

No commits in common. "master" and "tmux" have entirely different histories.
master ... tmux

122 changed files with 6231 additions and 22607 deletions

View File

@ -1,4 +1,5 @@
[target.armv7-none-eabihf] [target.armv7-none-eabihf]
runner = "./runner.sh"
rustflags = [ rustflags = [
"-C", "link-arg=-Tlink.x", "-C", "link-arg=-Tlink.x",
"-C", "target-feature=a9,armv7-a,neon", "-C", "target-feature=a9,armv7-a,neon",

204
Cargo.lock generated
View File

@ -2,111 +2,54 @@
# It is not intended for manual editing. # It is not intended for manual editing.
[[package]] [[package]]
name = "bit_field" name = "bit_field"
version = "0.10.1" version = "0.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "bitflags" name = "bitflags"
version = "1.2.1" version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "byteorder" name = "byteorder"
version = "1.3.4" version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "cfg-if" name = "libboard_zc706"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "compiler_builtins"
version = "0.1.35"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "core_io"
version = "0.1.20200410"
dependencies = [
"memchr 2.3.3 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "embedded-hal"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"nb 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)",
"void 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "experiments"
version = "0.0.0" version = "0.0.0"
dependencies = [ dependencies = [
"embedded-hal 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
"libasync 0.0.0",
"libboard_zynq 0.0.0", "libboard_zynq 0.0.0",
"libcortex_a9 0.0.0", "libcortex_a9 0.0.0",
"libregister 0.0.0", "libregister 0.0.0",
"libsupport_zynq 0.0.0", "linked_list_allocator 0.6.4 (registry+https://github.com/rust-lang/crates.io-index)",
"log 0.4.11 (registry+https://github.com/rust-lang/crates.io-index)", "r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
] "smoltcp 0.5.0 (git+https://github.com/m-labs/smoltcp.git?rev=8eb01aca364aefe5f823d68d552d62c76c9be4a3)",
[[package]]
name = "fatfs"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"bitflags 1.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
"byteorder 1.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
"core_io 0.1.20200410",
"log 0.4.11 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "libasync"
version = "0.0.0"
dependencies = [
"embedded-hal 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
"libcortex_a9 0.0.0",
"nb 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)",
"pin-utils 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
"smoltcp 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]] [[package]]
name = "libboard_zynq" name = "libboard_zynq"
version = "0.0.0" version = "0.0.0"
dependencies = [ dependencies = [
"bit_field 0.10.1 (registry+https://github.com/rust-lang/crates.io-index)", "bit_field 0.10.0 (registry+https://github.com/rust-lang/crates.io-index)",
"embedded-hal 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)",
"libcortex_a9 0.0.0", "libcortex_a9 0.0.0",
"libregister 0.0.0", "libregister 0.0.0",
"log 0.4.11 (registry+https://github.com/rust-lang/crates.io-index)", "linked_list_allocator 0.6.4 (registry+https://github.com/rust-lang/crates.io-index)",
"nb 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)", "r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
"smoltcp 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)", "smoltcp 0.5.0 (git+https://github.com/m-labs/smoltcp.git?rev=8eb01aca364aefe5f823d68d552d62c76c9be4a3)",
"void 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)", "vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)",
"volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)", "volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "libconfig"
version = "0.1.0"
dependencies = [
"core_io 0.1.20200410",
"fatfs 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
"libboard_zynq 0.0.0",
"log 0.4.11 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "libcortex_a9" name = "libcortex_a9"
version = "0.0.0" version = "0.0.0"
dependencies = [ dependencies = [
"bit_field 0.10.1 (registry+https://github.com/rust-lang/crates.io-index)", "bit_field 0.10.0 (registry+https://github.com/rust-lang/crates.io-index)",
"libregister 0.0.0", "libregister 0.0.0",
"r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
"smoltcp 0.5.0 (git+https://github.com/m-labs/smoltcp.git?rev=8eb01aca364aefe5f823d68d552d62c76c9be4a3)",
"vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)",
"volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)", "volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
@ -114,91 +57,34 @@ dependencies = [
name = "libregister" name = "libregister"
version = "0.0.0" version = "0.0.0"
dependencies = [ dependencies = [
"bit_field 0.10.1 (registry+https://github.com/rust-lang/crates.io-index)", "bit_field 0.10.0 (registry+https://github.com/rust-lang/crates.io-index)",
"vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)", "vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)",
"volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)", "volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "libsupport_zynq"
version = "0.0.0"
dependencies = [
"compiler_builtins 0.1.35 (registry+https://github.com/rust-lang/crates.io-index)",
"libboard_zynq 0.0.0",
"libcortex_a9 0.0.0",
"libregister 0.0.0",
"linked_list_allocator 0.8.5 (registry+https://github.com/rust-lang/crates.io-index)",
"r0 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "linked_list_allocator" name = "linked_list_allocator"
version = "0.8.5" version = "0.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "log"
version = "0.4.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"cfg-if 0.1.10 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "managed" name = "managed"
version = "0.7.2" version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "memchr"
version = "2.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "nb"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"nb 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "nb"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "pin-utils"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "r0" name = "r0"
version = "1.0.0" version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "smoltcp" name = "smoltcp"
version = "0.6.0" version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "git+https://github.com/m-labs/smoltcp.git?rev=8eb01aca364aefe5f823d68d552d62c76c9be4a3#8eb01aca364aefe5f823d68d552d62c76c9be4a3"
dependencies = [ dependencies = [
"bitflags 1.2.1 (registry+https://github.com/rust-lang/crates.io-index)", "bitflags 1.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
"byteorder 1.3.4 (registry+https://github.com/rust-lang/crates.io-index)", "byteorder 1.3.2 (registry+https://github.com/rust-lang/crates.io-index)",
"managed 0.7.2 (registry+https://github.com/rust-lang/crates.io-index)", "managed 0.7.1 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "szl"
version = "0.1.0"
dependencies = [
"byteorder 1.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
"core_io 0.1.20200410",
"libboard_zynq 0.0.0",
"libconfig 0.1.0",
"libcortex_a9 0.0.0",
"libregister 0.0.0",
"libsupport_zynq 0.0.0",
"log 0.4.11 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]] [[package]]
@ -206,11 +92,6 @@ name = "vcell"
version = "0.1.2" version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "void"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "volatile-register" name = "volatile-register"
version = "0.2.0" version = "0.2.0"
@ -219,23 +100,24 @@ dependencies = [
"vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)", "vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "zc706-experiments"
version = "0.0.0"
dependencies = [
"libboard_zc706 0.0.0",
"libboard_zynq 0.0.0",
"libcortex_a9 0.0.0",
"libregister 0.0.0",
"smoltcp 0.5.0 (git+https://github.com/m-labs/smoltcp.git?rev=8eb01aca364aefe5f823d68d552d62c76c9be4a3)",
]
[metadata] [metadata]
"checksum bit_field 0.10.1 (registry+https://github.com/rust-lang/crates.io-index)" = "dcb6dd1c2376d2e096796e234a70e17e94cc2d5d54ff8ce42b28cef1d0d359a4" "checksum bit_field 0.10.0 (registry+https://github.com/rust-lang/crates.io-index)" = "a165d606cf084741d4ac3a28fb6e9b1eb0bd31f6cd999098cfddb0b2ab381dc0"
"checksum bitflags 1.2.1 (registry+https://github.com/rust-lang/crates.io-index)" = "cf1de2fe8c75bc145a2f577add951f8134889b4795d47466a54a5c846d691693" "checksum bitflags 1.1.0 (registry+https://github.com/rust-lang/crates.io-index)" = "3d155346769a6855b86399e9bc3814ab343cd3d62c7e985113d46a0ec3c281fd"
"checksum byteorder 1.3.4 (registry+https://github.com/rust-lang/crates.io-index)" = "08c48aae112d48ed9f069b33538ea9e3e90aa263cfa3d1c24309612b1f7472de" "checksum byteorder 1.3.2 (registry+https://github.com/rust-lang/crates.io-index)" = "a7c3dd8985a7111efc5c80b44e23ecdd8c007de8ade3b96595387e812b957cf5"
"checksum cfg-if 0.1.10 (registry+https://github.com/rust-lang/crates.io-index)" = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822" "checksum linked_list_allocator 0.6.4 (registry+https://github.com/rust-lang/crates.io-index)" = "47314ec1d29aa869ee7cb5a5be57be9b1055c56567d59c3fb6689926743e0bea"
"checksum compiler_builtins 0.1.35 (registry+https://github.com/rust-lang/crates.io-index)" = "e3fcd8aba10d17504c87ef12d4f62ef404c6a4703d16682a9eb5543e6cf24455" "checksum managed 0.7.1 (registry+https://github.com/rust-lang/crates.io-index)" = "fdcec5e97041c7f0f1c5b7d93f12e57293c831c646f4cc7a5db59460c7ea8de6"
"checksum embedded-hal 0.2.4 (registry+https://github.com/rust-lang/crates.io-index)" = "fa998ce59ec9765d15216393af37a58961ddcefb14c753b4816ba2191d865fcb" "checksum r0 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)" = "e2a38df5b15c8d5c7e8654189744d8e396bddc18ad48041a500ce52d6948941f"
"checksum fatfs 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)" = "93079df23039e52059e1f03b4c29fb0c72da2c792aad91bb2236c9fb81d3592e" "checksum smoltcp 0.5.0 (git+https://github.com/m-labs/smoltcp.git?rev=8eb01aca364aefe5f823d68d552d62c76c9be4a3)" = "<none>"
"checksum linked_list_allocator 0.8.5 (registry+https://github.com/rust-lang/crates.io-index)" = "660b26e6156a7d00eefb19052fe1943cf5ab2f353a723a577fad6ba2f99d1f90"
"checksum log 0.4.11 (registry+https://github.com/rust-lang/crates.io-index)" = "4fabed175da42fed1fa0746b0ea71f412aa9d35e76e95e59b192c64b9dc2bf8b"
"checksum managed 0.7.2 (registry+https://github.com/rust-lang/crates.io-index)" = "c75de51135344a4f8ed3cfe2720dc27736f7711989703a0b43aadf3753c55577"
"checksum memchr 2.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "3728d817d99e5ac407411fa471ff9800a778d88a24685968b36824eaf4bee400"
"checksum nb 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)" = "801d31da0513b6ec5214e9bf433a77966320625a37860f910be265be6e18d06f"
"checksum nb 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "546c37ac5d9e56f55e73b677106873d9d9f5190605e41a856503623648488cae"
"checksum pin-utils 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)" = "8b870d8c151b6f2fb93e84a13146138f05d02ed11c7e7c54f8826aaaf7c9f184"
"checksum r0 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "bd7a31eed1591dcbc95d92ad7161908e72f4677f8fabf2a32ca49b4237cbf211"
"checksum smoltcp 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)" = "0fe46639fd2ec79eadf8fe719f237a7a0bd4dac5d957f1ca5bbdbc1c3c39e53a"
"checksum vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)" = "876e32dcadfe563a4289e994f7cb391197f362b6315dc45e8ba4aa6f564a4b3c" "checksum vcell 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)" = "876e32dcadfe563a4289e994f7cb391197f362b6315dc45e8ba4aa6f564a4b3c"
"checksum void 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "6a02e4885ed3bc0f2de90ea6dd45ebcbb66dacffe03547fadbb0eeae2770887d"
"checksum volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "0d67cb4616d99b940db1d6bd28844ff97108b498a6ca850e5b6191a532063286" "checksum volatile-register 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "0d67cb4616d99b940db1d6bd28844ff97108b498a6ca850e5b6191a532063286"

View File

@ -1,24 +1,16 @@
[workspace] [workspace]
members = [ members = [
"libregister", "libregister", "libcortex_a9",
"libcortex_a9", "libboard_zynq", "libboard_zc706",
"libboard_zynq",
"libsupport_zynq",
"libasync",
"libconfig",
"libcoreio",
"experiments", "experiments",
"szl",
] ]
[profile.dev]
panic = "abort"
lto = false
[profile.release] [profile.release]
panic = "abort" panic = "abort"
debug = true debug = true
codegen-units = 1 lto = true # Link-Time Optimization
opt-level = 'z' opt-level = 'z' # Optimize for size.
lto = true
debug-assertions = false
overflow-checks = false
[patch.crates-io]
core_io = { path = "./libcoreio" }

View File

@ -1,22 +1,52 @@
# Build # Build
```shell ```shell
nix-shell --command "cargo xbuild --release -p experiments" nix-shell --command "cargo xbuild --release"
``` ```
Currently the ELF output is placed at `target/armv7-none-eabihf/release/experiments` Currently the ELF output is placed at `target/armv7-none-eabihf/release/zc706-experiments`
# Debug # Debug
## Running on the ZC706 ## Using the Xilinx toolchain
Tested with the ZC706 board.
Run the Xilinx Microprocessor Debugger:
```shell
/opt/Xilinx/14.7/ISE_DS/EDK/bin/lin64/xmd
```
Connect to target (given it is connected and you have permissions):
```tcl
connect arm hw
```
Leave xmd running.
Start the Xilinx version of the GNU debugger with your latest build:
```shell
/opt/Xilinx/14.7/ISE_DS/EDK/gnu/arm/lin/bin/arm-xilinx-linux-gnueabi-gdb zc706
```
Connect the debugger to xmd over TCP on localhost:
```gdb
target remote :1234
```
Proceed using gdb with `load`, `c`
## Using OpenOCD
### Running on the ZC706
```shell ```shell
nix-shell --command "cargo xbuild --release -p experiments" nix-shell --command "cargo xbuild --release"
cd openocd cd openocd
openocd -f zc706.cfg openocd -f zc706.cfg
``` ```
## Running on the Cora Z7-10 ### Running on the Cora Z7-10
```shell ```shell
nix-shell --command "cd experiments && cargo xbuild --release --no-default-features --features=target_cora_z7_10" nix-shell --command "cd experiments && cargo xbuild --release --no-default-features --features=target_cora_z7_10"
@ -24,8 +54,46 @@ cd openocd
openocd -f cora-z7-10.cfg openocd -f cora-z7-10.cfg
``` ```
## Loading a bitstream into volatile memory ### Loading a bitstream into volatile memory
```shell ```shell
openocd -f zc706.cfg -c "pld load 0 blinker_migen.bit; exit" openocd -f zc706.cfg -c "pld load 0 blinker_migen.bit; exit"
``` ```
### Development Process
Clone this repo onto your development/build machine and the raspberry pi that controls the Xilinx 7000 board
On the dev machine, the below script builds zc706 and secure copies it to the target pi (in your pi $HOME directory)
```shell
cd ~/zc706
./build.sh $your_user/ssh_id
```
On the pi, we need an information rich environment that includes a relatively reliable `gdb` experience (that includes `ctrl-p` and `ctrl-n` command history that persists across `cgdb` executions), run:
```shell
ssh pi4
cd zc706
./tmux.sh
```
Time to run your code with:
```shell
zynq-connect
zynq-restart
c
```
or, for a more succinct experience, (identical to above)
```shell
dc
dr
c
```
After every build on your dev machine, simply run:
```shell
dr
c
```
Sometimes you might need to type `load` after `dr`.

View File

@ -12,7 +12,7 @@ fn main() {
.unwrap(); .unwrap();
println!("cargo:rustc-link-search={}", out.display()); println!("cargo:rustc-link-search={}", out.display());
// Only re-run the build script when link.x is changed, // Only re-run the build script when memory.x is changed,
// instead of when any part of the source code changes. // instead of when any part of the source code changes.
println!("cargo:rerun-if-changed=link.x"); println!("cargo:rerun-if-changed=link.x");
} }

1
build.sh Executable file
View File

@ -0,0 +1 @@
nix-shell --command "cargo xbuild --release" && scp -P 2204 -C target/armv7-none-eabihf/release/zc706-experiments $1@nixbld.m-labs.hk:/home/$1/zc706/zc706.elf

File diff suppressed because it is too large Load Diff

View File

@ -1,38 +1,54 @@
{ # Use master branch of the overlay by default
mozillaOverlay ? import (builtins.fetchTarball https://github.com/mozilla/nixpkgs-mozilla/archive/master.tar.gz),
rustManifest ? ./channel-rust-nightly.toml,
}:
let let
pkgs = import <nixpkgs> { overlays = [ (import ./nix/mozilla-overlay.nix) ]; }; pkgs = import <nixpkgs> { overlays = [ mozillaOverlay ]; };
rustPlatform = (import ./nix/rust-platform.nix { inherit pkgs; }); rustcSrc = pkgs.fetchgit {
build-crate = name: crate: features: url = https://github.com/rust-lang/rust.git;
rustPlatform.buildRustPackage rec { # master of 2019-11-09
name = "${crate}"; rev = "ac162c6abe34cdf965afc0389f6cefa79653c63b";
sha256 = "06c5gws1mrpr69z1gzs358zf7hcsg6ky8n4ha0vv2s9d9w93x1kj";
src = ./.; fetchSubmodules = true;
cargoSha256 = "1f2psa1g41pl2j8n60hhik2s2pqdfjhr5capimvajf81kxrnn2ck"; };
targets = [];
nativeBuildInputs = [ pkgs.cargo-xbuild ]; rustChannelOfTargets = _channel: _date: targets:
(pkgs.lib.rustLib.fromManifestFile rustManifest {
inherit (pkgs) stdenv fetchurl patchelf;
}).rust.override { inherit targets; };
rust =
rustChannelOfTargets "nightly" null targets;
rustPlatform = pkgs.recurseIntoAttrs (pkgs.makeRustPlatform {
rustc = rust // { src = rustcSrc; };
cargo = rust;
});
gcc = pkgs.pkgsCross.armv7l-hf-multiplatform.buildPackages.gcc;
xbuildRustPackage = attrs:
let
buildPkg = rustPlatform.buildRustPackage attrs;
in
buildPkg.overrideAttrs ({ name, nativeBuildInputs, ... }: {
nativeBuildInputs =
nativeBuildInputs ++ [ pkgs.cargo-xbuild ];
buildPhase = '' buildPhase = ''
export XARGO_RUST_SRC="${rustPlatform.rust.rustc.src}/src" cargo xbuild --release --frozen
export CARGO_HOME=$(mktemp -d cargo-home.XXX)
pushd ${crate}
cargo xbuild --release --frozen \
--no-default-features \
--features=${features}
popd
''; '';
XARGO_RUST_SRC = "${rustcSrc}/src";
installPhase = '' installPhase = ''
mkdir -p $out $out/nix-support mkdir $out
cp target/armv7-none-eabihf/release/${name} $out/${name}.elf cp target/armv7-none-eabihf/release/${name} $out/${name}.elf
echo file binary-dist $out/${name}.elf >> $out/nix-support/hydra-build-products
''; '';
});
doCheck = false; zc706 = xbuildRustPackage {
dontFixup = true; name = "zc706";
}; src = ./.;
in cargoSha256 = "15icqy72dck82czpsqz41yjsdar17vpi15v22j6z0zxhzf517rf7";
{ nativeBuildInputs = [
zc706-experiments = build-crate "zc706-experiments" "experiments" "target_zc706"; gcc
cora-experiments = build-crate "cora-experiments" "experiments" "target_cora_z7_10"; ];
redpitaya-experiments = build-crate "redpitaya-experiments" "experiments" "target_redpitaya"; doCheck = false;
zc706-fsbl = (import ./nix/fsbl.nix { inherit pkgs; }); };
zc706-szl = build-crate "zc706-szl" "szl" "target_zc706"; in {
} inherit pkgs rustPlatform rustcSrc zc706 gcc;
}

View File

@ -1,21 +1,23 @@
[package] [package]
name = "experiments" name = "zc706-experiments"
description = "Developing bare-metal Rust on Zynq" description = "Developing bare-metal Rust on Zynq"
version = "0.0.0" version = "0.0.0"
authors = ["M-Labs"] authors = ["Astro <astro@spaceboyz.net>"]
edition = "2018" edition = "2018"
[features] [features]
target_zc706 = ["libboard_zynq/target_zc706", "libsupport_zynq/target_zc706"] target_zc706 = ["libboard_zynq/target_zc706", "libboard_zc706/target_zc706"]
target_cora_z7_10 = ["libboard_zynq/target_cora_z7_10", "libsupport_zynq/target_cora_z7_10"] target_cora_z7_10 = ["libboard_zynq/target_cora_z7_10", "libboard_zc706/target_cora_z7_10"]
target_redpitaya = ["libboard_zynq/target_redpitaya", "libsupport_zynq/target_redpitaya"]
default = ["target_zc706"] default = ["target_zc706"]
[dependencies] [dependencies]
log = "0.4"
embedded-hal = "0.2"
libregister = { path = "../libregister" } libregister = { path = "../libregister" }
libcortex_a9 = { path = "../libcortex_a9" } libcortex_a9 = { path = "../libcortex_a9" }
libboard_zynq = { path = "../libboard_zynq" } libboard_zynq = { path = "../libboard_zynq" }
libsupport_zynq = { path = "../libsupport_zynq", default-features = false, features = ["panic_handler"]} libboard_zc706 = { path = "../libboard_zc706" }
libasync = { path = "../libasync" }
[dependencies.smoltcp]
git = "https://github.com/m-labs/smoltcp.git"
rev = "8eb01aca364aefe5f823d68d552d62c76c9be4a3"
features = ["ethernet", "proto-ipv4", "socket-tcp"]
default-features = false

View File

@ -1,62 +0,0 @@
ENTRY(Reset);
MEMORY
{
/* 256 kB On-Chip Memory */
OCM : ORIGIN = 0, LENGTH = 0x30000
OCM3 : ORIGIN = 0xFFFF0000, LENGTH = 0x10000
}
SECTIONS
{
.text :
{
KEEP(*(.text.exceptions));
*(.text.boot);
*(.text .text.*);
} > OCM
.rodata : ALIGN(4)
{
*(.rodata .rodata.*);
} > OCM
.data : ALIGN(4)
{
*(.data .data.*);
} > OCM
.bss (NOLOAD) : ALIGN(4)
{
__bss_start = .;
*(.bss .bss.*);
. = ALIGN(4);
__bss_end = .;
} > OCM3
.stack1 (NOLOAD) : ALIGN(8) {
__stack1_end = .;
. += 0x200;
__stack1_start = .;
} > OCM3
.stack0 (NOLOAD) : ALIGN(8) {
__stack0_end = .;
. = ORIGIN(OCM3) + LENGTH(OCM3) - 8;
__stack0_start = .;
/* unused heap0 to prevent the linker from complaining*/
__heap0_start = .;
__heap0_end = .;
} > OCM3
/DISCARD/ :
{
/* Unused exception related info that only wastes space */
*(.ARM.exidx);
*(.ARM.exidx.*);
*(.ARM.extab.*);
}
}
ASSERT(SIZEOF(.stack0) >= 0x1000, "less than 4 KB left for stack");

View File

@ -1,306 +1,220 @@
#![no_std] #![no_std]
#![no_main] #![no_main]
#![feature(const_in_array_repeat_expressions)]
#![feature(naked_functions)]
extern crate alloc; use core::mem::transmute;
use libcortex_a9::mutex::Mutex;
use alloc::collections::BTreeMap; use libboard_zynq::{print, println, self as zynq, clocks::Clocks, clocks::source::{ClockSource, ArmPll, IoPll}};
use libasync::{ use libboard_zc706::{
delay, ram, alloc::{vec, vec::Vec},
smoltcp::{Sockets, TcpStream}, boot,
task, smoltcp::wire::{EthernetAddress, IpAddress, IpCidr},
smoltcp::iface::{NeighborCache, EthernetInterfaceBuilder},
smoltcp::time::Instant,
smoltcp::socket::SocketSet,
smoltcp::socket::{TcpSocket, TcpSocketBuffer},
}; };
use libboard_zynq::{
self as zynq,
clocks::source::{ArmPll, ClockSource, IoPll},
clocks::Clocks,
println, stdio,
mpcore,
gic,
smoltcp::{
iface::{EthernetInterfaceBuilder, NeighborCache, Routes},
time::Instant,
wire::{EthernetAddress, IpAddress, IpCidr},
},
time::Milliseconds,
};
#[cfg(feature = "target_zc706")]
use libboard_zynq::print;
use libcortex_a9::{
mutex::Mutex,
l2c::enable_l2_cache,
sync_channel::{Sender, Receiver},
sync_channel,
regs::{MPIDR, SP},
spin_lock_yield, notify_spin_lock,
asm
};
use libregister::{RegisterR, RegisterW};
use libsupport_zynq::{
boot, ram,
};
use log::{info, warn};
use core::sync::atomic::{AtomicBool, Ordering};
const HWADDR: [u8; 6] = [0, 0x23, 0xde, 0xea, 0xbe, 0xef]; const HWADDR: [u8; 6] = [0, 0x23, 0xde, 0xea, 0xbe, 0xef];
static mut CORE1_REQ: (Sender<usize>, Receiver<usize>) = sync_channel!(usize, 10); static mut STACK_CORE1: [u32; 512] = [0; 512];
static mut CORE1_RES: (Sender<usize>, Receiver<usize>) = sync_channel!(usize, 10);
extern "C" {
static mut __stack1_start: u32;
}
static CORE1_RESTART: AtomicBool = AtomicBool::new(false);
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
pub unsafe extern "C" fn IRQ() {
if MPIDR.read().cpu_id() == 1{
let mpcore = mpcore::RegisterBlock::mpcore();
let mut gic = gic::InterruptController::gic(mpcore);
let id = gic.get_interrupt_id();
if id.0 == 0 {
gic.end_interrupt(id);
asm::exit_irq();
SP.write(&mut __stack1_start as *mut _ as u32);
asm::enable_irq();
CORE1_RESTART.store(false, Ordering::Relaxed);
notify_spin_lock();
main_core1();
}
}
stdio::drop_uart();
println!("IRQ");
loop {}
}
pub fn restart_core1() {
let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore());
CORE1_RESTART.store(true, Ordering::Relaxed);
interrupt_controller.send_sgi(gic::InterruptId(0), gic::CPUCore::Core1.into());
while CORE1_RESTART.load(Ordering::Relaxed) {
spin_lock_yield();
}
}
#[no_mangle] #[no_mangle]
pub fn main_core0() { pub fn main_core0() {
// zynq::clocks::CpuClocks::enable_io(1_250_000_000); // zynq::clocks::CpuClocks::enable_io(1_250_000_000);
enable_l2_cache(); println!("\nzc706 main");
println!("\nZynq experiments"); {
let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore()); use libregister::RegisterR;
interrupt_controller.enable_interrupts(); println!("Boot mode: {:?}", zynq::slcr::RegisterBlock::new().boot_mode.read().boot_mode_pins());
// ps7_init::apply(); }
libboard_zynq::stdio::drop_uart();
libboard_zynq::logger::init().unwrap();
log::set_max_level(log::LevelFilter::Trace);
info!(
"Boot mode: {:?}",
zynq::slcr::RegisterBlock::slcr()
.boot_mode
.read()
.boot_mode_pins()
);
#[cfg(feature = "target_zc706")] #[cfg(feature = "target_zc706")]
const CPU_FREQ: u32 = 800_000_000; const CPU_FREQ: u32 = 800_000_000;
#[cfg(feature = "target_cora_z7_10")] #[cfg(feature = "target_cora_z7_10")]
const CPU_FREQ: u32 = 650_000_000; const CPU_FREQ: u32 = 650_000_000;
#[cfg(feature = "target_redpitaya")]
const CPU_FREQ: u32 = 800_000_000;
info!("Setup clock sources..."); println!("Setup clock sources...");
ArmPll::setup(2 * CPU_FREQ); ArmPll::setup(2 * CPU_FREQ);
Clocks::set_cpu_freq(CPU_FREQ); Clocks::set_cpu_freq(CPU_FREQ);
#[cfg(feature = "target_zc706")] IoPll::setup(700_000_000);
{ libboard_zynq::stdio::drop_uart();
IoPll::setup(1_000_000_000); println!("PLLs set up");
libboard_zynq::stdio::drop_uart();
}
#[cfg(feature = "target_cora_z7_10")]
{
IoPll::setup(1_000_000_000);
libboard_zynq::stdio::drop_uart();
}
#[cfg(feature = "target_redpitaya")]
{
IoPll::setup(1_000_000_000);
libboard_zynq::stdio::drop_uart();
}
info!("PLLs set up");
let clocks = zynq::clocks::Clocks::get(); let clocks = zynq::clocks::Clocks::get();
info!( println!("CPU Clocks: {}/{}/{}/{}", clocks.cpu_6x4x(), clocks.cpu_3x2x(), clocks.cpu_2x(), clocks.cpu_1x());
"CPU Clocks: {}/{}/{}/{}",
clocks.cpu_6x4x(),
clocks.cpu_3x2x(),
clocks.cpu_2x(),
clocks.cpu_1x()
);
let timer = libboard_zynq::timer::GlobalTimer::start(); let mut flash = zynq::flash::Flash::new(200_000_000).linear_addressing_mode();
let flash_ram: &[u8] = unsafe { core::slice::from_raw_parts(flash.ptr(), flash.size()) };
for i in 0..=1 {
print!("Flash {}:", i);
for b in &flash_ram[(i * 16 * 1024 * 1024)..][..128] {
print!(" {:02X}", *b);
}
println!("");
}
let mut flash = flash.stop();
let mut ddr = zynq::ddr::DdrRam::ddrram(); let mut ddr = zynq::ddr::DdrRam::new();
#[cfg(not(feature = "target_zc706"))] #[cfg(not(feature = "target_zc706"))]
ddr.memtest(); ddr.memtest();
ram::init_alloc_ddr(&mut ddr); ram::init_alloc(&mut ddr);
boot::Core1::start(false); for i in 0..=1 {
let mut flash_io = flash.manual_mode(i);
let core1_req = unsafe { &mut CORE1_REQ.0 }; // println!("rdcr={:02X}", flash_io.rdcr());
let core1_res = unsafe { &mut CORE1_RES.1 }; print!("Flash {} ID:", i);
task::block_on(async { for b in flash_io.rdid() {
for i in 0..10 { print!(" {:02X}", b);
restart_core1();
core1_req.async_send(i).await;
let j = core1_res.async_recv().await;
println!("{} -> {}", i, j);
}
});
unsafe {
core1_req.drop_elements();
}
// Test I2C
#[cfg(feature = "target_zc706")]
{
let mut i2c = zynq::i2c::I2c::i2c0();
i2c.init().unwrap();
println!("I2C bit-banging enabled");
let mut eeprom = zynq::i2c::eeprom::EEPROM::new(&mut i2c, 16);
// Write to 0x00 and 0x08
let eeprom_buffer: [u8; 22] = [
0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb,
0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0x01,
];
eeprom.write(0x00, &eeprom_buffer[0..6]).unwrap();
eeprom.write(0x08, &eeprom_buffer[6..22]).unwrap();
println!("Data written to EEPROM");
let mut eeprom_buffer = [0u8; 24];
// Read from 0x00
eeprom.read(0x00, &mut eeprom_buffer).unwrap();
print!("Data read from EEPROM @ 0x00: (hex) ");
for i in 0..6 {
print!("{:02x} ", eeprom_buffer[i]);
} }
println!(""); println!("");
// Read from 0x08 print!("Flash {} I/O:", i);
eeprom.read(0x08, &mut eeprom_buffer).unwrap(); for o in 0..8 {
print!("Data read from EEPROM @ 0x08: (hex) "); const CHUNK: u32 = 8;
for i in 0..16 { for b in flash_io.read(CHUNK * o, CHUNK as usize) {
print!("{:02x} ", eeprom_buffer[i]); print!(" {:02X}", b);
}
} }
println!(""); println!("");
flash_io.dump("Read cr1", 0x35);
flash_io.dump("Read Autoboot", 0x14);
flash_io.dump("Read Bank", 0x16);
flash_io.dump("DLP Bank", 0x16);
flash_io.dump("Read ESig", 0xAB);
flash_io.dump("OTP Read", 0x4B);
flash_io.dump("DYB Read", 0xE0);
flash_io.dump("PPB Read", 0xE2);
flash_io.dump("ASP Read", 0x2B);
flash_io.dump("Password Read", 0xE7);
flash_io.write_enabled(|flash_io| {
flash_io.erase(0);
});
flash_io.write_enabled(|flash_io| {
flash_io.program(0, [0x23054223; (0x100 >> 2)].iter().cloned());
});
flash = flash_io.stop();
} }
let eth = zynq::eth::Eth::eth0(HWADDR.clone()); let core1_stack = unsafe { &mut STACK_CORE1[..] };
println!("{} bytes stack for core1", core1_stack.len());
let core1 = boot::Core1::start(core1_stack);
for _ in 0..0x1000000 {
let mut l = SHARED.lock();
*l += 1;
}
while !*DONE.lock() {
let x = { *SHARED.lock() };
println!("shared: {:08X}", x);
}
let x = { *SHARED.lock() };
println!("done shared: {:08X}", x);
core1.reset();
libcortex_a9::asm::dsb();
print!("Core1 stack [{:08X}..{:08X}]:", &core1.stack[0] as *const _ as u32, &core1.stack[core1.stack.len() - 1] as *const _ as u32);
for w in core1.stack {
print!(" {:08X}", w);
}
println!(".");
let eth = zynq::eth::Eth::default(HWADDR.clone());
println!("Eth on"); println!("Eth on");
const RX_LEN: usize = 4096; const RX_LEN: usize = 8;
let mut rx_descs = (0..RX_LEN)
.map(|_| zynq::eth::rx::DescEntry::zeroed())
.collect::<Vec<_>>();
let mut rx_buffers = vec![[0u8; zynq::eth::MTU]; RX_LEN];
// Number of transmission buffers (minimum is two because with // Number of transmission buffers (minimum is two because with
// one, duplicate packet transmission occurs) // one, duplicate packet transmission occurs)
const TX_LEN: usize = 4096; const TX_LEN: usize = 8;
let eth = eth.start_rx(RX_LEN); let mut tx_descs = (0..TX_LEN)
let mut eth = eth.start_tx(TX_LEN); .map(|_| zynq::eth::tx::DescEntry::zeroed())
.collect::<Vec<_>>();
let mut tx_buffers = vec![[0u8; zynq::eth::MTU]; TX_LEN];
let eth = eth.start_rx(&mut rx_descs, &mut rx_buffers);
//let mut eth = eth.start_tx(&mut tx_descs, &mut tx_buffers);
let mut eth = eth.start_tx(
// HACK
unsafe { transmute(tx_descs.as_mut_slice()) },
unsafe { transmute(tx_buffers.as_mut_slice()) },
);
let ethernet_addr = EthernetAddress(HWADDR); let ethernet_addr = EthernetAddress(HWADDR);
// IP stack // IP stack
let local_addr = IpAddress::v4(192, 168, 1, 51); let local_addr = IpAddress::v4(192, 168, 1, 51);
let mut ip_addrs = [IpCidr::new(local_addr, 24)]; let mut ip_addrs = [IpCidr::new(local_addr, 24)];
let routes = Routes::new(BTreeMap::new()); let mut neighbor_storage = vec![None; 256];
let neighbor_cache = NeighborCache::new(BTreeMap::new()); let neighbor_cache = NeighborCache::new(&mut neighbor_storage[..]);
let mut iface = EthernetInterfaceBuilder::new(&mut eth) let mut iface = EthernetInterfaceBuilder::new(&mut eth)
.ethernet_addr(ethernet_addr) .ethernet_addr(ethernet_addr)
.ip_addrs(&mut ip_addrs[..]) .ip_addrs(&mut ip_addrs[..])
.routes(routes)
.neighbor_cache(neighbor_cache) .neighbor_cache(neighbor_cache)
.finalize(); .finalize();
let mut sockets_storage = [
None, None, None, None,
None, None, None, None
];
let mut sockets = SocketSet::new(&mut sockets_storage[..]);
Sockets::init(32); // taken from example code for smoltcp
let mut tcp_server_rx_data = vec![0; 512 * 1024];
let mut tcp_server_tx_data = vec![0; 512 * 1024];
let tcp_rx_buffer = TcpSocketBuffer::new(&mut tcp_server_rx_data[..]);
let tcp_tx_buffer = TcpSocketBuffer::new(&mut tcp_server_tx_data[..]);
let tcp_socket = TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer);
let tcp_handle = sockets.add(tcp_socket);
/// `chargen`
const TCP_PORT: u16 = 19; const TCP_PORT: u16 = 19;
// (rx, tx)
let stats = alloc::rc::Rc::new(core::cell::RefCell::new((0, 0)));
let stats_tx = stats.clone();
task::spawn(async move {
while let Ok(stream) = TcpStream::accept(TCP_PORT, 0x10_0000, 0x10_0000).await {
let stats_tx = stats_tx.clone();
task::spawn(async move {
let tx_data = (0..=255).take(4096).collect::<alloc::vec::Vec<u8>>();
loop {
// const CHUNK_SIZE: usize = 65536;
// match stream.send((0..=255).cycle().take(CHUNK_SIZE)).await {
match stream.send_slice(&tx_data[..]).await {
Ok(len) => stats_tx.borrow_mut().1 += tx_data.len(), //CHUNK_SIZE,
Err(e) => {
warn!("tx: {:?}", e);
break
}
}
}
});
}
});
let stats_rx = stats.clone();
task::spawn(async move {
while let Ok(stream) = TcpStream::accept(TCP_PORT+1, 0x10_0000, 0x10_0000).await {
let stats_rx = stats_rx.clone();
task::spawn(async move {
loop {
match stream.recv(|buf| (buf.len(), buf.len())).await {
Ok(len) => stats_rx.borrow_mut().0 += len,
Err(e) => {
warn!("rx: {:?}", e);
break
}
}
}
});
}
});
let mut countdown = timer.countdown(); let mut time = 0u32;
task::spawn(async move { loop {
loop { time += 1;
delay(&mut countdown, Milliseconds(1000)).await; let timestamp = Instant::from_millis(time);
let timestamp = timer.get_us().0; match iface.poll(&mut sockets, timestamp) {
let seconds = timestamp / 1_000_000; Ok(_) => {},
let micros = timestamp % 1_000_000; Err(e) => {
let (rx, tx) = { println!("poll error: {}", e);
let mut stats = stats.borrow_mut(); }
let result = *stats;
*stats = (0, 0);
result
};
info!("time: {:6}.{:06}s, rx: {}k/s, tx: {}k/s", seconds, micros, rx / 1024, tx / 1024);
} }
});
Sockets::run(&mut iface, || { // (mostly) taken from smoltcp example: TCP echo server
Instant::from_millis(timer.get_time().0 as i64) let mut socket = sockets.get::<TcpSocket>(tcp_handle);
}) if !socket.is_open() {
socket.listen(TCP_PORT).unwrap()
}
if socket.may_recv() && socket.can_send() {
socket.recv(|buf| {
let len = buf.len().min(4096);
let buffer = buf[..len].iter().cloned().collect::<Vec<_>>();
(len, buffer)
})
.and_then(|buffer| socket.send_slice(&buffer[..]))
.map(|_| {})
.unwrap_or_else(|e| println!("tcp: {:?}", e));
}
}
// #[allow(unreachable_code)]
// drop(tx_descs);
// #[allow(unreachable_code)]
// drop(tx_buffers);
} }
static SHARED: Mutex<u32> = Mutex::new(0);
static DONE: Mutex<bool> = Mutex::new(false); static DONE: Mutex<bool> = Mutex::new(false);
#[no_mangle] #[no_mangle]
pub fn main_core1() { pub fn main_core1() {
println!("Hello from core1!"); println!("Hello from core1!");
let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore()); for _ in 0..0x1000000 {
interrupt_controller.enable_interrupts(); let mut l = SHARED.lock();
let req = unsafe { &mut CORE1_REQ.1 }; *l += 1;
let res = unsafe { &mut CORE1_RES.0 };
for i in req {
res.send(i * i);
} }
println!("core1 done!"); println!("core1 done!");
*DONE.lock() = true; *DONE.lock() = true;

View File

@ -1,18 +0,0 @@
[package]
name = "libasync"
description = "low-level async support"
version = "0.0.0"
authors = ["M-Labs"]
edition = "2018"
[dependencies]
#futures = { version = "0.3", default-features = false }
pin-utils = "0.1.0-alpha.4"
embedded-hal = "0.2"
nb = "0.1"
libcortex_a9 = { path = "../libcortex_a9" }
[dependencies.smoltcp]
version = "0.6"
default-features = false
features = ["alloc"]

View File

@ -1,7 +0,0 @@
use embedded_hal::timer::CountDown;
use crate::block_async;
pub async fn delay<T: CountDown<Time=C>, C>(timer: &mut T, count: C) {
timer.start(count);
let _ = block_async!(timer.wait()).await;
}

View File

@ -1,157 +0,0 @@
use core::{
cell::{RefCell, UnsafeCell},
future::Future,
mem::MaybeUninit,
pin::Pin,
sync::atomic::{AtomicBool, Ordering},
task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
};
use alloc::{boxed::Box, vec::Vec};
//use futures::future::FutureExt;
use pin_utils::pin_mut;
// NOTE `*const ()` is &AtomicBool
static VTABLE: RawWakerVTable = {
unsafe fn clone(p: *const ()) -> RawWaker {
RawWaker::new(p, &VTABLE)
}
unsafe fn wake(p: *const ()) {
wake_by_ref(p)
}
unsafe fn wake_by_ref(p: *const ()) {
(*(p as *const AtomicBool)).store(true, Ordering::Relaxed)
}
unsafe fn drop(_: *const ()) {
// no-op
}
RawWakerVTable::new(clone, wake, wake_by_ref, drop)
};
/// ready should not move as long as this waker references it. That is
/// the reason for keeping Tasks in a pinned box.
fn wrap_waker(ready: &AtomicBool) -> Waker {
unsafe { Waker::from_raw(RawWaker::new(ready as *const _ as *const (), &VTABLE)) }
}
/// A single-threaded executor
///
/// This is a singleton
pub struct Executor {
// Entered block_on() already?
in_block_on: RefCell<bool>,
/// Tasks reside on the heap, so that we just queue pointers. They
/// must also be pinned in memory because our RawWaker is a pointer
/// to their `ready` field.
tasks: RefCell<Vec<Pin<Box<Task>>>>,
}
impl Executor {
/// Creates a new instance of the executor
pub fn new() -> Self {
Self {
in_block_on: RefCell::new(false),
tasks: RefCell::new(Vec::new()),
}
}
pub fn block_on<T>(&self, f: impl Future<Output = T>) -> T {
// we want to avoid reentering `block_on` because then all the code
// below has to become more complex. It's also likely that the
// application will only call `block_on` once on an infinite task
// (`Future<Output = !>`)
{
let mut in_block_on = self.in_block_on.borrow_mut();
if *in_block_on {
panic!("nested `block_on`");
}
*in_block_on = true;
}
pin_mut!(f);
let ready = AtomicBool::new(true);
let waker = wrap_waker(&ready);
let mut backup = Vec::new();
let val = loop {
// advance the main task
if ready.load(Ordering::Relaxed) {
ready.store(false, Ordering::Relaxed);
// println!("run block_on");
let mut cx = Context::from_waker(&waker);
if let Poll::Ready(val) = f.as_mut().poll(&mut cx) {
break val;
}
// println!("ran block_on");
}
// advance all tasks
core::mem::swap(&mut *self.tasks.borrow_mut(), &mut backup);
for mut task in backup.drain(..) {
// NOTE we don't need a CAS operation here because `wake` invocations that come from
// interrupt handlers (the only source of 'race conditions' (!= data races)) are
// "oneshot": they'll issue a `wake` and then disable themselves to not run again
// until the woken task has made more work
if task.ready.load(Ordering::Relaxed) {
// we are about to service the task so switch the `ready` flag to `false`
task.ready.store(false, Ordering::Relaxed);
let waker = wrap_waker(&task.ready);
let mut cx = Context::from_waker(&waker);
let ready = task.f.as_mut().poll(&mut cx).is_ready();
if ready {
// Task is finished, do not requeue
continue;
}
}
// Requeue
self.tasks.borrow_mut().push(task);
}
// // try to sleep; this will be a no-op if any of the previous tasks generated a SEV or an
// // interrupt ran (regardless of whether it generated a wake-up or not)
// asm::wfe();
};
self.in_block_on.replace(false);
val
}
pub fn spawn(&self, f: impl Future + 'static) {
let task = Box::pin(Task::new(f));
self.tasks.borrow_mut().push(task);
}
}
pub struct Task {
ready: AtomicBool,
f: Pin<Box<dyn Future<Output = ()>>>,
}
impl Task {
fn new(f: impl Future + 'static) -> Self {
Task {
ready: AtomicBool::new(true),
f: Box::pin(async { f.await; }),
}
}
}
/// Returns a handle to the executor singleton
///
/// This lazily initializes the executor and allocator when first called
pub(crate) fn current() -> &'static Executor {
static INIT: AtomicBool = AtomicBool::new(false);
static mut EXECUTOR: UnsafeCell<MaybeUninit<Executor>> = UnsafeCell::new(MaybeUninit::uninit());
if INIT.load(Ordering::Relaxed) {
unsafe { &*(EXECUTOR.get() as *const Executor) }
} else {
unsafe {
let executorp = EXECUTOR.get() as *mut Executor;
executorp.write(Executor::new());
INIT.store(true, Ordering::Relaxed);
&*executorp
}
}
}

View File

@ -1,36 +0,0 @@
#![no_std]
extern crate alloc;
pub mod task;
pub mod executor;
mod delay;
pub use delay::delay;
pub mod smoltcp;
/// Reexport for macro use
pub use nb;
/// The `nb` crate's `block!` macro adapted for async fns
///
/// Call `.await` on the result!
#[macro_export]
macro_rules! block_async {
($e:expr) => {
async {
loop {
#[allow(unreachable_patterns)]
match $e {
Err($crate::nb::Error::Other(e)) => {
#[allow(unreachable_code)]
break Err(e)
},
Err($crate::nb::Error::WouldBlock) =>
$crate::task::r#yield().await,
Ok(x) => break Ok(x),
}
}
}
}
}

View File

@ -1,94 +0,0 @@
use core::{
cell::RefCell,
task::Waker,
};
use alloc::vec::Vec;
use smoltcp::{
iface::EthernetInterface,
phy::Device,
socket::SocketSet,
time::Instant,
};
use crate::task;
mod tcp_stream;
pub use tcp_stream::TcpStream;
static mut SOCKETS: Option<Sockets> = None;
pub struct Sockets {
sockets: RefCell<SocketSet<'static, 'static, 'static>>,
wakers: RefCell<Vec<Waker>>,
}
impl Sockets {
pub fn init(max_sockets: usize) {
let mut sockets_storage = Vec::with_capacity(max_sockets);
for _ in 0..max_sockets {
sockets_storage.push(None);
}
let sockets = RefCell::new(SocketSet::new(sockets_storage));
let wakers = RefCell::new(Vec::new());
let instance = Sockets {
sockets,
wakers,
};
// println!("sockets initialized");
unsafe { SOCKETS = Some(instance); }
}
/// Block and run executor indefinitely while polling the smoltcp
/// iface
pub fn run<'b, 'c, 'e, D: for<'d> Device<'d>>(
iface: &mut EthernetInterface<'b, 'c, 'e, D>,
mut get_time: impl FnMut() -> Instant,
) -> ! {
task::block_on(async {
loop {
let instant = get_time();
Self::instance().poll(iface, instant);
task::r#yield().await;
}
})
}
pub(crate) fn instance() -> &'static Self {
unsafe { SOCKETS.as_ref().expect("Sockets") }
}
fn poll<'b, 'c, 'e, D: for<'d> Device<'d>>(
&self,
iface: &mut EthernetInterface<'b, 'c, 'e, D>,
instant: Instant
) {
let processed = {
let mut sockets = self.sockets.borrow_mut();
match iface.poll(&mut sockets, instant) {
Ok(processed) => processed,
Err(_) => true,
}
};
if processed {
let mut wakers = self.wakers.borrow_mut();
for waker in wakers.drain(..) {
waker.wake();
}
}
}
/// TODO: this was called through eg. TcpStream, another poll()
/// might want to send packets before sleeping for an interrupt.
pub(crate) fn register_waker(waker: Waker) {
let mut wakers = Self::instance().wakers.borrow_mut();
for (i, w) in wakers.iter().enumerate() {
if w.will_wake(&waker) {
let last = wakers.len() - 1;
wakers.swap(i, last);
return;
}
}
wakers.push(waker);
}
}

View File

@ -1,283 +0,0 @@
//! async TCP interface
//!
//! TODO: implement futures AsyncRead/AsyncWrite/Stream/Sink interfaces
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use alloc::vec::Vec;
use smoltcp::{
Error, Result,
socket::{
SocketHandle, SocketRef,
TcpSocketBuffer, TcpSocket, TcpState,
},
time::Duration,
};
use crate::task;
use super::Sockets;
/// References a smoltcp TcpSocket
pub struct TcpStream {
handle: SocketHandle,
}
/// Wait while letting `$f()` poll a stream's socket
macro_rules! poll_stream {
($stream: expr, $output: ty, $f: expr) => (async {
struct Adhoc<'a> {
stream: &'a TcpStream,
}
impl<'a> Future for Adhoc<'a> {
type Output = $output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let result = self.stream.with_socket($f);
if !result.is_ready() {
Sockets::register_waker(cx.waker().clone());
}
result
}
}
Adhoc { stream: $stream }.await
})
}
impl TcpStream {
/// Allocates sockets and its buffers, registers it in the
/// SocketSet.
///
/// Not `pub` as the result can not yet be used. Use `listen()` or
/// `connect()` to obtain a valid TcpStream.
fn new(rx_bufsize: usize, tx_bufsize: usize) -> Self {
fn uninit_vec<T>(size: usize) -> Vec<T> {
let mut result = Vec::with_capacity(size);
unsafe {
result.set_len(size);
}
result
}
let rx_buffer = TcpSocketBuffer::new(uninit_vec(rx_bufsize));
let tx_buffer = TcpSocketBuffer::new(uninit_vec(tx_bufsize));
let socket = TcpSocket::new(rx_buffer, tx_buffer);
let handle = Sockets::instance().sockets.borrow_mut()
.add(socket);
TcpStream { handle }
}
/// Operate on the referenced TCP socket
fn with_socket<F, R>(&self, f: F) -> R
where
F: FnOnce(SocketRef<TcpSocket>) -> R,
{
let mut sockets = Sockets::instance().sockets.borrow_mut();
let socket_ref = sockets.get::<TcpSocket>(self.handle);
f(socket_ref)
}
/// Listen for the next incoming connection on a TCP
/// port. Succeeds on connection attempt.
///
/// Calling this serially in a loop will cause slow/botched
/// connection attempts stall any more new connections. Use
/// `listen()` with a backlog instead.
pub async fn accept(port: u16, rx_bufsize: usize, tx_bufsize: usize) -> Result<Self> {
let stream = Self::new(rx_bufsize, tx_bufsize);
// Set socket to listen
stream.with_socket(|mut s| s.listen(port))?;
// Wait for a connection
poll_stream!(&stream, (), |socket| {
if socket.state() != TcpState::Listen {
Poll::Ready(())
} else {
Poll::Pending
}
}).await;
Ok(stream)
}
/// Probe the receive buffer
///
/// Your callback will only be called when there is some data available,
/// and it must consume at least one byte. It returns a tuple with the
/// number of bytes it consumed, and a user-defined return value of type R.
pub async fn recv<F, R>(&self, f: F) -> Result<R>
where
F: Fn(&[u8]) -> (usize, R),
{
struct Recv<'a, F: FnOnce(&[u8]) -> (usize, R), R> {
stream: &'a TcpStream,
f: F,
}
impl<'a, F: Fn(&[u8]) -> (usize, R), R> Future for Recv<'a, F, R> {
type Output = Result<R>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let result = self.stream.with_socket(|mut socket| {
if socket_is_handhshaking(&socket) {
return Ok(Poll::Pending);
}
socket.recv(|buf| {
if buf.len() > 0 {
let (amount, result) = (self.f)(buf);
assert!(amount > 0);
(amount, Poll::Ready(Ok(result)))
} else {
(0, Poll::Pending)
}
})
});
match result {
Ok(Poll::Pending) => {
Sockets::register_waker(cx.waker().clone());
Poll::Pending
}
Ok(result) => {
result
}
Err(e) =>
Poll::Ready(Err(e)),
}
}
}
Recv {
stream: self,
f,
}.await
}
/// Wait until there is any space in the socket's send queue
async fn wait_can_send(&self) -> Result<()> {
poll_stream!(self, Result<()>, |socket| {
if socket_is_handhshaking(&socket) {
Poll::Pending
} else if socket.can_send() {
Poll::Ready(Ok(()))
} else if ! socket.may_send() {
Poll::Ready(Err(Error::Truncated))
} else {
Poll::Pending
}
}).await
}
/// Yields to wait for more buffer space
pub async fn send<I: IntoIterator<Item = u8>>(&self, data: I) -> Result<()> {
let mut data = data.into_iter();
let mut done = false;
while !done {
self.wait_can_send().await?;
self.with_socket(|mut socket| {
socket.send(|buf| {
for i in 0..buf.len() {
if let Some(byte) = data.next() {
buf[i] = byte;
} else {
done = true;
return (i, ())
}
}
(buf.len(), ())
})
})?;
}
Ok(())
}
/// Yields to wait for more buffer space
pub async fn send_slice(&self, mut data: &'_ [u8]) -> Result<()> {
while data.len() > 0 {
self.wait_can_send().await?;
data = self.with_socket(|mut socket| {
socket.send(|buf| {
let len = buf.len().min(data.len());
buf[..len].copy_from_slice(&data[..len]);
data = &data[len..];
(len, data)
})
})?;
}
Ok(())
}
/// Wait for all queued data to be sent and ACKed
///
/// **Warning:** this may not work as immediately as expected! The
/// other side may wait until it sends packets to you for
/// piggybacking the ACKs.
pub async fn flush(&self) -> Result<()> {
poll_stream!(self, Result<()>, |socket| {
if socket_is_handhshaking(&socket) {
Poll::Pending
} else if socket.may_send() && socket.send_queue() > 0 {
Poll::Pending
} else if socket.may_send() {
Poll::Ready(Ok(()))
} else {
Poll::Ready(Err(Error::Truncated))
}
}).await
}
/// Close the transmit half of the connection
pub async fn close(&self) {
self.with_socket(|mut socket| socket.close());
// Yield for one iface.poll() to send the packet
task::r#yield().await;
}
/// Destroy the socket, sending the RST
pub async fn abort(self) {
self.with_socket(|mut socket| socket.abort());
// Yield for one iface.poll() to send the packet
task::r#yield().await;
}
pub fn keep_alive(&self) -> Option<Duration> {
self.with_socket(|socket| socket.keep_alive())
}
pub fn set_keep_alive(&mut self, interval: Option<Duration>) {
self.with_socket(|mut socket| socket.set_keep_alive(interval));
}
pub fn timeout(&self) -> Option<Duration> {
self.with_socket(|socket| socket.timeout())
}
pub fn set_timeout(&mut self, duration: Option<Duration>) {
self.with_socket(|mut socket| socket.set_timeout(duration));
}
}
impl Drop for TcpStream {
/// Free item in the socket set, which leads to deallocation of
/// the rx/tx buffers associated with this socket.
fn drop(&mut self) {
Sockets::instance().sockets.borrow_mut()
.remove(self.handle);
}
}
fn socket_is_handhshaking(socket: &SocketRef<TcpSocket>) -> bool {
match socket.state() {
TcpState::SynSent | TcpState::SynReceived =>
true,
_ =>
false,
}
}

View File

@ -1,47 +0,0 @@
//! Asynchronous tasks
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use super::executor;
/// Drives the future `f` to completion
///
/// This also makes any previously `spawn`-ed future make progress
pub fn block_on<T>(f: impl Future<Output = T>) -> T {
executor::current().block_on(f)
}
/// Spawns a task onto the executor
///
/// The spawned task will not make any progress until `block_on` is called.
pub fn spawn(f: impl Future + 'static) {
executor::current().spawn(f)
}
/// Use `r#yield.await` to suspend the execution of a task
pub async fn r#yield() {
struct Yield {
yielded: bool,
}
impl Future for Yield {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if self.yielded {
Poll::Ready(())
} else {
self.yielded = true;
// wake ourselves
cx.waker().wake_by_ref();
//asm::sev();
Poll::Pending
}
}
}
Yield { yielded: false }.await
}

23
libboard_zc706/Cargo.toml Normal file
View File

@ -0,0 +1,23 @@
[package]
name = "libboard_zc706"
description = "Software support for running on devboards"
version = "0.0.0"
authors = ["Astro <astro@spaceboyz.net>"]
edition = "2018"
[features]
target_zc706 = ["libboard_zynq/target_zc706"]
target_cora_z7_10 = ["libboard_zynq/target_cora_z7_10"]
[dependencies]
r0 = "0.2"
linked_list_allocator = { version = "0.6", default-features = false }
libregister = { path = "../libregister" }
libcortex_a9 = { path = "../libcortex_a9" }
libboard_zynq = { path = "../libboard_zynq" }
[dependencies.smoltcp]
git = "https://github.com/m-labs/smoltcp.git"
rev = "8eb01aca364aefe5f823d68d552d62c76c9be4a3"
features = ["ethernet", "proto-ipv4", "socket-tcp"]
default-features = false

View File

@ -0,0 +1,21 @@
use libboard_zynq::{println, slcr, stdio};
#[no_mangle]
pub unsafe extern "C" fn PrefetchAbort() {
stdio::drop_uart();
println!("PrefetchAbort");
slcr::RegisterBlock::unlocked(|slcr| slcr.soft_reset());
loop {}
}
#[no_mangle]
pub unsafe extern "C" fn DataAbort() {
stdio::drop_uart();
println!("DataAbort");
slcr::RegisterBlock::unlocked(|slcr| slcr.soft_reset());
loop {}
}

View File

@ -1,37 +1,39 @@
use r0::zero_bss; use r0::zero_bss;
use core::ptr::write_volatile;
use libregister::{ use libregister::{
VolatileCell, VolatileCell,
RegisterR, RegisterW, RegisterRW, RegisterR, RegisterW, RegisterRW,
}; };
use libcortex_a9::{asm, l2c, regs::*, cache, mmu, spin_lock_yield, notify_spin_lock}; use libcortex_a9::{asm, regs::*, cache, mmu};
use libboard_zynq::{slcr, mpcore}; use libboard_zynq::{slcr, mpcore};
extern "C" { extern "C" {
static mut __bss_start: u32; static mut __bss_start: u32;
static mut __bss_end: u32; static mut __bss_end: u32;
static mut __stack0_start: u32; static mut __stack_start: u32;
static mut __stack1_start: u32;
fn main_core0(); fn main_core0();
fn main_core1(); fn main_core1();
} }
static mut CORE1_ENABLED: VolatileCell<bool> = VolatileCell::new(false); /// `0` means: wait for initialization by core0
static mut CORE1_STACK: VolatileCell<u32> = VolatileCell::new(0);
#[link_section = ".text.boot"] #[link_section = ".text.boot"]
#[no_mangle] #[no_mangle]
#[naked] #[naked]
pub unsafe extern "C" fn Reset() -> ! { pub unsafe extern "C" fn _boot_cores() -> ! {
match MPIDR.read().cpu_id() { const CORE_MASK: u32 = 0x3;
match MPIDR.read() & CORE_MASK {
0 => { 0 => {
SP.write(&mut __stack0_start as *mut _ as u32); SP.write(&mut __stack_start as *mut _ as u32);
boot_core0(); boot_core0();
} }
1 => { 1 => {
while !CORE1_ENABLED.get() { while CORE1_STACK.get() == 0 {
spin_lock_yield(); asm::wfe();
} }
SP.write(&mut __stack1_start as *mut _ as u32);
SP.write(CORE1_STACK.get());
boot_core1(); boot_core1();
} }
_ => unreachable!(), _ => unreachable!(),
@ -43,7 +45,7 @@ pub unsafe extern "C" fn Reset() -> ! {
unsafe fn boot_core0() -> ! { unsafe fn boot_core0() -> ! {
l1_cache_init(); l1_cache_init();
let mpcore = mpcore::RegisterBlock::mpcore(); let mpcore = mpcore::RegisterBlock::new();
mpcore.scu_invalidate.invalidate_all_cores(); mpcore.scu_invalidate.invalidate_all_cores();
zero_bss(&mut __bss_start, &mut __bss_end); zero_bss(&mut __bss_start, &mut __bss_end);
@ -53,12 +55,10 @@ unsafe fn boot_core0() -> ! {
mmu::with_mmu(mmu_table, || { mmu::with_mmu(mmu_table, || {
mpcore.scu_control.start(); mpcore.scu_control.start();
ACTLR.enable_smp(); ACTLR.enable_smp();
ACTLR.enable_prefetch();
// TODO: Barriers reqd when core1 is not yet starting? // TODO: Barriers reqd when core1 is not yet starting?
asm::dmb(); asm::dmb();
asm::dsb(); asm::dsb();
asm::enable_irq();
main_core0(); main_core0();
panic!("return from main"); panic!("return from main");
}); });
@ -69,18 +69,16 @@ unsafe fn boot_core0() -> ! {
unsafe fn boot_core1() -> ! { unsafe fn boot_core1() -> ! {
l1_cache_init(); l1_cache_init();
let mpcore = mpcore::RegisterBlock::mpcore(); let mpcore = mpcore::RegisterBlock::new();
mpcore.scu_invalidate.invalidate_core1(); mpcore.scu_invalidate.invalidate_core1();
let mmu_table = mmu::L1Table::get(); let mmu_table = mmu::L1Table::get();
mmu::with_mmu(mmu_table, || { mmu::with_mmu(mmu_table, || {
ACTLR.enable_smp(); ACTLR.enable_smp();
ACTLR.enable_prefetch();
// TODO: Barriers reqd when core1 is not yet starting? // TODO: Barriers reqd when core1 is not yet starting?
asm::dmb(); asm::dmb();
asm::dsb(); asm::dsb();
asm::enable_irq();
main_core1(); main_core1();
panic!("return from main_core1"); panic!("return from main_core1");
}); });
@ -103,15 +101,32 @@ fn l1_cache_init() {
// for all of the L1 data cache rather than a (previously // for all of the L1 data cache rather than a (previously
// unspecified) combination of one cache set and one cache // unspecified) combination of one cache set and one cache
// way. // way.
dciall_l1(); dciall();
} }
pub struct Core1 { pub struct Core1<S: AsMut<[u32]>> {
pub stack: S,
} }
impl Core1 { impl<S: AsMut<[u32]>> Core1<S> {
pub fn reset(&self) {
unsafe {
CORE1_STACK.set(0);
}
slcr::RegisterBlock::unlocked(|slcr| {
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(true));
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false));
});
}
/// Reset and start core1 /// Reset and start core1
pub fn start(sdram: bool) -> Self { ///
/// The stack must not be in OCM because core1 still has to
/// initialize its MMU before it can access DDR.
pub fn start(stack: S) -> Self {
let mut core = Core1 { stack };
// reset and stop (safe to repeat) // reset and stop (safe to repeat)
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(true)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(true));
@ -119,54 +134,22 @@ impl Core1 {
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false));
}); });
if sdram { let stack = core.stack.as_mut();
// Cores always start from OCM no matter what you do. let stack_start = &mut stack[stack.len() - 1];
// Make up a vector table there that just jumps to SDRAM.
for i in 0..8 {
unsafe {
// this is the ARM instruction "b +0x00100000"
write_volatile((i*4) as *mut u32, 0xea03fffe);
}
}
}
unsafe { unsafe {
CORE1_ENABLED.set(true); CORE1_STACK.set(stack_start as *mut _ as u32);
} }
// Ensure stack pointer has been written to cache
asm::dmb();
// Flush cache-line // Flush cache-line
cache::dcc(unsafe { &CORE1_ENABLED }); cache::dccmvac(unsafe { &CORE1_STACK } as *const _ as u32);
if sdram {
cache::dccmvac(0);
asm::dsb();
l2c::l2_cache_clean(0);
l2c::l2_cache_sync();
}
// wake up core1 // wake up core1
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false));
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(false)); slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(false));
}); });
notify_spin_lock();
Core1 {} core
}
pub fn disable(&self) {
unsafe {
CORE1_ENABLED.set(false);
cache::dccmvac(&CORE1_ENABLED as *const _ as usize);
asm::dsb();
}
self.restart();
}
pub fn restart(&self) {
slcr::RegisterBlock::unlocked(|slcr| {
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(true));
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(true));
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_rst1(false));
slcr.a9_cpu_rst_ctrl.modify(|_, w| w.a9_clkstop1(false));
});
} }
} }

View File

@ -5,10 +5,9 @@
#![feature(panic_info_message)] #![feature(panic_info_message)]
pub extern crate alloc; pub extern crate alloc;
pub extern crate compiler_builtins;
pub mod boot; pub mod boot;
mod abort; mod abort;
#[cfg(feature = "panic_handler")]
mod panic; mod panic;
pub mod ram; pub mod ram;
pub use smoltcp;

View File

@ -1,4 +1,4 @@
use libboard_zynq::{print, println}; use libboard_zynq::{slcr, print, println};
#[panic_handler] #[panic_handler]
fn panic(info: &core::panic::PanicInfo) -> ! { fn panic(info: &core::panic::PanicInfo) -> ! {
@ -14,5 +14,6 @@ fn panic(info: &core::panic::PanicInfo) -> ! {
println!(""); println!("");
} }
slcr::RegisterBlock::unlocked(|slcr| slcr.soft_reset());
loop {} loop {}
} }

41
libboard_zc706/src/ram.rs Normal file
View File

@ -0,0 +1,41 @@
use core::alloc::GlobalAlloc;
use core::ptr::NonNull;
use alloc::alloc::Layout;
use linked_list_allocator::Heap;
use libcortex_a9::mutex::Mutex;
use libboard_zynq::ddr::DdrRam;
#[global_allocator]
static ALLOCATOR: CortexA9Alloc = CortexA9Alloc(Mutex::new(Heap::empty()));
/// LockedHeap doesn't locking properly
struct CortexA9Alloc(Mutex<Heap>);
unsafe impl Sync for CortexA9Alloc {}
unsafe impl GlobalAlloc for CortexA9Alloc {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
self.0.lock()
.allocate_first_fit(layout)
.ok()
.map_or(0 as *mut u8, |allocation| allocation.as_ptr())
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
self.0.lock()
.deallocate(NonNull::new_unchecked(ptr), layout)
}
}
pub fn init_alloc(ddr: &mut DdrRam) {
unsafe {
ALLOCATOR.0.lock()
.init(ddr.ptr::<u8>() as usize, ddr.size());
}
}
#[alloc_error_handler]
fn alloc_error(_: core::alloc::Layout) -> ! {
panic!("alloc_error")
}

View File

@ -2,26 +2,24 @@
name = "libboard_zynq" name = "libboard_zynq"
description = "Drivers for peripherals in the Zynq PS" description = "Drivers for peripherals in the Zynq PS"
version = "0.0.0" version = "0.0.0"
authors = ["M-Labs"] authors = ["Astro <astro@spaceboyz.net>"]
edition = "2018" edition = "2018"
[features] [features]
target_zc706 = [] target_zc706 = []
target_cora_z7_10 = [] target_cora_z7_10 = []
target_redpitaya = []
ipv6 = [ "smoltcp/proto-ipv6" ]
[dependencies] [dependencies]
r0 = "0.2"
vcell = "0.1"
volatile-register = "0.2" volatile-register = "0.2"
bit_field = "0.10" bit_field = "0.10"
embedded-hal = "0.2" linked_list_allocator = { version = "0.6", default-features = false }
nb = "0.1"
void = { version = "1", default-features = false }
log = "0.4"
libregister = { path = "../libregister" } libregister = { path = "../libregister" }
libcortex_a9 = { path = "../libcortex_a9" } libcortex_a9 = { path = "../libcortex_a9" }
[dependencies.smoltcp] [dependencies.smoltcp]
version = "0.6" git = "https://github.com/m-labs/smoltcp.git"
rev = "8eb01aca364aefe5f823d68d552d62c76c9be4a3"
features = ["ethernet", "proto-ipv4", "socket-tcp"] features = ["ethernet", "proto-ipv4", "socket-tcp"]
default-features = false default-features = false

View File

@ -1,4 +1,4 @@
use libregister::{RegisterR, RegisterRW}; use libregister::{RegisterR, RegisterW, RegisterRW};
use super::slcr; use super::slcr;
pub use slcr::ArmPllSource; pub use slcr::ArmPllSource;
@ -14,7 +14,7 @@ enum CpuClockMode {
impl CpuClockMode { impl CpuClockMode {
pub fn get() -> Self { pub fn get() -> Self {
let regs = slcr::RegisterBlock::slcr(); let regs = slcr::RegisterBlock::new();
if regs.clk_621_true.read().clk_621_true() { if regs.clk_621_true.read().clk_621_true() {
CpuClockMode::C621 CpuClockMode::C621
} else { } else {
@ -59,7 +59,7 @@ impl Clocks {
} }
pub fn cpu_6x4x(&self) -> u32 { pub fn cpu_6x4x(&self) -> u32 {
let slcr = slcr::RegisterBlock::slcr(); let slcr = slcr::RegisterBlock::new();
let arm_clk_ctrl = slcr.arm_clk_ctrl.read(); let arm_clk_ctrl = slcr.arm_clk_ctrl.read();
let pll = match arm_clk_ctrl.srcsel() { let pll = match arm_clk_ctrl.srcsel() {
ArmPllSource::ArmPll => self.arm, ArmPllSource::ArmPll => self.arm,
@ -92,7 +92,7 @@ impl Clocks {
} }
pub fn uart_ref_clk(&self) -> u32 { pub fn uart_ref_clk(&self) -> u32 {
let regs = slcr::RegisterBlock::slcr(); let regs = slcr::RegisterBlock::new();
let uart_clk_ctrl = regs.uart_clk_ctrl.read(); let uart_clk_ctrl = regs.uart_clk_ctrl.read();
let pll = match uart_clk_ctrl.srcsel() { let pll = match uart_clk_ctrl.srcsel() {
slcr::PllSource::ArmPll => slcr::PllSource::ArmPll =>
@ -104,18 +104,4 @@ impl Clocks {
}; };
pll / u32::from(uart_clk_ctrl.divisor()) pll / u32::from(uart_clk_ctrl.divisor())
} }
pub fn sdio_ref_clk(&self) -> u32 {
let regs = slcr::RegisterBlock::slcr();
let sdio_clk_ctrl = regs.sdio_clk_ctrl.read();
let pll = match sdio_clk_ctrl.srcsel() {
slcr::PllSource::ArmPll =>
self.arm,
slcr::PllSource::DdrPll =>
self.ddr,
slcr::PllSource::IoPll =>
self.io,
};
pll / u32::from(sdio_clk_ctrl.divisor())
}
} }

View File

@ -1,4 +1,3 @@
use log::debug;
use libregister::{RegisterR, RegisterW, RegisterRW}; use libregister::{RegisterR, RegisterW, RegisterRW};
use super::slcr; use super::slcr;
@ -6,8 +5,6 @@ use super::slcr;
pub const PS_CLK: u32 = 33_333_333; pub const PS_CLK: u32 = 33_333_333;
#[cfg(feature = "target_cora_z7_10")] #[cfg(feature = "target_cora_z7_10")]
pub const PS_CLK: u32 = 50_000_000; pub const PS_CLK: u32 = 50_000_000;
#[cfg(feature = "target_redpitaya")]
pub const PS_CLK: u32 = 33_333_333;
/// (pll_fdiv_max, (pll_cp, pll_res, lock_cnt)) /// (pll_fdiv_max, (pll_cp, pll_res, lock_cnt))
const PLL_FDIV_LOCK_PARAM: &[(u16, (u8, u8, u16))] = &[ const PLL_FDIV_LOCK_PARAM: &[(u16, (u8, u8, u16))] = &[
@ -46,13 +43,11 @@ pub trait ClockSource {
/// get configured frequency /// get configured frequency
fn freq() -> u32 { fn freq() -> u32 {
let mut slcr = slcr::RegisterBlock::slcr(); let mut slcr = slcr::RegisterBlock::new();
let (pll_ctrl, _, _) = Self::pll_regs(&mut slcr); let (pll_ctrl, _, _) = Self::pll_regs(&mut slcr);
u32::from(pll_ctrl.read().pll_fdiv()) * PS_CLK u32::from(pll_ctrl.read().pll_fdiv()) * PS_CLK
} }
fn name() -> &'static str;
/// Zynq-7000 AP SoC Technical Reference Manual: /// Zynq-7000 AP SoC Technical Reference Manual:
/// 25.10.4 PLLs /// 25.10.4 PLLs
fn setup(target_freq: u32) { fn setup(target_freq: u32) {
@ -63,7 +58,6 @@ pub trait ClockSource {
.expect("PLL_FDIV_LOCK_PARAM") .expect("PLL_FDIV_LOCK_PARAM")
.1.clone(); .1.clone();
debug!("Set {} to {} Hz", Self::name(), target_freq);
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
let (pll_ctrl, pll_cfg, pll_status) = Self::pll_regs(slcr); let (pll_ctrl, pll_cfg, pll_status) = Self::pll_regs(slcr);
@ -114,10 +108,6 @@ impl ClockSource for ArmPll {
fn pll_locked(pll_status: &mut crate::slcr::PllStatus) -> bool { fn pll_locked(pll_status: &mut crate::slcr::PllStatus) -> bool {
pll_status.read().arm_pll_lock() pll_status.read().arm_pll_lock()
} }
fn name() -> &'static str {
&"ARM_PLL"
}
} }
/// DDR PLL: Recommended clock for the DDR DRAM controller and AXI_HP interfaces /// DDR PLL: Recommended clock for the DDR DRAM controller and AXI_HP interfaces
@ -140,10 +130,6 @@ impl ClockSource for DdrPll {
fn pll_locked(pll_status: &mut crate::slcr::PllStatus) -> bool { fn pll_locked(pll_status: &mut crate::slcr::PllStatus) -> bool {
pll_status.read().ddr_pll_lock() pll_status.read().ddr_pll_lock()
} }
fn name() -> &'static str {
&"DDR_PLL"
}
} }
/// I/O PLL: Recommended clock for I/O peripherals /// I/O PLL: Recommended clock for I/O peripherals
@ -167,8 +153,4 @@ impl ClockSource for IoPll {
fn pll_locked(pll_status: &mut crate::slcr::PllStatus) -> bool { fn pll_locked(pll_status: &mut crate::slcr::PllStatus) -> bool {
pll_status.read().io_pll_lock() pll_status.read().io_pll_lock()
} }
fn name() -> &'static str {
&"IO_PLL"
}
} }

View File

@ -1,7 +1,6 @@
use libregister::{RegisterR, RegisterW, RegisterRW}; use libregister::{RegisterR, RegisterW, RegisterRW};
use log::{debug, info, error};
use crate::{print, println}; use crate::{print, println};
use super::slcr::{self, DdriobVrefSel}; use super::slcr;
use super::clocks::{Clocks, source::{DdrPll, ClockSource}}; use super::clocks::{Clocks, source::{DdrPll, ClockSource}};
mod regs; mod regs;
@ -14,10 +13,6 @@ const DDR_FREQ: u32 = 666_666_666;
/// Micron MT41K256M16HA-125: 800 MHz DDR3L, max supported 533 MHz /// Micron MT41K256M16HA-125: 800 MHz DDR3L, max supported 533 MHz
const DDR_FREQ: u32 = 525_000_000; const DDR_FREQ: u32 = 525_000_000;
#[cfg(feature = "target_redpitaya")]
/// Alliance Memory AS4C256M16D3B: 800 MHz DDR3
const DDR_FREQ: u32 = 800_000_000;
/// MT41K256M16HA-125 /// MT41K256M16HA-125
const DCI_FREQ: u32 = 10_000_000; const DCI_FREQ: u32 = 10_000_000;
@ -26,14 +21,13 @@ pub struct DdrRam {
} }
impl DdrRam { impl DdrRam {
pub fn ddrram() -> Self { pub fn new() -> Self {
let clocks = Self::clock_setup(); let clocks = Self::clock_setup();
Self::calibrate_iob_impedance(&clocks); Self::calibrate_iob_impedance(&clocks);
Self::configure_iob(); Self::configure_iob();
let regs = regs::RegisterBlock::ddrc(); let regs = unsafe { regs::RegisterBlock::new() };
let mut ddr = DdrRam { regs }; let mut ddr = DdrRam { regs };
ddr.configure();
ddr.reset_ddrc(); ddr.reset_ddrc();
ddr ddr
} }
@ -44,9 +38,11 @@ impl DdrRam {
DdrPll::setup(2 * DDR_FREQ); DdrPll::setup(2 * DDR_FREQ);
let clocks = Clocks::get(); let clocks = Clocks::get();
println!("Clocks: {:?}", clocks);
let ddr3x_clk_divisor = 2; let ddr3x_clk_divisor = 2;
let ddr2x_clk_divisor = 3; let ddr2x_clk_divisor = 3;
debug!("DDR 3x/2x clocks: {}/{}", clocks.ddr / u32::from(ddr3x_clk_divisor), clocks.ddr / u32::from(ddr2x_clk_divisor)); println!("DDR 3x/2x clocks: {}/{}", clocks.ddr / u32::from(ddr3x_clk_divisor), clocks.ddr / u32::from(ddr2x_clk_divisor));
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
slcr.ddr_clk_ctrl.write( slcr.ddr_clk_ctrl.write(
@ -60,35 +56,14 @@ impl DdrRam {
clocks clocks
} }
fn calculate_dci_divisors(clocks: &Clocks) -> (u8, u8) {
let target = (DCI_FREQ - 1 + clocks.ddr) / DCI_FREQ;
let mut best = None;
let mut best_error = 0;
for divisor0 in 1..63 {
for divisor1 in 1..63 {
let current = (divisor0 as u32) * (divisor1 as u32);
let error = if current > target {
current - target
} else {
target - current
};
if best.is_none() || best_error > error {
best = Some((divisor0, divisor1));
best_error = error;
}
}
}
best.unwrap()
}
/// Zynq-7000 AP SoC Technical Reference Manual: /// Zynq-7000 AP SoC Technical Reference Manual:
/// 10.6.2 DDR IOB Impedance Calibration /// 10.6.2 DDR IOB Impedance Calibration
fn calibrate_iob_impedance(clocks: &Clocks) { fn calibrate_iob_impedance(clocks: &Clocks) {
let (divisor0, divisor1) = Self::calculate_dci_divisors(clocks); let divisor0 = ((DCI_FREQ - 1 + clocks.ddr) / DCI_FREQ)
debug!("DDR DCI clock: {} Hz (divisors={}*{})", .max(1).min(63) as u8;
clocks.ddr / u32::from(divisor0) / u32::from(divisor1), let divisor1 = (clocks.ddr / DCI_FREQ / u32::from(divisor0))
divisor0, divisor1); .max(1).min(63) as u8;
println!("DDR DCI clock: {} Hz", clocks.ddr / u32::from(divisor0) / u32::from(divisor1));
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
// Step 1. // Step 1.
@ -136,63 +111,21 @@ impl DdrRam {
slcr.ddriob_addr0.write(addr_config.clone()); slcr.ddriob_addr0.write(addr_config.clone());
slcr.ddriob_addr1.write(addr_config); slcr.ddriob_addr1.write(addr_config);
#[cfg(feature = "target_zc706")] let data_config = slcr::DdriobConfig::zeroed()
let data0_config = slcr::DdriobConfig::zeroed()
.inp_type(slcr::DdriobInputType::VrefDifferential) .inp_type(slcr::DdriobInputType::VrefDifferential)
.term_en(true) .term_en(true)
.dci_type(slcr::DdriobDciType::Termination) .dci_type(slcr::DdriobDciType::Termination)
.output_en(slcr::DdriobOutputEn::Obuf); .output_en(slcr::DdriobOutputEn::Obuf);
#[cfg(feature = "target_zc706")] slcr.ddriob_data0.write(data_config.clone());
let data1_config = data0_config.clone(); slcr.ddriob_data1.write(data_config);
#[cfg(feature = "target_cora_z7_10")]
let data0_config = slcr::DdriobConfig::zeroed()
.inp_type(slcr::DdriobInputType::VrefDifferential)
.term_en(true)
.dci_type(slcr::DdriobDciType::Termination)
.output_en(slcr::DdriobOutputEn::Obuf);
#[cfg(feature = "target_cora_z7_10")]
let data1_config = slcr::DdriobConfig::zeroed()
.pullup_en(true);
#[cfg(feature = "target_redpitaya")]
let data0_config = slcr::DdriobConfig::zeroed()
.inp_type(slcr::DdriobInputType::VrefDifferential)
.term_en(true)
.dci_type(slcr::DdriobDciType::Termination)
.output_en(slcr::DdriobOutputEn::Obuf);
#[cfg(feature = "target_redpitaya")]
let data1_config = slcr::DdriobConfig::zeroed()
.pullup_en(true);
slcr.ddriob_data0.write(data0_config);
slcr.ddriob_data1.write(data1_config);
#[cfg(feature = "target_zc706")] let diff_config = slcr::DdriobConfig::zeroed()
let diff0_config = slcr::DdriobConfig::zeroed()
.inp_type(slcr::DdriobInputType::Differential) .inp_type(slcr::DdriobInputType::Differential)
.term_en(true) .term_en(true)
.dci_type(slcr::DdriobDciType::Termination) .dci_type(slcr::DdriobDciType::Termination)
.output_en(slcr::DdriobOutputEn::Obuf); .output_en(slcr::DdriobOutputEn::Obuf);
#[cfg(feature = "target_zc706")] slcr.ddriob_diff0.write(diff_config.clone());
let diff1_config = diff0_config.clone(); slcr.ddriob_diff1.write(diff_config);
#[cfg(feature = "target_cora_z7_10")]
let diff0_config = slcr::DdriobConfig::zeroed()
.inp_type(slcr::DdriobInputType::Differential)
.term_en(true)
.dci_type(slcr::DdriobDciType::Termination)
.output_en(slcr::DdriobOutputEn::Obuf);
#[cfg(feature = "target_cora_z7_10")]
let diff1_config = slcr::DdriobConfig::zeroed()
.pullup_en(true);
#[cfg(feature = "target_redpitaya")]
let diff0_config = slcr::DdriobConfig::zeroed()
.inp_type(slcr::DdriobInputType::Differential)
.term_en(true)
.dci_type(slcr::DdriobDciType::Termination)
.output_en(slcr::DdriobOutputEn::Obuf);
#[cfg(feature = "target_redpitaya")]
let diff1_config = slcr::DdriobConfig::zeroed()
.pullup_en(true);
slcr.ddriob_diff0.write(diff0_config);
slcr.ddriob_diff1.write(diff1_config);
slcr.ddriob_clock.write( slcr.ddriob_clock.write(
slcr::DdriobConfig::zeroed() slcr::DdriobConfig::zeroed()
@ -207,126 +140,37 @@ impl DdrRam {
slcr.ddriob_drive_slew_clock.write(0x00F9861C); slcr.ddriob_drive_slew_clock.write(0x00F9861C);
} }
// Enable external V[REF]
#[cfg(feature = "target_cora_z7_10")]
slcr.ddriob_ddr_ctrl.modify(|_, w| w
.vref_int_en(false)
.vref_ext_en_lower(true)
.vref_ext_en_upper(false)
);
#[cfg(feature = "target_zc706")] #[cfg(feature = "target_zc706")]
let vref_sel = slcr::DdriobVrefSel::Vref0_75V;
#[cfg(feature = "target_cora_z7_10")]
let vref_sel = slcr::DdriobVrefSel::Vref0_675V;
// // Enable internal V[REF]
// slcr.ddriob_ddr_ctrl.modify(|_, w| w
// .vref_ext_en_lower(false)
// .vref_ext_en_upper(false)
// .vref_sel(vref_sel)
// .vref_int_en(true)
// );
// Enable external V[REF]
slcr.ddriob_ddr_ctrl.modify(|_, w| w slcr.ddriob_ddr_ctrl.modify(|_, w| w
.vref_int_en(true)
.vref_sel(DdriobVrefSel::Vref0_75V)
.vref_ext_en_lower(false)
.vref_ext_en_upper(false)
);
#[cfg(feature = "target_redpitaya")]
slcr.ddriob_ddr_ctrl.modify(|_, w| w
.vref_int_en(false)
.vref_ext_en_lower(true) .vref_ext_en_lower(true)
.vref_ext_en_upper(false) .vref_ext_en_upper(true)
.vref_sel(vref_sel)
.vref_int_en(false)
); );
}); });
} }
fn configure(&mut self) {
self.regs.dram_param0.write(
regs::DramParam0::zeroed()
.t_rc(0x1b)
.t_rfc_min(0x56)
.post_selfref_gap_x32(0x10)
);
self.regs.dram_param2.write(
regs::DramParam2::zeroed()
.write_latency(0x5)
.rd2wr(0x7)
.wr2rd(0xe)
.t_xp(0x4)
.pad_pd(0x0)
.rd2pre(0x4)
.t_rcd(0x7)
);
self.regs.dram_emr_mr.write(
regs::DramEmrMr::zeroed()
.mr(0x930)
.emr(0x4)
);
self.regs.phy_cmd_timeout_rddata_cpt.modify(
|_, w| w
.rd_cmd_to_data(0x0)
.wr_cmd_to_data(0x0)
.we_to_re_delay(0x8)
.rdc_fifo_rst_disable(false)
.use_fixed_re(true)
.rdc_fifo_rst_err_cnt_clr(false)
.dis_phy_ctrl_rstn(false)
.clk_stall_level(false)
.gatelvl_num_of_dq0(0x7)
.wrlvl_num_of_dq0(0x7)
);
self.regs.reg_2c.write(
regs::Reg2C::zeroed()
.wrlvl_max_x1024(0xfff)
.rdlvl_max_x1024(0xfff)
.twrlvl_max_error(false)
.trdlvl_max_error(false)
.dfi_wr_level_en(true)
.dfi_rd_dqs_gate_level(true)
.dfi_rd_data_eye_train(true)
);
self.regs.dfi_timing.write(
regs::DfiTiming::zeroed()
.rddata_en(0x6)
.ctrlup_min(0x3)
.ctrlup_max(0x40)
);
self.regs.phy_init_ratio3.write(
regs::PhyInitRatio::zeroed()
.wrlvl_init_ratio(0x21)
.gatelvl_init_ratio(0xee)
);
self.regs.reg_65.write(
regs::Reg65::zeroed()
.wr_rl_delay(0x2)
.rd_rl_delay(0x4)
.dll_lock_diff(0xf)
.use_wr_level(true)
.use_rd_dqs_gate_level(true)
.use_rd_data_eye_level(true)
.dis_calib_rst(false)
.ctrl_slave_delay(0x0)
);
}
/// Reset DDR controller /// Reset DDR controller
fn reset_ddrc(&mut self) { fn reset_ddrc(&mut self) {
#[cfg(feature = "target_zc706")] self.regs.ddrc_ctrl.modify(|_, w| w
unsafe { .soft_rstb(false)
// row/column address bits );
self.regs.dram_addr_map_bank.write(0x00000777);
self.regs.dram_addr_map_col.write(0xFFF00000);
self.regs.dram_addr_map_row.write(0x0F666666);
}
#[cfg(feature = "target_zc706")] #[cfg(feature = "target_zc706")]
let width = regs::DataBusWidth::Width32bit; let width = regs::DataBusWidth::Width32bit;
#[cfg(feature = "target_cora_z7_10")] #[cfg(feature = "target_cora_z7_10")]
let width = regs::DataBusWidth::Width16bit; let width = regs::DataBusWidth::Width16bit;
#[cfg(feature = "target_redpitaya")]
let width = regs::DataBusWidth::Width16bit;
self.regs.ddrc_ctrl.modify(|_, w| w
.soft_rstb(false)
.powerdown_en(false)
.data_bus_width(width)
);
self.regs.ddrc_ctrl.modify(|_, w| w self.regs.ddrc_ctrl.modify(|_, w| w
.soft_rstb(true) .soft_rstb(true)
.powerdown_en(false) .powerdown_en(false)
@ -337,21 +181,17 @@ impl DdrRam {
} }
pub fn status(&self) -> regs::ControllerStatus { pub fn status(&self) -> regs::ControllerStatus {
self.regs.mode_sts.read().operating_mode() self.regs.mode_sts_reg.read().operating_mode()
} }
pub fn ptr<T>(&mut self) -> *mut T { pub fn ptr<T>(&mut self) -> *mut T {
0x0010_0000 as *mut _ 0x0010_0000 as *mut _
} }
/// actually there's 1 MB more but starting at 0x0000_0000
/// overlaps with OCM.
pub fn size(&self) -> usize { pub fn size(&self) -> usize {
#[cfg(feature = "target_zc706")] #[cfg(feature = "target_zc706")]
let megabytes = 1023;
#[cfg(feature = "target_cora_z7_10")]
let megabytes = 511; let megabytes = 511;
#[cfg(feature = "target_redpitaya")] #[cfg(feature = "target_cora_z7_10")]
let megabytes = 511; let megabytes = 511;
megabytes * 1024 * 1024 megabytes * 1024 * 1024
@ -364,16 +204,16 @@ impl DdrRam {
let patterns: &'static [u32] = &[0xffff_ffff, 0x5555_5555, 0xaaaa_aaaa, 0]; let patterns: &'static [u32] = &[0xffff_ffff, 0x5555_5555, 0xaaaa_aaaa, 0];
let mut expected = None; let mut expected = None;
for (i, pattern) in patterns.iter().enumerate() { for (i, pattern) in patterns.iter().enumerate() {
info!("memtest phase {} (status: {:?})", i, self.status()); println!("memtest phase {} (status: {:?})", i, self.status());
for megabyte in 0..slice.len() / (1024 * 1024) { for megabyte in 0..=(slice.len() / (1024 * 1024)) {
let start = megabyte * 1024 * 1024 / 4; let start = megabyte * 1024 * 1024 / 4;
let end = (megabyte + 1) * 1024 * 1024 / 4; let end = ((megabyte + 1) * 1024 * 1024 / 4).min(slice.len());
for b in slice[start..end].iter_mut() { for b in slice[start..end].iter_mut() {
expected.map(|expected| { expected.map(|expected| {
let read: u32 = *b; let read: u32 = *b;
if read != expected { if read != expected {
error!("{:08X}: expected {:08X}, read {:08X}", b as *mut _ as usize, expected, read); println!("{:08X}: expected {:08X}, read {:08X}", b as *mut _ as usize, expected, read);
} }
}); });
*b = *pattern; *b = *pattern;

View File

@ -1,9 +1,8 @@
use volatile_register::{RO, RW}; use volatile_register::{RO, RW};
use libregister::{register, register_at, register_bit, register_bits, register_bits_typed}; use libregister::{register, register_bit, register_bits_typed};
#[allow(unused)] #[allow(unused)]
#[derive(Clone, Copy)]
#[repr(u8)] #[repr(u8)]
pub enum DataBusWidth { pub enum DataBusWidth {
Width32bit = 0b00, Width32bit = 0b00,
@ -29,59 +28,59 @@ pub enum ControllerStatus {
pub struct RegisterBlock { pub struct RegisterBlock {
pub ddrc_ctrl: DdrcCtrl, pub ddrc_ctrl: DdrcCtrl,
pub two_rank_cfg: RW<u32>, pub two_rank_cfg: RW<u32>,
pub hpr: RW<u32>, pub hpr_reg: RW<u32>,
pub lpr: RW<u32>, pub lpr_reg: RW<u32>,
pub wr: RW<u32>, pub wr_reg: RW<u32>,
pub dram_param0: DramParam0, pub dram_param_reg0: RW<u32>,
pub dram_param1: RW<u32>, pub dram_param_reg1: RW<u32>,
pub dram_param2: DramParam2, pub dram_param_reg2: RW<u32>,
pub dram_param3: RW<u32>, pub dram_param_reg3: RW<u32>,
pub dram_param4: RW<u32>, pub dram_param_reg4: RW<u32>,
pub dram_init_param: RW<u32>, pub dram_init_param: RW<u32>,
pub dram_emr: RW<u32>, pub dram_emr_reg: RW<u32>,
pub dram_emr_mr: DramEmrMr, pub dram_emr_mr_reg: RW<u32>,
pub dram_burst8_rdwr: RW<u32>, pub dram_burst8_rdwr: RW<u32>,
pub dram_disable_dq: RW<u32>, pub dram_disable_dq: RW<u32>,
pub dram_addr_map_bank: RW<u32>, pub dram_addr_map_bank: RW<u32>,
pub dram_addr_map_col: RW<u32>, pub dram_addr_map_col: RW<u32>,
pub dram_addr_map_row: RW<u32>, pub dram_addr_map_row: RW<u32>,
pub dram_odt: RW<u32>, pub dram_odt_reg: RW<u32>,
pub phy_dbg: RW<u32>, pub phy_dbg_reg: RW<u32>,
pub phy_cmd_timeout_rddata_cpt: PhyCmdTimeoutRddataCpt, pub phy_cmd_timeout_rddata_cpt: RW<u32>,
pub mode_sts: ModeStsReg, pub mode_sts_reg: ModeStsReg,
pub dll_calib: RW<u32>, pub dll_calib: RW<u32>,
pub odt_delay_hold: RW<u32>, pub odt_delay_hold: RW<u32>,
pub ctrl1: RW<u32>, pub ctrl_reg1: RW<u32>,
pub ctrl2: RW<u32>, pub ctrl_reg2: RW<u32>,
pub ctrl3: RW<u32>, pub ctrl_reg3: RW<u32>,
pub ctrl4: RW<u32>, pub ctrl_reg4: RW<u32>,
_unused0: [RO<u32>; 2], _unused0: [RO<u32>; 2],
pub ctrl5: RW<u32>, pub ctrl_reg5: RW<u32>,
pub ctrl6: RW<u32>, pub ctrl_reg6: RW<u32>,
_unused1: [RO<u32>; 8], _unused1: [RO<u32>; 8],
pub che_refresh_timer01: RW<u32>, pub che_refresh_timer01: RW<u32>,
pub che_t_zq: RW<u32>, pub che_t_zq: RW<u32>,
pub che_t_zq_short_interval: RW<u32>, pub che_t_zq_short_interval_reg: RW<u32>,
pub deep_pwrdwn: RW<u32>, pub deep_pwrdwn_reg: RW<u32>,
pub reg_2c: Reg2C, pub reg_2c: RW<u32>,
pub reg_2d: RW<u32>, pub reg_2d: RW<u32>,
pub dfi_timing: DfiTiming, pub dfi_timing: RW<u32>,
_unused2: [RO<u32>; 2], _unused2: [RO<u32>; 2],
pub che_ecc_control_offset: RW<u32>, pub che_ecc_control_reg_offset: RW<u32>,
pub che_corr_ecc_log_offset: RW<u32>, pub che_corr_ecc_log_reg_offset: RW<u32>,
pub che_corr_ecc_addr_offset: RW<u32>, pub che_corr_ecc_addr_reg_offset: RW<u32>,
pub che_corr_ecc_data_31_0_offset: RW<u32>, pub che_corr_ecc_data_31_0_reg_offset: RW<u32>,
pub che_corr_ecc_data_63_32_offset: RW<u32>, pub che_corr_ecc_data_63_32_reg_offset: RW<u32>,
pub che_corr_ecc_data_71_64_offset: RW<u32>, pub che_corr_ecc_data_71_64_reg_offset: RW<u32>,
pub che_uncorr_ecc_log_offset: RW<u32>, pub che_uncorr_ecc_log_reg_offset: RW<u32>,
pub che_uncorr_ecc_addr_offset: RW<u32>, pub che_uncorr_ecc_addr_reg_offset: RW<u32>,
pub che_uncorr_ecc_data_31_0_offset: RW<u32>, pub che_uncorr_ecc_data_31_0_reg_offset: RW<u32>,
pub che_uncorr_ecc_data_63_32_offset: RW<u32>, pub che_uncorr_ecc_data_63_32_reg_offset: RW<u32>,
pub che_uncorr_ecc_data_71_64_offset: RW<u32>, pub che_uncorr_ecc_data_71_64_reg_offset: RW<u32>,
pub che_ecc_stats_offset: RW<u32>, pub che_ecc_stats_reg_offset: RW<u32>,
pub ecc_scrub: RW<u32>, pub ecc_scrub: RW<u32>,
pub che_ecc_corr_bit_mask_31_0_offset: RW<u32>, pub che_ecc_corr_bit_mask_31_0_reg_offset: RW<u32>,
pub che_ecc_corr_bit_mask_63_32_offset: RW<u32>, pub che_ecc_corr_bit_mask_63_32_reg_offset: RW<u32>,
_unused3: [RO<u32>; 5], _unused3: [RO<u32>; 5],
pub phy_rcvr_enable: RW<u32>, pub phy_rcvr_enable: RW<u32>,
pub phy_config0: RW<u32>, pub phy_config0: RW<u32>,
@ -89,10 +88,10 @@ pub struct RegisterBlock {
pub phy_config2: RW<u32>, pub phy_config2: RW<u32>,
pub phy_config3: RW<u32>, pub phy_config3: RW<u32>,
_unused4: RO<u32>, _unused4: RO<u32>,
pub phy_init_ratio0: PhyInitRatio, pub phy_init_ratio0: RW<u32>,
pub phy_init_ratio1: PhyInitRatio, pub phy_init_ratio1: RW<u32>,
pub phy_init_ratio2: PhyInitRatio, pub phy_init_ratio2: RW<u32>,
pub phy_init_ratio3: PhyInitRatio, pub phy_init_ratio3: RW<u32>,
_unused5: RO<u32>, _unused5: RO<u32>,
pub phy_rd_dqs_cfg0: RW<u32>, pub phy_rd_dqs_cfg0: RW<u32>,
pub phy_rd_dqs_cfg1: RW<u32>, pub phy_rd_dqs_cfg1: RW<u32>,
@ -115,7 +114,7 @@ pub struct RegisterBlock {
pub wr_data_slv3: RW<u32>, pub wr_data_slv3: RW<u32>,
_unused9: RO<u32>, _unused9: RO<u32>,
pub reg_64: RW<u32>, pub reg_64: RW<u32>,
pub reg_65: Reg65, pub reg_65: RW<u32>,
_unused10: [RO<u32>; 3], _unused10: [RO<u32>; 3],
pub reg69_6a0: RW<u32>, pub reg69_6a0: RW<u32>,
pub reg69_6a1: RW<u32>, pub reg69_6a1: RW<u32>,
@ -134,7 +133,7 @@ pub struct RegisterBlock {
_unused13: RO<u32>, _unused13: RO<u32>,
pub dll_lock_sts: RW<u32>, pub dll_lock_sts: RW<u32>,
pub phy_ctrl_sts: RW<u32>, pub phy_ctrl_sts: RW<u32>,
pub phy_ctrl_sts2: RW<u32>, pub phy_ctrl_sts_reg2: RW<u32>,
_unused14: [RO<u32>; 5], _unused14: [RO<u32>; 5],
pub axi_id: RW<u32>, pub axi_id: RW<u32>,
pub page_mask: RW<u32>, pub page_mask: RW<u32>,
@ -158,7 +157,11 @@ pub struct RegisterBlock {
pub lpddr_ctrl3: RW<u32>, pub lpddr_ctrl3: RW<u32>,
} }
register_at!(RegisterBlock, 0xF8006000, ddrc); impl RegisterBlock {
pub unsafe fn new() -> &'static mut Self {
&mut *(0xF8006000 as *mut _)
}
}
register!(ddrc_ctrl, DdrcCtrl, RW, u32); register!(ddrc_ctrl, DdrcCtrl, RW, u32);
register_bit!(ddrc_ctrl, register_bit!(ddrc_ctrl,
@ -168,64 +171,6 @@ register_bit!(ddrc_ctrl, powerdown_en, 1);
register_bits_typed!(ddrc_ctrl, data_bus_width, u8, DataBusWidth, 2, 3); register_bits_typed!(ddrc_ctrl, data_bus_width, u8, DataBusWidth, 2, 3);
// (ddrc_ctrl) ... // (ddrc_ctrl) ...
register!(dram_param0, DramParam0, RW, u32);
register_bits!(dram_param0, t_rc, u8, 0, 5);
register_bits!(dram_param0, t_rfc_min, u8, 6, 13);
register_bits!(dram_param0, post_selfref_gap_x32, u8, 14, 20);
register!(dram_param2, DramParam2, RW, u32);
register_bits!(dram_param2, write_latency, u8, 0, 4);
register_bits!(dram_param2, rd2wr, u8, 5, 9);
register_bits!(dram_param2, wr2rd, u8, 10, 14);
register_bits!(dram_param2, t_xp, u8, 15, 19);
register_bits!(dram_param2, pad_pd, u8, 20, 22);
register_bits!(dram_param2, rd2pre, u8, 23, 27);
register_bits!(dram_param2, t_rcd, u8, 28, 31);
register!(dram_emr_mr, DramEmrMr, RW, u32);
register_bits!(dram_emr_mr, mr, u16, 0, 15);
register_bits!(dram_emr_mr, emr, u16, 16, 31);
register!(phy_cmd_timeout_rddata_cpt, PhyCmdTimeoutRddataCpt, RW, u32);
register_bits!(phy_cmd_timeout_rddata_cpt, rd_cmd_to_data, u8, 0, 3);
register_bits!(phy_cmd_timeout_rddata_cpt, wr_cmd_to_data, u8, 4, 7);
register_bits!(phy_cmd_timeout_rddata_cpt, we_to_re_delay, u8, 8, 11);
register_bit!(phy_cmd_timeout_rddata_cpt, rdc_fifo_rst_disable, 15);
register_bit!(phy_cmd_timeout_rddata_cpt, use_fixed_re, 16);
register_bit!(phy_cmd_timeout_rddata_cpt, rdc_fifo_rst_err_cnt_clr, 17);
register_bit!(phy_cmd_timeout_rddata_cpt, dis_phy_ctrl_rstn, 18);
register_bit!(phy_cmd_timeout_rddata_cpt, clk_stall_level, 19);
register_bits!(phy_cmd_timeout_rddata_cpt, gatelvl_num_of_dq0, u8, 24, 27);
register_bits!(phy_cmd_timeout_rddata_cpt, wrlvl_num_of_dq0, u8, 28, 31);
register!(reg_2c, Reg2C, RW, u32);
register_bits!(reg_2c, wrlvl_max_x1024, u16, 0, 11);
register_bits!(reg_2c, rdlvl_max_x1024, u16, 12, 23);
register_bit!(reg_2c, twrlvl_max_error, 24);
register_bit!(reg_2c, trdlvl_max_error, 25);
register_bit!(reg_2c, dfi_wr_level_en, 26);
register_bit!(reg_2c, dfi_rd_dqs_gate_level, 27);
register_bit!(reg_2c, dfi_rd_data_eye_train, 28);
register!(dfi_timing, DfiTiming, RW, u32);
register_bits!(dfi_timing, rddata_en, u8, 0, 4);
register_bits!(dfi_timing, ctrlup_min, u16, 5, 14);
register_bits!(dfi_timing, ctrlup_max, u16, 15, 24);
register!(phy_init_ratio, PhyInitRatio, RW, u32);
register_bits!(phy_init_ratio, wrlvl_init_ratio, u16, 0, 9);
register_bits!(phy_init_ratio, gatelvl_init_ratio, u16, 10, 19);
register!(reg_65, Reg65, RW, u32);
register_bits!(reg_65, wr_rl_delay, u8, 0, 4);
register_bits!(reg_65, rd_rl_delay, u8, 5, 9);
register_bits!(reg_65, dll_lock_diff, u8, 10, 13);
register_bit!(reg_65, use_wr_level, 14);
register_bit!(reg_65, use_rd_dqs_gate_level, 15);
register_bit!(reg_65, use_rd_data_eye_level, 16);
register_bit!(reg_65, dis_calib_rst, 17);
register_bits!(reg_65, ctrl_slave_delay, u8, 18, 19);
// Controller operation mode status // Controller operation mode status
register!(mode_sts_reg, register!(mode_sts_reg,
ModeStsReg, RO, u32); ModeStsReg, RO, u32);

View File

@ -1,341 +1,29 @@
use super::time::Milliseconds; use core::fmt;
use crate::slcr;
use embedded_hal::timer::CountDown;
use libcortex_a9::cache;
use libregister::*;
use log::{debug, trace};
use libregister::*;
mod regs; mod regs;
pub struct DevC { pub struct DevC {
regs: &'static mut regs::RegisterBlock, regs: &'static mut regs::RegisterBlock,
enabled: bool,
count_down: super::timer::global::CountDown<Milliseconds>,
timeout_ms: Milliseconds,
}
/// DMA transfer type for PCAP
/// All insecure, we do not implement encrypted transfer
#[derive(PartialEq, Clone, Copy)]
pub enum TransferType {
PcapWrite,
PcapReadback,
ConcurrentReadWrite,
}
pub enum TransferTarget<'a> {
/// From/To PL, with length in bytes.
PL(u32),
/// Source target, immutable.
SliceSrc(&'a [u8]),
/// Last source target, immutable.
SliceSrcLast(&'a [u8]),
/// Destination target, mutable.
SliceDest(&'a mut [u8]),
/// Last destination target, mutable.
SliceDestLast(&'a mut [u8]),
}
#[derive(PartialEq, Clone, Copy, Debug)]
pub enum DevcError {
NotInitialized,
ResetTimeout,
DmaBusy,
DmaTimeout,
DoneTimeout,
Unknown(u32),
}
impl core::fmt::Display for DevcError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use DevcError::*;
match self {
NotInitialized => write!(f, "DevC driver not initialized properly."),
ResetTimeout => write!(f, "DevC driver reset timeout."),
DmaBusy => write!(f, "DevC driver DMA busy."),
DmaTimeout => write!(f, "DevC driver DMA timeout."),
DoneTimeout => write!(
f,
"FPGA DONE signal timeout. Check if the bitstream is correct."
),
Unknown(reg) => write!(f, "Unknown error, interrupt status register = 0x{:0X}", reg),
}
}
} }
impl DevC { impl DevC {
/// Create a new DevC peripheral handle with default timeout = 500ms.
pub fn new() -> Self { pub fn new() -> Self {
Self::new_timeout(Milliseconds(500))
}
/// Create a new DevC peripheral handle.
/// `timeout_ms`: timeout for operations like initialize and DMA transfer.
pub fn new_timeout(timeout_ms: Milliseconds) -> Self {
DevC { DevC {
regs: regs::RegisterBlock::devc(), regs: regs::RegisterBlock::devc(),
enabled: false,
count_down: unsafe { super::timer::GlobalTimer::get() }.countdown(),
timeout_ms,
} }
} }
/// Enable the devc driver, must be called before `program` or
/// `start_dma_transaction`.
pub fn enable(&mut self) { pub fn enable(&mut self) {
const UNLOCK_PATTERN: u32 = 0x757BDF0D; self.regs.control.modify(|_, w| {
unsafe { w.pcap_mode(true)
// unlock register with magic pattern .pcap_pr(true)
self.regs.unlock.write(UNLOCK_PATTERN);
}
self.regs
.control
.modify(|_, w| w.pcap_mode(true).pcap_pr(true));
self.regs
.int_mask
.write(self::regs::int_mask::Write { inner: 0xFFFFFFFF });
self.clear_interrupts();
self.enabled = true;
}
/// Disable the devc driver.
/// `enable` has to be called before further `program` or
/// `start_dma_transaction`.
pub fn disable(&mut self) {
self.regs
.control
.modify(|_, w| w.pcap_mode(false).pcap_pr(false));
self.enabled = false;
}
/// Check if the FPGA programming is done.
pub fn is_done(&self) -> bool {
// Note: contrary to what the TRM says, this appears to be simply the
// state of the DONE signal.
self.regs.int_sts.read().ixr_pcfg_done()
}
/// Wait on a certain condition with hardcoded timeout.
fn wait_condition<F: Fn(&mut Self) -> bool>(
&mut self,
fun: F,
err: DevcError,
) -> Result<(), DevcError> {
self.count_down.start(self.timeout_ms);
while let Err(nb::Error::WouldBlock) = self.count_down.wait() {
if fun(self) {
return Ok(());
} else if self.has_error() {
return Err(DevcError::Unknown(self.regs.int_sts.read().inner));
}
}
Err(err)
}
/// Program the FPGA.
/// Note that the user should make sure that the bitstream loaded is
/// correct.
pub fn program(&mut self, src: &[u8]) -> Result<(), DevcError> {
if !self.enabled {
panic!("Attempting to use devc when it is not enabled");
}
self.clear_interrupts();
debug!("Invalidate DCache for bitstream buffer");
cache::dcci_slice(src);
debug!("Init preload FPGA");
slcr::RegisterBlock::unlocked(|slcr| {
slcr.init_preload_fpga();
});
debug!("Toggling PROG_B");
// set PCFG_PROG_B to high low high
self.regs.control.modify(|_, w| w.pcfg_prog_b(true));
self.regs.control.modify(|_, w| w.pcfg_prog_b(false));
// wait until init is false
self.wait_condition(
|s| !s.regs.status.read().pcfg_init(),
DevcError::ResetTimeout,
)?;
self.regs.control.modify(|_, w| w.pcfg_prog_b(true));
// wait until init is true
self.wait_condition(
|s| s.regs.status.read().pcfg_init(),
DevcError::ResetTimeout,
)?;
self.regs.int_sts.write(
self::regs::IntSts::zeroed()
.pss_cfg_reset_b_int(true)
.ixr_pcfg_cfg_rst(true),
);
self.dma_transfer(
TransferTarget::SliceSrcLast(src),
TransferTarget::PL(src.len() as u32),
TransferType::PcapWrite,
)?;
debug!("Waiting for done");
self.wait_condition(|s| s.is_done(), DevcError::DoneTimeout)?;
debug!("Init postload FPGA");
slcr::RegisterBlock::unlocked(|slcr| {
slcr.init_postload_fpga();
});
Ok(())
}
/// Initiate DMA transaction
/// This function only sets the src and dest registers, and should not be used directly.
fn initiate_dma(&mut self, src: TransferTarget, dest: TransferTarget) {
use TransferTarget::*;
const INVALID_ADDR: u32 = 0xFFFFFFFF;
if let (PL(_), PL(_)) = (&src, &dest) {
panic!("Only one of src/dest can be PL");
}
let (src_addr, src_len): (u32, u32) = match src {
PL(l) => (INVALID_ADDR, l / 4),
SliceSrc(s) => (s.as_ptr() as u32, s.len() as u32 / 4),
SliceDest(s) => (s.as_ptr() as u32, s.len() as u32 / 4),
SliceSrcLast(s) => ((s.as_ptr() as u32) | 0x01, s.len() as u32 / 4),
SliceDestLast(s) => ((s.as_ptr() as u32) | 0x01, s.len() as u32 / 4),
};
let (dest_addr, dest_len): (u32, u32) = match dest {
PL(l) => (INVALID_ADDR, l / 4),
SliceDest(s) => (s.as_ptr() as u32, s.len() as u32 / 4),
SliceDestLast(s) => ((s.as_ptr() as u32) | 0x01, s.len() as u32 / 4),
SliceSrc(_) | SliceSrcLast(_) => {
panic!("Destination cannot be SliceSrc/SliceSrcLast, it must be mutable.")
}
};
self.regs.dma_src_addr.modify(|_, w| w.src_addr(src_addr));
self.regs
.dma_dest_addr
.modify(|_, w| w.dest_addr(dest_addr));
self.regs.dma_src_len.modify(|_, w| w.dma_len(src_len));
self.regs.dma_dest_len.modify(|_, w| w.dma_len(dest_len));
}
/// Blocking DMA transfer
/// ## Note
/// This is blocking because there seems to be no other way to guarantee
/// safety, and I don't think requiring static is a solution here due to the
/// large buffer size.
/// See https://docs.rust-embedded.org/embedonomicon/dma.html for details.
///
/// The following checks are implemented in runtime (panic).
/// * Dest would *NOT* accept src type, as the slices are immutable.
/// * At most one of src and dest can be PL type.
pub fn dma_transfer(
&mut self,
src: TransferTarget,
dest: TransferTarget,
transfer_type: TransferType,
) -> Result<(), DevcError> {
if !self.enabled {
panic!("Attempting to use devc when it is not enabled");
}
if self.regs.status.read().dma_cmd_q_f() {
return Err(DevcError::DmaBusy);
}
if transfer_type != TransferType::ConcurrentReadWrite
&& !self.regs.status.read().pcfg_init()
{
return Err(DevcError::NotInitialized);
}
match &transfer_type {
TransferType::PcapReadback => {
// clear internal PCAP loopback
self.regs.mctrl.modify(|_, w| w.pcap_lpbk(false));
// send READ frame command
self.initiate_dma(src, TransferTarget::PL(0));
// wait until DMA done
self.wait_dma_transfer_complete()?;
// initiate the DMA write
self.initiate_dma(TransferTarget::PL(0), dest);
}
TransferType::PcapWrite | TransferType::ConcurrentReadWrite => {
self.regs
.mctrl
.modify(|_, w| w.pcap_lpbk(transfer_type == TransferType::ConcurrentReadWrite));
// PCAP data transmitted every clock
self.regs.control.modify(|_, w| w.pcap_rate_en(false));
self.initiate_dma(src, dest);
}
}
self.wait_dma_transfer_complete()?;
Ok(())
}
fn wait_dma_transfer_complete(&mut self) -> Result<(), DevcError> {
trace!("Wait for DMA done");
self.wait_condition(
|s| s.regs.int_sts.read().ixr_dma_done(),
DevcError::DmaTimeout,
)?;
self.regs
.int_sts
.write(self::regs::IntSts::zeroed().ixr_dma_done(true));
Ok(())
}
/// Dump useful registers for devc block.
pub fn dump_registers(&self) {
debug!("Mctrl: 0x{:0X}", self.regs.mctrl.read().inner);
debug!("Control: 0x{:0X}", self.regs.control.read().inner);
debug!("Status: 0x{:0X}", self.regs.status.read().inner);
debug!("INT STS: 0x{:0X}", self.regs.int_sts.read().inner);
}
/// Clear interrupt status for devc.
pub fn clear_interrupts(&mut self) {
self.regs.int_sts.modify(|_, w| {
w.pss_gts_usr_b_int(true)
.pss_fst_cfg_b_int(true)
.pss_gpwrdwn_b_int(true)
.pss_gts_cfg_b_int(true)
.pss_cfg_reset_b_int(true)
.ixr_axi_wto(true)
.ixr_axi_werr(true)
.ixr_axi_rto(true)
.ixr_axi_rerr(true)
.ixr_rx_fifo_ov(true)
.ixr_wr_fifo_lvl(true)
.ixr_rd_fifo_lvl(true)
.ixr_dma_cmd_err(true)
.ixr_dma_q_ov(true)
.ixr_dma_done(true)
.ixr_d_p_done(true)
.ixr_p2d_len_err(true)
.ixr_pcfg_hmac_err(true)
.ixr_pcfg_seu_err(true)
.ixr_pcfg_por_b(true)
.ixr_pcfg_cfg_rst(true)
.ixr_pcfg_done(true)
.ixr_pcfg_init_pe(true)
.ixr_pcfg_init_ne(true)
}) })
} }
pub fn disable(&mut self) {
fn has_error(&self) -> bool { self.regs.control.modify(|_, w| {
let status = self.regs.int_sts.read(); w.pcap_mode(false)
status.ixr_axi_wto() .pcap_pr(false)
|| status.ixr_axi_werr() })
|| status.ixr_axi_rto()
|| status.ixr_axi_rerr()
|| status.ixr_rx_fifo_ov()
|| status.ixr_dma_cmd_err()
|| status.ixr_dma_q_ov()
|| status.ixr_p2d_len_err()
} }
} }

View File

@ -1,14 +1,15 @@
use volatile_register::{RO, WO, RW};
use libregister::{ use libregister::{
register, register_at, register, register_at,
register_bit, register_bits, register_bits_typed, register_bit, register_bits, register_bits_typed,
}; };
use volatile_register::WO;
#[repr(C)] #[repr(C)]
pub struct RegisterBlock { pub struct RegisterBlock {
pub control: Control, pub control: Control,
pub lock: Lock,
pub cfg: Cfg, pub cfg: Cfg,
pub lock: Lock,
pub int_sts: IntSts, pub int_sts: IntSts,
pub int_mask: IntMask, pub int_mask: IntMask,
pub status: Status, pub status: Status,
@ -16,13 +17,9 @@ pub struct RegisterBlock {
pub dma_dest_addr: DmaDestAddr, pub dma_dest_addr: DmaDestAddr,
pub dma_src_len: DmaSrcLen, pub dma_src_len: DmaSrcLen,
pub dma_dest_len: DmaDestLen, pub dma_dest_len: DmaDestLen,
unused0: u32,
pub multiboot_addr: MultibootAddr, pub multiboot_addr: MultibootAddr,
unused1: u32, pub unlock: Unlock,
pub unlock: WO<u32>,
unused2: [u32; 18],
pub mctrl: MCtrl, pub mctrl: MCtrl,
unused3: [u32; 31],
pub xadcif_cfg: XADCIfCfg, pub xadcif_cfg: XADCIfCfg,
pub xadcif_int_sts: XADCIfIntSts, pub xadcif_int_sts: XADCIfIntSts,
pub xadcif_int_mask: XADCIfIntMask, pub xadcif_int_mask: XADCIfIntMask,
@ -76,18 +73,18 @@ pub enum WFifoTh {
ThreeFourthEmpty = 0b10, // Three fourth empty for write ThreeFourthEmpty = 0b10, // Three fourth empty for write
Empty = 0b11, // Empty for write Empty = 0b11, // Empty for write
} }
register_bits_typed!(cfg, wfifo_th, u8, WFifoTh, 8, 9); register_bits_typed!(cfg, wfifo_th, u8, WFifoTh, 10, 11);
register_bit!(cfg, rclk_edge, 7); register_bit!(cfg, rclk_edge, 7);
register_bit!(cfg, wclk_edge, 6); register_bit!(cfg, wclk_edge, 6);
register_bit!(cfg, disable_src_inc, 5); register_bit!(cfg, disable_src_inc, 5);
register_bit!(cfg, disable_dst_inc, 4); register_bit!(cfg, disable_dst_inc, 4);
register!(int_sts, IntSts, RW, u32); register!(int_sts, IntSts, RW, u32);
register_bit!(int_sts, pss_gts_usr_b_int, 31); register_bit!(int_sts, pps_gts_usr_b_int, 31);
register_bit!(int_sts, pss_fst_cfg_b_int, 30); register_bit!(int_sts, pps_fst_cfg_b_int, 30);
register_bit!(int_sts, pss_gpwrdwn_b_int, 29); register_bit!(int_sts, pps_gpwrdwn_b_int, 29);
register_bit!(int_sts, pss_gts_cfg_b_int, 28); register_bit!(int_sts, pps_gts_cfg_b_int, 27);
register_bit!(int_sts, pss_cfg_reset_b_int, 27); register_bit!(int_sts, pps_cfg_reset_b_int, 26);
register_bit!(int_sts, ixr_axi_wto, 23); register_bit!(int_sts, ixr_axi_wto, 23);
register_bit!(int_sts, ixr_axi_werr, 22); register_bit!(int_sts, ixr_axi_werr, 22);
register_bit!(int_sts, ixr_axi_rto, 21); register_bit!(int_sts, ixr_axi_rto, 21);
@ -153,20 +150,23 @@ register_bit!(status, efuse_sec_en, 2);
register_bit!(status, efuse_jtag_dis, 1); register_bit!(status, efuse_jtag_dis, 1);
register!(dma_src_addr, DmaSrcAddr, RW, u32); register!(dma_src_addr, DmaSrcAddr, RW, u32);
register_bits!(dma_src_addr, src_addr, u32, 0, 31); register_bits!(dma_src_addr, src_addr, u8, 0, 31);
register!(dma_dest_addr, DmaDestAddr, RW, u32); register!(dma_dest_addr, DmaDestAddr, RW, u32);
register_bits!(dma_dest_addr, dest_addr, u32, 0, 31); register_bits!(dma_dest_addr, dest_addr, u8, 0, 31);
register!(dma_src_len, DmaSrcLen, RW, u32); register!(dma_src_len, DmaSrcLen, RW, u32);
register_bits!(dma_src_len, dma_len, u32, 0, 26); register_bits!(dma_src_len, dma_len, u8, 0, 26);
register!(dma_dest_len, DmaDestLen, RW, u32); register!(dma_dest_len, DmaDestLen, RW, u32);
register_bits!(dma_dest_len, dma_len, u32, 0, 26); register_bits!(dma_dest_len, dma_len, u8, 0, 26);
register!(multiboot_addr, MultibootAddr, RW, u32); register!(multiboot_addr, MultibootAddr, RW, u32);
register_bits!(multiboot_addr, multiboot_addr, u8, 0, 12); register_bits!(multiboot_addr, multiboot_addr, u8, 0, 12);
register!(unlock, Unlock, RW, u32);
register_bits!(unlock, unlock, u8, 0, 31);
register!(mctrl, MCtrl, RW, u32); register!(mctrl, MCtrl, RW, u32);
register_bits!(mctrl, ps_version, u8, 28, 31); register_bits!(mctrl, ps_version, u8, 28, 31);
register_bit!(mctrl, pcfg_por_b, 8); register_bit!(mctrl, pcfg_por_b, 8);

View File

@ -0,0 +1 @@
mod regs;

View File

@ -0,0 +1,651 @@
use volatile_register::{RO, WO, RW};
use libregister::{
register, register_at,
register_bit, register_bits, register_bits_typed,
};
#[allow(unused)]
#[repr(C)]
pub struct RegisterBlock {
pub ds: Ds,
pub dpc: DPc,
pub inten: Inten,
pub es: Es,
pub intstatus: IntStatus,
pub intclr: IntClr,
pub fsm: Fsm,
pub fsc: Fsc,
pub ftm: Ftm,
pub ftc0: Ftc0,
pub xdmaps_ftcn_offset_1: XDmaPsFtcnOffset1,
pub xdmaps_ftcn_offset_2: XDmaPsFtcnOffset2,
pub xdmaps_ftcn_offset_3: XDmaPsFtcnOffset3,
pub xdmaps_ftcn_offset_4: XDmaPsFtcnOffset4,
pub xdmaps_ftcn_offset_5: XDmaPsFtcnOffset5,
pub xdmaps_ftcn_offset_6: XDmaPsFtcnOffset6,
pub xdmaps_ftcn_offset_7: XDmaPsFtcnOffset7,
pub cs0: Cs0,
pub cpc0: Cpc0,
pub xdmaps_csn_offset_1: XDmaPsCSnOffset1,
pub xdmaps_cpcn_offset_1: XDmaPsCPCnOffset1,
pub xdmaps_csn_offset_2: XDmaPsCSnOffset2,
pub xdmaps_cpcn_offset_2: XDmaPsCPCnOffset2,
pub xdmaps_csn_offset_3: XDmaPsCSnOffset3,
pub xdmaps_cpcn_offset_3: XDmaPsCPCnOffset3,
pub xdmaps_csn_offset_4: XDmaPsCSnOffset4,
pub xdmaps_cpcn_offset_4: XDmaPsCPCnOffset4,
pub xdmaps_csn_offset_5: XDmaPsCSnOffset5,
pub xdmaps_cpcn_offset_5: XDmaPsCPCnOffset5,
pub xdmaps_csn_offset_6: XDmaPsCSnOffset6,
pub xdmaps_cpcn_offset_6: XDmaPsCPCnOffset6,
pub xdmaps_csn_offset_7: XDmaPsCSnOffset7,
pub xdmaps_cpcn_offset_7: XDmaPsCPCnOffset7,
pub sa_0: Sa0,
pub da_0: Da0,
pub cc_0: Cc0,
pub lc0_0: Lc00,
pub lc1_0: Lc10,
pub xdmaps_sa_n_offset_1: XDmaPsSaNOffset1,
pub xdmaps_da_n_offset_1: XDmaPsDaNOffset1,
pub xdmaps_cc_n_offset_1: XDmaPsCcNOffset1,
pub xdmaps_lc0_n_offset_1: XDmaPsLc0NOffset1,
pub xdmaps_lc1_n_offset_1: XDmaPsLc1NOffset1,
pub xdmaps_sa_n_offset_2: XDmaPsSaNOffset2,
pub xdmaps_da_n_offset_2: XDmaPsDaNOffset2,
pub xdmaps_cc_n_offset_2: XDmaPsCcNOffset2,
pub xdmaps_lc0_n_offset_2: XDmaPsLc0NOffset2,
pub xdmaps_lc1_n_offset_2: XDmaPsLc1NOffset2,
pub xdmaps_sa_n_offset_3: XDmaPsSaNOffset3,
pub xdmaps_da_n_offset_3: XDmaPsDaNOffset3,
pub xdmaps_cc_n_offset_3: XDmaPsCcNOffset3,
pub xdmaps_lc0_n_offset_3: XDmaPsLc0NOffset3,
pub xdmaps_lc1_n_offset_3: XDmaPsLc1NOffset3,
pub xdmaps_sa_n_offset_4: XDmaPsSaNOffset4,
pub xdmaps_da_n_offset_4: XDmaPsDaNOffset4,
pub xdmaps_cc_n_offset_4: XDmaPsCcNOffset4,
pub xdmaps_lc0_n_offset_4: XDmaPsLc0NOffset4,
pub xdmaps_lc1_n_offset_4: XDmaPsLc1NOffset4,
pub xdmaps_sa_n_offset_5: XDmaPsSaNOffset5,
pub xdmaps_da_n_offset_5: XDmaPsDaNOffset5,
pub xdmaps_cc_n_offset_5: XDmaPsCcNOffset5,
pub xdmaps_lc0_n_offset_5: XDmaPsLc0NOffset5,
pub xdmaps_lc1_n_offset_5: XDmaPsLc1NOffset5,
pub xdmaps_sa_n_offset_6: XDmaPsSaNOffset6,
pub xdmaps_da_n_offset_6: XDmaPsDaNOffset6,
pub xdmaps_cc_n_offset_6: XDmaPsCcNOffset6,
pub xdmaps_lc0_n_offset_6: XDmaPsLc0NOffset6,
pub xdmaps_lc1_n_offset_6: XDmaPsLc1NOffset6,
pub xdmaps_sa_n_offset_7: XDmaPsSaNOffset7,
pub xdmaps_da_n_offset_7: XDmaPsDaNOffset7,
pub xdmaps_cc_n_offset_7: XDmaPsCcNOffset7,
pub xdmaps_lc0_n_offset_7: XDmaPsLc0NOffset7,
pub xdmaps_lc1_n_offset_7: XDmaPsLc1NOffset7,
pub dbgstatus: DbgStatus,
pub dbgcmd: DbgCmd,
pub dbginst0: DbgInst0,
pub dbginst1: DbgInst1,
pub cr0: Cr0,
pub cr1: Cr1,
pub cr2: Cr2,
pub cr3: Cr3,
pub cr4: Cr4,
pub crdn: Crdn,
pub wd: Wd,
pub periph_id_0: PeriphId0,
pub periph_id_1: PeriphId1,
pub periph_id_2: PeriphId2,
pub periph_id_3: PeriphId3,
pub pcell_id_0: PCellId0,
pub pcell_id_1: PCellId1,
pub pcell_id_2: PCellId2,
pub pcell_id_3: PCellId3,
}
register_at!(RegisterBlock, 0xF8004000, dmac0_ns);
register_at!(RegisterBlock, 0xF8003000, dmac0_s);
#[allow(unused)]
#[repr(u8)]
pub enum WakeUpEvent{
// @missing: there's a binary prefix ahead of this as per TRM 1173 Wakeup_event
Event0 = 0b0000,
Event1 = 0b0001,
Event2 = 0b0010,
Event3 = 0b0011,
Event4 = 0b0100,
Event5 = 0b0101,
Event6 = 0b0110,
Event7 = 0b0111,
Event8 = 0b1000,
Event9 = 0b1001,
Event10 = 0b1010,
Event11 = 0b1011,
Event12 = 0b1100,
Event13 = 0b1101,
Event14 = 0b1110,
Event15 = 0b1111,
}
#[allow(unused)]
#[repr(u8)]
pub enum DMAStatus{
Stopped = 0b0000,
Executing = 0b0001,
CacheMiss = 0b0010,
UpdatingPc = 0b0011,
WaitingForEvent = 0b0100,
Reserved0 = 0b0101,
Reserved1 = 0b0110,
Reserved2 = 0b0111,
Reserved3 = 0b1000,
Reserved4 = 0b1001,
Reserved5 = 0b1010,
Reserved6 = 0b1011,
Reserved7 = 0b1100,
Reserved8 = 0b1101,
Reserved9 = 0b1110,
Faulting = 0b1111,
}
register!(ds, Ds, RW, u32);
register_bit!(ds, dns, 9);
register_bits_typed!(ds, wakeup_event, u8, WakeUpEvent, 4, 8);
register_bits_typed!(ds, dma_status, u8, DMAStatus, 0, 3);
register!(dpc, DPc, RW, u32);
register_bits!(dpc, pc_mgr, u8, 0, 31);
register!(inten, Inten, RW, u32);
register_bits!(inten, event_irq_select, u8, 0, 31);
register!(es, Es, RW, u32);
register_bits!(es, dmasev_active, u8, 0, 31);
register!(intstatus, IntStatus, RW, u32);
register_bits!(intstatus, irq_status, u8, 0, 31);
register!(intclr, IntClr, RW, u32);
register_bits!(intstatus, irq_clr, u8, 0, 31);
register!(fsm, Fsm, RW, u32);
register_bit!(fsm, fs_mgr, 0);
register!(fsc, Fsc, RW, u32);
register_bits!(fsc, fault_status, u8, 0, 7);
register!(ftm, Ftm, RW, u32);
register_bit!(ftm, dbg_instr, 30);
register_bit!(ftm, instr_fetch_err, 16);
register_bit!(ftm, mgr_evnt_err, 5);
register_bit!(ftm, dmago_err, 4);
register_bit!(ftm, operand_invalid, 1);
register_bit!(ftm, undef_instr, 0);
register!(ftc0, Ftc0, RW, u32);
register_bit!(ftc0, lockup_err, 31);
register_bit!(ftc0, dbg_instr, 30);
register_bit!(ftc0, data_read_err, 18);
register_bit!(ftc0, data_write_err, 17);
register_bit!(ftc0, instr_fetch_err, 16);
register_bit!(ftc0, st_data_unavailable, 13);
register_bit!(ftc0, mfifo_err, 12);
register_bit!(ftc0, ch_rdwr_err, 7);
register_bit!(ftc0, ch_periph_err, 6);
register_bit!(ftc0, ch_evnt_err, 5);
register_bit!(ftc0, operand_invalid, 1);
register_bit!(ftc0, undef_instr, 0);
register!(xdmaps_ftcn_offset_1, XDmaPsFtcnOffset1, RW, u32);
register_bit!(xdmaps_ftcn_offset_1, lockup_err, 31);
register_bit!(xdmaps_ftcn_offset_1, dbg_instr, 30);
register_bit!(xdmaps_ftcn_offset_1, data_read_err, 18);
register_bit!(xdmaps_ftcn_offset_1, data_write_err, 17);
register_bit!(xdmaps_ftcn_offset_1, instr_fetch_err, 16);
register_bit!(xdmaps_ftcn_offset_1, st_data_unavailable, 13);
register_bit!(xdmaps_ftcn_offset_1, mfifo_err, 12);
register_bit!(xdmaps_ftcn_offset_1, ch_rdwr_err, 7);
register_bit!(xdmaps_ftcn_offset_1, ch_periph_err, 6);
register_bit!(xdmaps_ftcn_offset_1, ch_evnt_err, 5);
register_bit!(xdmaps_ftcn_offset_1, operand_invalid, 1);
register_bit!(xdmaps_ftcn_offset_1, undef_instr, 0);
register!(xdmaps_ftcn_offset_2, XDmaPsFtcnOffset2, RW, u32);
register_bit!(xdmaps_ftcn_offset_2, lockup_err, 31);
register_bit!(xdmaps_ftcn_offset_2, dbg_instr, 30);
register_bit!(xdmaps_ftcn_offset_2, data_read_err, 18);
register_bit!(xdmaps_ftcn_offset_2, data_write_err, 17);
register_bit!(xdmaps_ftcn_offset_2, instr_fetch_err, 16);
register_bit!(xdmaps_ftcn_offset_2, st_data_unavailable, 13);
register_bit!(xdmaps_ftcn_offset_2, mfifo_err, 12);
register_bit!(xdmaps_ftcn_offset_2, ch_rdwr_err, 7);
register_bit!(xdmaps_ftcn_offset_2, ch_periph_err, 6);
register_bit!(xdmaps_ftcn_offset_2, ch_evnt_err, 5);
register_bit!(xdmaps_ftcn_offset_2, operand_invalid, 1);
register_bit!(xdmaps_ftcn_offset_2, undef_instr, 0);
register!(xdmaps_ftcn_offset_3, XDmaPsFtcnOffset3, RW, u32);
register_bit!(xdmaps_ftcn_offset_3, lockup_err, 31);
register_bit!(xdmaps_ftcn_offset_3, dbg_instr, 30);
register_bit!(xdmaps_ftcn_offset_3, data_read_err, 18);
register_bit!(xdmaps_ftcn_offset_3, data_write_err, 17);
register_bit!(xdmaps_ftcn_offset_3, instr_fetch_err, 16);
register_bit!(xdmaps_ftcn_offset_3, st_data_unavailable, 13);
register_bit!(xdmaps_ftcn_offset_3, mfifo_err, 12);
register_bit!(xdmaps_ftcn_offset_3, ch_rdwr_err, 7);
register_bit!(xdmaps_ftcn_offset_3, ch_periph_err, 6);
register_bit!(xdmaps_ftcn_offset_3, ch_evnt_err, 5);
register_bit!(xdmaps_ftcn_offset_3, operand_invalid, 1);
register_bit!(xdmaps_ftcn_offset_3, undef_instr, 0);
register!(xdmaps_ftcn_offset_4, XDmaPsFtcnOffset4, RW, u32);
register_bit!(xdmaps_ftcn_offset_4, lockup_err, 31);
register_bit!(xdmaps_ftcn_offset_4, dbg_instr, 30);
register_bit!(xdmaps_ftcn_offset_4, data_read_err, 18);
register_bit!(xdmaps_ftcn_offset_4, data_write_err, 17);
register_bit!(xdmaps_ftcn_offset_4, instr_fetch_err, 16);
register_bit!(xdmaps_ftcn_offset_4, st_data_unavailable, 13);
register_bit!(xdmaps_ftcn_offset_4, mfifo_err, 12);
register_bit!(xdmaps_ftcn_offset_4, ch_rdwr_err, 7);
register_bit!(xdmaps_ftcn_offset_4, ch_periph_err, 6);
register_bit!(xdmaps_ftcn_offset_4, ch_evnt_err, 5);
register_bit!(xdmaps_ftcn_offset_4, operand_invalid, 1);
register_bit!(xdmaps_ftcn_offset_4, undef_instr, 0);
register!(xdmaps_ftcn_offset_5, XDmaPsFtcnOffset5, RW, u32);
register_bit!(xdmaps_ftcn_offset_5, lockup_err, 31);
register_bit!(xdmaps_ftcn_offset_5, dbg_instr, 30);
register_bit!(xdmaps_ftcn_offset_5, data_read_err, 18);
register_bit!(xdmaps_ftcn_offset_5, data_write_err, 17);
register_bit!(xdmaps_ftcn_offset_5, instr_fetch_err, 16);
register_bit!(xdmaps_ftcn_offset_5, st_data_unavailable, 13);
register_bit!(xdmaps_ftcn_offset_5, mfifo_err, 12);
register_bit!(xdmaps_ftcn_offset_5, ch_rdwr_err, 7);
register_bit!(xdmaps_ftcn_offset_5, ch_periph_err, 6);
register_bit!(xdmaps_ftcn_offset_5, ch_evnt_err, 5);
register_bit!(xdmaps_ftcn_offset_5, operand_invalid, 1);
register_bit!(xdmaps_ftcn_offset_5, undef_instr, 0);
register!(xdmaps_ftcn_offset_6, XDmaPsFtcnOffset6, RW, u32);
register_bit!(xdmaps_ftcn_offset_6, lockup_err, 31);
register_bit!(xdmaps_ftcn_offset_6, dbg_instr, 30);
register_bit!(xdmaps_ftcn_offset_6, data_read_err, 18);
register_bit!(xdmaps_ftcn_offset_6, data_write_err, 17);
register_bit!(xdmaps_ftcn_offset_6, instr_fetch_err, 16);
register_bit!(xdmaps_ftcn_offset_6, st_data_unavailable, 13);
register_bit!(xdmaps_ftcn_offset_6, mfifo_err, 12);
register_bit!(xdmaps_ftcn_offset_6, ch_rdwr_err, 7);
register_bit!(xdmaps_ftcn_offset_6, ch_periph_err, 6);
register_bit!(xdmaps_ftcn_offset_6, ch_evnt_err, 5);
register_bit!(xdmaps_ftcn_offset_6, operand_invalid, 1);
register_bit!(xdmaps_ftcn_offset_6, undef_instr, 0);
register!(xdmaps_ftcn_offset_7, XDmaPsFtcnOffset7, RW, u32);
register_bit!(xdmaps_ftcn_offset_7, lockup_err, 31);
register_bit!(xdmaps_ftcn_offset_7, dbg_instr, 30);
register_bit!(xdmaps_ftcn_offset_7, data_read_err, 18);
register_bit!(xdmaps_ftcn_offset_7, data_write_err, 17);
register_bit!(xdmaps_ftcn_offset_7, instr_fetch_err, 16);
register_bit!(xdmaps_ftcn_offset_7, st_data_unavailable, 13);
register_bit!(xdmaps_ftcn_offset_7, mfifo_err, 12);
register_bit!(xdmaps_ftcn_offset_7, ch_rdwr_err, 7);
register_bit!(xdmaps_ftcn_offset_7, ch_periph_err, 6);
register_bit!(xdmaps_ftcn_offset_7, ch_evnt_err, 5);
register_bit!(xdmaps_ftcn_offset_7, operand_invalid, 1);
register_bit!(xdmaps_ftcn_offset_7, undef_instr, 0);
register!(cs0, Cs0, RW, u32);
register_bit!(cs0, cns, 21);
register_bit!(cs0, dmawfp_periph, 15);
register_bit!(cs0, dmawfp_b_ns, 14);
register_bits!(cs0, wakeup_num, u8, 4, 8);
register_bits!(cs0, channel_status, u8, 0, 3);
register!(cpc0, Cpc0, RW, u32);
register_bits!(cpc0, pc_chnl, u8, 0, 31);
register!(xdmaps_csn_offset_1, XDmaPsCSnOffset1, RW, u32);
register_bit!(xdmaps_csn_offset_1, cns, 21);
register_bit!(xdmaps_csn_offset_1, dmawfp_periph, 15);
register_bit!(xdmaps_csn_offset_1, dmawfp_b_ns, 14);
register_bits!(xdmaps_csn_offset_1, wakeup_num, u8, 4, 8);
register_bits!(xdmaps_csn_offset_1, channel_status, u8, 0, 3);
register!(xdmaps_cpcn_offset_1, XDmaPsCPCnOffset1, RW, u32);
register_bits!(xdmaps_cpcn_offset_1, pc_chnl, u8, 0, 31);
register!(xdmaps_csn_offset_2, XDmaPsCSnOffset2, RW, u32);
register_bit!(xdmaps_csn_offset_2, cns, 21);
register_bit!(xdmaps_csn_offset_2, dmawfp_periph, 15);
register_bit!(xdmaps_csn_offset_2, dmawfp_b_ns, 14);
register_bits!(xdmaps_csn_offset_2, wakeup_num, u8, 4, 8);
register_bits!(xdmaps_csn_offset_2, channel_status, u8, 0, 3);
register!(xdmaps_cpcn_offset_2, XDmaPsCPCnOffset2, RW, u32);
register_bits!(xdmaps_cpcn_offset_2, pc_chnl, u8, 0, 31);
register!(xdmaps_csn_offset_3, XDmaPsCSnOffset3, RW, u32);
register_bit!(xdmaps_csn_offset_3, cns, 21);
register_bit!(xdmaps_csn_offset_3, dmawfp_periph, 15);
register_bit!(xdmaps_csn_offset_3, dmawfp_b_ns, 14);
register_bits!(xdmaps_csn_offset_3, wakeup_num, u8, 4, 8);
register_bits!(xdmaps_csn_offset_3, channel_status, u8, 0, 3);
register!(xdmaps_cpcn_offset_3, XDmaPsCPCnOffset3, RW, u32);
register_bits!(xdmaps_cpcn_offset_3, pc_chnl, u8, 0, 31);
register!(xdmaps_csn_offset_4, XDmaPsCSnOffset4, RW, u32);
register_bit!(xdmaps_csn_offset_4, cns, 21);
register_bit!(xdmaps_csn_offset_4, dmawfp_periph, 15);
register_bit!(xdmaps_csn_offset_4, dmawfp_b_ns, 14);
register_bits!(xdmaps_csn_offset_4, wakeup_num, u8, 4, 8);
register_bits!(xdmaps_csn_offset_4, channel_status, u8, 0, 3);
register!(xdmaps_cpcn_offset_4, XDmaPsCPCnOffset4, RW, u32);
register_bits!(xdmaps_cpcn_offset_4, pc_chnl, u8, 0, 31);
register!(xdmaps_csn_offset_5, XDmaPsCSnOffset5, RW, u32);
register_bit!(xdmaps_csn_offset_5, cns, 21);
register_bit!(xdmaps_csn_offset_5, dmawfp_periph, 15);
register_bit!(xdmaps_csn_offset_5, dmawfp_b_ns, 14);
register_bits!(xdmaps_csn_offset_5, wakeup_num, u8, 4, 8);
register_bits!(xdmaps_csn_offset_5, channel_status, u8, 0, 3);
register!(xdmaps_cpcn_offset_5, XDmaPsCPCnOffset5, RW, u32);
register_bits!(xdmaps_cpcn_offset_5, pc_chnl, u8, 0, 31);
register!(xdmaps_csn_offset_6, XDmaPsCSnOffset6, RW, u32);
register_bit!(xdmaps_csn_offset_6, cns, 21);
register_bit!(xdmaps_csn_offset_6, dmawfp_periph, 15);
register_bit!(xdmaps_csn_offset_6, dmawfp_b_ns, 14);
register_bits!(xdmaps_csn_offset_6, wakeup_num, u8, 4, 8);
register_bits!(xdmaps_csn_offset_6, channel_status, u8, 0, 3);
register!(xdmaps_cpcn_offset_6, XDmaPsCPCnOffset6, RW, u32);
register_bits!(xdmaps_cpcn_offset_6, pc_chnl, u8, 0, 31);
register!(xdmaps_csn_offset_7, XDmaPsCSnOffset7, RW, u32);
register_bit!(xdmaps_csn_offset_7, cns, 21);
register_bit!(xdmaps_csn_offset_7, dmawfp_periph, 15);
register_bit!(xdmaps_csn_offset_7, dmawfp_b_ns, 14);
register_bits!(xdmaps_csn_offset_7, wakeup_num, u8, 4, 8);
register_bits!(xdmaps_csn_offset_7, channel_status, u8, 0, 3);
register!(xdmaps_cpcn_offset_7, XDmaPsCPCnOffset7, RW, u32);
register_bits!(xdmaps_cpcn_offset_7, pc_chnl, u8, 0, 31);
register!(sa_0, Sa0, RW, u32);
register_bits!(sa_0, src_addr, u8, 0, 31);
register!(da_0, Da0, RW, u32);
register_bits!(da_0, dest_addr, u8, 0, 31);
register!(cc_0, Cc0, RW, u32);
register_bits!(cc_0, endian_swap_size, u8, 28, 30);
register_bits!(cc_0, dst_cache_ctrl, u8, 25, 27);
register_bits!(cc_0, dst_prot_ctrl, u8, 22, 24);
register_bits!(cc_0, dst_burst_len, u8, 18, 21);
register_bits!(cc_0, dst_burst_size, u8, 15, 17);
register_bit!(cc_0, dst_inc, 14);
register_bits!(cc_0, src_cache_ctrl, u8, 11, 13);
register_bits!(cc_0, src_prot_ctrl, u8, 8, 10);
register_bits!(cc_0, src_burst_len, u8, 4, 7);
register_bits!(cc_0, src_burst_size, u8, 1, 3);
register_bit!(cc_0, src_inc, 0);
register!(lc0_0, Lc00, RW, u32);
register_bits!(lc0_0, loop_counter_iteration, u8, 0, 7);
register!(lc1_0, Lc10, RW, u32);
register_bits!(lc1_0, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_sa_n_offset_1, XDmaPsSaNOffset1, RW, u32);
register_bits!(xdmaps_sa_n_offset_1, src_addr, u8, 0, 31);
register!(xdmaps_da_n_offset_1, XDmaPsDaNOffset1, RW, u32);
register_bits!(xdmaps_da_n_offset_1, dest_addr, u8, 0, 31);
register!(xdmaps_cc_n_offset_1, XDmaPsCcNOffset1, RW, u32);
register_bits!(xdmaps_cc_n_offset_1, endian_swap_size, u8, 28, 30);
register_bits!(xdmaps_cc_n_offset_1, dst_cache_ctrl, u8, 25, 27);
register_bits!(xdmaps_cc_n_offset_1, dst_prot_ctrl, u8, 22, 24);
register_bits!(xdmaps_cc_n_offset_1, dst_burst_len, u8, 18, 21);
register_bits!(xdmaps_cc_n_offset_1, dst_burst_size, u8, 15, 17);
register_bit!(xdmaps_cc_n_offset_1, dst_inc, 14);
register_bits!(xdmaps_cc_n_offset_1, src_cache_ctrl, u8, 11, 13);
register_bits!(xdmaps_cc_n_offset_1, src_prot_ctrl, u8, 8, 10);
register_bits!(xdmaps_cc_n_offset_1, src_burst_len, u8, 4, 7);
register_bits!(xdmaps_cc_n_offset_1, src_burst_size, u8, 1, 3);
register_bit!(xdmaps_cc_n_offset_1, src_inc, 0);
register!(xdmaps_lc0_n_offset_1, XDmaPsLc0NOffset1, RW, u32);
register_bits!(xdmaps_lc0_n_offset_1, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_lc1_n_offset_1, XDmaPsLc1NOffset1, RW, u32);
register_bits!(xdmaps_lc1_n_offset_1, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_sa_n_offset_2, XDmaPsSaNOffset2, RW, u32);
register_bits!(xdmaps_sa_n_offset_2, src_addr, u8, 0, 31);
register!(xdmaps_da_n_offset_2, XDmaPsDaNOffset2, RW, u32);
register_bits!(xdmaps_da_n_offset_2, dest_addr, u8, 0, 31);
register!(xdmaps_cc_n_offset_2, XDmaPsCcNOffset2, RW, u32);
register_bits!(xdmaps_cc_n_offset_2, endian_swap_size, u8, 28, 30);
register_bits!(xdmaps_cc_n_offset_2, dst_cache_ctrl, u8, 25, 27);
register_bits!(xdmaps_cc_n_offset_2, dst_prot_ctrl, u8, 22, 24);
register_bits!(xdmaps_cc_n_offset_2, dst_burst_len, u8, 18, 21);
register_bits!(xdmaps_cc_n_offset_2, dst_burst_size, u8, 15, 17);
register_bit!(xdmaps_cc_n_offset_2, dst_inc, 14);
register_bits!(xdmaps_cc_n_offset_2, src_cache_ctrl, u8, 11, 13);
register_bits!(xdmaps_cc_n_offset_2, src_prot_ctrl, u8, 8, 10);
register_bits!(xdmaps_cc_n_offset_2, src_burst_len, u8, 4, 7);
register_bits!(xdmaps_cc_n_offset_2, src_burst_size, u8, 1, 3);
register_bit!(xdmaps_cc_n_offset_2, src_inc, 0);
register!(xdmaps_lc0_n_offset_2, XDmaPsLc0NOffset2, RW, u32);
register_bits!(xdmaps_lc0_n_offset_2, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_lc1_n_offset_2, XDmaPsLc1NOffset2, RW, u32);
register_bits!(xdmaps_lc1_n_offset_2, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_sa_n_offset_3, XDmaPsSaNOffset3, RW, u32);
register_bits!(xdmaps_sa_n_offset_3, src_addr, u8, 0, 31);
register!(xdmaps_da_n_offset_3, XDmaPsDaNOffset3, RW, u32);
register_bits!(xdmaps_da_n_offset_3, dest_addr, u8, 0, 31);
register!(xdmaps_cc_n_offset_3, XDmaPsCcNOffset3, RW, u32);
register_bits!(xdmaps_cc_n_offset_3, endian_swap_size, u8, 28, 30);
register_bits!(xdmaps_cc_n_offset_3, dst_cache_ctrl, u8, 25, 27);
register_bits!(xdmaps_cc_n_offset_3, dst_prot_ctrl, u8, 22, 24);
register_bits!(xdmaps_cc_n_offset_3, dst_burst_len, u8, 18, 21);
register_bits!(xdmaps_cc_n_offset_3, dst_burst_size, u8, 15, 17);
register_bit!(xdmaps_cc_n_offset_3, dst_inc, 14);
register_bits!(xdmaps_cc_n_offset_3, src_cache_ctrl, u8, 11, 13);
register_bits!(xdmaps_cc_n_offset_3, src_prot_ctrl, u8, 8, 10);
register_bits!(xdmaps_cc_n_offset_3, src_burst_len, u8, 4, 7);
register_bits!(xdmaps_cc_n_offset_3, src_burst_size, u8, 1, 3);
register_bit!(xdmaps_cc_n_offset_3, src_inc, 0);
register!(xdmaps_lc0_n_offset_3, XDmaPsLc0NOffset3, RW, u32);
register_bits!(xdmaps_lc0_n_offset_3, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_lc1_n_offset_3, XDmaPsLc1NOffset3, RW, u32);
register_bits!(xdmaps_lc1_n_offset_3, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_sa_n_offset_4, XDmaPsSaNOffset4, RW, u32);
register_bits!(xdmaps_sa_n_offset_4, src_addr, u8, 0, 31);
register!(xdmaps_da_n_offset_4, XDmaPsDaNOffset4, RW, u32);
register_bits!(xdmaps_da_n_offset_4, dest_addr, u8, 0, 31);
register!(xdmaps_cc_n_offset_4, XDmaPsCcNOffset4, RW, u32);
register_bits!(xdmaps_cc_n_offset_4, endian_swap_size, u8, 28, 30);
register_bits!(xdmaps_cc_n_offset_4, dst_cache_ctrl, u8, 25, 27);
register_bits!(xdmaps_cc_n_offset_4, dst_prot_ctrl, u8, 22, 24);
register_bits!(xdmaps_cc_n_offset_4, dst_burst_len, u8, 18, 21);
register_bits!(xdmaps_cc_n_offset_4, dst_burst_size, u8, 15, 17);
register_bit!(xdmaps_cc_n_offset_4, dst_inc, 14);
register_bits!(xdmaps_cc_n_offset_4, src_cache_ctrl, u8, 11, 13);
register_bits!(xdmaps_cc_n_offset_4, src_prot_ctrl, u8, 8, 10);
register_bits!(xdmaps_cc_n_offset_4, src_burst_len, u8, 4, 7);
register_bits!(xdmaps_cc_n_offset_4, src_burst_size, u8, 1, 3);
register_bit!(xdmaps_cc_n_offset_4, src_inc, 0);
register!(xdmaps_lc0_n_offset_4, XDmaPsLc0NOffset4, RW, u32);
register_bits!(xdmaps_lc0_n_offset_4, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_lc1_n_offset_4, XDmaPsLc1NOffset4, RW, u32);
register_bits!(xdmaps_lc1_n_offset_4, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_sa_n_offset_5, XDmaPsSaNOffset5, RW, u32);
register_bits!(xdmaps_sa_n_offset_5, src_addr, u8, 0, 31);
register!(xdmaps_da_n_offset_5, XDmaPsDaNOffset5, RW, u32);
register_bits!(xdmaps_da_n_offset_5, dest_addr, u8, 0, 31);
register!(xdmaps_cc_n_offset_5, XDmaPsCcNOffset5, RW, u32);
register_bits!(xdmaps_cc_n_offset_5, endian_swap_size, u8, 28, 30);
register_bits!(xdmaps_cc_n_offset_5, dst_cache_ctrl, u8, 25, 27);
register_bits!(xdmaps_cc_n_offset_5, dst_prot_ctrl, u8, 22, 24);
register_bits!(xdmaps_cc_n_offset_5, dst_burst_len, u8, 18, 21);
register_bits!(xdmaps_cc_n_offset_5, dst_burst_size, u8, 15, 17);
register_bit!(xdmaps_cc_n_offset_5, dst_inc, 14);
register_bits!(xdmaps_cc_n_offset_5, src_cache_ctrl, u8, 11, 13);
register_bits!(xdmaps_cc_n_offset_5, src_prot_ctrl, u8, 8, 10);
register_bits!(xdmaps_cc_n_offset_5, src_burst_len, u8, 4, 7);
register_bits!(xdmaps_cc_n_offset_5, src_burst_size, u8, 1, 3);
register_bit!(xdmaps_cc_n_offset_5, src_inc, 0);
register!(xdmaps_lc0_n_offset_5, XDmaPsLc0NOffset5, RW, u32);
register_bits!(xdmaps_lc0_n_offset_5, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_lc1_n_offset_5, XDmaPsLc1NOffset5, RW, u32);
register_bits!(xdmaps_lc1_n_offset_5, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_sa_n_offset_6, XDmaPsSaNOffset6, RW, u32);
register_bits!(xdmaps_sa_n_offset_6, src_addr, u8, 0, 31);
register!(xdmaps_da_n_offset_6, XDmaPsDaNOffset6, RW, u32);
register_bits!(xdmaps_da_n_offset_6, dest_addr, u8, 0, 31);
register!(xdmaps_cc_n_offset_6, XDmaPsCcNOffset6, RW, u32);
register_bits!(xdmaps_cc_n_offset_6, endian_swap_size, u8, 28, 30);
register_bits!(xdmaps_cc_n_offset_6, dst_cache_ctrl, u8, 25, 27);
register_bits!(xdmaps_cc_n_offset_6, dst_prot_ctrl, u8, 22, 24);
register_bits!(xdmaps_cc_n_offset_6, dst_burst_len, u8, 18, 21);
register_bits!(xdmaps_cc_n_offset_6, dst_burst_size, u8, 15, 17);
register_bit!(xdmaps_cc_n_offset_6, dst_inc, 14);
register_bits!(xdmaps_cc_n_offset_6, src_cache_ctrl, u8, 11, 13);
register_bits!(xdmaps_cc_n_offset_6, src_prot_ctrl, u8, 8, 10);
register_bits!(xdmaps_cc_n_offset_6, src_burst_len, u8, 4, 7);
register_bits!(xdmaps_cc_n_offset_6, src_burst_size, u8, 1, 3);
register_bit!(xdmaps_cc_n_offset_6, src_inc, 0);
register!(xdmaps_lc0_n_offset_6, XDmaPsLc0NOffset6, RW, u32);
register_bits!(xdmaps_lc0_n_offset_6, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_lc1_n_offset_6, XDmaPsLc1NOffset6, RW, u32);
register_bits!(xdmaps_lc1_n_offset_6, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_sa_n_offset_7, XDmaPsSaNOffset7, RW, u32);
register_bits!(xdmaps_sa_n_offset_7, src_addr, u8, 0, 31);
register!(xdmaps_da_n_offset_7, XDmaPsDaNOffset7, RW, u32);
register_bits!(xdmaps_da_n_offset_7, dest_addr, u8, 0, 31);
register!(xdmaps_cc_n_offset_7, XDmaPsCcNOffset7, RW, u32);
register_bits!(xdmaps_cc_n_offset_7, endian_swap_size, u8, 28, 30);
register_bits!(xdmaps_cc_n_offset_7, dst_cache_ctrl, u8, 25, 27);
register_bits!(xdmaps_cc_n_offset_7, dst_prot_ctrl, u8, 22, 24);
register_bits!(xdmaps_cc_n_offset_7, dst_burst_len, u8, 18, 21);
register_bits!(xdmaps_cc_n_offset_7, dst_burst_size, u8, 15, 17);
register_bit!(xdmaps_cc_n_offset_7, dst_inc, 14);
register_bits!(xdmaps_cc_n_offset_7, src_cache_ctrl, u8, 11, 13);
register_bits!(xdmaps_cc_n_offset_7, src_prot_ctrl, u8, 8, 10);
register_bits!(xdmaps_cc_n_offset_7, src_burst_len, u8, 4, 7);
register_bits!(xdmaps_cc_n_offset_7, src_burst_size, u8, 1, 3);
register_bit!(xdmaps_cc_n_offset_7, src_inc, 0);
register!(xdmaps_lc0_n_offset_7, XDmaPsLc0NOffset7, RW, u32);
register_bits!(xdmaps_lc0_n_offset_7, loop_counter_iteration, u8, 0, 7);
register!(xdmaps_lc1_n_offset_7, XDmaPsLc1NOffset7, RW, u32);
register_bits!(xdmaps_lc1_n_offset_7, loop_counter_iteration, u8, 0, 7);
register!(dbgstatus, DbgStatus, RW, u32);
register_bit!(dbgstatus, dbgstatus, 0);
register!(dbgcmd, DbgCmd, RW, u32);
register_bits!(dbgcmd, dbgcmd, u8, 0, 1);
register!(dbginst0, DbgInst0, RW, u32);
register_bits!(dbginst0, instruction_byte1, u8, 24, 31);
register_bits!(dbginst0, instruction_byte0, u8, 16, 23);
register_bits!(dbginst0, channel_num, u8, 8, 10);
register_bit!(dbginst0, debug_thread, 0);
register!(dbginst1, DbgInst1, RW, u32);
register_bits!(dbginst1, instruction_byte5, u8, 24, 31);
register_bits!(dbginst1, instruction_byte4, u8, 16, 23);
register_bits!(dbginst1, instruction_byte3, u8, 8, 10);
register_bits!(dbginst1, instruction_byte2, u8, 0, 7);
register!(cr0, Cr0, RW, u32);
register_bits!(cr0, num_events, u8, 17, 21);
register_bits!(cr0, num_periph_req, u8, 12, 16);
register_bits!(cr0, num_chnls, u8, 4, 6);
register_bit!(cr0, mgr_ns_at_rst, 2);
register_bit!(cr0, boot_en, 1);
register_bit!(cr0, periph_req, 0);
register!(cr1, Cr1, RW, u32);
register_bits!(cr1, num_icache_lines, u8, 4, 7);
register_bits!(cr1, icache_len, u8, 0, 2);
register!(cr2, Cr2, RW, u32);
register_bits!(cr2, boot_addr, u8, 0, 31);
register!(cr3, Cr3, RW, u32);
register_bits!(cr3, ins, u8, 0, 31);
register!(cr4, Cr4, RW, u32);
register_bits!(cr4, ins, u8, 0, 31);
register!(crdn, Crdn, RW, u32);
register_bits!(crdn, data_buffer_dep, u8, 20, 29);
register_bits!(crdn, rd_q_dep, u8, 16, 19);
register_bits!(crdn, rd_cap, u8, 12, 14);
register_bits!(crdn, wr_q_dep, u8, 8, 11);
register_bits!(crdn, wr_cap, u8, 4, 6);
register_bits!(crdn, data_width, u8, 0, 2);
register!(wd, Wd, RW, u32);
register_bit!(wd, wd_irq_only, 0);
register!(periph_id_0, PeriphId0, RW, u32);
register_bits!(periph_id_0, part_number_0, u8, 0, 7);
register!(periph_id_1, PeriphId1, RW, u32);
register_bits!(periph_id_1, designer_0, u8, 4, 7);
register_bits!(periph_id_1, part_number_1, u8, 0, 3);
register!(periph_id_2, PeriphId2, RW, u32);
register_bits!(periph_id_2, revision, u8, 4, 7);
register_bits!(periph_id_2, designer_1, u8, 0, 3);
register!(periph_id_3, PeriphId3, RW, u32);
register_bit!(periph_id_3, integration_cfg, 0);
register!(pcell_id_0, PCellId0, RW, u32);
register_bits!(pcell_id_0, pcell_id_0, u8, 0, 7);
register!(pcell_id_1, PCellId1, RW, u32);
register_bits!(pcell_id_1, pcell_id_1, u8, 0, 7);
register!(pcell_id_2, PCellId2, RW, u32);
register_bits!(pcell_id_2, pcell_id_2, u8, 0, 7);
register!(pcell_id_3, PCellId3, RW, u32);
register_bits!(pcell_id_3, pcell_id_3, u8, 0, 7);

View File

@ -1,9 +1,5 @@
use core::{
marker::PhantomData,
ops::{Deref, DerefMut},
};
use log::{debug, info, warn, error};
use libregister::*; use libregister::*;
use crate::println;
use super::slcr; use super::slcr;
use super::clocks::Clocks; use super::clocks::Clocks;
@ -22,133 +18,15 @@ const TX_100: u32 = 25_000_000;
/// Clock for GbE /// Clock for GbE
const TX_1000: u32 = 125_000_000; const TX_1000: u32 = 125_000_000;
#[derive(Clone)] pub struct Eth<'r, RX, TX> {
#[repr(C, align(0x20))]
pub struct Buffer(pub [u8; MTU]);
impl Buffer {
pub const fn new() -> Self {
Buffer([0; MTU])
}
}
impl Deref for Buffer {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Buffer {
fn deref_mut(&mut self) -> &mut <Self as Deref>::Target {
&mut self.0
}
}
/// Gigabit Ethernet Peripheral
pub trait Gem {
fn setup_clock(tx_clock: u32);
fn regs() -> &'static mut regs::RegisterBlock;
}
/// first Gigabit Ethernet peripheral
pub struct Gem0;
impl Gem for Gem0 {
fn setup_clock(tx_clock: u32) {
let (divisor0, divisor1) = calculate_tx_divisors(tx_clock);
slcr::RegisterBlock::unlocked(|slcr| {
slcr.gem0_clk_ctrl.write(
// 0x0050_0801: 8, 5: 100 Mb/s
// ...: 8, 1: 1000 Mb/s
slcr::GemClkCtrl::zeroed()
.clkact(true)
.srcsel(slcr::PllSource::IoPll)
.divisor(divisor0 as u8)
.divisor1(divisor1 as u8)
);
// Enable gem0 recv clock
slcr.gem0_rclk_ctrl.write(
// 0x0000_0801
slcr::RclkCtrl::zeroed()
.clkact(true)
);
});
}
fn regs() -> &'static mut regs::RegisterBlock {
regs::RegisterBlock::gem0()
}
}
/// second Gigabit Ethernet peripheal
pub struct Gem1;
impl Gem for Gem1 {
fn setup_clock(tx_clock: u32) {
let (divisor0, divisor1) = calculate_tx_divisors(tx_clock);
slcr::RegisterBlock::unlocked(|slcr| {
slcr.gem1_clk_ctrl.write(
slcr::GemClkCtrl::zeroed()
.clkact(true)
.srcsel(slcr::PllSource::IoPll)
.divisor(divisor0 as u8)
.divisor1(divisor1 as u8)
);
// Enable gem1 recv clock
slcr.gem1_rclk_ctrl.write(
// 0x0000_0801
slcr::RclkCtrl::zeroed()
.clkact(true)
);
});
}
fn regs() -> &'static mut regs::RegisterBlock {
regs::RegisterBlock::gem1()
}
}
fn calculate_tx_divisors(tx_clock: u32) -> (u8, u8) {
let io_pll = Clocks::get().io;
let target = (tx_clock - 1 + io_pll) / tx_clock;
let mut best = None;
let mut best_error = 0;
for divisor0 in 1..63 {
for divisor1 in 1..63 {
let current = (divisor0 as u32) * (divisor1 as u32);
let error = if current > target {
current - target
} else {
target - current
};
if best.is_none() || best_error > error {
best = Some((divisor0, divisor1));
best_error = error;
}
}
}
let result = best.unwrap();
debug!("Eth TX clock for {}: {} / {} / {} = {}",
tx_clock, io_pll,
result.0, result.1,
io_pll / result.0 as u32 / result.1 as u32
);
result
}
pub struct Eth<GEM: Gem, RX, TX> {
rx: RX, rx: RX,
tx: TX, tx: TX,
inner: EthInner<GEM>, inner: EthInner<'r>,
phy: Phy, phy: Phy,
} }
impl Eth<Gem0, (), ()> { impl<'r> Eth<'r, (), ()> {
pub fn eth0(macaddr: [u8; 6]) -> Self { pub fn default(macaddr: [u8; 6]) -> Self {
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
// Manual example: 0x0000_1280 // Manual example: 0x0000_1280
// MDIO // MDIO
@ -224,48 +102,48 @@ impl Eth<Gem0, (), ()> {
// RX_CLK // RX_CLK
slcr.mio_pin_22.write( slcr.mio_pin_22.write(
slcr::MioPin22::zeroed() slcr::MioPin22::zeroed()
.tri_enable(true)
.l0_sel(true) .l0_sel(true)
.speed(true)
.io_type(slcr::IoBufferType::Hstl) .io_type(slcr::IoBufferType::Hstl)
.pullup(true) .pullup(true)
); );
// RX_CTRL // RX_CTRL
slcr.mio_pin_27.write( slcr.mio_pin_27.write(
slcr::MioPin27::zeroed() slcr::MioPin27::zeroed()
.tri_enable(true)
.l0_sel(true) .l0_sel(true)
.speed(true)
.io_type(slcr::IoBufferType::Hstl) .io_type(slcr::IoBufferType::Hstl)
.pullup(true) .pullup(true)
); );
// RXD3 // RXD3
slcr.mio_pin_26.write( slcr.mio_pin_26.write(
slcr::MioPin26::zeroed() slcr::MioPin26::zeroed()
.tri_enable(true)
.l0_sel(true) .l0_sel(true)
.speed(true)
.io_type(slcr::IoBufferType::Hstl) .io_type(slcr::IoBufferType::Hstl)
.pullup(true) .pullup(true)
); );
// RXD2 // RXD2
slcr.mio_pin_25.write( slcr.mio_pin_25.write(
slcr::MioPin25::zeroed() slcr::MioPin25::zeroed()
.tri_enable(true)
.l0_sel(true) .l0_sel(true)
.speed(true)
.io_type(slcr::IoBufferType::Hstl) .io_type(slcr::IoBufferType::Hstl)
.pullup(true) .pullup(true)
); );
// RXD1 // RXD1
slcr.mio_pin_24.write( slcr.mio_pin_24.write(
slcr::MioPin24::zeroed() slcr::MioPin24::zeroed()
.tri_enable(true)
.l0_sel(true) .l0_sel(true)
.speed(true)
.io_type(slcr::IoBufferType::Hstl) .io_type(slcr::IoBufferType::Hstl)
.pullup(true) .pullup(true)
); );
// RXD0 // RXD0
slcr.mio_pin_23.write( slcr.mio_pin_23.write(
slcr::MioPin23::zeroed() slcr::MioPin23::zeroed()
.tri_enable(true)
.l0_sel(true) .l0_sel(true)
.speed(true)
.io_type(slcr::IoBufferType::Hstl) .io_type(slcr::IoBufferType::Hstl)
.pullup(true) .pullup(true)
); );
@ -280,26 +158,22 @@ impl Eth<Gem0, (), ()> {
} }
pub fn gem0(macaddr: [u8; 6]) -> Self { pub fn gem0(macaddr: [u8; 6]) -> Self {
Self::gem_common(macaddr) Self::setup_gem0_clock(TX_1000);
let regs = regs::RegisterBlock::gem0();
Self::from_regs(regs, macaddr)
} }
}
impl Eth<Gem1, (), ()> {
// TODO: Add a `eth1()`
pub fn gem1(macaddr: [u8; 6]) -> Self { pub fn gem1(macaddr: [u8; 6]) -> Self {
Self::gem_common(macaddr) Self::setup_gem1_clock(TX_1000);
let regs = regs::RegisterBlock::gem1();
Self::from_regs(regs, macaddr)
} }
}
impl<GEM: Gem> Eth<GEM, (), ()> {
fn gem_common(macaddr: [u8; 6]) -> Self {
GEM::setup_clock(TX_1000);
fn from_regs(regs: &'r mut regs::RegisterBlock, macaddr: [u8; 6]) -> Self {
let mut inner = EthInner { let mut inner = EthInner {
gem: PhantomData, regs,
link: None, link: None,
}; };
inner.init(); inner.init();
@ -318,52 +192,98 @@ impl<GEM: Gem> Eth<GEM, (), ()> {
} }
} }
impl<GEM: Gem, RX, TX> Eth<GEM, RX, TX> { impl<'r, RX, TX> Eth<'r, RX, TX> {
pub fn start_rx(self, rx_size: usize) -> Eth<GEM, rx::DescList, TX> { pub fn setup_gem0_clock(tx_clock: u32) {
let io_pll = Clocks::get().io;
let d0 = ((tx_clock - 1 + io_pll) / tx_clock).max(1).min(63);
let d1 = (io_pll / tx_clock / d0).max(1).min(63);
slcr::RegisterBlock::unlocked(|slcr| {
slcr.gem0_clk_ctrl.write(
// 0x0050_0801: 8, 5: 100 Mb/s
// ...: 8, 1: 1000 Mb/s
slcr::GemClkCtrl::zeroed()
.clkact(true)
.srcsel(slcr::PllSource::IoPll)
.divisor(d0 as u8)
.divisor1(d1 as u8)
);
// Enable gem0 recv clock
slcr.gem0_rclk_ctrl.write(
// 0x0000_0801
slcr::RclkCtrl::zeroed()
.clkact(true)
);
});
}
pub fn setup_gem1_clock(tx_clock: u32) {
let io_pll = Clocks::get().io;
let d0 = ((tx_clock - 1 + io_pll) / tx_clock).max(1).min(63);
let d1 = (io_pll / tx_clock / d0).max(1).min(63);
slcr::RegisterBlock::unlocked(|slcr| {
slcr.gem1_clk_ctrl.write(
slcr::GemClkCtrl::zeroed()
.clkact(true)
.srcsel(slcr::PllSource::IoPll)
.divisor(d0 as u8)
.divisor1(d1 as u8)
);
// Enable gem1 recv clock
slcr.gem1_rclk_ctrl.write(
// 0x0000_0801
slcr::RclkCtrl::zeroed()
.clkact(true)
);
});
}
pub fn start_rx<'rx>(self, rx_list: &'rx mut [rx::DescEntry], rx_buffers: &'rx mut [[u8; MTU]]) -> Eth<'r, rx::DescList<'rx>, TX> {
let new_self = Eth { let new_self = Eth {
rx: rx::DescList::new(rx_size), rx: rx::DescList::new(rx_list, rx_buffers),
tx: self.tx, tx: self.tx,
inner: self.inner, inner: self.inner,
phy: self.phy, phy: self.phy,
}; };
let list_addr = new_self.rx.list_addr(); let list_addr = new_self.rx.list_addr();
assert!(list_addr & 0b11 == 0); assert!(list_addr & 0b11 == 0);
GEM::regs().rx_qbar.write( new_self.inner.regs.rx_qbar.write(
regs::RxQbar::zeroed() regs::RxQbar::zeroed()
.rx_q_baseaddr(list_addr >> 2) .rx_q_baseaddr(list_addr >> 2)
); );
GEM::regs().net_ctrl.modify(|_, w| new_self.inner.regs.net_ctrl.modify(|_, w|
w.rx_en(true) w.rx_en(true)
); );
new_self new_self
} }
pub fn start_tx(self, tx_size: usize) -> Eth<GEM, RX, tx::DescList> { pub fn start_tx<'tx>(self, tx_list: &'tx mut [tx::DescEntry], tx_buffers: &'tx mut [[u8; MTU]]) -> Eth<'r, RX, tx::DescList<'tx>> {
let new_self = Eth { let new_self = Eth {
rx: self.rx, rx: self.rx,
tx: tx::DescList::new(tx_size), tx: tx::DescList::new(tx_list, tx_buffers),
inner: self.inner, inner: self.inner,
phy: self.phy, phy: self.phy,
}; };
let list_addr = &new_self.tx.list_addr(); let list_addr = &new_self.tx.list_addr();
assert!(list_addr & 0b11 == 0); assert!(list_addr & 0b11 == 0);
GEM::regs().tx_qbar.write( new_self.inner.regs.tx_qbar.write(
regs::TxQbar::zeroed() regs::TxQbar::zeroed()
.tx_q_baseaddr(list_addr >> 2) .tx_q_baseaddr(list_addr >> 2)
); );
GEM::regs().net_ctrl.modify(|_, w| new_self.inner.regs.net_ctrl.modify(|_, w|
w.tx_en(true) w.tx_en(true)
); );
new_self new_self
} }
} }
impl<GEM: Gem, TX> Eth<GEM, rx::DescList, TX> { impl<'r, 'rx, TX> Eth<'r, rx::DescList<'rx>, TX> {
pub fn recv_next<'s: 'p, 'p>(&'s mut self) -> Result<Option<rx::PktRef<'p>>, rx::Error> { pub fn recv_next<'s: 'p, 'p>(&'s mut self) -> Result<Option<rx::PktRef<'p>>, rx::Error> {
let status = GEM::regs().rx_status.read(); let status = self.inner.regs.rx_status.read();
if status.hresp_not_ok() { if status.hresp_not_ok() {
// Clear // Clear
GEM::regs().rx_status.write( self.inner.regs.rx_status.write(
regs::RxStatus::zeroed() regs::RxStatus::zeroed()
.hresp_not_ok(true) .hresp_not_ok(true)
); );
@ -371,7 +291,7 @@ impl<GEM: Gem, TX> Eth<GEM, rx::DescList, TX> {
} }
if status.rx_overrun() { if status.rx_overrun() {
// Clear // Clear
GEM::regs().rx_status.write( self.inner.regs.rx_status.write(
regs::RxStatus::zeroed() regs::RxStatus::zeroed()
.rx_overrun(true) .rx_overrun(true)
); );
@ -379,7 +299,7 @@ impl<GEM: Gem, TX> Eth<GEM, rx::DescList, TX> {
} }
if status.buffer_not_avail() { if status.buffer_not_avail() {
// Clear // Clear
GEM::regs().rx_status.write( self.inner.regs.rx_status.write(
regs::RxStatus::zeroed() regs::RxStatus::zeroed()
.buffer_not_avail(true) .buffer_not_avail(true)
); );
@ -391,7 +311,7 @@ impl<GEM: Gem, TX> Eth<GEM, rx::DescList, TX> {
match result { match result {
Ok(None) => { Ok(None) => {
// No packet, clear status bit // No packet, clear status bit
GEM::regs().rx_status.write( self.inner.regs.rx_status.write(
regs::RxStatus::zeroed() regs::RxStatus::zeroed()
.frame_recd(true) .frame_recd(true)
); );
@ -406,15 +326,15 @@ impl<GEM: Gem, TX> Eth<GEM, rx::DescList, TX> {
} }
} }
impl<GEM: Gem, RX> Eth<GEM, RX, tx::DescList> { impl<'r, 'tx, RX> Eth<'r, RX, tx::DescList<'tx>> {
pub fn send<'s: 'p, 'p>(&'s mut self, length: usize) -> Option<tx::PktRef<'p>> { pub fn send<'s: 'p, 'p>(&'s mut self, length: usize) -> Option<tx::PktRef<'p>> {
self.tx.send(GEM::regs(), length) self.tx.send(self.inner.regs, length)
} }
} }
impl<'a, GEM: Gem> smoltcp::phy::Device<'a> for &mut Eth<GEM, rx::DescList, tx::DescList> { impl<'r, 'rx, 'tx: 'a, 'a> smoltcp::phy::Device<'a> for &mut Eth<'r, rx::DescList<'rx>, tx::DescList<'tx>> {
type RxToken = rx::PktRef<'a>; type RxToken = rx::PktRef<'a>;
type TxToken = tx::Token<'a>; type TxToken = tx::Token<'a, 'tx>;
fn capabilities(&self) -> smoltcp::phy::DeviceCapabilities { fn capabilities(&self) -> smoltcp::phy::DeviceCapabilities {
use smoltcp::phy::{DeviceCapabilities, ChecksumCapabilities, Checksum}; use smoltcp::phy::{DeviceCapabilities, ChecksumCapabilities, Checksum};
@ -426,7 +346,6 @@ impl<'a, GEM: Gem> smoltcp::phy::Device<'a> for &mut Eth<GEM, rx::DescList, tx::
let mut caps = DeviceCapabilities::default(); let mut caps = DeviceCapabilities::default();
caps.max_transmission_unit = MTU; caps.max_transmission_unit = MTU;
caps.max_burst_size = Some(self.rx.len().min(self.tx.len()));
caps.checksum = checksum_caps; caps.checksum = checksum_caps;
caps caps
@ -436,7 +355,7 @@ impl<'a, GEM: Gem> smoltcp::phy::Device<'a> for &mut Eth<GEM, rx::DescList, tx::
match self.rx.recv_next() { match self.rx.recv_next() {
Ok(Some(pktref)) => { Ok(Some(pktref)) => {
let tx_token = tx::Token { let tx_token = tx::Token {
regs: GEM::regs(), regs: self.inner.regs,
desc_list: &mut self.tx, desc_list: &mut self.tx,
}; };
Some((pktref, tx_token)) Some((pktref, tx_token))
@ -446,7 +365,7 @@ impl<'a, GEM: Gem> smoltcp::phy::Device<'a> for &mut Eth<GEM, rx::DescList, tx::
None None
} }
Err(e) => { Err(e) => {
error!("eth recv error: {:?}", e); println!("eth recv error: {:?}", e);
None None
} }
} }
@ -454,32 +373,33 @@ impl<'a, GEM: Gem> smoltcp::phy::Device<'a> for &mut Eth<GEM, rx::DescList, tx::
fn transmit(&'a mut self) -> Option<Self::TxToken> { fn transmit(&'a mut self) -> Option<Self::TxToken> {
Some(tx::Token { Some(tx::Token {
regs: GEM::regs(), regs: self.inner.regs,
desc_list: &mut self.tx, desc_list: &mut self.tx,
}) })
} }
} }
struct EthInner<GEM: Gem> { struct EthInner<'r> {
gem: PhantomData<GEM>, regs: &'r mut regs::RegisterBlock,
link: Option<phy::Link>, link: Option<phy::Link>,
} }
impl<GEM: Gem> EthInner<GEM> { impl<'r> EthInner<'r> {
fn init(&mut self) { fn init(&mut self) {
// Clear the Network Control register. // Clear the Network Control register.
GEM::regs().net_ctrl.write(regs::NetCtrl::zeroed()); self.regs.net_ctrl.write(regs::NetCtrl::zeroed());
GEM::regs().net_ctrl.write(regs::NetCtrl::zeroed().clear_stat_regs(true)); self.regs.net_ctrl.write(regs::NetCtrl::zeroed().clear_stat_regs(true));
// Clear the Status registers. // Clear the Status registers.
GEM::regs().rx_status.write( self.regs.rx_status.write(
regs::RxStatus::zeroed() regs::RxStatus::zeroed()
.buffer_not_avail(true) .buffer_not_avail(true)
.frame_recd(true) .frame_recd(true)
.rx_overrun(true) .rx_overrun(true)
.hresp_not_ok(true) .hresp_not_ok(true)
); );
GEM::regs().tx_status.write( self.regs.tx_status.write(
regs::TxStatus::zeroed() regs::TxStatus::zeroed()
.used_bit_read(true) .used_bit_read(true)
.collision(true) .collision(true)
@ -493,7 +413,7 @@ impl<GEM: Gem> EthInner<GEM> {
.hresp_not_ok(true) .hresp_not_ok(true)
); );
// Disable all interrupts. // Disable all interrupts.
GEM::regs().intr_dis.write( self.regs.intr_dis.write(
regs::IntrDis::zeroed() regs::IntrDis::zeroed()
.mgmt_done(true) .mgmt_done(true)
.rx_complete(true) .rx_complete(true)
@ -523,32 +443,29 @@ impl<GEM: Gem> EthInner<GEM> {
.tsu_sec_incr(true) .tsu_sec_incr(true)
); );
// Clear the buffer queues. // Clear the buffer queues.
GEM::regs().rx_qbar.write( self.regs.rx_qbar.write(
regs::RxQbar::zeroed() regs::RxQbar::zeroed()
); );
GEM::regs().tx_qbar.write( self.regs.tx_qbar.write(
regs::TxQbar::zeroed() regs::TxQbar::zeroed()
); );
} }
fn configure(&mut self, macaddr: [u8; 6]) { fn configure(&mut self, macaddr: [u8; 6]) {
let clocks = Clocks::get(); let clocks = Clocks::get();
let mut mdc_clk_div = clocks.cpu_1x() / MAX_MDC; let mdc_clk_div = (clocks.cpu_1x() / MAX_MDC) + 1;
if clocks.cpu_1x() % MAX_MDC > 0 {
mdc_clk_div += 1;
}
GEM::regs().net_cfg.write( self.regs.net_cfg.write(
regs::NetCfg::zeroed() regs::NetCfg::zeroed()
.full_duplex(true) .full_duplex(true)
.gige_en(true) .gige_en(true)
.speed(true) .speed(true)
.no_broadcast(false) .no_broadcast(false)
.multi_hash_en(true) .multi_hash_en(true)
.rx_1536_byte_frames(true) // Promiscuous mode (TODO?)
.copy_all(true)
// Remove 4-byte Frame CheckSum // Remove 4-byte Frame CheckSum
.fcs_remove(true) .fcs_remove(true)
.dis_cp_pause_frame(true)
// RX checksum offload // RX checksum offload
.rx_chksum_offld_en(true) .rx_chksum_offld_en(true)
// One of the slower speeds // One of the slower speeds
@ -556,25 +473,24 @@ impl<GEM: Gem> EthInner<GEM> {
); );
let macaddr_msbs = let macaddr_msbs =
(u16::from(macaddr[5]) << 8) | (u16::from(macaddr[0]) << 8) |
u16::from(macaddr[4]); u16::from(macaddr[1]);
let macaddr_lsbs = let macaddr_lsbs =
(u32::from(macaddr[3]) << 24) | (u32::from(macaddr[2]) << 24) |
(u32::from(macaddr[2]) << 16) | (u32::from(macaddr[3]) << 16) |
(u32::from(macaddr[1]) << 8) | (u32::from(macaddr[4]) << 8) |
u32::from(macaddr[0]); u32::from(macaddr[5]);
// writing to bot would disable the specific address self.regs.spec_addr1_top.write(
GEM::regs().spec_addr1_bot.write(
regs::SpecAddrBot::zeroed()
.addr_lsbs(macaddr_lsbs)
);
// writing to top would enable it again
GEM::regs().spec_addr1_top.write(
regs::SpecAddrTop::zeroed() regs::SpecAddrTop::zeroed()
.addr_msbs(macaddr_msbs) .addr_msbs(macaddr_msbs)
); );
self.regs.spec_addr1_bot.write(
regs::SpecAddrBot::zeroed()
.addr_lsbs(macaddr_lsbs)
);
GEM::regs().dma_cfg.write(
self.regs.dma_cfg.write(
regs::DmaCfg::zeroed() regs::DmaCfg::zeroed()
// 1536 bytes // 1536 bytes
.ahb_mem_rx_buf_size((MTU >> 6) as u8) .ahb_mem_rx_buf_size((MTU >> 6) as u8)
@ -590,7 +506,7 @@ impl<GEM: Gem> EthInner<GEM> {
.ahb_fixed_burst_len(0x10) .ahb_fixed_burst_len(0x10)
); );
GEM::regs().net_ctrl.write( self.regs.net_ctrl.write(
regs::NetCtrl::zeroed() regs::NetCtrl::zeroed()
.mgmt_port_en(true) .mgmt_port_en(true)
); );
@ -598,7 +514,7 @@ impl<GEM: Gem> EthInner<GEM> {
fn wait_phy_idle(&self) { fn wait_phy_idle(&self) {
while !GEM::regs().net_status.read().phy_mgmt_idle() {} while !self.regs.net_status.read().phy_mgmt_idle() {}
} }
@ -615,23 +531,25 @@ impl<GEM: Gem> EthInner<GEM> {
if self.link != link { if self.link != link {
match &link { match &link {
Some(link) => { Some(link) => {
info!("eth: got {:?}", link); println!("eth: got {:?}", link);
use phy::{LinkDuplex::Full, LinkSpeed::*}; use phy::LinkSpeed::*;
let txclock = match link.speed { let txclock = match link.speed {
S10 => TX_10, S10 => TX_10,
S100 => TX_100, S100 => TX_100,
S1000 => TX_1000, S1000 => TX_1000,
}; };
GEM::setup_clock(txclock); Eth::<(), ()>::setup_gem0_clock(txclock);
GEM::regs().net_cfg.modify(|_, w| w /* .full_duplex(false) doesn't work even if
.full_duplex(link.duplex == Full) half duplex has been negotiated. */
self.regs.net_cfg.modify(|_, w| w
.full_duplex(true)
.gige_en(link.speed == S1000) .gige_en(link.speed == S1000)
.speed(link.speed != S10) .speed(link.speed != S10)
); );
} }
None => { None => {
warn!("eth: link lost"); println!("eth: link lost");
phy.modify_control(self, |control| phy.modify_control(self, |control|
control.set_autoneg_enable(true) control.set_autoneg_enable(true)
.set_restart_autoneg(true) .set_restart_autoneg(true)
@ -644,10 +562,10 @@ impl<GEM: Gem> EthInner<GEM> {
} }
} }
impl<GEM: Gem> PhyAccess for EthInner<GEM> { impl<'r> PhyAccess for EthInner<'r> {
fn read_phy(&mut self, addr: u8, reg: u8) -> u16 { fn read_phy(&mut self, addr: u8, reg: u8) -> u16 {
self.wait_phy_idle(); self.wait_phy_idle();
GEM::regs().phy_maint.write( self.regs.phy_maint.write(
regs::PhyMaint::zeroed() regs::PhyMaint::zeroed()
.clause_22(true) .clause_22(true)
.operation(regs::PhyOperation::Read) .operation(regs::PhyOperation::Read)
@ -656,12 +574,12 @@ impl<GEM: Gem> PhyAccess for EthInner<GEM> {
.must_10(0b10) .must_10(0b10)
); );
self.wait_phy_idle(); self.wait_phy_idle();
GEM::regs().phy_maint.read().data() self.regs.phy_maint.read().data()
} }
fn write_phy(&mut self, addr: u8, reg: u8, data: u16) { fn write_phy(&mut self, addr: u8, reg: u8, data: u16) {
self.wait_phy_idle(); self.wait_phy_idle();
GEM::regs().phy_maint.write( self.regs.phy_maint.write(
regs::PhyMaint::zeroed() regs::PhyMaint::zeroed()
.clause_22(true) .clause_22(true)
.operation(regs::PhyOperation::Write) .operation(regs::PhyOperation::Write)

View File

@ -0,0 +1,59 @@
use bit_field::BitField;
use super::{PhyRegister, Link, LinkDuplex, LinkSpeed};
#[derive(Clone, Copy, Debug)]
/// 1000Base-T Extended Status Register
pub struct ExtendedStatus(pub u16);
impl ExtendedStatus {
pub fn cap_1000base_t_half(&self) -> bool {
self.0.get_bit(12)
}
pub fn cap_1000base_t_full(&self) -> bool {
self.0.get_bit(13)
}
pub fn cap_1000base_x_half(&self) -> bool {
self.0.get_bit(14)
}
pub fn cap_1000base_x_full(&self) -> bool {
self.0.get_bit(12)
}
pub fn get_link(&self) -> Option<Link> {
if self.cap_1000base_t_half() {
Some(Link {
speed: LinkSpeed::S1000,
duplex: LinkDuplex::Half,
})
} else if self.cap_1000base_t_full() {
Some(Link {
speed: LinkSpeed::S1000,
duplex: LinkDuplex::Full,
})
} else if self.cap_1000base_x_half() {
Some(Link {
speed: LinkSpeed::S1000,
duplex: LinkDuplex::Half,
})
} else if self.cap_1000base_x_full() {
Some(Link {
speed: LinkSpeed::S1000,
duplex: LinkDuplex::Full,
})
} else {
None
}
}
}
impl PhyRegister for ExtendedStatus {
fn addr() -> u8 {
0xF
}
}
impl From<u16> for ExtendedStatus {
fn from(value: u16) -> Self {
ExtendedStatus(value)
}
}

View File

@ -2,10 +2,10 @@ pub mod id;
use id::{identify_phy, PhyIdentifier}; use id::{identify_phy, PhyIdentifier};
mod status; mod status;
pub use status::Status; pub use status::Status;
mod extended_status;
pub use extended_status::ExtendedStatus;
mod control; mod control;
pub use control::Control; pub use control::Control;
mod pssr;
pub use pssr::PSSR;
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
pub struct Link { pub struct Link {
@ -39,36 +39,43 @@ pub struct Phy {
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
pub enum PhyDevice { pub enum PhyDevice {
Marvell88E1116R, Marvel88E1116R,
Rtl8211E, Rtl8211E,
} }
const OUI_MARVELL: u32 = 0x005043; const OUI_MARVEL: u32 = 0x005043;
const OUI_REALTEK: u32 = 0x000732; const OUI_REALTEK: u32 = 0x000732;
impl Phy { impl Phy {
/// Probe all addresses on MDIO for a known PHY /// Probe all addresses on MDIO for a known PHY
pub fn find<PA: PhyAccess>(pa: &mut PA) -> Option<Phy> { pub fn find<PA: PhyAccess>(pa: &mut PA) -> Option<Phy> {
(1..32).filter_map(|addr| { for addr in 1..32 {
match identify_phy(pa, addr) { let device = match identify_phy(pa, addr) {
Some(PhyIdentifier { Some(PhyIdentifier {
oui: OUI_MARVELL, oui: OUI_MARVEL,
model: 36, model: 36,
.. ..
}) => Some(PhyDevice::Marvell88E1116R), }) => Some(PhyDevice::Marvel88E1116R),
Some(PhyIdentifier { Some(PhyIdentifier {
oui: OUI_REALTEK, oui: OUI_REALTEK,
model: 0b010001, model: 0b010001,
rev: 0b0101, rev: 0b0101,
}) => Some(PhyDevice::Rtl8211E), }) => Some(PhyDevice::Rtl8211E),
_ => None, _ => None,
}.map(|device| Phy { addr, device }) };
}).next() match device {
Some(device) =>
return Some(Phy { addr, device }),
None => {}
}
}
None
} }
pub fn name(&self) -> &'static str { pub fn name(&self) -> &'static str {
match self.device { match self.device {
PhyDevice::Marvell88E1116R => &"Marvell 88E1116R", PhyDevice::Marvel88E1116R => &"Marvel 88E1116R",
PhyDevice::Rtl8211E => &"RTL8211E", PhyDevice::Rtl8211E => &"RTL8211E",
} }
} }
@ -113,8 +120,12 @@ impl Phy {
if !status.link_status() { if !status.link_status() {
None None
} else if status.cap_1000base_t_extended_status() { } else if status.cap_1000base_t_extended_status() {
let phy_status: PSSR = self.read_reg(pa); let ext_status: ExtendedStatus = self.read_reg(pa);
phy_status.get_link() if let Some(link) = ext_status.get_link() {
Some(link)
} else {
status.get_link()
}
} else { } else {
status.get_link() status.get_link()
} }

View File

@ -1,52 +0,0 @@
use bit_field::BitField;
use super::{PhyRegister, Link, LinkDuplex, LinkSpeed};
#[derive(Clone, Copy, Debug)]
/// PHY-Specific Status Register
pub struct PSSR(pub u16);
impl PSSR {
pub fn link(&self) -> bool {
self.0.get_bit(10)
}
pub fn duplex(&self) -> LinkDuplex {
if self.0.get_bit(13) {
LinkDuplex::Full
} else {
LinkDuplex::Half
}
}
pub fn speed(&self) -> Option<LinkSpeed> {
match self.0.get_bits(14..=15) {
0b00 => Some(LinkSpeed::S10),
0b01 => Some(LinkSpeed::S100),
0b10 => Some(LinkSpeed::S1000),
_ => None,
}
}
pub fn get_link(&self) -> Option<Link> {
if self.link() {
Some(Link {
speed: self.speed()?,
duplex: self.duplex(),
})
} else {
None
}
}
}
impl PhyRegister for PSSR {
fn addr() -> u8 {
0x11
}
}
impl From<u16> for PSSR {
fn from(value: u16) -> Self {
PSSR(value)
}
}

View File

@ -1,6 +1,6 @@
use volatile_register::{RO, WO, RW}; use volatile_register::{RO, WO, RW};
use libregister::{register, register_at, register_bit, register_bits, register_bits_typed}; use libregister::{register, register_bit, register_bits, register_bits_typed};
#[repr(C)] #[repr(C)]
pub struct RegisterBlock { pub struct RegisterBlock {
@ -110,8 +110,18 @@ pub struct RegisterBlock {
pub design_cfg5: RO<u32>, pub design_cfg5: RO<u32>,
} }
register_at!(RegisterBlock, 0xE000B000, gem0); impl RegisterBlock {
register_at!(RegisterBlock, 0xE000C000, gem1); const GEM0: *mut Self = 0xE000B000 as *mut _;
const GEM1: *mut Self = 0xE000C000 as *mut _;
pub fn gem0() -> &'static mut Self {
unsafe { &mut *Self::GEM0 }
}
pub fn gem1() -> &'static mut Self {
unsafe { &mut *Self::GEM1 }
}
}
register!(net_ctrl, NetCtrl, RW, u32); register!(net_ctrl, NetCtrl, RW, u32);
register_bit!(net_ctrl, loopback_local, 1); register_bit!(net_ctrl, loopback_local, 1);

View File

@ -1,8 +1,6 @@
use core::ops::Deref; use core::ops::Deref;
use alloc::{vec, vec::Vec};
use libcortex_a9::{asm::*, cache::*, UncachedSlice};
use libregister::*; use libregister::*;
use super::Buffer; use super::MTU;
#[derive(Debug)] #[derive(Debug)]
pub enum Error { pub enum Error {
@ -55,22 +53,18 @@ register_bit!(desc_word1, multi_hash_match, 30);
register_bit!(desc_word1, global_broadcast, 31); register_bit!(desc_word1, global_broadcast, 31);
#[repr(C)] #[repr(C)]
pub struct DescList { pub struct DescList<'a> {
list: UncachedSlice<DescEntry>, list: &'a mut [DescEntry],
buffers: Vec<Buffer>, buffers: &'a mut [[u8; MTU]],
next: usize, next: usize,
} }
impl DescList { impl<'a> DescList<'a> {
pub fn new(size: usize) -> Self { pub fn new(list: &'a mut [DescEntry], buffers: &'a mut [[u8; MTU]]) -> Self {
let mut list = UncachedSlice::new(size, || DescEntry::zeroed())
.unwrap();
let mut buffers = vec![Buffer::new(); size];
let last = list.len().min(buffers.len()) - 1; let last = list.len().min(buffers.len()) - 1;
for (i, (entry, buffer)) in list.iter_mut().zip(buffers.iter_mut()).enumerate() { for (i, (entry, buffer)) in list.iter_mut().zip(buffers.iter_mut()).enumerate() {
let is_last = i == last; let is_last = i == last;
let buffer_addr = &mut buffer.0[0] as *mut _ as u32; let buffer_addr = &mut buffer[0] as *mut _ as u32;
assert!(buffer_addr & 0b11 == 0); assert!(buffer_addr & 0b11 == 0);
entry.word0.write( entry.word0.write(
DescWord0::zeroed() DescWord0::zeroed()
@ -81,22 +75,16 @@ impl DescList {
entry.word1.write( entry.word1.write(
DescWord1::zeroed() DescWord1::zeroed()
); );
// Flush buffer from cache, to be filled by the peripheral
// before next read
dcci_slice(&buffer[..]);
} }
DescList { DescList {
list, // Shorten the list of descriptors to the required number.
list: &mut list[0..=last],
buffers, buffers,
next: 0, next: 0,
} }
} }
pub fn len(&self) -> usize {
self.list.len().min(self.buffers.len())
}
pub fn list_addr(&self) -> u32 { pub fn list_addr(&self) -> u32 {
&self.list[0] as *const _ as u32 &self.list[0] as *const _ as u32
} }
@ -104,24 +92,9 @@ impl DescList {
pub fn recv_next<'s: 'p, 'p>(&'s mut self) -> Result<Option<PktRef<'p>>, Error> { pub fn recv_next<'s: 'p, 'p>(&'s mut self) -> Result<Option<PktRef<'p>>, Error> {
let list_len = self.list.len(); let list_len = self.list.len();
let entry = &mut self.list[self.next]; let entry = &mut self.list[self.next];
dmb();
if entry.word0.read().used() { if entry.word0.read().used() {
let word1 = entry.word1.read(); let word1 = entry.word1.read();
let len = word1.frame_length_lsbs().into(); let len = word1.frame_length_lsbs().into();
let padding = {
let diff = len % 0x20;
if diff == 0 {
0
} else {
0x20 - diff
}
};
unsafe {
// invalidate the buffer
// we cannot do it in the drop function, as L2 cache data prefetch would prefetch
// the data, and there is no way for us to prevent that unless changing MMU table.
dci_slice(&mut self.buffers[self.next][0..len + padding]);
}
let buffer = &mut self.buffers[self.next][0..len]; let buffer = &mut self.buffers[self.next][0..len];
self.next += 1; self.next += 1;
@ -150,7 +123,6 @@ pub struct PktRef<'a> {
impl<'a> Drop for PktRef<'a> { impl<'a> Drop for PktRef<'a> {
fn drop(&mut self) { fn drop(&mut self) {
self.entry.word0.modify(|_, w| w.used(false)); self.entry.word0.modify(|_, w| w.used(false));
dmb();
} }
} }

View File

@ -1,8 +1,6 @@
use core::ops::{Deref, DerefMut}; use core::ops::{Deref, DerefMut};
use alloc::{vec, vec::Vec};
use libcortex_a9::{cache::dcc_slice, UncachedSlice};
use libregister::*; use libregister::*;
use super::{Buffer, regs}; use super::{MTU, regs};
/// Descriptor entry /// Descriptor entry
#[repr(C, align(0x08))] #[repr(C, align(0x08))]
@ -42,18 +40,14 @@ impl DescEntry {
pub const DESCS: usize = 8; pub const DESCS: usize = 8;
#[repr(C)] #[repr(C)]
pub struct DescList { pub struct DescList<'a> {
list: UncachedSlice<DescEntry>, list: &'a mut [DescEntry],
buffers: Vec<Buffer>, buffers: &'a mut [[u8; MTU]],
next: usize, next: usize,
} }
impl DescList { impl<'a> DescList<'a> {
pub fn new(size: usize) -> Self { pub fn new(list: &'a mut [DescEntry], buffers: &'a mut [[u8; MTU]]) -> Self {
let mut list = UncachedSlice::new(size, || DescEntry::zeroed())
.unwrap();
let mut buffers = vec![Buffer::new(); size];
let last = list.len().min(buffers.len()) - 1; let last = list.len().min(buffers.len()) - 1;
// Sending seems to not work properly with only one packet // Sending seems to not work properly with only one packet
// buffer (two duplicates get send with every packet), so // buffer (two duplicates get send with every packet), so
@ -63,7 +57,7 @@ impl DescList {
for (i, (entry, buffer)) in list.iter_mut().zip(buffers.iter_mut()).enumerate() { for (i, (entry, buffer)) in list.iter_mut().zip(buffers.iter_mut()).enumerate() {
let is_last = i == last; let is_last = i == last;
let buffer_addr = &mut buffer.0[0] as *mut _ as u32; let buffer_addr = &mut buffer[0] as *mut _ as u32;
assert!(buffer_addr & 0b11 == 0); assert!(buffer_addr & 0b11 == 0);
entry.word0.write( entry.word0.write(
DescWord0::zeroed() DescWord0::zeroed()
@ -79,16 +73,13 @@ impl DescList {
} }
DescList { DescList {
list, // Shorten the list of descriptors to the required number.
list: &mut list[0..=last],
buffers, buffers,
next: 0, next: 0,
} }
} }
pub fn len(&self) -> usize {
self.list.len().min(self.buffers.len())
}
pub fn list_addr(&self) -> u32 { pub fn list_addr(&self) -> u32 {
&self.list[0] as *const _ as u32 &self.list[0] as *const _ as u32
} }
@ -128,12 +119,12 @@ pub struct PktRef<'a> {
impl<'a> Drop for PktRef<'a> { impl<'a> Drop for PktRef<'a> {
fn drop(&mut self) { fn drop(&mut self) {
// Write back all dirty cachelines of this buffer
dcc_slice(self.buffer);
self.entry.word1.modify(|_, w| w.used(false)); self.entry.word1.modify(|_, w| w.used(false));
// Start the TX engine if ! self.regs.tx_status.read().tx_go() {
self.regs.net_ctrl.modify(|_, w| w.start_tx(true)); self.regs.net_ctrl.modify(|_, w|
w.start_tx(true)
);
}
} }
} }
@ -151,12 +142,12 @@ impl<'a> DerefMut for PktRef<'a> {
} }
/// TxToken for smoltcp support /// TxToken for smoltcp support
pub struct Token<'a> { pub struct Token<'a, 'tx: 'a> {
pub regs: &'a mut regs::RegisterBlock, pub regs: &'a mut regs::RegisterBlock,
pub desc_list: &'a mut DescList, pub desc_list: &'a mut DescList<'tx>,
} }
impl<'a> smoltcp::phy::TxToken for Token<'a> { impl<'a, 'tx: 'a> smoltcp::phy::TxToken for Token<'a, 'tx> {
fn consume<R, F>(self, _timestamp: smoltcp::time::Instant, len: usize, f: F) -> smoltcp::Result<R> fn consume<R, F>(self, _timestamp: smoltcp::time::Instant, len: usize, f: F) -> smoltcp::Result<R>
where F: FnOnce(&mut [u8]) -> smoltcp::Result<R> where F: FnOnce(&mut [u8]) -> smoltcp::Result<R>
{ {
@ -164,7 +155,10 @@ impl<'a> smoltcp::phy::TxToken for Token<'a> {
None => None =>
Err(smoltcp::Error::Exhausted), Err(smoltcp::Error::Exhausted),
Some(mut pktref) => { Some(mut pktref) => {
f(pktref.deref_mut()) let result = f(pktref.deref_mut());
// TODO: on result.is_err() don;t send
drop(pktref);
result
} }
} }
} }

View File

@ -0,0 +1,41 @@
pub trait BytesTransferExt: Sized {
// Turn u32 into u8
fn bytes_transfer(self) -> BytesTransfer<Self>
where
Self: Iterator<Item = u32>;
}
impl<I: Iterator<Item = u32>> BytesTransferExt for I {
// Turn u32 into u8
fn bytes_transfer(self) -> BytesTransfer<Self> {
BytesTransfer {
iter: self,
shift: 0,
word: 0,
}
}
}
pub struct BytesTransfer<I: Iterator<Item = u32> + Sized> {
iter: I,
shift: u8,
word: u32,
}
impl<I: Iterator<Item = u32> + Sized> Iterator for BytesTransfer<I> {
type Item = u8;
fn next(&mut self) -> Option<u8> {
if self.shift > 0 {
self.shift -= 8;
Some((self.word >> self.shift) as u8)
} else {
self.iter.next()
.and_then(|word| {
self.shift = 32;
self.word = word;
self.next()
})
}
}
}

View File

@ -0,0 +1,507 @@
//! Quad-SPI Flash Controller
use crate::{print, println};
use core::marker::PhantomData;
use libregister::{RegisterR, RegisterW, RegisterRW};
use super::slcr;
use super::clocks::source::{IoPll, ClockSource};
mod regs;
mod bytes;
pub use bytes::{BytesTransferExt, BytesTransfer};
mod spi_flash_register;
use spi_flash_register::*;
mod transfer;
use transfer::Transfer;
const FLASH_BAUD_RATE: u32 = 50_000_000;
/// 16 MB
pub const SINGLE_CAPACITY: u32 = 0x1000000;
pub const SECTOR_SIZE: u32 = 0x10000;
pub const PAGE_SIZE: u32 = 0x100;
/// Instruction: Read Identification
const INST_RDID: u8 = 0x9F;
const INST_READ: u8 = 0x03;
/// Instruction: Write Disable
const INST_WRDI: u8 = 0x04;
/// Instruction: Write Enable
const INST_WREN: u8 = 0x06;
/// Instruction: Program page
const INST_PP: u8 = 0x02;
/// Instruction: Sector Erase
const INST_SE: u8 = 0xD8;
/// Instruction: Erase 4K Block
const INST_BE_4K: u8 = 0x20;
#[derive(Clone)]
pub enum SpiWord {
W8(u8),
W16(u16),
W24(u32),
W32(u32),
}
impl From<u8> for SpiWord {
fn from(x: u8) -> Self {
SpiWord::W8(x)
}
}
impl From<u16> for SpiWord {
fn from(x: u16) -> Self {
SpiWord::W16(x)
}
}
impl From<u32> for SpiWord {
fn from(x: u32) -> Self {
SpiWord::W32(x)
}
}
/// Memory-mapped mode
pub struct LinearAddressing;
/// Manual I/O mode
pub struct Manual;
/// Flash Interface Driver
///
/// For 2x Spansion S25FL128SAGMFIR01
pub struct Flash<MODE> {
regs: &'static mut regs::RegisterBlock,
_mode: PhantomData<MODE>,
}
impl<MODE> Flash<MODE> {
fn transition<TO>(self) -> Flash<TO> {
Flash {
regs: self.regs,
_mode: PhantomData,
}
}
fn disable_interrupts(&mut self) {
self.regs.intr_dis.write(
regs::IntrDis::zeroed()
.rx_overflow(true)
.tx_fifo_not_full(true)
.tx_fifo_full(true)
.rx_fifo_not_empty(true)
.rx_fifo_full(true)
.tx_fifo_underflow(true)
);
}
fn enable_interrupts(&mut self) {
self.regs.intr_en.write(
regs::IntrEn::zeroed()
.rx_overflow(true)
.tx_fifo_not_full(true)
.tx_fifo_full(true)
.rx_fifo_not_empty(true)
.rx_fifo_full(true)
.tx_fifo_underflow(true)
);
}
fn clear_rx_fifo(&self) {
while self.regs.intr_status.read().rx_fifo_not_empty() {
let _ = self.regs.rx_data.read();
}
}
fn clear_interrupt_status(&mut self) {
self.regs.intr_status.write(
regs::IntrStatus::zeroed()
.rx_overflow(true)
.tx_fifo_underflow(true)
);
}
fn wait_tx_fifo_flush(&mut self) {
self.regs.config.modify(|_, w| w.man_start_com(true));
while !self.regs.intr_status.read().tx_fifo_not_full() {}
}
}
impl Flash<()> {
pub fn new(clock: u32) -> Self {
Self::enable_clocks(clock);
Self::setup_signals();
Self::reset();
let regs = regs::RegisterBlock::qspi();
let mut flash = Flash { regs, _mode: PhantomData };
flash.configure((FLASH_BAUD_RATE - 1 + clock) / FLASH_BAUD_RATE);
flash
}
/// typical: `200_000_000` Hz
fn enable_clocks(clock: u32) {
let io_pll = IoPll::freq();
let divisor = ((clock - 1 + io_pll) / clock)
.max(1).min(63) as u8;
slcr::RegisterBlock::unlocked(|slcr| {
slcr.lqspi_clk_ctrl.write(
slcr::LqspiClkCtrl::zeroed()
.src_sel(slcr::PllSource::IoPll)
.divisor(divisor)
.clkact(true)
);
});
}
fn setup_signals() {
slcr::RegisterBlock::unlocked(|slcr| {
// 1. Configure MIO pin 1 for chip select 0 output.
slcr.mio_pin_01.write(
slcr::MioPin01::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
.pullup(true)
);
// Configure MIO pins 2 through 5 for I/O.
slcr.mio_pin_02.write(
slcr::MioPin02::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
slcr.mio_pin_03.write(
slcr::MioPin03::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
slcr.mio_pin_04.write(
slcr::MioPin04::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
slcr.mio_pin_05.write(
slcr::MioPin05::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
// 3. Configure MIO pin 6 for serial clock 0 output.
slcr.mio_pin_06.write(
slcr::MioPin06::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
// Option: Add Second Device Chip Select
// 4. Configure MIO pin 0 for chip select 1 output.
slcr.mio_pin_00.write(
slcr::MioPin00::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
.pullup(true)
);
// Option: Add Second Serial Clock
// 5. Configure MIO pin 9 for serial clock 1 output.
slcr.mio_pin_09.write(
slcr::MioPin09::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
// Option: Add 4-bit Data
// 6. Configure MIO pins 10 through 13 for I/O.
slcr.mio_pin_10.write(
slcr::MioPin10::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
slcr.mio_pin_11.write(
slcr::MioPin11::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
slcr.mio_pin_12.write(
slcr::MioPin12::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
slcr.mio_pin_13.write(
slcr::MioPin13::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
// Option: Add Feedback Output Clock
// 7. Configure MIO pin 8 for feedback clock.
slcr.mio_pin_08.write(
slcr::MioPin08::zeroed()
.l0_sel(true)
.io_type(slcr::IoBufferType::Lvcmos18)
);
});
}
fn reset() {
slcr::RegisterBlock::unlocked(|slcr| {
slcr.lqspi_rst_ctrl.write(
slcr::LqspiRstCtrl::zeroed()
.ref_rst(true)
.cpu1x_rst(true)
);
slcr.lqspi_rst_ctrl.write(
slcr::LqspiRstCtrl::zeroed()
);
});
}
fn configure(&mut self, divider: u32) {
// Disable
self.regs.enable.write(
regs::Enable::zeroed()
);
self.disable_interrupts();
self.regs.lqspi_cfg.write(
regs::LqspiCfg::zeroed()
);
self.clear_rx_fifo();
self.clear_interrupt_status();
// for a baud_rate_div=1 LPBK_DLY_ADJ would be required
let mut baud_rate_div = 2u32;
while baud_rate_div < 7 && 2u32.pow(1 + baud_rate_div) < divider {
baud_rate_div += 1;
}
self.regs.config.write(regs::Config::zeroed()
.baud_rate_div(baud_rate_div as u8)
.mode_sel(true)
.leg_flsh(true)
.holdb_dr(true)
// 32 bits TX FIFO width
.fifo_width(0b11)
);
// Initialize RX/TX pipes thresholds
unsafe {
self.regs.rx_thres.write(1);
self.regs.tx_thres.write(1);
}
}
pub fn linear_addressing_mode(self) -> Flash<LinearAddressing> {
// Set manual start enable to auto mode.
// Assert the chip select.
self.regs.config.modify(|_, w| w
.man_start_en(false)
.pcs(false)
.manual_cs(false)
);
self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed()
// Quad I/O Fast Read
.inst_code(0xEB)
.mode_bits(0xFF)
.dummy_byte(0x2)
.mode_en(true)
// 2 devices
.two_mem(true)
.u_page(false)
// Linear Addressing Mode
.lq_mode(true)
);
self.regs.enable.write(
regs::Enable::zeroed()
.spi_en(true)
);
self.transition()
}
pub fn manual_mode(self, chip_index: usize) -> Flash<Manual> {
self.regs.config.modify(|_, w| w
.man_start_en(true)
.manual_cs(true)
.endian(true)
);
self.regs.lqspi_cfg.write(regs::LqspiCfg::zeroed()
.mode_bits(0xFF)
.dummy_byte(0x2)
.mode_en(true)
// 2 devices
.two_mem(true)
.sep_bus(true)
.u_page(chip_index != 0)
// Manual I/O mode
.lq_mode(false)
);
self.transition()
}
}
impl Flash<LinearAddressing> {
/// Stop linear addressing mode
pub fn stop(self) -> Flash<()> {
self.regs.enable.modify(|_, w| w.spi_en(false));
// De-assert chip select.
self.regs.config.modify(|_, w| w.pcs(true));
self.transition()
}
pub fn ptr<T>(&mut self) -> *mut T {
0xFC00_0000 as *mut _
}
pub fn size(&self) -> usize {
2 * (SINGLE_CAPACITY as usize)
}
}
impl Flash<Manual> {
pub fn stop(self) -> Flash<()> {
self.transition()
}
pub fn read_reg<R: SpiFlashRegister>(&mut self) -> R {
let args = Some(R::inst_code());
let transfer = self.transfer(args.into_iter(), 2)
.bytes_transfer();
R::new(transfer.skip(1).next().unwrap())
}
pub fn read_reg_until<R, F, A>(&mut self, f: F) -> A
where
R: SpiFlashRegister,
F: Fn(R) -> Option<A>,
{
let mut result = None;
while result.is_none() {
let args = Some(R::inst_code());
for b in self.transfer(args.into_iter(), 32)
.bytes_transfer().skip(1) {
result = f(R::new(b));
if result.is_none() {
break;
}
}
}
result.unwrap()
}
/// Status Register-1 remains `0x00` immediately after invoking a command.
fn wait_while_sr1_zeroed(&mut self) -> SR1 {
self.read_reg_until::<SR1, _, SR1>(|sr1|
if sr1.is_zeroed() {
None
} else {
Some(sr1)
}
)
}
/// Read Identification
pub fn rdid(&mut self) -> core::iter::Skip<BytesTransfer<Transfer<core::option::IntoIter<u32>, u32>>> {
let args = Some((INST_RDID as u32) << 24);
self.transfer(args.into_iter(), 0x44)
.bytes_transfer().skip(1)
}
/// Read flash data
pub fn read(&mut self, offset: u32, len: usize
) -> core::iter::Take<core::iter::Skip<BytesTransfer<Transfer<core::option::IntoIter<u32>, u32>>>>
{
let args = Some(((INST_READ as u32) << 24) | (offset as u32));
self.transfer(args.into_iter(), len + 6)
.bytes_transfer().skip(6).take(len)
}
pub fn erase(&mut self, offset: u32) {
let args = Some(((INST_BE_4K as u32) << 24) | (offset as u32));
self.transfer(args.into_iter(), 4);
let sr1 = self.wait_while_sr1_zeroed();
if sr1.e_err() {
println!("E_ERR");
} else if sr1.p_err() {
println!("P_ERR");
} else if sr1.wip() {
print!("Erase in progress");
while self.read_reg::<SR1>().wip() {
print!(".");
}
println!("");
} else {
println!("erased? sr1={:02X}", sr1.inner);
}
}
pub fn program<I: Iterator<Item=u32>>(&mut self, offset: u32, data: I) {
{
let len = 4 + 4 * data.size_hint().0;
let args = Some(SpiWord::W32(((INST_PP as u32) << 24) | (offset as u32))).into_iter()
.chain(data.map(SpiWord::W32));
self.transfer(args, len);
}
// let sr1 = self.wait_while_sr1_zeroed();
let sr1 = self.read_reg::<SR1>();
if sr1.e_err() {
println!("E_ERR");
} else if sr1.p_err() {
println!("P_ERR");
} else if sr1.wip() {
println!("Program in progress");
while self.read_reg::<SR1>().wip() {
print!(".");
}
println!("");
} else {
println!("programmed? sr1={:02X}", sr1.inner);
}
}
pub fn write_enabled<F: Fn(&mut Self) -> R, R>(&mut self, f: F) -> R {
// Write Enable
let args = Some(INST_WREN);
self.transfer(args.into_iter(), 1);
self.regs.gpio.modify(|_, w| w.wp_n(true));
let sr1 = self.wait_while_sr1_zeroed();
if !sr1.wel() {
panic!("Cannot write-enable flash");
}
let result = f(self);
// Write Disable
let args = Some(INST_WRDI);
self.transfer(args.into_iter(), 1);
self.regs.gpio.modify(|_, w| w.wp_n(false));
result
}
pub fn transfer<'s: 't, 't, Args, W>(&'s mut self, args: Args, len: usize) -> Transfer<'t, Args, W>
where
Args: Iterator<Item = W>,
W: Into<SpiWord>,
{
Transfer::new(self, args, len)
}
pub fn dump(&mut self, label: &'_ str, inst_code: u8) {
print!("{}:", label);
let args = Some(u32::from(inst_code) << 24);
for b in self.transfer(args.into_iter(), 32).bytes_transfer() {
print!(" {:02X}", b);
}
println!("");
}
}

View File

@ -0,0 +1,126 @@
use volatile_register::{RO, WO, RW};
use libregister::{register, register_bit, register_bits};
#[repr(C)]
pub struct RegisterBlock {
pub config: Config,
pub intr_status: IntrStatus,
pub intr_en: IntrEn,
pub intr_dis: IntrDis,
pub intr_mask: RO<u32>,
pub enable: Enable,
pub delay: RW<u32>,
pub txd0: WO<u32>,
pub rx_data: RO<u32>,
pub slave_idle_count: RW<u32>,
pub tx_thres: RW<u32>,
pub rx_thres: RW<u32>,
pub gpio: QspiGpio,
pub _unused1: RO<u32>,
pub lpbk_dly_adj: RW<u32>,
pub _unused2: [RO<u32>; 17],
pub txd1: WO<u32>,
pub txd2: WO<u32>,
pub txd3: WO<u32>,
pub _unused3: [RO<u32>; 5],
pub lqspi_cfg: LqspiCfg,
pub lqspi_sts: RW<u32>,
pub _unused4: [RO<u32>; 21],
pub mod_id: RW<u32>,
}
impl RegisterBlock {
const BASE_ADDRESS: *mut Self = 0xE000D000 as *mut _;
pub fn qspi() -> &'static mut Self {
unsafe { &mut *Self::BASE_ADDRESS }
}
}
register!(config, Config, RW, u32);
register_bit!(config,
/// Enables master mode
mode_sel, 0);
register_bit!(config,
/// Clock polarity low/high
clk_pol, 1);
register_bit!(config,
/// Clock phase
clk_ph, 2);
register_bits!(config,
/// divider = 2 ** (1 + baud_rate_div)
baud_rate_div, u8, 3, 5);
register_bits!(config,
/// Must be set to 0b11
fifo_width, u8, 6, 7);
register_bit!(config,
/// Must be 0
ref_clk, 8);
register_bit!(config,
/// Peripheral Chip Select Line
pcs, 10);
register_bit!(config,
/// false: auto mode, true: manual CS mode
manual_cs, 14);
register_bit!(config,
/// false: auto mode, true: enables manual start enable
man_start_en, 15);
register_bit!(config,
/// false: auto mode, true: enables manual start command
man_start_com, 16);
register_bit!(config, holdb_dr, 19);
register_bit!(config,
/// false: little, true: endian
endian, 26);
register_bit!(config,
/// false: legacy SPI mode, true: Flash memory interface mode
leg_flsh, 31);
register!(intr_status, IntrStatus, RW, u32);
register_bit!(intr_status, rx_overflow, 0);
register_bit!(intr_status,
/// < tx_thres
tx_fifo_not_full, 2);
register_bit!(intr_status, tx_fifo_full, 3);
register_bit!(intr_status,
/// >= rx_thres
rx_fifo_not_empty, 4);
register_bit!(intr_status, rx_fifo_full, 5);
register_bit!(intr_status, tx_fifo_underflow, 6);
register!(intr_en, IntrEn, WO, u32);
register_bit!(intr_en, rx_overflow, 0);
register_bit!(intr_en, tx_fifo_not_full, 2);
register_bit!(intr_en, tx_fifo_full, 3);
register_bit!(intr_en, rx_fifo_not_empty, 4);
register_bit!(intr_en, rx_fifo_full, 5);
register_bit!(intr_en, tx_fifo_underflow, 6);
register!(intr_dis, IntrDis, WO, u32);
register_bit!(intr_dis, rx_overflow, 0);
register_bit!(intr_dis, tx_fifo_not_full, 2);
register_bit!(intr_dis, tx_fifo_full, 3);
register_bit!(intr_dis, rx_fifo_not_empty, 4);
register_bit!(intr_dis, rx_fifo_full, 5);
register_bit!(intr_dis, tx_fifo_underflow, 6);
register!(enable, Enable, RW, u32);
register_bit!(enable, spi_en, 0);
// named to avoid confusion with normal gpio
register!(qspi_gpio, QspiGpio, RW, u32);
register_bit!(qspi_gpio,
/// Write protect pin (inverted)
wp_n, 0);
register!(lqspi_cfg, LqspiCfg, RW, u32);
register_bits!(lqspi_cfg, inst_code, u8, 0, 7);
register_bits!(lqspi_cfg, dummy_byte, u8, 8, 10);
register_bits!(lqspi_cfg, mode_bits, u8, 16, 23);
register_bit!(lqspi_cfg, mode_on, 24);
register_bit!(lqspi_cfg, mode_en, 25);
register_bit!(lqspi_cfg, u_page, 28);
register_bit!(lqspi_cfg, sep_bus, 29);
register_bit!(lqspi_cfg, two_mem, 30);
register_bit!(lqspi_cfg, lq_mode, 31);

View File

@ -0,0 +1,62 @@
use bit_field::BitField;
pub trait SpiFlashRegister {
fn inst_code() -> u8;
fn new(src: u8) -> Self;
}
macro_rules! u8_register {
($name: ident, $doc: tt, $inst_code: expr) => {
#[derive(Clone)]
#[doc=$doc]
pub struct $name {
pub inner: u8,
}
impl SpiFlashRegister for $name {
fn inst_code() -> u8 {
$inst_code
}
fn new(src: u8) -> Self {
$name {
inner: src,
}
}
}
impl $name {
#[allow(unused)]
pub fn is_zeroed(&self) -> bool {
self.inner == 0
}
}
};
}
u8_register!(CR, "Configuration Register", 0x35);
u8_register!(SR1, "Status Register-1", 0x05);
impl SR1 {
/// Write In Progress
pub fn wip(&self) -> bool {
self.inner.get_bit(0)
}
/// Write Enable Latch
pub fn wel(&self) -> bool {
self.inner.get_bit(1)
}
/// Erase Error Occurred
pub fn e_err(&self) -> bool {
self.inner.get_bit(5)
}
/// Programming Error Occurred
pub fn p_err(&self) -> bool {
self.inner.get_bit(6)
}
}
u8_register!(SR2, "Status Register-2", 0x07);
u8_register!(BA, "Bank Address Register", 0xB9);

View File

@ -0,0 +1,125 @@
use libregister::{RegisterR, RegisterW, RegisterRW};
use super::regs;
use super::{SpiWord, Flash, Manual};
pub struct Transfer<'a, Args: Iterator<Item = W>, W: Into<SpiWord>> {
flash: &'a mut Flash<Manual>,
args: Args,
sent: usize,
received: usize,
len: usize,
}
impl<'a, Args: Iterator<Item = W>, W: Into<SpiWord>> Transfer<'a, Args, W> {
pub fn new(flash: &'a mut Flash<Manual>, args: Args, len: usize) -> Self {
flash.regs.config.modify(|_, w| w.pcs(false));
flash.regs.enable.write(
regs::Enable::zeroed()
.spi_en(true)
);
let mut xfer = Transfer {
flash,
args,
sent: 0,
received: 0,
len,
};
xfer.fill_tx_fifo();
xfer.flash.regs.config.modify(|_, w| w.man_start_com(true));
xfer
}
fn fill_tx_fifo(&mut self) {
while self.sent < self.len && !self.flash.regs.intr_status.read().tx_fifo_full() {
let arg = self.args.next()
.map(|n| n.into())
.unwrap_or(SpiWord::W32(0));
match arg {
SpiWord::W32(w) => {
// println!("txd0 {:08X}", w);
unsafe {
self.flash.regs.txd0.write(w);
}
self.sent += 4;
}
// Only txd0 can be used without flushing
_ => {
if !self.flash.regs.intr_status.read().tx_fifo_not_full() {
// Flush if necessary
self.flash.wait_tx_fifo_flush();
}
match arg {
SpiWord::W8(w) => {
// println!("txd1 {:02X}", w);
unsafe {
self.flash.regs.txd1.write(u32::from(w) << 24);
}
self.sent += 1;
}
SpiWord::W16(w) => {
unsafe {
self.flash.regs.txd2.write(u32::from(w) << 16);
}
self.sent += 2;
}
SpiWord::W24(w) => {
unsafe {
self.flash.regs.txd3.write(w << 8);
}
self.sent += 3;
}
SpiWord::W32(_) => unreachable!(),
}
self.flash.wait_tx_fifo_flush();
}
}
}
}
fn can_read(&mut self) -> bool {
self.flash.regs.intr_status.read().rx_fifo_not_empty()
}
fn read(&mut self) -> u32 {
let rx = self.flash.regs.rx_data.read();
self.received += 4;
rx
}
}
impl<'a, Args: Iterator<Item = W>, W: Into<SpiWord>> Drop for Transfer<'a, Args, W> {
fn drop(&mut self) {
// Discard remaining rx_data
while self.can_read() {
self.read();
}
// Stop
self.flash.regs.enable.write(
regs::Enable::zeroed()
.spi_en(false)
);
self.flash.regs.config.modify(|_, w| w
.pcs(true)
.man_start_com(false)
);
}
}
impl<'a, Args: Iterator<Item = W>, W: Into<SpiWord>> Iterator for Transfer<'a, Args, W> {
type Item = u32;
fn next<'s>(&'s mut self) -> Option<u32> {
if self.received >= self.len {
return None;
}
self.fill_tx_fifo();
while !self.can_read() {}
Some(self.read())
}
}

View File

@ -1,150 +0,0 @@
//! ARM Generic Interrupt Controller
use bit_field::BitField;
use libregister::{RegisterW, RegisterRW, RegisterR};
use super::mpcore;
#[derive(Debug, Clone, Copy)]
pub struct InterruptId(pub u8);
#[derive(Debug, Clone, Copy)]
#[repr(u8)]
pub enum CPUCore {
Core0 = 0b01,
Core1 = 0b10
}
#[derive(Debug, Clone, Copy)]
pub struct TargetCPU(u8);
impl TargetCPU {
pub const fn none() -> TargetCPU {
TargetCPU(0)
}
pub const fn and(self, other: TargetCPU) -> TargetCPU {
TargetCPU(self.0 | other.0)
}
}
impl From<CPUCore> for TargetCPU {
fn from(core: CPUCore) -> Self {
TargetCPU(core as u8)
}
}
pub enum TargetList {
CPUList(TargetCPU),
Others,
This
}
impl From<CPUCore> for TargetList {
fn from(core: CPUCore) -> Self {
TargetList::CPUList(TargetCPU(core as u8))
}
}
impl From<TargetCPU> for TargetList {
fn from(cpu: TargetCPU) -> Self {
TargetList::CPUList(cpu)
}
}
#[derive(Debug, Clone, Copy)]
pub enum InterruptSensitivity {
Level,
Edge,
}
pub struct InterruptController {
mpcore: &'static mut mpcore::RegisterBlock,
}
impl InterruptController {
pub fn gic(mpcore: &'static mut mpcore::RegisterBlock) -> Self {
InterruptController { mpcore }
}
pub fn disable_interrupts(&mut self) {
self.mpcore.iccicr.modify(|_, w| w.enable_ns(false)
.enable_s(false));
// FIXME: Should we disable the distributor globally when we disable interrupt (for a single
// core)?
// self.mpcore.icddcr.modify(|_, w| w.enable_secure(false)
// .enable_non_secure(false));
}
/// enable interrupt signaling
pub fn enable_interrupts(&mut self) {
self.mpcore.iccicr.modify(|_, w| w.enable_ns(true)
.enable_s(true));
self.mpcore.icddcr.modify(|_, w| w.enable_secure(true));
// Enable all interrupts except those of the lowest priority.
self.mpcore.iccpmr.write(mpcore::ICCPMR::zeroed().priority(0xFF));
}
/// send software generated interrupt
pub fn send_sgi(&mut self, id: InterruptId, targets: TargetList) {
assert!(id.0 < 16);
self.mpcore.icdsgir.modify(|_, w| match targets {
TargetList::CPUList(list) => w.target_list_filter(0).cpu_target_list(list.0),
TargetList::Others => w.target_list_filter(0b01),
TargetList::This => w.target_list_filter(0b10)
}.sgiintid(id.0).satt(false));
}
/// enable the interrupt *for this core*.
/// Not needed for SGI.
pub fn enable(&mut self, id: InterruptId, target_cpu: CPUCore, sensitivity: InterruptSensitivity, priority: u8) {
// only 5 bits of the priority is useful
assert!(priority < 32);
self.disable_interrupts();
// enable
let m = (id.0 >> 5) as usize;
let n = (id.0 & 0x1F) as usize;
assert!(m < 3);
unsafe {
self.mpcore.icdiser[m].modify(|mut icdiser| *icdiser.set_bit(n, true));
}
// target cpu
let m = (id.0 >> 2) as usize;
let n = (8 * (id.0 & 3)) as usize;
unsafe {
self.mpcore.icdiptr[m].modify(|mut icdiptr| *icdiptr.set_bits(n..=n+1, target_cpu as u32 + 1));
}
// sensitivity
let m = (id.0 >> 4) as usize;
let n = (2 * (id.0 & 0xF)) as usize;
unsafe {
self.mpcore.icdicfr[m].modify(|mut icdicfr| *icdicfr.set_bits(n..=n+1, match sensitivity {
InterruptSensitivity::Level => 0b00,
InterruptSensitivity::Edge => 0b10,
}));
}
// priority
let offset = (id.0 % 4) * 8;
let priority: u32 = (priority as u32) << (offset + 3);
let mask: u32 = 0xFFFFFFFF ^ (0xFF << offset);
unsafe {
self.mpcore.icdipr[id.0 as usize / 4].modify(|v| (v & mask) | priority);
}
self.enable_interrupts();
}
pub fn end_interrupt(&mut self, id: InterruptId) {
self.mpcore.icceoir.modify(|_, w| w.eoiintid(id.0 as u32));
}
pub fn get_interrupt_id(&self) -> InterruptId {
InterruptId(self.mpcore.icciar.read().ackintid() as u8)
}
}

View File

@ -1,107 +0,0 @@
use super::I2c;
use crate::time::Milliseconds;
use embedded_hal::timer::CountDown;
pub struct EEPROM<'a> {
i2c: &'a mut I2c,
port: u8,
address: u8,
page_size: u8,
count_down: crate::timer::global::CountDown<Milliseconds>
}
impl<'a> EEPROM<'a> {
#[cfg(feature = "target_zc706")]
pub fn new(i2c: &'a mut I2c, page_size: u8) -> Self {
EEPROM {
i2c: i2c,
port: 2,
address: 0b1010100,
page_size: page_size,
count_down: unsafe { crate::timer::GlobalTimer::get() }.countdown()
}
}
#[cfg(feature = "target_zc706")]
fn select(&mut self) -> Result<(), &'static str> {
let mask: u16 = 1 << self.port;
self.i2c.pca9548_select(0b1110100, mask as u8)?;
Ok(())
}
/// Random read
pub fn read<'r>(&mut self, addr: u8, buf: &'r mut [u8]) -> Result<(), &'static str> {
self.select()?;
self.i2c.start()?;
self.i2c.write(self.address << 1)?;
self.i2c.write(addr)?;
self.i2c.restart()?;
self.i2c.write((self.address << 1) | 1)?;
let buf_len = buf.len();
for (i, byte) in buf.iter_mut().enumerate() {
*byte = self.i2c.read(i < buf_len - 1)?;
}
self.i2c.stop()?;
Ok(())
}
/// Smart multi-page writing
/// Using the "Page Write" function of an EEPROM, the memory region for each transaction
/// (i.e. from byte `addr` to byte `addr+buf.len()`) should fit under each page
/// (i.e. `addr+buf.len()` < `addr/self.page_size+1`); otherwise, a roll-oever occurs,
/// where bytes beyond the page end. This smart function takes care of the scenario to avoid
/// any roll-over when writing ambiguous memory regions.
pub fn write(&mut self, addr: u8, buf: &[u8]) -> Result<(), &'static str> {
self.select()?;
let buf_len = buf.len();
let mut pb: u8 = addr % self.page_size;
for (i, byte) in buf.iter().enumerate() {
if (i == 0) || (pb == 0) {
self.i2c.start()?;
self.i2c.write(self.address << 1)?;
self.i2c.write(addr + (i as u8))?;
}
self.i2c.write(*byte)?;
pb += 1;
if (i == buf_len-1) || (pb == self.page_size) {
self.i2c.stop()?;
self.poll(1_000)?;
pb = 0;
}
}
Ok(())
}
/// Poll
pub fn poll(&mut self, timeout_ms: u64) -> Result<(), &'static str> {
self.select()?;
self.count_down.start(Milliseconds(timeout_ms));
loop {
self.i2c.start()?;
let ack = self.i2c.write(self.address << 1)?;
self.i2c.stop()?;
if ack {
break
};
if !self.count_down.waiting() {
return Err("I2C polling timeout")
}
}
Ok(())
}
pub fn read_eui48<'r>(&mut self) -> Result<[u8; 6], &'static str> {
let mut buffer = [0u8; 6];
self.read(0xFA, &mut buffer)?;
Ok(buffer)
}
}

View File

@ -1,231 +0,0 @@
//! I2C Bit-banging Controller
mod regs;
pub mod eeprom;
use super::slcr;
use super::time::Microseconds;
use embedded_hal::timer::CountDown;
use libregister::{RegisterR, RegisterRW, RegisterW};
pub struct I2c {
regs: regs::RegisterBlock,
count_down: super::timer::global::CountDown<Microseconds>
}
impl I2c {
#[cfg(feature = "target_zc706")]
pub fn i2c0() -> Self {
// Route I2C 0 SCL / SDA Signals to MIO Pins 50 / 51
slcr::RegisterBlock::unlocked(|slcr| {
// SCL
slcr.mio_pin_50.write(
slcr::MioPin50::zeroed()
.l3_sel(0b000) // as GPIO 50
.io_type(slcr::IoBufferType::Lvcmos18)
.pullup(true)
.disable_rcvr(true)
);
// SDA
slcr.mio_pin_51.write(
slcr::MioPin51::zeroed()
.l3_sel(0b000) // as GPIO 51
.io_type(slcr::IoBufferType::Lvcmos18)
.pullup(true)
.disable_rcvr(true)
);
// Reset
slcr.gpio_rst_ctrl.reset_gpio();
});
Self::i2c_common(0xFFFF - 0x000C)
}
fn i2c_common(gpio_output_mask: u16) -> Self {
// Setup register block
let self_ = Self {
regs: regs::RegisterBlock::i2c(),
count_down: unsafe { super::timer::GlobalTimer::get() }.countdown()
};
// Setup GPIO output mask
self_.regs.gpio_output_mask.modify(|_, w| {
w.mask(gpio_output_mask)
});
// Setup GPIO driver direction
self_.regs.gpio_direction.modify(|_, w| {
w.scl(true).sda(true)
});
self_
}
/// Delay for I2C operations, simple wrapper for nb.
fn delay_us(&mut self, us: u64) {
self.count_down.start(Microseconds(us));
nb::block!(self.count_down.wait()).unwrap();
}
fn half_period(&mut self) { self.delay_us(100) }
fn sda_i(&mut self) -> bool {
self.regs.gpio_input.read().sda()
}
fn scl_i(&mut self) -> bool {
self.regs.gpio_input.read().scl()
}
fn sda_oe(&mut self, oe: bool) {
self.regs.gpio_output_enable.modify(|_, w| {
w.sda(oe)
})
}
fn sda_o(&mut self, o: bool) {
self.regs.gpio_output_mask.modify(|_, w| {
w.sda_o(o)
})
}
fn scl_oe(&mut self, oe: bool) {
self.regs.gpio_output_enable.modify(|_, w| {
w.scl(oe)
})
}
fn scl_o(&mut self, o: bool) {
self.regs.gpio_output_mask.modify(|_, w| {
w.scl_o(o)
})
}
pub fn init(&mut self) -> Result<(), &'static str> {
self.scl_oe(false);
self.sda_oe(false);
self.scl_o(false);
self.sda_o(false);
// Check the I2C bus is ready
self.half_period();
self.half_period();
if !self.sda_i() {
// Try toggling SCL a few times
for _bit in 0..8 {
self.scl_oe(true);
self.half_period();
self.scl_oe(false);
self.half_period();
}
}
if !self.sda_i() {
return Err("SDA is stuck low and doesn't get unstuck");
}
if !self.scl_i() {
return Err("SCL is stuck low and doesn't get unstuck");
}
// postcondition: SCL and SDA high
Ok(())
}
pub fn start(&mut self) -> Result<(), &'static str> {
// precondition: SCL and SDA high
if !self.scl_i() {
return Err("SCL is stuck low and doesn't get unstuck");
}
if !self.sda_i() {
return Err("SDA arbitration lost");
}
self.sda_oe(true);
self.half_period();
self.scl_oe(true);
// postcondition: SCL and SDA low
Ok(())
}
pub fn restart(&mut self) -> Result<(), &'static str> {
// precondition SCL and SDA low
self.sda_oe(false);
self.half_period();
self.scl_oe(false);
self.half_period();
self.start()?;
// postcondition: SCL and SDA low
Ok(())
}
pub fn stop(&mut self) -> Result<(), &'static str> {
// precondition: SCL and SDA low
self.half_period();
self.scl_oe(false);
self.half_period();
self.sda_oe(false);
self.half_period();
if !self.sda_i() {
return Err("SDA arbitration lost");
}
// postcondition: SCL and SDA high
Ok(())
}
pub fn write(&mut self, data: u8) -> Result<bool, &'static str> {
// precondition: SCL and SDA low
// MSB first
for bit in (0..8).rev() {
self.sda_oe(data & (1 << bit) == 0);
self.half_period();
self.scl_oe(false);
self.half_period();
self.scl_oe(true);
}
self.sda_oe(false);
self.half_period();
self.scl_oe(false);
self.half_period();
// Read ack/nack
let ack = !self.sda_i();
self.scl_oe(true);
self.sda_oe(true);
// postcondition: SCL and SDA low
Ok(ack)
}
pub fn read(&mut self, ack: bool) -> Result<u8, &'static str> {
// precondition: SCL and SDA low
self.sda_oe(false);
let mut data: u8 = 0;
// MSB first
for bit in (0..8).rev() {
self.half_period();
self.scl_oe(false);
self.half_period();
if self.sda_i() { data |= 1 << bit }
self.scl_oe(true);
}
// Send ack/nack
self.sda_oe(ack);
self.half_period();
self.scl_oe(false);
self.half_period();
self.scl_oe(true);
self.sda_oe(true);
// postcondition: SCL and SDA low
Ok(data)
}
pub fn pca9548_select(&mut self, address: u8, channels: u8) -> Result<(), &'static str> {
self.start()?;
if !self.write(address << 1)? {
return Err("PCA9548 failed to ack write address")
}
if !self.write(channels)? {
return Err("PCA9548 failed to ack control word")
}
self.stop()?;
Ok(())
}
}

View File

@ -1,91 +0,0 @@
use libregister::{
register, register_at,
register_bit, register_bits
};
// With reference to:
//
// artiq:artiq/gateware/targets/kasli.py:
// self.submodules.i2c = gpio.GPIOTristate([i2c.scl, i2c.sda])
//
// misoc:misoc/cores/gpio.py:
// class GPIOTristate(Module, AutoCSR):
// def __init__(self, signals, reset_out=0, reset_oe=0):
// l = len(signals)
// self._in = CSRStatus(l)
// self._out = CSRStorage(l, reset=reset_out)
// self._oe = CSRStorage(l, reset=reset_oe)
//
// Hence, using GPIOs as SCL and SDA GPIOs respectively.
//
// Current compatibility:
// zc706: GPIO 50, 51 == SCL, SDA
pub struct RegisterBlock {
pub gpio_output_mask: &'static mut GPIOOutputMask,
pub gpio_input: &'static mut GPIOInput,
pub gpio_direction: &'static mut GPIODirection,
pub gpio_output_enable: &'static mut GPIOOutputEnable,
}
impl RegisterBlock {
pub fn i2c() -> Self {
Self {
gpio_output_mask: GPIOOutputMask::new(),
gpio_input: GPIOInput::new(),
gpio_direction: GPIODirection::new(),
gpio_output_enable: GPIOOutputEnable::new()
}
}
}
// MASK_DATA_1_MSW:
// Maskable output data for MIO[53:48]
register!(gpio_output_mask, GPIOOutputMask, RW, u32);
#[cfg(feature = "target_zc706")]
register_at!(GPIOOutputMask, 0xE000A00C, new);
// Output for SCL
#[cfg(feature = "target_zc706")]
register_bit!(gpio_output_mask, scl_o, 2);
// Output for SDA
#[cfg(feature = "target_zc706")]
register_bit!(gpio_output_mask, sda_o, 3);
// Mask for keeping bits except SCL and SDA unchanged
#[cfg(feature = "target_zc706")]
register_bits!(gpio_output_mask, mask, u16, 16, 31);
// DATA_1_RO:
// Input data for MIO[53:32]
register!(gpio_input, GPIOInput, RO, u32);
#[cfg(feature = "target_zc706")]
register_at!(GPIOInput, 0xE000A064, new);
// Input for SCL
#[cfg(feature = "target_zc706")]
register_bit!(gpio_input, scl, 18);
// Input for SDA
#[cfg(feature = "target_zc706")]
register_bit!(gpio_input, sda, 19);
// DIRM_1:
// Direction mode for MIO[53:32]; 0/1 = in/out
register!(gpio_direction, GPIODirection, RW, u32);
#[cfg(feature = "target_zc706")]
register_at!(GPIODirection, 0xE000A244, new);
// Direction for SCL
#[cfg(feature = "target_zc706")]
register_bit!(gpio_direction, scl, 18);
// Direction for SDA
#[cfg(feature = "target_zc706")]
register_bit!(gpio_direction, sda, 19);
// OEN_1:
// Output enable for MIO[53:32]
register!(gpio_output_enable, GPIOOutputEnable, RW, u32);
#[cfg(feature = "target_zc706")]
register_at!(GPIOOutputEnable, 0xE000A248, new);
// Output enable for SCL
#[cfg(feature = "target_zc706")]
register_bit!(gpio_output_enable, scl, 18);
// Output enable for SDA
#[cfg(feature = "target_zc706")]
register_bit!(gpio_output_enable, sda, 19);

View File

@ -1,10 +1,5 @@
#![no_std] #![no_std]
extern crate alloc;
/// Re-export so that dependents can always use the same version
pub use smoltcp;
pub mod slcr; pub mod slcr;
pub mod clocks; pub mod clocks;
pub mod uart; pub mod uart;
@ -15,11 +10,4 @@ pub mod axi_hp;
pub mod axi_gp; pub mod axi_gp;
pub mod ddr; pub mod ddr;
pub mod mpcore; pub mod mpcore;
pub mod gic; pub mod flash;
pub mod time;
pub mod timer;
pub mod sdio;
#[cfg(feature = "target_zc706")]
pub mod i2c;
pub mod logger;
pub mod ps7_init;

View File

@ -1,34 +0,0 @@
//! A logger for the `log` crate
use crate::{println, stdio, timer::GlobalTimer};
pub static LOGGER: Logger = Logger;
pub struct Logger;
pub fn init() -> Result<(), log::SetLoggerError> {
log::set_logger(&LOGGER)
}
impl log::Log for Logger {
fn enabled(&self, metadata: &log::Metadata) -> bool {
metadata.level() <= log::Level::Trace
}
fn log(&self, record: &log::Record) {
if self.enabled(record.metadata()) {
let timestamp = unsafe {
GlobalTimer::get()
}.get_us().0;
let seconds = timestamp / 1_000_000;
let micros = timestamp % 1_000_000;
println!("[{:6}.{:06}s] {:>5}({}): {}",
seconds, micros, record.level(), record.target(), record.args());
}
}
fn flush(&self) {
let uart = stdio::get_uart();
while !uart.tx_idle() {}
}
}

View File

@ -8,140 +8,19 @@ use libregister::{
#[repr(C)] #[repr(C)]
pub struct RegisterBlock { pub struct RegisterBlock {
/// SCU Control Register
pub scu_control: ScuControl, pub scu_control: ScuControl,
/// SCU Configuration Register pub scu_config: RO<u32>,
pub scu_config: ScuConfig, pub scu_cpu_power: RW<u32>,
/// SCU CPU Power Status Register
pub scu_cpu_power_status: SCUCPUPowerStatusRegister,
/// SCU Invalidate All Registers in Secure State
pub scu_invalidate: ScuInvalidate, pub scu_invalidate: ScuInvalidate,
unused0: [u32; 12], reserved0: [u32; 12],
/// Filtering Start Address Register pub filter_start: RW<u32>,
pub filtering_start_address: FilteringStartAddressRegister, pub filter_end: RW<u32>,
/// Defined by FILTEREND input reserved1: [u32; 2],
pub filtering_end_address: FilteringEndAddressRegister, pub scu_access_control: RW<u32>,
unused1: [u32; 2], pub scu_non_secure_access_control: RW<u32>,
/// SCU Access Control (SAC) Register // there is plenty more (unimplemented)
pub scu_access_control_sac: SCUAccessControlRegisterSAC,
/// SCU Non-secure Access Control Register SNSAC
pub scu_non_secure_access_control: SCUNonSecureAccessControlRegister,
unused2: [u32; 42],
/// CPU Interface Control Register
pub iccicr: ICCICR,
/// Interrupt Priority Mask Register
pub iccpmr: ICCPMR,
/// Binary Point Register
pub iccbpr: ICCBPR,
/// Interrupt Acknowledge Register
pub icciar: ICCIAR,
/// End Of Interrupt Register
pub icceoir: ICCEOIR,
/// Running Priority Register
pub iccrpr: ICCRPR,
/// Highest Pending Interrupt Register
pub icchpir: ICCHPIR,
/// Aliased Non-secure Binary Point Register
pub iccabpr: ICCABPR,
unused3: [u32; 55],
/// CPU Interface Implementer Identification Register
pub iccidr: ICCIDR,
/// Global Timer Counter Register 0
pub global_timer_counter0: ValueRegister,
pub global_timer_counter1: ValueRegister,
/// Global Timer Control Register
pub global_timer_control: GlobalTimerControl,
/// Global Timer Interrupt Status Register
pub global_timer_interrupt_status: GlobalTimerInterruptStatusRegister,
/// Comparator Value Register_0
pub comparator_value0: ValueRegister,
pub comparator_value1: ValueRegister,
/// Auto-increment Register
pub auto_increment: RW<u32>,
unused4: [u32; 249],
/// Private Timer Load Register
pub private_timer_load: RW<u32>,
/// Private Timer Counter Register
pub private_timer_counter: RW<u32>,
/// Private Timer Control Register
pub private_timer_control: PrivateTimerControlRegister,
/// Private Timer Interrupt Status Register
pub private_timer_interrupt_status: PrivateTimerInterruptStatusRegister,
unused5: [u32; 4],
/// Watchdog Load Register
pub watchdog_load: RW<u32>,
/// Watchdog Counter Register
pub watchdog_counter: RW<u32>,
/// Watchdog Control Register
pub watchdog_control: WatchdogControlRegister,
/// Watchdog Interrupt Status Register
pub watchdog_interrupt_status: WatchdogInterruptStatusRegister,
/// Watchdog Reset Status Register
pub watchdog_reset_status: WatchdogResetStatusRegister,
/// Watchdog Disable Register
pub watchdog_disable: RW<u32>,
unused6: [u32; 626],
/// Distributor Control Register
pub icddcr: ICDDCR,
/// Interrupt Controller Type Register
pub icdictr: ICDICTR,
/// Distributor Implementer Identification Register
pub icdiidr: ICDIIDR,
unused7: [u32; 29],
/// Interrupt Security Register
pub icdisr0: RW<u32>,
pub icdisr1: RW<u32>,
pub icdisr2: RW<u32>,
unused8: [u32; 29],
/// Interrupt Set-enable Registers
pub icdiser: [RW<u32>; 3],
unused9: [u32; 29],
/// Interrupt Clear-Enable Register 0
pub icdicer0: RW<u32>,
/// Interrupt Clear-Enable Register 1
pub icdicer1: RW<u32>,
/// Interrupt Clear-Enable Register 2
pub icdicer2: RW<u32>,
unused10: [u32; 29],
/// Interrupt Set-pending Register
pub icdispr0: RW<u32>,
pub icdispr1: RW<u32>,
pub icdispr2: RW<u32>,
unused11: [u32; 29],
/// Interrupt Clear-Pending Register
pub icdicpr0: RW<u32>,
pub icdicpr1: RW<u32>,
pub icdicpr2: RW<u32>,
unused12: [u32; 29],
/// Active Bit register
pub icdabr0: RW<u32>,
pub icdabr1: RW<u32>,
pub icdabr2: RW<u32>,
unused13: [u32; 61],
/// Interrupt Priority Register
pub icdipr: [RW<u32>; 24],
unused14: [u32; 232],
/// Interrupt Processor Targets Registers
pub icdiptr: [RW<u32>; 24],
unused15: [u32; 232],
/// Interrupt Configuration Registers
pub icdicfr: [RW<u32>; 6],
unused16: [u32; 58],
/// PPI Status Register
pub ppi_status: PpiStatus,
/// SPI Status Register 0
pub spi_status_0: RO<u32>,
/// SPI Status Register 1
pub spi_status_1: RO<u32>,
unused17: [u32; 125],
/// Software Generated Interrupt Register
pub icdsgir: ICDSGIR,
} }
register_at!(RegisterBlock, 0xF8F00000, new);
register_at!(RegisterBlock, 0xF8F00000, mpcore);
register!(value_register, ValueRegister, RW, u32);
register_bits!(value_register, value, u32, 0, 31);
register!(scu_control, ScuControl, RW, u32); register!(scu_control, ScuControl, RW, u32);
register_bit!(scu_control, ic_standby_enable, 6); register_bit!(scu_control, ic_standby_enable, 6);
@ -154,21 +33,10 @@ register_bit!(scu_control, enable, 0);
impl ScuControl { impl ScuControl {
pub fn start(&mut self) { pub fn start(&mut self) {
self.modify(|_, w| w.enable(true).scu_speculative_linefill_enable(true)); self.modify(|_, w| w.enable(true));
} }
} }
register!(scu_config, ScuConfig, RO, u32);
register_bits!(scu_config, tag_ram_sizes, u8, 8, 15);
register_bits!(scu_config, cpus_smp, u8, 4, 7);
register_bits!(scu_config, cpu_number, u8, 0, 1);
register!(scu_cpu_power_status, SCUCPUPowerStatusRegister, RW, u32);
register_bits!(scu_cpu_power_status, cpu3_status, u8, 24, 25);
register_bits!(scu_cpu_power_status, cpu2_status, u8, 16, 17);
register_bits!(scu_cpu_power_status, cpu1_status, u8, 8, 9);
register_bits!(scu_cpu_power_status, cpu0_status, u8, 0, 1);
register!(scu_invalidate, ScuInvalidate, WO, u32); register!(scu_invalidate, ScuInvalidate, WO, u32);
register_bits!(scu_invalidate, cpu0_ways, u8, 0, 3); register_bits!(scu_invalidate, cpu0_ways, u8, 0, 3);
register_bits!(scu_invalidate, cpu1_ways, u8, 4, 7); register_bits!(scu_invalidate, cpu1_ways, u8, 4, 7);
@ -191,131 +59,3 @@ impl ScuInvalidate {
); );
} }
} }
register!(filtering_start_address, FilteringStartAddressRegister, RW, u32);
register_bits!(filtering_start_address, filtering_start_address, u32, 20, 31);
register_bits!(filtering_start_address, sbz, u32, 0, 19);
register!(filtering_end_address, FilteringEndAddressRegister, RW, u32);
register_bits!(filtering_end_address, filtering_end_address, u32, 20, 31);
register_bits!(filtering_end_address, sbz, u32, 0, 19);
register!(scu_access_control_sac, SCUAccessControlRegisterSAC, RW, u32);
register_bit!(scu_access_control_sac, cp_u3, 3);
register_bit!(scu_access_control_sac, cp_u2, 2);
register_bit!(scu_access_control_sac, cp_u1, 1);
register_bit!(scu_access_control_sac, cp_u0, 0);
register!(scu_non_secure_access_control, SCUNonSecureAccessControlRegister, RO, u32);
register_bits!(scu_non_secure_access_control, sbz, u32, 12, 31);
register_bit!(scu_non_secure_access_control, cpu3_global_timer, 11);
register_bit!(scu_non_secure_access_control, cpu2_global_timer, 10);
register_bit!(scu_non_secure_access_control, cpu1_global_timer, 9);
register_bit!(scu_non_secure_access_control, cpu0_global_timer, 8);
register_bit!(scu_non_secure_access_control, private_timers_for_cpu3, 7);
register_bit!(scu_non_secure_access_control, private_timers_for_cpu2, 6);
register_bit!(scu_non_secure_access_control, private_timers_for_cpu1, 5);
register_bit!(scu_non_secure_access_control, private_timers_for_cpu0, 4);
register_bit!(scu_non_secure_access_control, component_access_for_cpu3, 3);
register_bit!(scu_non_secure_access_control, component_access_for_cpu2, 2);
register_bit!(scu_non_secure_access_control, component_access_for_cpu1, 1);
register_bit!(scu_non_secure_access_control, component_access_for_cpu0, 0);
register!(iccicr, ICCICR, RW, u32);
register_bit!(iccicr, sbpr, 4);
register_bit!(iccicr, fiq_en, 3);
register_bit!(iccicr, ack_ctl, 2);
register_bit!(iccicr, enable_ns, 1);
register_bit!(iccicr, enable_s, 0);
register!(iccpmr, ICCPMR, RW, u32);
register_bits!(iccpmr, priority, u8, 0, 7);
register!(iccbpr, ICCBPR, RW, u32);
register_bits!(iccbpr, binary_point, u8, 0, 2);
register!(icciar, ICCIAR, RW, u32);
register_bits!(icciar, cpuid, u8, 10, 12);
register_bits!(icciar, ackintid, u32, 0, 9);
register!(icceoir, ICCEOIR, RW, u32);
register_bits!(icceoir, cpuid, u8, 10, 12);
register_bits!(icceoir, eoiintid, u32, 0, 9);
register!(iccrpr, ICCRPR, RW, u32);
register_bits!(iccrpr, priority, u8, 0, 7);
register!(icchpir, ICCHPIR, RW, u32);
register_bits!(icchpir, cpuid, u8, 10, 12);
register_bits!(icchpir, pendintid, u32, 0, 9);
register!(iccabpr, ICCABPR, RW, u32);
register_bits!(iccabpr, binary_point, u8, 0, 2);
register!(iccidr, ICCIDR, RO, u32);
register_bits!(iccidr, part_number, u32, 20, 31);
register_bits!(iccidr, architecture_version, u8, 16, 19);
register_bits!(iccidr, revision_number, u8, 12, 15);
register_bits!(iccidr, implementer, u32, 0, 11);
register!(global_timer_control, GlobalTimerControl, RW, u32);
register_bits!(global_timer_control, prescaler, u8, 8, 15);
register_bit!(global_timer_control, auto_increment_mode, 3);
register_bit!(global_timer_control, irq_enable, 2);
register_bit!(global_timer_control, comp_enablea, 1);
register_bit!(global_timer_control, timer_enable, 0);
register!(global_timer_interrupt_status, GlobalTimerInterruptStatusRegister, RW, u32);
register_bit!(global_timer_interrupt_status, event_flag, 0);
register!(private_timer_control, PrivateTimerControlRegister, RW, u32);
register_bits!(private_timer_control, sbzp, u32, 16, 31);
register_bits!(private_timer_control, prescaler, u8, 8, 15);
register_bits!(private_timer_control, unk_sbzp, u8, 3, 7);
register_bit!(private_timer_control, irq_enable, 2);
register_bit!(private_timer_control, auto_reload, 1);
register_bit!(private_timer_control, timer_enable, 0);
register!(private_timer_interrupt_status, PrivateTimerInterruptStatusRegister, RW, u32);
register_bits!(private_timer_interrupt_status, unk_sbzp, u32, 1, 31);
register!(watchdog_control, WatchdogControlRegister, RW, u32);
register_bits!(watchdog_control, prescaler, u8, 8, 15);
register_bit!(watchdog_control, watchdog_mode, 3);
register_bit!(watchdog_control, it_enable, 2);
register_bit!(watchdog_control, auto_reload, 1);
register_bit!(watchdog_control, watchdog_enable, 0);
register!(watchdog_interrupt_status, WatchdogInterruptStatusRegister, RW, u32);
register_bit!(watchdog_interrupt_status, event_flag, 0);
register!(watchdog_reset_status, WatchdogResetStatusRegister, RW, u32);
register_bit!(watchdog_reset_status, reset_flag, 0);
register!(icddcr, ICDDCR, RW, u32);
register_bit!(icddcr, enable_non_secure, 1);
register_bit!(icddcr, enable_secure, 0);
register!(icdictr, ICDICTR, RO, u32);
register_bits!(icdictr, lspi, u8, 11, 15);
register_bit!(icdictr, security_extn, 10);
register_bits!(icdictr, sbz, u8, 8, 9);
register_bits!(icdictr, cpu_number, u8, 5, 7);
register_bits!(icdictr, it_lines_number, u8, 0, 4);
register!(icdiidr, ICDIIDR, RO, u32);
register_bits!(icdiidr, implementation_version, u8, 24, 31);
register_bits!(icdiidr, revision_number, u32, 12, 23);
register_bits!(icdiidr, implementer, u32, 0, 11);
register!(ppi_status, PpiStatus, RO, u32);
register_bits!(ppi_status, ppi_status, u8, 11, 15);
register_bits!(ppi_status, sbz, u32, 0, 10);
register!(icdsgir, ICDSGIR, RW, u32);
register_bits!(icdsgir, target_list_filter, u8, 24, 25);
register_bits!(icdsgir, cpu_target_list, u8, 16, 23);
register_bit!(icdsgir, satt, 15);
register_bits!(icdsgir, sbz, u32, 4, 14);
register_bits!(icdsgir, sgiintid, u8, 0, 3);

View File

@ -1,108 +0,0 @@
#![cfg(feature = "target_zc706")]
use crate::println;
mod zc706;
// mod cora_z7_10;
#[cfg(feature = "target_zc706")]
use zc706 as target;
// #[cfg(feature = "target_cora_z7_10")]
// use cora_z7_10 as target;
pub fn report_differences() {
for (i, op) in target::INIT_DATA.iter().enumerate() {
let address = op.address();
let overwritten_later = target::INIT_DATA[(i + 1)..].iter()
.any(|later_op| later_op.address() == address);
if !overwritten_later {
op.report_difference();
}
}
}
pub fn apply() {
for op in target::INIT_DATA {
op.apply();
}
}
#[derive(Clone, Debug)]
pub enum InitOp {
MaskWrite(usize, usize, usize),
MaskPoll(usize, usize),
MaskDelay(usize, usize),
}
impl InitOp {
fn address(&self) -> usize {
match self {
InitOp::MaskWrite(address, _, _) => *address,
InitOp::MaskPoll(address, _) => *address,
InitOp::MaskDelay(address, _) => *address,
}
}
fn read(&self) -> usize {
unsafe { *(self.address() as *const usize) }
}
fn difference(&self) -> Option<(usize, usize)> {
let expected = match self {
InitOp::MaskWrite(_, mask, expected) =>
Some((*mask, *expected)),
InitOp::MaskPoll(_, mask) =>
Some((*mask, *mask)),
_ => None,
};
match expected {
Some((mask, expected)) => {
let actual = self.read();
if actual & mask == expected {
None
} else {
Some((actual & mask, expected))
}
}
None =>
None
}
}
pub fn report_difference(&self) {
if let Some((actual, expected)) = self.difference() {
println!(
"Register {:08X} is {:08X}&={:08X} != {:08X} expected",
self.address(),
self.read(),
actual,
expected
);
}
}
pub fn apply(&self) {
let reg = self.address() as *mut usize;
println!("apply {:?}", self);
match self {
InitOp::MaskWrite(_, mask, val) =>
unsafe {
*reg = (val & mask) | (*reg & !mask);
},
InitOp::MaskPoll(_, mask) =>
while unsafe { *reg } & mask == 0 {},
InitOp::MaskDelay(_, mask) => {
let delay = get_number_of_cycles_for_delay(*mask);
while unsafe { *reg } < delay {
println!("W");
}
}
}
}
}
fn get_number_of_cycles_for_delay(delay: usize) -> usize {
const APU_FREQ: usize = 666666687;
APU_FREQ * delay/ (2 * 1000)
}

File diff suppressed because it is too large Load Diff

View File

@ -1,76 +0,0 @@
/// ADMA library
use core::mem::MaybeUninit;
use super::Sdio;
use libcortex_a9::cache;
use libregister::{
register, register_bit,
RegisterR, RegisterW, RegisterRW, VolatileCell,
};
#[repr(C, align(4))]
pub struct Adma2Desc32 {
attribute: Desc32Attribute,
length: VolatileCell<u16>,
address: VolatileCell<u32>,
}
const DESC_MAX_LENGTH: u32 = 65536;
register!(desc32_attribute, Desc32Attribute, VolatileCell, u16);
register_bit!(desc32_attribute, trans, 5);
register_bit!(desc32_attribute, int, 2);
register_bit!(desc32_attribute, end, 1);
register_bit!(desc32_attribute, valid, 0);
pub struct Adma2DescTable([Adma2Desc32; 32]);
impl Adma2DescTable {
pub fn new() -> Self {
let table = MaybeUninit::zeroed();
let table = unsafe { table.assume_init() };
Adma2DescTable(table)
}
/// Initialize the table and setup `adma_system_address`
pub fn setup(&mut self, sdio: &mut Sdio, blk_cnt: u32, buffer: &[u8]) {
let descr_table = &mut self.0;
let blk_size = sdio
.regs
.block_size_block_count
.read()
.transfer_block_size() as u32;
let total_desc_lines = if blk_size * blk_cnt < DESC_MAX_LENGTH {
1
} else {
blk_size * blk_cnt / DESC_MAX_LENGTH
+ if (blk_size * blk_cnt) % DESC_MAX_LENGTH == 0 {
0
} else {
1
}
} as usize;
let ptr = buffer.as_ptr() as u32;
for desc_num in 0..total_desc_lines {
descr_table[desc_num].address.set(ptr + (desc_num as u32) * DESC_MAX_LENGTH);
descr_table[desc_num].attribute.write(
Desc32Attribute::zeroed()
.trans(true)
.valid(true)
);
// 0 is the max length (65536)
descr_table[desc_num].length.set(0);
}
descr_table[total_desc_lines - 1].attribute.modify(|_, w| w.end(true));
descr_table[total_desc_lines - 1].length.set(
(blk_cnt * blk_size - ((total_desc_lines as u32) - 1) * DESC_MAX_LENGTH) as u16,
);
unsafe {
sdio.regs
.adma_system_address
.write(descr_table.as_ptr() as u32);
}
cache::dcci_slice(descr_table);
}
}

View File

@ -1,133 +0,0 @@
use super::regs;
const APP_CMD_PREFIX: u8 = 0x80;
#[allow(unused)]
pub mod args {
pub const CMD8_VOL_PATTERN: u32 = 0x1AA;
pub const RESPOCR_READY: u32 = 0x80000000;
pub const ACMD41_HCS: u32 = 0x40000000;
pub const ACMD41_3V3: u32 = 0x00300000;
pub const CMD1_HIGH_VOL: u32 = 0x00FF8000;
pub const OCR_S18: u32 = 1 << 24;
}
#[allow(unused)]
#[repr(u8)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum SdCmd {
CMD0 = 0x00,
CMD1 = 0x01,
CMD2 = 0x02,
CMD3 = 0x03,
CMD4 = 0x04,
CMD5 = 0x05,
CMD6 = 0x06,
ACMD6 = APP_CMD_PREFIX + 0x06,
CMD7 = 0x07,
CMD8 = 0x08,
CMD9 = 0x09,
CMD10 = 0x0A,
CMD11 = 0x0B,
CMD12 = 0x0C,
ACMD13 = APP_CMD_PREFIX + 0x0D,
CMD16 = 0x10,
CMD17 = 0x11,
CMD18 = 0x12,
CMD19 = 0x13,
CMD21 = 0x15,
CMD23 = 0x17,
ACMD23 = APP_CMD_PREFIX + 0x17,
CMD24 = 0x18,
CMD25 = 0x19,
CMD41 = 0x29,
ACMD41 = APP_CMD_PREFIX + 0x29,
ACMD42 = APP_CMD_PREFIX + 0x2A,
ACMD51 = APP_CMD_PREFIX + 0x33,
CMD52 = 0x34,
CMD55 = 0x37,
CMD58 = 0x3A,
}
pub fn require_dat(cmd: SdCmd, is_sd_card: bool) -> bool {
use SdCmd::*;
match cmd {
CMD6 => is_sd_card,
CMD8 => !is_sd_card,
ACMD13 | CMD17 | CMD18 | CMD19 | CMD21 | CMD23 | ACMD23 | CMD24 | CMD25 | ACMD51 => true,
_ => false,
}
}
type CmdReg = regs::transfer_mode_command::Write;
fn resp_r1(w: CmdReg) -> CmdReg {
w.response_type_select(regs::ResponseTypeSelect::Length48)
.crc_check_en(true)
.index_check_en(true)
}
fn resp_r1b(w: CmdReg) -> CmdReg {
w.response_type_select(regs::ResponseTypeSelect::Legnth48Check)
.crc_check_en(true)
.index_check_en(true)
}
fn resp_r2(w: CmdReg) -> CmdReg {
w.response_type_select(regs::ResponseTypeSelect::Length136)
.crc_check_en(true)
}
fn resp_r3(w: CmdReg) -> CmdReg {
w.response_type_select(regs::ResponseTypeSelect::Length48)
}
fn resp_r6(w: CmdReg) -> CmdReg {
w.response_type_select(regs::ResponseTypeSelect::Legnth48Check)
.crc_check_en(true)
.index_check_en(true)
}
pub fn set_cmd_reg(cmd: SdCmd, is_sd_card: bool, w: CmdReg) -> CmdReg {
use SdCmd::*;
let w = w.command_index(cmd as u8 & 0x3F);
match cmd {
CMD1 => resp_r3(w),
CMD2 => resp_r2(w),
CMD3 => {
if is_sd_card {
resp_r6(w)
} else {
resp_r1(w)
}
}
CMD5 => resp_r1b(w),
CMD6 => {
if is_sd_card {
resp_r1(w).data_present_select(true)
} else {
resp_r1b(w)
}
}
ACMD6 => resp_r1(w),
CMD7 => resp_r1(w),
CMD8 => {
if is_sd_card {
resp_r1(w)
} else {
resp_r1(w).data_present_select(true)
}
}
CMD9 => resp_r2(w),
CMD10 | CMD11 | CMD12 => resp_r1(w),
ACMD13 => resp_r1(w).data_present_select(true),
CMD16 => resp_r1(w),
CMD17 | CMD18 | CMD19 | CMD21 | CMD23 | ACMD23 | CMD24 | CMD25 => {
resp_r1(w).data_present_select(true)
}
ACMD41 => resp_r3(w),
ACMD42 => resp_r1(w),
ACMD51 => resp_r1(w).data_present_select(true),
CMD52 | CMD55 => resp_r1(w),
_ => w,
}
}

View File

@ -1,461 +0,0 @@
pub mod sd_card;
mod adma;
mod cmd;
mod regs;
use super::clocks::Clocks;
use super::slcr;
use super::time::Milliseconds;
use embedded_hal::timer::CountDown;
use libregister::{RegisterR, RegisterRW, RegisterW};
use log::{trace, debug};
use nb;
/// Basic SDIO Struct with common low-level functions.
pub struct Sdio {
regs: &'static mut regs::RegisterBlock,
count_down: super::timer::global::CountDown<Milliseconds>,
input_clk_hz: u32,
card_type: CardType,
card_detect: bool,
}
#[derive(Debug)]
pub enum CmdTransferError {
CmdInhibited,
DatLineInhibited,
CmdTimeout,
Other(regs::interrupt_status::Read),
}
impl core::fmt::Display for CmdTransferError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use CmdTransferError::*;
write!(f, "Command transfer error: ")?;
match self {
CmdInhibited => write!(f, "Command line inhibited."),
DatLineInhibited => write!(f, "Data line inhibited, possibly due to ongonging data transfer."),
CmdTimeout => write!(f, "Command timeout, check if the card is inserted properly."),
Other(x) => write!(f, "Unknown Error, interrupt status = 0x{:0X}", x.inner),
}
}
}
#[derive(PartialEq, Debug, Clone, Copy)]
pub enum CardType {
CardNone,
CardSd,
CardMmc,
}
impl Sdio {
/// Initialize SDIO0
/// card_detect means if we would use the card detect pin,
/// false to disable card detection (assume there is card inserted)
pub fn sdio0(card_detect: bool) -> Self {
// initialization according to ps7_init.c
slcr::RegisterBlock::unlocked(|slcr| {
slcr.mio_pin_40.write(
slcr::MioPin40::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_41.write(
slcr::MioPin41::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_42.write(
slcr::MioPin42::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_43.write(
slcr::MioPin43::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_44.write(
slcr::MioPin44::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_45.write(
slcr::MioPin45::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
// zc706 card detect pin
#[cfg(feature = "target_zc706")]
{
unsafe {
slcr.sd0_wp_cd_sel.write(0x000E000F);
}
slcr.mio_pin_14.write(
slcr::MioPin14::zeroed()
.io_type(slcr::IoBufferType::Lvcmos18)
.pullup(true)
.tri_enable(true),
);
}
// cora card detect pin
#[cfg(feature = "target_cora_z7_10")]
{
unsafe {
slcr.sd0_wp_cd_sel.write(47 << 16);
}
slcr.mio_pin_47.write(
slcr::MioPin47::zeroed()
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
}
// redpitaya card detect pin
#[cfg(feature = "target_redpitaya")]
{
unsafe {
slcr.sd0_wp_cd_sel.write(46 << 16);
}
slcr.mio_pin_46.write(
slcr::MioPin46::zeroed()
.io_type(slcr::IoBufferType::Lvcmos25)
.speed(true),
);
}
slcr.sdio_rst_ctrl.reset_sdio0();
slcr.aper_clk_ctrl.enable_sdio0();
slcr.sdio_clk_ctrl.enable_sdio0();
});
let clocks = Clocks::get();
let mut self_ = Sdio {
regs: regs::RegisterBlock::sdio0(),
count_down: unsafe { super::timer::GlobalTimer::get() }.countdown(),
input_clk_hz: clocks.sdio_ref_clk(),
card_type: CardType::CardNone,
card_detect,
};
self_.init();
self_
}
/// Change clock frequency to the value less than or equal to the given value.
/// From XSdPs_Change_ClkFreq in xsdps_options.c. SPEC_V3 related code is removed as
/// our board would only be V1 or V2.
fn change_clk_freq(&mut self, freq: u32) {
debug!("Changing clock frequency to {}", freq);
self.regs
.clock_control
.modify(|_, w| w.sd_clk_en(false).internal_clk_en(false));
const XSDPS_CC_MAX_DIV_CNT: u32 = 256;
// calculate clock divisor
let mut div_cnt: u32 = 0x1;
let mut divisor = 0;
while div_cnt <= XSDPS_CC_MAX_DIV_CNT {
if (self.input_clk_hz / div_cnt) <= freq {
divisor = div_cnt / 2;
break;
}
div_cnt <<= 1;
}
if div_cnt > XSDPS_CC_MAX_DIV_CNT {
panic!("No valid divisor!");
}
// enable internal clock
self.regs
.clock_control
.modify(|_, w| w.sdclk_freq_divisor(divisor as u8).internal_clk_en(true));
while !self.regs.clock_control.read().internal_clk_stable() {}
// enable SD clock
self.regs.clock_control.modify(|_, w| w.sd_clk_en(true));
}
/// Initialization based on XSdPs_CfgInitialize function in xsdps.c
fn init(&mut self) {
// poweroff
self.regs
.control
.modify(|_, w| w.bus_voltage(regs::BusVoltage::V0).bus_power(false));
if self.regs.misc_reg.read().spec_ver() == regs::SpecificationVersion::V3 {
// The documentation said the field can only be V1 or V2,
// so the code is written for V1 and V2. V3 requires special handling
// which is currently not implemented.
// I hope that this would never trigger but it is safer to put a check here.
panic!("The code written is for V1 and V2");
}
// delay to poweroff card
self.delay(1);
// reset all
debug!("Reset SDIO!");
self.regs
.clock_control
.modify(|_, w| w.software_reset_all(true));
while self.regs.clock_control.read().software_reset_all() {}
// set power to 3.3V
self.regs
.control
.modify(|_, w| w.bus_voltage(regs::BusVoltage::V33).bus_power(true));
// set clock frequency
self.change_clk_freq(400_000);
// select voltage
let capabilities = self.regs.capabilities.read();
let voltage = if capabilities.voltage_3_3() {
regs::BusVoltage::V33
} else if capabilities.voltage_3_0() {
regs::BusVoltage::V30
} else if capabilities.voltage_1_8() {
regs::BusVoltage::V18
} else {
regs::BusVoltage::V0
};
self.regs.control.modify(|_, w| w.bus_voltage(voltage));
self.regs
.control
.modify(|_, w| w.dma_select(regs::DmaSelect::ADMA2_32));
// enable all interrupt status except card interrupt
self.regs.interrupt_status_en.write(
(regs::interrupt_status_en::Write { inner: 0xFFFFFFFF })
.card_interrupt_status_en(false),
);
// disable all interrupt signals
self.regs
.interrupt_signal_en
.write(regs::InterruptSignalEn::zeroed());
// set block size to 512 by default
self.regs
.block_size_block_count
.modify(|_, w| w.transfer_block_size(512));
}
/// Delay for SDIO operations, simple wrapper for nb.
pub fn delay(&mut self, ms: u64) {
self.count_down.start(Milliseconds(ms));
nb::block!(self.count_down.wait()).unwrap();
}
/// Send SD command. Basically `cmd_transfer_with_mode` with mode
/// `regs::TransferModeCommand::zeroed()`.
/// Return: Ok if success, Err(status) if failed.
fn cmd_transfer(
&mut self,
cmd: cmd::SdCmd,
arg: u32,
block_cnt: u16,
) -> Result<(), CmdTransferError> {
self.cmd_transfer_with_mode(cmd, arg, block_cnt, regs::TransferModeCommand::zeroed())
}
/// Send SD Command with additional transfer mode.
/// This function would block until response is ready.
/// Return: Ok if success, Err(status) if failed.
fn cmd_transfer_with_mode(
&mut self,
cmd: cmd::SdCmd,
arg: u32,
block_cnt: u16,
transfer_mode: regs::transfer_mode_command::Write,
) -> Result<(), CmdTransferError> {
trace!("Send Cmd {:?}", cmd);
let state = self.regs.present_state.read();
if state.command_inhibit_cmd() {
return Err(CmdTransferError::CmdInhibited);
}
self.regs
.block_size_block_count
.modify(|_, w| w.blocks_count(block_cnt));
self.regs
.clock_control
.modify(|_, w| w.timeout_counter_value(0xE));
unsafe {
self.regs.argument.write(arg);
}
self.regs
.interrupt_status_en
.write(regs::interrupt_status_en::Write { inner: 0xFFFFFFFF });
let is_sd_card = self.card_type == CardType::CardSd;
// Check DAT Line
if cmd != cmd::SdCmd::CMD21 && cmd != cmd::SdCmd::CMD19 {
if self.regs.present_state.read().command_inhibit_dat()
&& cmd::require_dat(cmd, is_sd_card)
{
return Err(CmdTransferError::DatLineInhibited);
}
}
// Set the command registers.
self.regs
.transfer_mode_command
.write(cmd::set_cmd_reg(cmd, is_sd_card, transfer_mode));
// polling for response
loop {
let status = self.regs.interrupt_status.read();
if cmd == cmd::SdCmd::CMD21 || cmd == cmd::SdCmd::CMD19 {
if status.buffer_read_ready() {
self.regs
.interrupt_status
.modify(|_, w| w.buffer_read_ready());
break;
}
}
if status.command_complete() {
break;
}
self.check_error(&status)?;
}
// wait for command complete
while !self.regs.interrupt_status.read().command_complete() {}
self.regs
.interrupt_status
.modify(|_, w| w.command_complete());
Ok(())
}
/// Check if card is inserted.
pub fn is_card_inserted(&self) -> bool {
!self.card_detect || self.regs.present_state.read().card_inserted()
}
/// Switch voltage from 3.3V to 1.8V.
fn switch_voltage(&mut self) -> Result<(), CmdTransferError> {
use cmd::SdCmd::*;
// send switch voltage command
self.cmd_transfer(CMD11, 0, 0)?;
// wait for the lines to go low
let mut state = self.regs.present_state.read();
while state.cmd_line_level()
|| state.dat0_level()
|| state.dat1_level()
|| state.dat2_level()
|| state.dat3_level()
{
state = self.regs.present_state.read();
}
// stop the clock
self.regs
.clock_control
.modify(|_, w| w.sd_clk_en(false).internal_clk_en(false));
// enabling 1.8v in controller
self.regs
.control
.modify(|_, w| w.bus_voltage(regs::BusVoltage::V18));
// wait minimum 5ms
self.delay(5);
if self.regs.control.read().bus_voltage() != regs::BusVoltage::V18 {
// I should not wrap the error of this function into another type later.
// actually this is not correct.
return Err(CmdTransferError::CmdTimeout);
}
// wait for internal clock to stabilize
self.regs
.clock_control
.modify(|_, w| w.internal_clk_en(true));
while !self.regs.clock_control.read().internal_clk_stable() {}
// enable SD clock
self.regs.clock_control.modify(|_, w| w.sd_clk_en(true));
// wait for 1ms
self.delay(1);
// wait for CMD and DATA line to go high
state = self.regs.present_state.read();
while !state.cmd_line_level()
|| !state.dat0_level()
|| !state.dat1_level()
|| !state.dat2_level()
|| !state.dat3_level()
{
state = self.regs.present_state.read();
}
Ok(())
}
/// Detect inserted card type, and set the corresponding field.
/// Return Ok(CardType) on success, Err(CmdTransferError) when failed to identify.
pub fn identify_card(&mut self) -> Result<CardType, CmdTransferError> {
use cmd::{args::*, SdCmd::*};
// actually the delay for this one is unclear in the xilinx code.
self.delay(10);
self.cmd_transfer(CMD0, 0, 0)?;
self.card_type = match self.cmd_transfer(CMD1, ACMD41_HCS | CMD1_HIGH_VOL, 0) {
Ok(()) => CardType::CardMmc,
Err(_) => CardType::CardSd,
};
// clear all status
self.regs
.interrupt_status
.write(regs::interrupt_status::Write { inner: 0xF3FFFFFF });
self.regs
.clock_control
.modify(|_, w| w.software_reset_cmd(true));
// wait for reset completion
while self.regs.clock_control.read().software_reset_cmd() {}
Ok(self.card_type)
}
/// Modify transfer block size.
fn set_block_size(&mut self, block_size: u16) -> Result<(), CmdTransferError> {
use cmd::SdCmd::*;
let state = self.regs.present_state.read();
if state.command_inhibit_cmd()
|| state.command_inhibit_dat()
|| state.write_transfer_active()
|| state.read_transfer_active()
{
return Err(CmdTransferError::CmdInhibited);
}
debug!("Set block size to {}", block_size);
// send block write command
self.cmd_transfer(CMD16, block_size as u32, 0)?;
// set block size
self.regs
.block_size_block_count
.modify(|_, w| w.transfer_block_size(block_size));
Ok(())
}
/// Check if error occured, and reset the error status.
/// Return Err(CmdTransferError) if error occured, Ok(()) otherwise.
fn check_error(
&mut self,
status: &regs::interrupt_status::Read,
) -> Result<(), CmdTransferError> {
if status.error_interrupt() {
let err_status = if status.inner & 0xFFFE0000 == 0 {
CmdTransferError::CmdTimeout
} else {
CmdTransferError::Other(regs::interrupt_status::Read {
inner: status.inner,
})
};
// reset all error status
self.regs
.interrupt_status
.write(regs::interrupt_status::Write { inner: 0xF3FF0000 });
return Err(err_status);
}
Ok(())
}
}

View File

@ -1,548 +0,0 @@
use core::fmt;
use libregister::{register, register_at, register_bit, register_bits, register_bits_typed};
use volatile_register::{RO, RW};
#[allow(unused)]
#[repr(C)]
pub struct RegisterBlock {
pub sdma_system_address: RW<u32>,
pub block_size_block_count: BlockSizeBlockCount,
pub argument: RW<u32>,
pub transfer_mode_command: TransferModeCommand,
pub responses: [RO<u32>; 4],
pub buffer: RW<u32>,
pub present_state: PresentState,
/// Host. power, block gap, wakeup control
pub control: Control,
/// Clock and timeout control, and software reset register.
pub clock_control: ClockControl,
pub interrupt_status: InterruptStatus,
pub interrupt_status_en: InterruptStatusEn,
pub interrupt_signal_en: InterruptSignalEn,
pub auto_cmd12_error_status: AutoCmd12ErrorStatus,
pub capabilities: Capabilities,
pub unused0: RO<u32>,
pub max_current_capabilities: MaxCurrentCapabilities,
pub unused1: RO<u32>,
pub force_event: ForceEvent,
pub adma_error_status: AdmaErrorStatus,
pub adma_system_address: RW<u32>,
pub unused2: RO<u32>,
pub boot_data_timeout_counter: RW<u32>,
pub debug_selection: DebugSelection,
pub unused3: [RO<u32>; 34],
pub spi_interrupt_support: SpiInterruptSupport,
pub unused4: [RO<u32>; 2],
pub misc_reg: MiscReg,
}
#[allow(unused)]
#[repr(u8)]
pub enum CommandType {
Normal = 0b00,
Suspend = 0b01,
Resume = 0b10,
Abort = 0b11,
}
#[allow(unused)]
#[repr(u8)]
pub enum ResponseTypeSelect {
NoResponse = 0b00,
Length136 = 0b01,
Length48 = 0b10,
Legnth48Check = 0b11,
}
#[allow(unused)]
#[repr(u8)]
#[derive(PartialEq, Debug)]
pub enum BusVoltage {
/// 3.3V
V33 = 0b111,
/// 3.0V, typ.
V30 = 0b110,
/// 1.8V, typ.
V18 = 0b101,
/// No power,
V0 = 0b000,
}
#[allow(unused)]
#[repr(u8)]
pub enum DmaSelect {
SDMA = 0b00,
ADMA1 = 0b01,
ADMA2_32 = 0b10,
ADMA2_64 = 0b11,
}
#[allow(unused)]
#[repr(u8)]
pub enum AdmaErrorState {
StStop = 0b00,
StFds = 0b01,
StTfr = 0b11,
}
#[allow(unused)]
#[repr(u8)]
#[derive(PartialEq)]
pub enum SpecificationVersion {
V1 = 0,
V2 = 1,
V3 = 2,
}
register_at!(RegisterBlock, 0xE0100000, sdio0);
register_at!(RegisterBlock, 0xE0101000, sdio1);
register!(block_size_block_count, BlockSizeBlockCount, RW, u32);
register_bits!(
block_size_block_count,
/// Current transfer block count.
blocks_count,
u16,
16,
31
);
register_bits!(
block_size_block_count,
/// Host SDMA Buffer Size, size = 2^(val + 2) KB.
dma_buffer_size,
u8,
12,
14
);
register_bits!(
block_size_block_count,
/// Block size for data transfer. Unit: byte.
transfer_block_size,
u16,
0,
11
);
register!(transfer_mode_command, TransferModeCommand, RW, u32);
register_bits!(
transfer_mode_command,
/// Command Number.
command_index,
u8,
24,
29
);
register_bits_typed!(
transfer_mode_command,
/// Command type register.
command_type,
u8,
CommandType,
22,
23
);
register_bit!(
transfer_mode_command,
/// 1 if data is present and shall be transferred using the DAT line.
data_present_select,
21
);
register_bit!(
transfer_mode_command,
/// If the index field shall be checked.
index_check_en,
20
);
register_bit!(
transfer_mode_command,
/// If CRC shall be checked.
crc_check_en,
19
);
register_bits_typed!(
transfer_mode_command,
/// Different type of response.
response_type_select,
u8,
ResponseTypeSelect,
16,
17
);
register_bit!(
transfer_mode_command,
/// Enables the multi block DAT line data transfer.
multi_block_en,
5
);
register_bit!(
transfer_mode_command,
/// 1 if read (card to host), 0 if write (host to card).
direction_select,
4
);
register_bit!(
transfer_mode_command,
/// If CMD12 shall be issued automatically when last block transfer is completed.
auto_cmd12_en,
2
);
register_bit!(
transfer_mode_command,
/// Enable the block count register.
block_count_en,
1
);
register_bit!(
transfer_mode_command,
/// Enable DMA,
dma_en,
0
);
register!(present_state, PresentState, RO, u32);
register_bit!(
present_state,
/// CMD Line Signal Level.
cmd_line_level,
24
);
register_bit!(
present_state,
/// Signal level in DAT[3]
dat3_level,
23
);
register_bit!(
present_state,
/// Signal level in DAT[2]
dat2_level,
22
);
register_bit!(
present_state,
/// Signal level in DAT[1]
dat1_level,
21
);
register_bit!(
present_state,
/// Signal level in DAT[0]
dat0_level,
20
);
register_bit!(
present_state,
/// Write enabled and inverse of SDx_WP pin level.
write_enabled,
19
);
register_bit!(
present_state,
/// Card detected and inverse of SDx_CDn pin level.
card_detected,
18
);
register_bit!(present_state, card_state_stable, 17);
register_bit!(present_state, card_inserted, 16);
register_bit!(present_state, buffer_read_en, 11);
register_bit!(present_state, buffer_write_en, 10);
register_bit!(present_state, read_transfer_active, 9);
register_bit!(present_state, write_transfer_active, 8);
register_bit!(present_state, dat_line_active, 2);
register_bit!(present_state, command_inhibit_dat, 1);
register_bit!(present_state, command_inhibit_cmd, 0);
register!(control, Control, RW, u32);
register_bit!(
control,
/// Enable wakeup event via SD card removal assertion.
wakeup_on_removal,
26
);
register_bit!(
control,
/// Enable wakeup event via SD card insertion assertion.
wakeup_on_insertion,
25
);
register_bit!(
control,
/// Enable wakeup event via card interrupt assertion.
wakeup_on_interrupt,
24
);
register_bit!(
control,
///Enable interrupt detection at the block gap for a multiple block transfer.
interrupt_at_block_gap,
19
);
register_bit!(
control,
/// Enable the use of the read wait protocol.
read_wait_control,
18
);
register_bit!(
control,
/// Restart a trasaction which was stopped using the stop at block gap request.
continue_req,
17
);
register_bit!(
control,
/// Stop executing a transaction at the next block gap.
stop_at_block_gap_req,
16
);
register_bits_typed!(control, bus_voltage, u8, BusVoltage, 9, 11);
register_bit!(control, bus_power, 8);
register_bit!(
control,
/// Selects source for card detection. 0 for SDCD#, 1 for card detect test level.
card_detect_signal,
7
);
register_bit!(
control,
/// Indicates card inserted or not. Enabled when card detect signal is 1.
card_detect_test_level,
6
);
register_bits_typed!(control, dma_select, u8, DmaSelect, 3, 4);
register_bit!(control, high_speed_en, 2);
register_bit!(
control,
/// Select the data width of the HC. 1 for 4-bit, 0 for 1-bit.
data_width_select,
1
);
register_bit!(
control,
/// 1 for LED on, 0 for LED off.
led_control,
0
);
register!(clock_control, ClockControl, RW, u32);
register_bit!(
clock_control,
/// Software reset for DAT line.
software_reset_dat,
26
);
register_bit!(
clock_control,
/// Software reset for CMD line.
software_reset_cmd,
25
);
register_bit!(
clock_control,
/// Software reset for ALL.
software_reset_all,
24
);
register_bits!(
clock_control,
/// Determines the interval by which DAT line time-outs are detected.
/// Interval = TMCLK * 2^(13 + val)
/// Note: 0b1111 is reserved.
timeout_counter_value,
u8,
16,
19
);
register_bits!(
clock_control,
/// Selects the frequency divisor, thus the clock frequency for SDCLK.
/// Choose the smallest possible divisor which results in a clock frequency
/// that is less than or equal to the target frequency.
sdclk_freq_divisor,
u8,
8,
15
);
register_bit!(clock_control, sd_clk_en, 2);
register_bit!(
clock_control,
/// 1 when SD clock is stable.
/// Note that this field is read-only.
internal_clk_stable,
1,
RO
);
register_bit!(clock_control, internal_clk_en, 0);
register!(interrupt_status, InterruptStatus, RW, u32, 1 << 15 | 1 << 8);
register_bit!(interrupt_status, ceata_error, 29, WTC);
register_bit!(interrupt_status, target_response_error, 28, WTC);
register_bit!(interrupt_status, adma_error, 25, WTC);
register_bit!(interrupt_status, auto_cmd12_error, 24, WTC);
register_bit!(interrupt_status, current_limit_error, 23, WTC);
register_bit!(interrupt_status, data_end_bit_error, 22, WTC);
register_bit!(interrupt_status, data_crc_error, 21, WTC);
register_bit!(interrupt_status, data_timeout_error, 20, WTC);
register_bit!(interrupt_status, command_index_error, 19, WTC);
register_bit!(interrupt_status, command_end_bit_error, 18, WTC);
register_bit!(interrupt_status, command_crc_error, 17, WTC);
register_bit!(interrupt_status, command_timeout_error, 16, WTC);
register_bit!(interrupt_status, error_interrupt, 15, RO);
register_bit!(interrupt_status, boot_terminate_interrupt, 10, WTC);
register_bit!(interrupt_status, boot_ack_rcv, 9, WTC);
register_bit!(interrupt_status, card_interrupt, 8, RO);
register_bit!(interrupt_status, card_removal, 7, WTC);
register_bit!(interrupt_status, card_insertion, 6, WTC);
register_bit!(interrupt_status, buffer_read_ready, 5, WTC);
register_bit!(interrupt_status, buffer_write_ready, 4, WTC);
register_bit!(interrupt_status, dma_interrupt, 3, WTC);
register_bit!(interrupt_status, block_gap_event, 2, WTC);
register_bit!(interrupt_status, transfer_complete, 1, WTC);
register_bit!(interrupt_status, command_complete, 0, WTC);
register!(interrupt_status_en, InterruptStatusEn, RW, u32);
register_bit!(interrupt_status_en, ceata_error_status_en, 29);
register_bit!(interrupt_status_en, target_response_error_status_en, 28);
register_bit!(interrupt_status_en, adma_error_status_en, 25);
register_bit!(interrupt_status_en, auto_cmd12_error_status_en, 24);
register_bit!(interrupt_status_en, current_limit_error_status_en, 23);
register_bit!(interrupt_status_en, data_end_bit_error_status_en, 22);
register_bit!(interrupt_status_en, data_crc_error_status_en, 21);
register_bit!(interrupt_status_en, data_timeout_error_status_en, 20);
register_bit!(interrupt_status_en, cmd_index_error_status_en, 19);
register_bit!(interrupt_status_en, cmd_end_bit_error_status_en, 18);
register_bit!(interrupt_status_en, cmd_crc_error_status_en, 17);
register_bit!(interrupt_status_en, cmd_timeout_error_status_en, 16);
register_bit!(interrupt_status_en, fixed_to_0, 15, RO);
register_bit!(interrupt_status_en, boot_terminate_interrupt_en, 10);
register_bit!(interrupt_status_en, boot_ack_rcv_en, 9);
register_bit!(interrupt_status_en, card_interrupt_status_en, 8);
register_bit!(interrupt_status_en, card_removal_status_en, 7);
register_bit!(interrupt_status_en, card_insertion_status_en, 6);
register_bit!(interrupt_status_en, buffer_read_ready_status_en, 5);
register_bit!(interrupt_status_en, buffer_write_ready_status_en, 4);
register_bit!(interrupt_status_en, dma_interrupt_status_en, 3);
register_bit!(interrupt_status_en, block_gap_evt_status_en, 2);
register_bit!(interrupt_status_en, transfer_complete_status_en, 1);
register_bit!(interrupt_status_en, cmd_complete_status_en, 0);
register!(interrupt_signal_en, InterruptSignalEn, RW, u32);
register_bit!(interrupt_signal_en, ceata_error_signal_en, 29);
register_bit!(interrupt_signal_en, target_response_error_signal_en, 28);
register_bit!(interrupt_signal_en, adma_error_signal_en, 25);
register_bit!(interrupt_signal_en, auto_cmd12_error_signal_en, 24);
register_bit!(interrupt_signal_en, current_limit_error_signal_en, 23);
register_bit!(interrupt_signal_en, data_end_bit_error_signal_en, 22);
register_bit!(interrupt_signal_en, data_crc_error_signal_en, 21);
register_bit!(interrupt_signal_en, data_timeout_error_signal_en, 20);
register_bit!(interrupt_signal_en, cmd_index_error_signal_en, 19);
register_bit!(interrupt_signal_en, cmd_end_bit_error_signal_en, 18);
register_bit!(interrupt_signal_en, cmd_crc_error_signal_en, 17);
register_bit!(interrupt_signal_en, cmd_timeout_error_signal_en, 16);
register_bit!(interrupt_signal_en, fixed_to_0, 15, RO);
register_bit!(interrupt_signal_en, boot_terminate_interrupt_signal_en, 10);
register_bit!(interrupt_signal_en, boot_ack_rcv_signal_en, 9);
register_bit!(interrupt_signal_en, card_interrupt_signal_en, 8);
register_bit!(interrupt_signal_en, card_removal_signal_en, 7);
register_bit!(interrupt_signal_en, card_insertion_signal_en, 6);
register_bit!(interrupt_signal_en, buffer_read_ready_signal_en, 5);
register_bit!(interrupt_signal_en, buffer_write_ready_signal_en, 4);
register_bit!(interrupt_signal_en, dma_interrupt_signal_en, 3);
register_bit!(interrupt_signal_en, block_gap_evt_signal_en, 2);
register_bit!(interrupt_signal_en, transfer_complete_signal_en, 1);
register_bit!(interrupt_signal_en, cmd_complete_signal_en, 0);
register!(auto_cmd12_error_status, AutoCmd12ErrorStatus, RO, u32);
register_bit!(
auto_cmd12_error_status,
cmd_not_issued_by_auto_cmd12_error,
7
);
register_bit!(auto_cmd12_error_status, index_error, 4);
register_bit!(auto_cmd12_error_status, end_bit_error, 3);
register_bit!(auto_cmd12_error_status, crc_error, 2);
register_bit!(auto_cmd12_error_status, timeout_error, 1);
register_bit!(auto_cmd12_error_status, not_executed, 0);
register!(capabilities, Capabilities, RO, u32);
register_bit!(capabilities, spi_block_mode, 30);
register_bit!(capabilities, spi_mode, 29);
register_bit!(capabilities, support_64bit, 28);
register_bit!(capabilities, interrupt_mode, 27);
register_bit!(capabilities, voltage_1_8, 26);
register_bit!(capabilities, voltage_3_0, 25);
register_bit!(capabilities, voltage_3_3, 24);
register_bit!(capabilities, suspend_resume, 23);
register_bit!(capabilities, sdma, 22);
register_bit!(capabilities, hgih_speed, 21);
register_bit!(capabilities, adma2, 19);
register_bit!(capabilities, extended_media_bus, 18);
register_bits!(
capabilities,
/// Length = 2^(9 + v) bytes.
max_block_len,
u8,
16,
17
);
register_bit!(capabilities, timeout_clock_unit, 7);
register!(max_current_capabilities, MaxCurrentCapabilities, RO, u32);
register_bits!(max_current_capabilities, max_current_1_8v, u8, 16, 23);
register_bits!(max_current_capabilities, max_current_3_0v, u8, 8, 15);
register_bits!(max_current_capabilities, max_current_3_3v, u8, 0, 7);
register!(force_event, ForceEvent, WO, u32);
register_bit!(force_event, ceata_error, 29);
register_bit!(force_event, target_response_error, 28);
register_bit!(force_event, adma_error, 25);
register_bit!(force_event, auto_cmd12_error, 24);
register_bit!(force_event, current_limit_error, 23);
register_bit!(force_event, data_end_bit_error, 22);
register_bit!(force_event, data_crc_error, 21);
register_bit!(force_event, data_timeout_error, 20);
register_bit!(force_event, cmd_index_error, 19);
register_bit!(force_event, cmd_end_bit_error, 18);
register_bit!(force_event, cmd_crc_error, 17);
register_bit!(force_event, cmd_timeout_error, 16);
register_bit!(force_event, cmd_not_issued_by_auto_cmd12_error, 7);
register_bit!(force_event, auto_cmd12_index_error, 4);
register_bit!(force_event, auto_cmd12_end_bit_error, 3);
register_bit!(force_event, auto_cmd12_crc_error, 2);
register_bit!(force_event, auto_cmd12_timeout_error, 1);
register_bit!(force_event, auto_cmd12_not_executed, 0);
register!(adma_error_status, AdmaErrorStatus, RW, u32, 0b11);
register_bit!(adma_error_status, length_mismatch_error, 2, WTC);
register_bits_typed!(adma_error_status, error_state, u8, AdmaErrorState, 0, 1);
register!(debug_selection, DebugSelection, WO, u32);
register_bit!(debug_selection, debug_select, 0);
register!(spi_interrupt_support, SpiInterruptSupport, RW, u32);
register_bits!(
spi_interrupt_support,
/// There should be a problem with the documentation of this field.
spi_int_support,
u8,
0,
7
);
register!(misc_reg, MiscReg, RO, u32);
register_bits!(misc_reg, vendor_version_num, u8, 24, 31);
register_bits_typed!(misc_reg, spec_ver, u8, SpecificationVersion, 16, 23);
register_bits!(
misc_reg,
/// Logical OR of interrupt signal and wakeup signal for each slot.
slot_interrupt_signal,
u8,
0,
7
);
impl fmt::Debug for interrupt_status::Read {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.write_fmt(format_args!("status: {:0X}", self.inner))
}
}

View File

@ -1,379 +0,0 @@
use super::{adma::Adma2DescTable, cmd, CardType, CmdTransferError, Sdio};
use libcortex_a9::cache;
use libregister::{RegisterR, RegisterRW, RegisterW};
use log::{trace, debug};
#[derive(Debug)]
pub enum CardInitializationError {
AlreadyInitialized,
NoCardInserted,
InitializationFailedOther,
InitializationFailedCmd(CmdTransferError),
}
impl core::fmt::Display for CardInitializationError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use CardInitializationError::*;
write!(f, "Card initialization error: ")?;
match self {
AlreadyInitialized => write!(f, "Card already initialized."),
NoCardInserted => write!(f, "No card inserted, check if the card is inserted properly."),
InitializationFailedOther => write!(f, "Unknown error. Please check the debug messages."),
InitializationFailedCmd(x) => write!(f, "{}", x)
}
}
}
impl From<CmdTransferError> for CardInitializationError {
fn from(error: CmdTransferError) -> Self {
CardInitializationError::InitializationFailedCmd(error)
}
}
#[derive(Debug)]
enum CardVersion {
SdVer1,
SdVer2,
}
pub struct SdCard {
sdio: Sdio,
adma2_desc_table: Adma2DescTable,
card_version: CardVersion,
hcs: bool,
card_id: [u32; 4],
rel_card_addr: u32,
sector_cnt: u32,
switch_1v8: bool,
width_4_bit: bool,
}
const BLK_SIZE_MASK: u16 = 0x00000FFF;
impl core::fmt::Display for SdCard {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "SdCard: \n card version: {:?}\n hcs: {}\n card id: {:?}\n rel card addr: {}\n sector count: {}",
self.card_version, self.hcs, self.card_id, self.rel_card_addr, self.sector_cnt)
}
}
impl SdCard {
fn sd_card_initialize(&mut self) -> Result<(), CardInitializationError> {
use cmd::{args::*, SdCmd::*};
if !self.sdio.is_card_inserted() {
return Err(CardInitializationError::NoCardInserted);
}
// CMD0
self.sdio.cmd_transfer(CMD0, 0, 0)?;
match self.sdio.cmd_transfer(CMD8, CMD8_VOL_PATTERN, 0) {
Err(CmdTransferError::CmdTimeout) => {
// reset
self.sdio
.regs
.clock_control
.modify(|_, w| w.software_reset_cmd(true));
// wait until reset is completed
while self.sdio.regs.clock_control.read().software_reset_cmd() {}
}
// for other error, return initialization failed
Err(e) => return Err(CardInitializationError::from(e)),
_ => (),
}
self.card_version = if self.sdio.regs.responses[0].read() != CMD8_VOL_PATTERN {
CardVersion::SdVer1
} else {
CardVersion::SdVer2
};
// send ACMD41 while card is still busy with power up
loop {
self.sdio.cmd_transfer(CMD55, 0, 0)?;
self.sdio
.cmd_transfer(ACMD41, ACMD41_HCS | ACMD41_3V3 | (0x1FF << 15), 0)?;
if (self.sdio.regs.responses[0].read() & RESPOCR_READY) != 0 {
break;
}
}
let response = self.sdio.regs.responses[0].read();
// update HCS support flag
self.hcs = (response & ACMD41_HCS) != 0;
if (response & OCR_S18) != 0 {
self.switch_1v8 = true;
self.sdio.switch_voltage()?;
}
self.sdio.cmd_transfer(CMD2, 0, 0)?;
for i in 0..=3 {
self.card_id[i] = self.sdio.regs.responses[i].read();
}
self.rel_card_addr = 0;
while self.rel_card_addr == 0 {
self.sdio.cmd_transfer(CMD3, 0, 0)?;
self.rel_card_addr = self.sdio.regs.responses[0].read() & 0xFFFF0000;
}
self.sdio.cmd_transfer(CMD9, self.rel_card_addr, 0)?;
self.sdio
.regs
.interrupt_status
.modify(|_, w| w.transfer_complete());
let mut csd: [u32; 4] = [0, 0, 0, 0];
for i in 0..=3 {
csd[i] = self.sdio.regs.responses[i].read();
trace!("CSD[{}] = {:0X}", i, csd[i]);
}
const CSD_STRUCT_MSK: u32 = 0x00C00000;
const C_SIZE_MULT_MASK: u32 = 0x00000380;
const C_SIZE_LOWER_MASK: u32 = 0xFFC00000;
const C_SIZE_UPPER_MASK: u32 = 0x00000003;
const READ_BLK_LEN_MASK: u32 = 0x00000F00;
const CSD_V2_C_SIZE_MASK: u32 = 0x3FFFFF00;
const XSDPS_BLK_SIZE_512_MASK: u32 = 0x200;
if ((csd[3] & CSD_STRUCT_MSK) >> 22) == 0 {
let blk_len = 1 << ((csd[2] & READ_BLK_LEN_MASK) >> 8);
let mult = 1 << (((csd[1] & C_SIZE_MULT_MASK) >> 7) + 2);
let mut device_size = (csd[1] & C_SIZE_LOWER_MASK) >> 22;
device_size |= (csd[2] & C_SIZE_UPPER_MASK) << 10;
device_size = (device_size + 1) * mult;
device_size = device_size * blk_len;
self.sector_cnt = device_size / XSDPS_BLK_SIZE_512_MASK;
} else if ((csd[3] & CSD_STRUCT_MSK) >> 22) == 1 {
self.sector_cnt = (((csd[1] & CSD_V2_C_SIZE_MASK) >> 8) + 1) * 1024;
} else {
return Err(CardInitializationError::InitializationFailedOther);
}
self.sdio.change_clk_freq(25_000_000);
// CMD7: select card
self.sdio.cmd_transfer(CMD7, self.rel_card_addr, 0)?;
// pull up
self.sdio.cmd_transfer(CMD55, self.rel_card_addr, 0)?;
self.sdio.cmd_transfer(ACMD42, 0, 0)?;
let mut scr: [u8; 32] = [0; 32];
self.get_bus_width(&mut scr)?;
trace!("SCR={:?}", scr);
if scr[1] & 0x4 != 0 {
// 4bit support
debug!("4 bit support");
self.change_bus_width()?;
}
self.sdio.set_block_size(512)?;
Ok(())
}
/// Convert Sdio into SdCard struct, error if no card inserted or it is not an SD card.
pub fn from_sdio(mut sdio: Sdio) -> Result<Self, CardInitializationError> {
match sdio.identify_card()? {
CardType::CardSd => (),
_ => return Err(CardInitializationError::NoCardInserted),
};
let mut _self = SdCard {
sdio,
adma2_desc_table: Adma2DescTable::new(),
card_version: CardVersion::SdVer1,
hcs: false,
card_id: [0, 0, 0, 0],
rel_card_addr: 0,
sector_cnt: 0,
switch_1v8: false,
width_4_bit: false,
};
_self.sd_card_initialize()?;
Ok(_self)
}
/// Convert SdCard struct back to Sdio struct.
pub fn to_sdio(self) -> Sdio {
self.sdio
}
/// read blocks starting from an address. Each block has length 512 byte.
/// Note that the address is block address, i.e. 0 for 0~512, 1 for 512~1024, etc.
pub fn read_block(
&mut self,
address: u32,
block_cnt: u16,
buffer: &mut [u8],
) -> Result<(), CmdTransferError> {
assert!(buffer.len() >= (block_cnt as usize) * 512);
// set block size if not set already
if self
.sdio
.regs
.block_size_block_count
.read()
.transfer_block_size()
!= 512
{
self.sdio.set_block_size(512)?;
}
let real_addr = if self.hcs {
address
} else {
// standard capacity card uses byte address
address * 0x200
};
self.adma2_desc_table.setup(&mut self.sdio, block_cnt as u32, buffer);
// invalidate D cache, required for ZC706, not sure for Cora Z7 10
cache::dcci_slice(buffer);
let cmd = if block_cnt == 1 {
cmd::SdCmd::CMD17
} else {
cmd::SdCmd::CMD18
};
let mode = if block_cnt == 1 {
super::regs::TransferModeCommand::zeroed()
.block_count_en(true)
.direction_select(true)
.dma_en(true)
} else {
super::regs::TransferModeCommand::zeroed()
.auto_cmd12_en(true)
.block_count_en(true)
.direction_select(true)
.multi_block_en(true)
.dma_en(true)
};
self.sdio
.cmd_transfer_with_mode(cmd, real_addr, block_cnt, mode)?;
self.wait_transfer_complete()?;
cache::dcci_slice(buffer);
Ok(())
}
/// write blocks starting from an address. Each block has length 512 byte.
/// Note that the address is block address, i.e. 0 for 0~512, 1 for 512~1024, etc.
pub fn write_block(
&mut self,
address: u32,
block_cnt: u16,
buffer: &[u8],
) -> Result<(), CmdTransferError> {
assert!(buffer.len() >= (block_cnt as usize) * 512);
// set block size if not set already
if self
.sdio
.regs
.block_size_block_count
.read()
.transfer_block_size()
!= 512
{
self.sdio.set_block_size(512)?;
}
let real_addr = if self.hcs {
address
} else {
// standard capacity card uses byte address
address * 0x200
};
self.adma2_desc_table.setup(&mut self.sdio, block_cnt as u32, buffer);
// invalidate D cache, required for ZC706, not sure for Cora Z7 10
cache::dcci_slice(buffer);
let cmd = if block_cnt == 1 {
cmd::SdCmd::CMD24
} else {
cmd::SdCmd::CMD25
};
let mode = if block_cnt == 1 {
super::regs::TransferModeCommand::zeroed()
.block_count_en(true)
.dma_en(true)
} else {
super::regs::TransferModeCommand::zeroed()
.auto_cmd12_en(true)
.block_count_en(true)
.multi_block_en(true)
.dma_en(true)
};
self.sdio
.cmd_transfer_with_mode(cmd, real_addr, block_cnt, mode)?;
// wait for transfer complete interrupt
self.wait_transfer_complete()?;
cache::dcci_slice(buffer);
Ok(())
}
fn get_bus_width(&mut self, buf: &mut [u8]) -> Result<(), CmdTransferError> {
use cmd::SdCmd::*;
debug!("Getting bus width");
for i in 0..8 {
buf[i] = 0;
}
// send block write command
self.sdio.cmd_transfer(CMD55, self.rel_card_addr, 0)?;
let blk_cnt: u16 = 1;
let blk_size: u16 = 8 & BLK_SIZE_MASK;
self.sdio
.regs
.block_size_block_count
.modify(|_, w| w.transfer_block_size(blk_size));
self.adma2_desc_table.setup(&mut self.sdio, blk_cnt as u32, buf);
cache::dcci_slice(buf);
self.sdio.cmd_transfer_with_mode(
ACMD51,
0,
blk_cnt,
super::regs::TransferModeCommand::zeroed()
.dma_en(true)
.direction_select(true),
)?;
self.wait_transfer_complete()?;
cache::dcci_slice(buf);
Ok(())
}
fn change_bus_width(&mut self) -> Result<(), CmdTransferError> {
use cmd::SdCmd::*;
debug!("Changing bus width");
self.sdio.cmd_transfer(CMD55, self.rel_card_addr, 0)?;
self.width_4_bit = true;
self.sdio.cmd_transfer(ACMD6, 0x2, 0)?;
self.sdio.delay(1);
self.sdio
.regs
.control
.modify(|_, w| w.data_width_select(true));
Ok(())
}
fn wait_transfer_complete(&mut self) -> Result<(), CmdTransferError> {
trace!("Wait for transfer complete");
let mut status = self.sdio.regs.interrupt_status.read();
while !status.transfer_complete() {
self.sdio.check_error(&status)?;
status = self.sdio.regs.interrupt_status.read();
}
trace!("Clearing transfer complete");
self.sdio
.regs
.interrupt_status
.modify(|_, w| w.transfer_complete());
Ok(())
}
}

View File

@ -50,20 +50,13 @@ pub enum DdriobOutputEn {
#[repr(u8)] #[repr(u8)]
pub enum DdriobVrefSel { pub enum DdriobVrefSel {
/// For LPDDR2 with 1.2V IO /// For LPDDR2 with 1.2V IO
Vref0_6V = 0b0001, Vref0_6V,
/// For DDR3L with 1.35V IO /// For DDR3L with 1.35V IO
Vref0_675V = 0b0010, Vref0_675V,
/// For DDR3 with 1.5V IO /// For DDR3 with 1.5V IO
Vref0_75V = 0b0100, Vref0_75V,
/// For DDR2 with 1.8V IO /// For DDR2 with 1.8V IO
Vref0_9V = 0b1000, Vref0_9V,
}
#[repr(u8)]
pub enum LevelShifterEnable {
DisableAll = 0x0,
EnablePsToPl = 0xA,
EnableAll = 0xF,
} }
@ -94,7 +87,7 @@ pub struct RegisterBlock {
pub gem1_clk_ctrl: GemClkCtrl, pub gem1_clk_ctrl: GemClkCtrl,
pub smc_clk_ctrl: RW<u32>, pub smc_clk_ctrl: RW<u32>,
pub lqspi_clk_ctrl: LqspiClkCtrl, pub lqspi_clk_ctrl: LqspiClkCtrl,
pub sdio_clk_ctrl: SdioClkCtrl, pub sdio_clk_ctrl: RW<u32>,
pub uart_clk_ctrl: UartClkCtrl, pub uart_clk_ctrl: UartClkCtrl,
pub spi_clk_ctrl: RW<u32>, pub spi_clk_ctrl: RW<u32>,
pub can_clk_ctrl: RW<u32>, pub can_clk_ctrl: RW<u32>,
@ -102,19 +95,19 @@ pub struct RegisterBlock {
pub dbg_clk_ctrl: RW<u32>, pub dbg_clk_ctrl: RW<u32>,
pub pcap_clk_ctrl: RW<u32>, pub pcap_clk_ctrl: RW<u32>,
pub topsw_clk_ctrl: RW<u32>, pub topsw_clk_ctrl: RW<u32>,
pub fpga0_clk_ctrl: Fpga0ClkCtrl, pub fpga0_clk_ctrl: RW<u32>,
pub fpga0_thr_ctrl: RW<u32>, pub fpga0_thr_ctrl: RW<u32>,
pub fpga0_thr_cnt: RW<u32>, pub fpga0_thr_cnt: RW<u32>,
pub fpga0_thr_sta: RO<u32>, pub fpga0_thr_sta: RO<u32>,
pub fpga1_clk_ctrl: Fpga1ClkCtrl, pub fpga1_clk_ctrl: RW<u32>,
pub fpga1_thr_ctrl: RW<u32>, pub fpga1_thr_ctrl: RW<u32>,
pub fpga1_thr_cnt: RW<u32>, pub fpga1_thr_cnt: RW<u32>,
pub fpga1_thr_sta: RO<u32>, pub fpga1_thr_sta: RO<u32>,
pub fpga2_clk_ctrl: Fpga2ClkCtrl, pub fpga2_clk_ctrl: RW<u32>,
pub fpga2_thr_ctrl: RW<u32>, pub fpga2_thr_ctrl: RW<u32>,
pub fpga2_thr_cnt: RW<u32>, pub fpga2_thr_cnt: RW<u32>,
pub fpga2_thr_sta: RO<u32>, pub fpga2_thr_sta: RO<u32>,
pub fpga3_clk_ctrl: Fpga3ClkCtrl, pub fpga3_clk_ctrl: RW<u32>,
pub fpga3_thr_ctrl: RW<u32>, pub fpga3_thr_ctrl: RW<u32>,
pub fpga3_thr_cnt: RW<u32>, pub fpga3_thr_cnt: RW<u32>,
pub fpga3_thr_sta: RO<u32>, pub fpga3_thr_sta: RO<u32>,
@ -127,17 +120,17 @@ pub struct RegisterBlock {
pub dmac_rst_ctrl: RW<u32>, pub dmac_rst_ctrl: RW<u32>,
pub usb_rst_ctrl: RW<u32>, pub usb_rst_ctrl: RW<u32>,
pub gem_rst_ctrl: RW<u32>, pub gem_rst_ctrl: RW<u32>,
pub sdio_rst_ctrl: SdioRstCtrl, pub sdio_rst_ctrl: RW<u32>,
pub spi_rst_ctrl: RW<u32>, pub spi_rst_ctrl: RW<u32>,
pub can_rst_ctrl: RW<u32>, pub can_rst_ctrl: RW<u32>,
pub i2c_rst_ctrl: RW<u32>, pub i2c_rst_ctrl: RW<u32>,
pub uart_rst_ctrl: UartRstCtrl, pub uart_rst_ctrl: UartRstCtrl,
pub gpio_rst_ctrl: GpioRstCtrl, pub gpio_rst_ctrl: RW<u32>,
pub lqspi_rst_ctrl: LqspiRstCtrl, pub lqspi_rst_ctrl: LqspiRstCtrl,
pub smc_rst_ctrl: RW<u32>, pub smc_rst_ctrl: RW<u32>,
pub ocm_rst_ctrl: RW<u32>, pub ocm_rst_ctrl: RW<u32>,
reserved4: [u32; 1], reserved4: [u32; 1],
pub fpga_rst_ctrl: FpgaRstCtrl, pub fpga_rst_ctrl: RW<u32>,
pub a9_cpu_rst_ctrl: A9CpuRstCtrl, pub a9_cpu_rst_ctrl: A9CpuRstCtrl,
reserved5: [u32; 1], reserved5: [u32; 1],
pub rs_awdt_ctrl: RW<u32>, pub rs_awdt_ctrl: RW<u32>,
@ -226,7 +219,7 @@ pub struct RegisterBlock {
pub sd0_wp_cd_sel: RW<u32>, pub sd0_wp_cd_sel: RW<u32>,
pub sd1_wp_cd_sel: RW<u32>, pub sd1_wp_cd_sel: RW<u32>,
reserved17: [u32; 50], reserved17: [u32; 50],
pub lvl_shftr_en: LvlShftr, pub lvl_shftr_en: RW<u32>,
reserved18: [u32; 3], reserved18: [u32; 3],
pub ocm_cfg: RW<u32>, pub ocm_cfg: RW<u32>,
reserved19: [u32; 123], reserved19: [u32; 123],
@ -253,47 +246,23 @@ pub struct RegisterBlock {
pub ddriob_dci_ctrl: DdriobDciCtrl, pub ddriob_dci_ctrl: DdriobDciCtrl,
pub ddriob_dci_status: DdriobDciStatus, pub ddriob_dci_status: DdriobDciStatus,
} }
register_at!(RegisterBlock, 0xF8000000, slcr); register_at!(RegisterBlock, 0xF8000000, new);
impl RegisterBlock { impl RegisterBlock {
/// Required to modify any sclr register /// Required to modify any sclr register
pub fn unlocked<F: FnMut(&mut Self) -> R, R>(mut f: F) -> R { pub fn unlocked<F: FnMut(&mut Self) -> R, R>(mut f: F) -> R {
let mut self_ = Self::slcr(); let mut self_ = Self::new();
self_.slcr_unlock.unlock(); self_.slcr_unlock.unlock();
let r = f(&mut self_); let r = f(&mut self_);
self_.slcr_lock.lock(); self_.slcr_lock.lock();
r r
} }
pub fn init_preload_fpga(&mut self) { /// Perform a soft reset
// Assert FPGA top level output resets pub fn soft_reset(&mut self) {
self.fpga_rst_ctrl.write( self.pss_rst_ctrl.write(
FpgaRstCtrl::zeroed() PssRstCtrl::zeroed()
.fpga0_out_rst(true) .soft_rst(true)
.fpga1_out_rst(true)
.fpga2_out_rst(true)
.fpga3_out_rst(true)
);
// Disable level shifters
self.lvl_shftr_en.write(
LvlShftr::zeroed()
);
// Enable output level shifters
self.lvl_shftr_en.write(
LvlShftr::zeroed()
.user_lvl_shftr_en(LevelShifterEnable::EnablePsToPl)
);
}
pub fn init_postload_fpga(&mut self) {
// Enable level shifters
self.lvl_shftr_en.write(
LvlShftr::zeroed()
.user_lvl_shftr_en(LevelShifterEnable::EnableAll)
);
// Deassert AXI interface resets
self.fpga_rst_ctrl.write(
FpgaRstCtrl::zeroed()
); );
} }
} }
@ -383,8 +352,6 @@ register_bit!(clk_621_true, clk_621_true, 0);
register!(aper_clk_ctrl, AperClkCtrl, RW, u32); register!(aper_clk_ctrl, AperClkCtrl, RW, u32);
register_bit!(aper_clk_ctrl, uart1_cpu_1xclkact, 21); register_bit!(aper_clk_ctrl, uart1_cpu_1xclkact, 21);
register_bit!(aper_clk_ctrl, uart0_cpu_1xclkact, 20); register_bit!(aper_clk_ctrl, uart0_cpu_1xclkact, 20);
register_bit!(aper_clk_ctrl, sdio1_cpu_1xclkact, 11);
register_bit!(aper_clk_ctrl, sdio0_cpu_1xclkact, 10);
impl AperClkCtrl { impl AperClkCtrl {
pub fn enable_uart0(&mut self) { pub fn enable_uart0(&mut self) {
self.modify(|_, w| w.uart0_cpu_1xclkact(true)); self.modify(|_, w| w.uart0_cpu_1xclkact(true));
@ -393,14 +360,6 @@ impl AperClkCtrl {
pub fn enable_uart1(&mut self) { pub fn enable_uart1(&mut self) {
self.modify(|_, w| w.uart1_cpu_1xclkact(true)); self.modify(|_, w| w.uart1_cpu_1xclkact(true));
} }
pub fn enable_sdio0(&mut self) {
self.modify(|_, w| w.sdio0_cpu_1xclkact(true));
}
pub fn enable_sdio1(&mut self) {
self.modify(|_, w| w.sdio1_cpu_1xclkact(true));
}
} }
register!(rclk_ctrl, RclkCtrl, RW, u32); register!(rclk_ctrl, RclkCtrl, RW, u32);
@ -425,24 +384,6 @@ register_bit!(gem_clk_ctrl,
/// SMC reference clock control /// SMC reference clock control
clkact, 0); clkact, 0);
register!(sdio_clk_ctrl, SdioClkCtrl, RW, u32);
register_bit!(sdio_clk_ctrl, clkact0, 0);
register_bit!(sdio_clk_ctrl, clkact1, 1);
register_bits!(sdio_clk_ctrl, divisor, u8, 8, 13);
register_bits_typed!(sdio_clk_ctrl, srcsel, u8, PllSource, 4, 5);
impl SdioClkCtrl {
pub fn enable_sdio0(&mut self) {
self.modify(|_, w| {
w.divisor(0x14).srcsel(PllSource::IoPll).clkact0(true)
})
}
pub fn enable_sdio1(&mut self) {
self.modify(|_, w| {
w.divisor(0x14).srcsel(PllSource::IoPll).clkact1(true)
})
}
}
register!(uart_clk_ctrl, UartClkCtrl, RW, u32); register!(uart_clk_ctrl, UartClkCtrl, RW, u32);
register_bit!(uart_clk_ctrl, clkact0, 0); register_bit!(uart_clk_ctrl, clkact0, 0);
register_bit!(uart_clk_ctrl, clkact1, 1); register_bit!(uart_clk_ctrl, clkact1, 1);
@ -473,34 +414,6 @@ impl UartClkCtrl {
} }
} }
register!(sdio_rst_ctrl, SdioRstCtrl, RW, u32);
register_bit!(sdio_rst_ctrl, sdio1_ref_rst, 5);
register_bit!(sdio_rst_ctrl, sdio0_ref_rst, 4);
register_bit!(sdio_rst_ctrl, sdio1_cpu1x_rst, 1);
register_bit!(sdio_rst_ctrl, sdio0_cpu1x_rst, 0);
impl SdioRstCtrl {
pub fn reset_sdio0(&mut self) {
self.modify(|_, w|
w.sdio0_ref_rst(true)
.sdio0_cpu1x_rst(true)
);
self.modify(|_, w|
w.sdio0_ref_rst(false)
.sdio0_cpu1x_rst(false)
);
}
pub fn reset_sdio1(&mut self) {
self.modify(|_, w|
w.sdio1_ref_rst(true)
.sdio1_cpu1x_rst(true)
);
self.modify(|_, w|
w.sdio1_ref_rst(false)
.sdio1_cpu1x_rst(false)
);
}
}
register!(uart_rst_ctrl, UartRstCtrl, RW, u32); register!(uart_rst_ctrl, UartRstCtrl, RW, u32);
register_bit!(uart_rst_ctrl, uart0_ref_rst, 3); register_bit!(uart_rst_ctrl, uart0_ref_rst, 3);
register_bit!(uart_rst_ctrl, uart1_ref_rst, 2); register_bit!(uart_rst_ctrl, uart1_ref_rst, 2);
@ -531,20 +444,6 @@ impl UartRstCtrl {
} }
} }
register!(gpio_rst_ctrl, GpioRstCtrl, RW, u32);
register_bit!(gpio_rst_ctrl, gpio_cpu1x_rst, 0);
register_at!(GpioRstCtrl, 0xF800022C, new);
impl GpioRstCtrl {
pub fn reset_gpio(&mut self) {
self.modify(|_, w|
w.gpio_cpu1x_rst(true)
);
self.modify(|_, w|
w.gpio_cpu1x_rst(false)
);
}
}
register!(lqspi_clk_ctrl, LqspiClkCtrl, RW, u32); register!(lqspi_clk_ctrl, LqspiClkCtrl, RW, u32);
register_bit!(lqspi_clk_ctrl, clkact, 0); register_bit!(lqspi_clk_ctrl, clkact, 0);
register_bits_typed!(lqspi_clk_ctrl, src_sel, u8, PllSource, 4, 5); register_bits_typed!(lqspi_clk_ctrl, src_sel, u8, PllSource, 4, 5);
@ -554,32 +453,6 @@ register!(lqspi_rst_ctrl, LqspiRstCtrl, RW, u32);
register_bit!(lqspi_rst_ctrl, ref_rst, 1); register_bit!(lqspi_rst_ctrl, ref_rst, 1);
register_bit!(lqspi_rst_ctrl, cpu1x_rst, 0); register_bit!(lqspi_rst_ctrl, cpu1x_rst, 0);
register!(fpga0_clk_ctrl, Fpga0ClkCtrl, RW, u32);
register_bits!(fpga0_clk_ctrl, divisor1, u8, 20, 25);
register_bits!(fpga0_clk_ctrl, divisor0, u8, 8, 13);
register_bits_typed!(fpga0_clk_ctrl, src_sel, u8, PllSource, 4, 5);
register!(fpga1_clk_ctrl, Fpga1ClkCtrl, RW, u32);
register_bits!(fpga1_clk_ctrl, divisor1, u8, 20, 25);
register_bits!(fpga1_clk_ctrl, divisor0, u8, 8, 13);
register_bits_typed!(fpga1_clk_ctrl, src_sel, u8, PllSource, 4, 5);
register!(fpga2_clk_ctrl, Fpga2ClkCtrl, RW, u32);
register_bits!(fpga2_clk_ctrl, divisor1, u8, 20, 25);
register_bits!(fpga2_clk_ctrl, divisor0, u8, 8, 13);
register_bits_typed!(fpga2_clk_ctrl, src_sel, u8, PllSource, 4, 5);
register!(fpga3_clk_ctrl, Fpga3ClkCtrl, RW, u32);
register_bits!(fpga3_clk_ctrl, divisor1, u8, 20, 25);
register_bits!(fpga3_clk_ctrl, divisor0, u8, 8, 13);
register_bits_typed!(fpga3_clk_ctrl, src_sel, u8, PllSource, 4, 5);
register!(fpga_rst_ctrl, FpgaRstCtrl, RW, u32);
register_bit!(fpga_rst_ctrl, fpga0_out_rst, 0);
register_bit!(fpga_rst_ctrl, fpga1_out_rst, 1);
register_bit!(fpga_rst_ctrl, fpga2_out_rst, 2);
register_bit!(fpga_rst_ctrl, fpga3_out_rst, 3);
register!(a9_cpu_rst_ctrl, A9CpuRstCtrl, RW, u32); register!(a9_cpu_rst_ctrl, A9CpuRstCtrl, RW, u32);
register_bit!(a9_cpu_rst_ctrl, peri_rst, 8); register_bit!(a9_cpu_rst_ctrl, peri_rst, 8);
register_bit!(a9_cpu_rst_ctrl, a9_clkstop1, 5); register_bit!(a9_cpu_rst_ctrl, a9_clkstop1, 5);
@ -590,19 +463,16 @@ register_bit!(a9_cpu_rst_ctrl, a9_rst0, 0);
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)] #[repr(u8)]
pub enum BootModePins { pub enum BootModePins {
// CAUTION!
// The BOOT_MODE bits table 6-4 in UG585 are *out of order*.
Jtag = 0b000, Jtag = 0b000,
Nor = 0b010, Nor = 0b001,
Nand = 0b100, Nand = 0b010,
QuadSpi = 0b001, QuadSpi = 0b100,
SdCard = 0b101, SdCard = 0b110,
} }
register!(boot_mode, BootMode, RO, u32); register!(boot_mode, BootMode, RO, u32);
register_bit!(boot_mode, pll_bypass, 4); register_bit!(boot_mode, pll_bypass, 4);
register_bit!(boot_mode, jtag_routing, 3); register_bits_typed!(boot_mode, boot_mode_pins, u8, BootModePins, 0, 3);
register_bits_typed!(boot_mode, boot_mode_pins, u8, BootModePins, 0, 2);
register!(pss_rst_ctrl, PssRstCtrl, RW, u32); register!(pss_rst_ctrl, PssRstCtrl, RW, u32);
register_bit!(pss_rst_ctrl, soft_rst, 1); register_bit!(pss_rst_ctrl, soft_rst, 1);
@ -686,9 +556,6 @@ mio_pin_register!(mio_pin_51, MioPin51);
mio_pin_register!(mio_pin_52, MioPin52); mio_pin_register!(mio_pin_52, MioPin52);
mio_pin_register!(mio_pin_53, MioPin53); mio_pin_register!(mio_pin_53, MioPin53);
register!(lvl_shftr, LvlShftr, RW, u32);
register_bits_typed!(lvl_shftr, user_lvl_shftr_en, u8, LevelShifterEnable, 0, 3);
register!(gpiob_ctrl, GpiobCtrl, RW, u32); register!(gpiob_ctrl, GpiobCtrl, RW, u32);
register_bit!(gpiob_ctrl, vref_en, 0); register_bit!(gpiob_ctrl, vref_en, 0);
@ -703,7 +570,7 @@ register_bits_typed!(ddriob_config, output_en, u8, DdriobOutputEn, 9, 10);
register_bit!(ddriob_config, pullup_en, 11); register_bit!(ddriob_config, pullup_en, 11);
register!(ddriob_ddr_ctrl, DdriobDdrCtrl, RW, u32); register!(ddriob_ddr_ctrl, DdriobDdrCtrl, RW, u32);
register_bit!(ddriob_ddr_ctrl, vref_int_en, 0); register_bit!(ddriob_ddr_ctrl, vref_int_en, 1);
register_bits_typed!(ddriob_ddr_ctrl, vref_sel, u8, DdriobVrefSel, 1, 4); register_bits_typed!(ddriob_ddr_ctrl, vref_sel, u8, DdriobVrefSel, 1, 4);
register_bit!(ddriob_ddr_ctrl, vref_ext_en_lower, 5); register_bit!(ddriob_ddr_ctrl, vref_ext_en_lower, 5);
register_bit!(ddriob_ddr_ctrl, vref_ext_en_upper, 6); register_bit!(ddriob_ddr_ctrl, vref_ext_en_upper, 6);
@ -711,7 +578,7 @@ register_bit!(ddriob_ddr_ctrl, refio_en, 9);
register!(ddriob_dci_ctrl, DdriobDciCtrl, RW, u32); register!(ddriob_dci_ctrl, DdriobDciCtrl, RW, u32);
register_bit!(ddriob_dci_ctrl, reset, 0); register_bit!(ddriob_dci_ctrl, reset, 0);
register_bit!(ddriob_dci_ctrl, enable, 1); register_bit!(ddriob_dci_ctrl, enable, 0);
register_bits!(ddriob_dci_ctrl, nref_opt1, u8, 6, 7); register_bits!(ddriob_dci_ctrl, nref_opt1, u8, 6, 7);
register_bits!(ddriob_dci_ctrl, nref_opt2, u8, 8, 10); register_bits!(ddriob_dci_ctrl, nref_opt2, u8, 8, 10);
register_bits!(ddriob_dci_ctrl, nref_opt4, u8, 11, 13); register_bits!(ddriob_dci_ctrl, nref_opt4, u8, 11, 13);

View File

@ -1,5 +1,5 @@
use core::ops::{Deref, DerefMut}; use core::ops::{Deref, DerefMut};
use libcortex_a9::{asm, mutex::{Mutex, MutexGuard}}; use libcortex_a9::mutex::{Mutex, MutexGuard};
use crate::uart::Uart; use crate::uart::Uart;
const UART_RATE: u32 = 115_200; const UART_RATE: u32 = 115_200;
@ -10,15 +10,7 @@ pub fn get_uart<'a>() -> MutexGuard<'a, LazyUart> {
unsafe { UART.lock() } unsafe { UART.lock() }
} }
/// Deinitialize so that the Uart will be reinitialized on next
/// output.
///
/// Delays so that an outstanding transmission can finish.
pub fn drop_uart() { pub fn drop_uart() {
for _ in 0..1_000_000 {
asm::nop();
}
unsafe { UART = Mutex::new(LazyUart::Uninitialized); } unsafe { UART = Mutex::new(LazyUart::Uninitialized); }
} }
@ -45,10 +37,7 @@ impl DerefMut for LazyUart {
fn deref_mut(&mut self) -> &mut Uart { fn deref_mut(&mut self) -> &mut Uart {
match self { match self {
LazyUart::Uninitialized => { LazyUart::Uninitialized => {
#[cfg(any(feature = "target_cora_z7_10", feature = "target_redpitaya"))] let uart = Uart::serial(UART_RATE);
let uart = Uart::uart0(UART_RATE);
#[cfg(feature = "target_zc706")]
let uart = Uart::uart1(UART_RATE);
*self = LazyUart::Initialized(uart); *self = LazyUart::Initialized(uart);
self self
} }
@ -73,8 +62,7 @@ macro_rules! println {
use core::fmt::Write; use core::fmt::Write;
let mut uart = $crate::stdio::get_uart(); let mut uart = $crate::stdio::get_uart();
let _ = write!(uart, $($arg)*); let _ = write!(uart, $($arg)*);
let _ = write!(uart, "\n"); let _ = write!(uart, "\r\n");
// flush after the newline while !uart.tx_fifo_empty() {}
while !uart.tx_idle() {}
}) })
} }

View File

@ -1,25 +0,0 @@
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct Milliseconds(pub u64);
impl core::ops::Add for Milliseconds {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Milliseconds(self.0 + rhs.0)
}
}
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct Microseconds(pub u64);
impl core::ops::Add for Microseconds {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Microseconds(self.0 + rhs.0)
}
}
pub trait TimeSource<U> {
fn now(&self) -> U;
}

View File

@ -1,170 +0,0 @@
use core::ops::Add;
use void::Void;
use libregister::{RegisterR, RegisterW};
use crate::{
clocks::Clocks,
mpcore,
time::{Milliseconds, Microseconds, TimeSource},
};
/// "uptime"
#[derive(Clone, Copy)]
pub struct GlobalTimer {
regs: &'static mpcore::RegisterBlock,
}
impl GlobalTimer {
/// Get the potentially uninitialized timer
pub unsafe fn get() -> GlobalTimer {
let regs = mpcore::RegisterBlock::mpcore();
GlobalTimer { regs }
}
/// Get the timer with a reset
pub fn start() -> GlobalTimer {
let mut regs = mpcore::RegisterBlock::mpcore();
Self::reset(&mut regs);
GlobalTimer { regs }
}
fn reset(regs: &mut mpcore::RegisterBlock) {
// Disable
regs.global_timer_control.write(
mpcore::GlobalTimerControl::zeroed()
);
// Reset counters
regs.global_timer_counter0.write(
mpcore::ValueRegister::zeroed()
);
regs.global_timer_counter1.write(
mpcore::ValueRegister::zeroed()
);
// find a prescaler value that matches CPU speed / 2 to us
let clocks = Clocks::get();
let mut prescaler = clocks.cpu_3x2x() / 1_000_000;
while prescaler > 256 {
prescaler /= 2;
}
// Start
regs.global_timer_control.write(
mpcore::GlobalTimerControl::zeroed()
.prescaler((prescaler - 1) as u8)
.auto_increment_mode(true)
.timer_enable(true)
);
}
/// read the raw counter value
pub fn get_counter(&self) -> u64 {
loop {
let c1_pre = self.regs.global_timer_counter1.read().value();
let c0 = self.regs.global_timer_counter0.read().value();
let c1_post = self.regs.global_timer_counter1.read().value();
if c1_pre == c1_post {
return ((c1_pre as u64) << 32) | (c0 as u64);
}
// retry if c0 has wrapped while reading.
}
}
/// read and convert to time
pub fn get_time(&self) -> Milliseconds {
let prescaler = self.regs.global_timer_control.read().prescaler() as u64;
let clocks = Clocks::get();
Milliseconds(self.get_counter() * (prescaler + 1) / (clocks.cpu_3x2x() as u64 / 1000))
}
/// read with high precision
pub fn get_us(&self) -> Microseconds {
let prescaler = self.regs.global_timer_control.read().prescaler() as u64;
let clocks = Clocks::get();
Microseconds(1_000_000 * self.get_counter() * (prescaler + 1) / clocks.cpu_3x2x() as u64)
}
/// return a handle that has implements
/// `embedded_hal::timer::CountDown`
pub fn countdown<U>(&self) -> CountDown<U>
where
Self: TimeSource<U>,
{
CountDown {
timer: self.clone(),
timeout: self.now(),
}
}
}
impl TimeSource<Milliseconds> for GlobalTimer {
fn now(&self) -> Milliseconds {
self.get_time()
}
}
impl TimeSource<Microseconds> for GlobalTimer {
fn now(&self) -> Microseconds {
self.get_us()
}
}
#[derive(Clone)]
pub struct CountDown<U> {
timer: GlobalTimer,
timeout: U,
}
/// embedded-hal async API
impl<U: Add<Output=U> + PartialOrd> embedded_hal::timer::CountDown for CountDown<U>
where
GlobalTimer: TimeSource<U>,
{
type Time = U;
fn start<T: Into<Self::Time>>(&mut self, count: T) {
self.timeout = self.timer.now() + count.into();
}
fn wait(&mut self) -> nb::Result<(), Void> {
if self.timer.now() <= self.timeout {
Err(nb::Error::WouldBlock)
} else {
Ok(())
}
}
}
impl<U: PartialOrd> CountDown<U>
where
GlobalTimer: TimeSource<U>,
{
pub fn waiting(&self) -> bool {
self.timer.now() <= self.timeout
}
}
/// embedded-hal sync API
impl embedded_hal::blocking::delay::DelayMs<u64> for GlobalTimer {
fn delay_ms(&mut self, ms: u64) {
use embedded_hal::timer::CountDown;
let mut countdown = self.countdown::<Milliseconds>();
countdown.start(Milliseconds(ms));
nb::block!(countdown.wait()).unwrap();
}
}
/// embedded-hal sync API
impl embedded_hal::blocking::delay::DelayUs<u64> for GlobalTimer {
fn delay_us(&mut self, us: u64) {
use embedded_hal::timer::CountDown;
let mut countdown = self.countdown::<Microseconds>();
countdown.start(Microseconds(us));
nb::block!(countdown.wait()).unwrap();
}
}

View File

@ -1,2 +0,0 @@
pub mod global;
pub use global::GlobalTimer;

View File

@ -1,5 +1,4 @@
use core::fmt; use core::fmt;
use void::Void;
use libregister::*; use libregister::*;
use super::slcr; use super::slcr;
@ -13,41 +12,8 @@ pub struct Uart {
} }
impl Uart { impl Uart {
#[cfg(any(feature = "target_cora_z7_10", feature = "target_redpitaya"))]
pub fn uart0(baudrate: u32) -> Self {
slcr::RegisterBlock::unlocked(|slcr| {
// Route UART 0 RxD/TxD Signals to MIO Pins
// TX pin
slcr.mio_pin_15.write(
slcr::MioPin15::zeroed()
.l3_sel(0b111)
.io_type(slcr::IoBufferType::Lvcmos33)
.pullup(true)
);
// RX pin
slcr.mio_pin_14.write(
slcr::MioPin14::zeroed()
.tri_enable(true)
.l3_sel(0b111)
.io_type(slcr::IoBufferType::Lvcmos33)
.pullup(true)
);
});
slcr::RegisterBlock::unlocked(|slcr| {
slcr.uart_rst_ctrl.reset_uart0();
slcr.aper_clk_ctrl.enable_uart0();
slcr.uart_clk_ctrl.enable_uart0();
});
let mut self_ = Uart {
regs: regs::RegisterBlock::uart0(),
};
self_.configure(baudrate);
self_
}
#[cfg(feature = "target_zc706")] #[cfg(feature = "target_zc706")]
pub fn uart1(baudrate: u32) -> Self { pub fn serial(baudrate: u32) -> Self {
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
// Route UART 1 RxD/TxD Signals to MIO Pins // Route UART 1 RxD/TxD Signals to MIO Pins
// TX pin // TX pin
@ -66,7 +32,46 @@ impl Uart {
.pullup(true) .pullup(true)
); );
}); });
Self::uart1(baudrate)
}
#[cfg(feature = "target_cora_z7_10")]
pub fn serial(baudrate: u32) -> Self {
slcr::RegisterBlock::unlocked(|slcr| {
// Route UART 0 RxD/TxD Signals to MIO Pins
// TX pin
slcr.mio_pin_15.write(
slcr::MioPin15::zeroed()
.l3_sel(0b111)
.io_type(slcr::IoBufferType::Lvcmos33)
.pullup(true)
);
// RX pin
slcr.mio_pin_14.write(
slcr::MioPin14::zeroed()
.tri_enable(true)
.l3_sel(0b111)
.io_type(slcr::IoBufferType::Lvcmos33)
.pullup(true)
);
});
Self::uart0(baudrate)
}
pub fn uart0(baudrate: u32) -> Self {
slcr::RegisterBlock::unlocked(|slcr| {
slcr.uart_rst_ctrl.reset_uart0();
slcr.aper_clk_ctrl.enable_uart0();
slcr.uart_clk_ctrl.enable_uart0();
});
let mut self_ = Uart {
regs: regs::RegisterBlock::uart0(),
};
self_.configure(baudrate);
self_
}
pub fn uart1(baudrate: u32) -> Self {
slcr::RegisterBlock::unlocked(|slcr| { slcr::RegisterBlock::unlocked(|slcr| {
slcr.uart_rst_ctrl.reset_uart1(); slcr.uart_rst_ctrl.reset_uart1();
slcr.aper_clk_ctrl.enable_uart1(); slcr.aper_clk_ctrl.enable_uart1();
@ -186,42 +191,18 @@ impl Uart {
self.regs.channel_sts.read().txfull() self.regs.channel_sts.read().txfull()
} }
pub fn tx_idle(&self) -> bool { pub fn tx_fifo_empty(&self) -> bool {
let status = self.regs.channel_sts.read(); self.regs.channel_sts.read().txempty()
status.txempty() && !status.tactive()
} }
} }
impl fmt::Write for Uart { impl fmt::Write for Uart {
fn write_str(&mut self, s: &str) -> Result<(), fmt::Error> { fn write_str(&mut self, s: &str) -> Result<(), fmt::Error> {
while !self.tx_fifo_empty() {}
for b in s.bytes() { for b in s.bytes() {
self.write_byte(b); self.write_byte(b);
} }
Ok(()) Ok(())
} }
} }
/// embedded_hal async API
impl embedded_hal::serial::Write<u8> for Uart {
type Error = Void;
fn write(&mut self, b: u8) -> nb::Result<(), Void> {
if self.tx_fifo_full() {
Err(nb::Error::WouldBlock)
} else {
self.write_byte(b);
Ok(())
}
}
fn flush(&mut self) -> nb::Result<(), Void> {
if self.tx_idle() {
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
}
}
/// embedded_hal sync API
impl embedded_hal::blocking::serial::write::Default<u8> for Uart {}

View File

@ -1,15 +0,0 @@
[package]
name = "libconfig"
version = "0.1.0"
authors = ["M-Labs"]
edition = "2018"
[dependencies]
libboard_zynq = { path = "../libboard_zynq" }
core_io = { version = "0.1", features = ["collections"] }
fatfs = { version = "0.3", features = ["core_io"], default-features = false }
log = "0.4"
[features]
ipv6 = []

View File

@ -1,181 +0,0 @@
use alloc::vec::Vec;
use core_io::{Error, Read, Seek, SeekFrom};
use libboard_zynq::devc;
use log::debug;
#[derive(Debug)]
pub enum BootgenLoadingError {
InvalidBootImageHeader,
MissingPartition,
EncryptedBitstream,
IoError(Error),
DevcError(devc::DevcError),
}
impl From<Error> for BootgenLoadingError {
fn from(error: Error) -> Self {
BootgenLoadingError::IoError(error)
}
}
impl From<devc::DevcError> for BootgenLoadingError {
fn from(error: devc::DevcError) -> Self {
BootgenLoadingError::DevcError(error)
}
}
impl core::fmt::Display for BootgenLoadingError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use BootgenLoadingError::*;
match self {
InvalidBootImageHeader => write!(
f,
"Invalid boot image header. Check if the file is correct."
),
MissingPartition => write!(f, "Partition not found. Check your compile configuration."),
EncryptedBitstream => write!(f, "Encrypted bitstream is not supported."),
IoError(e) => write!(f, "Error while reading: {}", e),
DevcError(e) => write!(f, "PCAP interface error: {}", e),
}
}
}
#[repr(C)]
struct PartitionHeader {
pub encrypted_length: u32,
pub unencrypted_length: u32,
pub word_length: u32,
pub dest_load_addr: u32,
pub dest_exec_addr: u32,
pub data_offset: u32,
pub attribute_bits: u32,
pub section_count: u32,
pub checksum_offset: u32,
pub header_offset: u32,
pub cert_offset: u32,
pub reserved: [u32; 4],
pub checksum: u32,
}
/// Read a u32 word from the reader.
fn read_u32<Reader: Read>(reader: &mut Reader) -> Result<u32, BootgenLoadingError> {
let mut buffer: [u8; 4] = [0; 4];
reader.read_exact(&mut buffer)?;
let mut result: u32 = 0;
for i in 0..4 {
result |= (buffer[i] as u32) << (i * 8);
}
Ok(result)
}
/// Load PL partition header.
fn load_pl_header<File: Read + Seek>(
file: &mut File,
) -> Result<Option<PartitionHeader>, BootgenLoadingError> {
let mut buffer: [u8; 0x40] = [0; 0x40];
file.read_exact(&mut buffer)?;
let header = unsafe { core::mem::transmute::<_, PartitionHeader>(buffer) };
if header.attribute_bits & (2 << 4) != 0 {
Ok(Some(header))
} else {
Ok(None)
}
}
fn load_ps_header<File: Read + Seek>(
file: &mut File,
) -> Result<Option<PartitionHeader>, BootgenLoadingError> {
let mut buffer: [u8; 0x40] = [0; 0x40];
file.read_exact(&mut buffer)?;
let header = unsafe { core::mem::transmute::<_, PartitionHeader>(buffer) };
if header.attribute_bits & (1 << 4) != 0 {
Ok(Some(header))
} else {
Ok(None)
}
}
/// Locate the partition from the image, and return the size (in bytes) of the partition if successful.
/// This function would seek the file to the location of the partition.
fn locate<
File: Read + Seek,
F: Fn(&mut File) -> Result<Option<PartitionHeader>, BootgenLoadingError>,
>(
file: &mut File,
f: F,
) -> Result<usize, BootgenLoadingError> {
file.seek(SeekFrom::Start(0))?;
const BOOT_HEADER_SIGN: u32 = 0x584C4E58;
// read boot header signature
file.seek(SeekFrom::Start(0x24))?;
if read_u32(file)? != BOOT_HEADER_SIGN {
return Err(BootgenLoadingError::InvalidBootImageHeader);
}
// find fsbl offset
file.seek(SeekFrom::Start(0x30))?;
// the length is in bytes, we have to convert it to words to compare with the partition offset
// later
let fsbl = read_u32(file)? / 4;
// read partition header offset
file.seek(SeekFrom::Start(0x9C))?;
let ptr = read_u32(file)?;
debug!("Partition header pointer = {:0X}", ptr);
file.seek(SeekFrom::Start(ptr as u64))?;
// at most 3 partition headers
for _ in 0..3 {
if let Some(header) = f(file)? {
let encrypted_length = header.encrypted_length;
let unencrypted_length = header.unencrypted_length;
debug!("Unencrypted length = {:0X}", unencrypted_length);
if encrypted_length != unencrypted_length {
return Err(BootgenLoadingError::EncryptedBitstream);
}
let start_addr = header.data_offset;
// skip fsbl
if start_addr == fsbl {
continue;
}
debug!("Partition start address: {:0X}", start_addr);
file.seek(SeekFrom::Start(start_addr as u64 * 4))?;
return Ok(unencrypted_length as usize * 4);
}
}
Err(BootgenLoadingError::MissingPartition)
}
/// Load bitstream from bootgen file.
/// This function parses the file, locate the bitstream and load it through the PCAP driver.
/// It requires a large buffer, please enable the DDR RAM before using it.
pub fn load_bitstream<File: Read + Seek>(file: &mut File) -> Result<(), BootgenLoadingError> {
let size = locate(file, load_pl_header)?;
unsafe {
// align to 64 bytes
let ptr = alloc::alloc::alloc(alloc::alloc::Layout::from_size_align(size, 64).unwrap());
let buffer = core::slice::from_raw_parts_mut(ptr, size);
file.read_exact(buffer).map_err(|e| {
core::ptr::drop_in_place(ptr);
e
})?;
let mut devcfg = devc::DevC::new();
devcfg.enable();
devcfg.program(&buffer).map_err(|e| {
core::ptr::drop_in_place(ptr);
e
})?;
core::ptr::drop_in_place(ptr);
Ok(())
}
}
pub fn get_runtime<File: Read + Seek>(file: &mut File) -> Result<Vec<u8>, BootgenLoadingError> {
let size = locate(file, load_ps_header)?;
let mut buffer = Vec::with_capacity(size);
unsafe {
buffer.set_len(size);
}
file.read_exact(&mut buffer)?;
Ok(buffer)
}

View File

@ -1,287 +0,0 @@
#![no_std]
extern crate alloc;
use core::fmt;
use alloc::{string::FromUtf8Error, string::String, vec::Vec, rc::Rc, str};
use core_io::{self as io, BufRead, BufReader, Read, Write, Seek, ErrorKind, SeekFrom};
use libboard_zynq::sdio;
pub mod sd_reader;
pub mod net_settings;
pub mod bootgen;
#[derive(Debug)]
pub enum Error<'a> {
SdError(sdio::sd_card::CardInitializationError),
IoError(io::Error),
Utf8Error(FromUtf8Error),
KeyNotFoundError(&'a str),
NoConfig,
}
pub type Result<'a, T> = core::result::Result<T, Error<'a>>;
impl<'a> fmt::Display for Error<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Error::SdError(error) => write!(f, "SD error: {}", error),
Error::IoError(error) => write!(f, "I/O error: {}", error),
Error::Utf8Error(error) => write!(f, "UTF-8 error: {}", error),
Error::KeyNotFoundError(name) => write!(f, "Configuration key `{}` not found", name),
Error::NoConfig => write!(f, "Configuration not present"),
}
}
}
impl<'a> From<sdio::sd_card::CardInitializationError> for Error<'a> {
fn from(error: sdio::sd_card::CardInitializationError) -> Self {
Error::SdError(error)
}
}
impl<'a> From<io::Error> for Error<'a> {
fn from(error: io::Error) -> Self {
Error::IoError(error)
}
}
impl<'a> From<FromUtf8Error> for Error<'a> {
fn from(error: FromUtf8Error) -> Self {
Error::Utf8Error(error)
}
}
fn parse_config<'a>(
key: &'a str,
buffer: &mut Vec<u8>,
file: fatfs::File<sd_reader::SdReader>,
) -> Result<'a, ()> {
let prefix = [key, "="].concat();
for line in BufReader::new(file).lines() {
let line = line?;
if line.starts_with(&prefix) {
buffer.extend(line[prefix.len()..].as_bytes());
return Ok(());
}
}
Err(Error::KeyNotFoundError(key))
}
fn delete_old_entry<'a>(
key: &str,
file: fatfs::File<sd_reader::SdReader>,
mut file_tmp: fatfs::File<sd_reader::SdReader>,
) -> Result<'a, ()> {
let prefix = [key, "="].concat();
let buf_reader = BufReader::new(file);
for line in buf_reader.lines() {
let line = line?;
if !line.starts_with(&prefix) {
file_tmp.write_all(&[line.as_str(), "\n"].concat().as_bytes())?;
}
}
Ok(())
}
fn rename_file<'a>(dir: &fatfs::Dir<sd_reader::SdReader>, old_file_name: &str, new_file_name: &str) -> Result<'a, ()>{
{
let old_file = dir.open_file(old_file_name)?;
let mut new_file = dir.create_file(new_file_name)?;
new_file.truncate()?;
for line in BufReader::new(old_file).lines() {
let line = line?;
new_file.write_all(&[line.as_str(), "\n"].concat().as_bytes())?;
}
}
dir.remove(old_file_name)?;
Ok(())
}
pub struct Config {
fs: Option<Rc<fatfs::FileSystem<sd_reader::SdReader>>>,
}
impl Config {
pub fn new() -> Result<'static, Self> {
let sdio = sdio::Sdio::sdio0(true);
if !sdio.is_card_inserted() {
Err(sdio::sd_card::CardInitializationError::NoCardInserted)?;
}
let sd = sdio::sd_card::SdCard::from_sdio(sdio)?;
let reader = sd_reader::SdReader::new(sd);
let fs = reader.mount_fatfs(sd_reader::PartitionEntry::Entry1)?;
Ok(Config { fs: Some(Rc::new(fs)) })
}
pub fn from_fs(fs: Option<Rc<fatfs::FileSystem<sd_reader::SdReader>>>) -> Self {
Config { fs }
}
pub fn new_dummy() -> Self {
Config { fs: None }
}
pub fn read<'b>(&self, key: &'b str) -> Result<'b, Vec<u8>> {
if let Some(fs) = &self.fs {
let root_dir = fs.root_dir();
let mut buffer: Vec<u8> = Vec::new();
match root_dir.open_file(&["/CONFIG/", key, ".BIN"].concat()) {
Ok(mut f) => f.read_to_end(&mut buffer).map(|_| ())?,
Err(_) => match root_dir.open_file("/CONFIG.TXT") {
Ok(f) => parse_config(key, &mut buffer, f)?,
Err(_) => return Err(Error::KeyNotFoundError(key)),
},
};
Ok(buffer)
} else {
Err(Error::NoConfig)
}
}
pub fn read_str<'b>(&self, key: &'b str) -> Result<'b, String> {
Ok(String::from_utf8(self.read(key)?)?)
}
pub fn erase<'b>(&mut self) -> Result<'b, ()>{
if let Some(fs) = &self.fs {
let root_dir = fs.root_dir();
match root_dir.create_file("/CONFIG.TXT") {
Ok(mut file) => {
file.truncate()?;
},
Err(e) => {
return Err(Error::IoError(e));
}
};
let dir = root_dir.create_dir("/CONFIG")?;
for r in dir.iter() {
let entry = r?;
if entry.is_file() {
dir.remove(str::from_utf8(entry.short_file_name_as_bytes()).unwrap())?;
}
}
Ok(())
} else {
Err(Error::NoConfig)
}
}
pub fn remove_config_txt<'b>(&mut self, key: &str) -> Result<'b, ()>{
if let Some(fs) = &self.fs {
let root_dir = fs.root_dir();
let config_txt_tmp = "/CONFIG.TMP";
let mut need_to_rename = false;
match root_dir.open_file("/CONFIG.TXT") {
Ok(file) => {
need_to_rename = true;
let mut file_tmp = root_dir.create_file(config_txt_tmp)?;
file_tmp.truncate()?;
delete_old_entry(key, file, file_tmp)?;
},
Err(e) => match e.kind() {
ErrorKind::NotFound => {},
_ => {
return Err(Error::IoError(e));
}
}
};
if need_to_rename {
rename_file(&root_dir, config_txt_tmp, "/CONFIG.TXT")?;
}
Ok(())
} else {
Err(Error::NoConfig)
}
}
pub fn remove_config_key_bin<'b>(&mut self, key: &str) -> Result<'b, ()>{
if let Some(fs) = &self.fs {
let root_dir = fs.root_dir();
let config_key_bin = &["/CONFIG/", key, ".BIN"].concat();
match root_dir.remove(config_key_bin) {
Ok(_) => {},
Err(e) => match e.kind() {
ErrorKind::NotFound => {},
_ => {
return Err(Error::IoError(e));
}
}
};
Ok(())
} else {
Err(Error::NoConfig)
}
}
pub fn remove<'b>(&mut self, key: &str) -> Result<'b, ()>{
self.remove_config_txt(key)?;
self.remove_config_key_bin(key)?;
Ok(())
}
pub fn write_str<'b>(&mut self, key: &str, data: &str) -> Result<'b, ()>{
let mut call_remove_config_key_bin = false;
let mut call_remove_config_txt = false;
if let Some(fs) = &self.fs {
let root_dir = fs.root_dir();
let config_key_bin = &["/CONFIG/", key, ".BIN"].concat();
let config_txt_tmp = "/CONFIG.TMP";
if data.is_ascii() & (data.len() <= 100) {
match root_dir.create_file("/CONFIG.TXT") {
Ok(file) => {
let mut file_tmp = root_dir.create_file(config_txt_tmp)?;
file_tmp.truncate()?;
delete_old_entry(key, file, file_tmp)?;
},
Err(e) => {
return Err(Error::IoError(e));
}
};
rename_file(&root_dir, config_txt_tmp, "/CONFIG.TXT")?;
let mut file = root_dir.open_file("/CONFIG.TXT")?;
file.seek(SeekFrom::End(0))?;
file.write_all(&["\n", key, "=", data, "\n"].concat().as_bytes())?;
call_remove_config_key_bin = true;
} else {
root_dir.create_dir("/CONFIG")?;
match root_dir.create_file(config_key_bin) {
Ok(mut file) => {
file.truncate()?;
file.write_all(&[data, "\n"].concat().as_bytes())?;
},
Err(e) => {
return Err(Error::IoError(e));
}
};
call_remove_config_txt = true;
}
} else {
return Err(Error::NoConfig);
}
if call_remove_config_key_bin {
self.remove_config_key_bin(key)?;
}
if call_remove_config_txt {
self.remove_config_txt(key)?;
}
Ok(())
}
}

View File

@ -1,62 +0,0 @@
use core::fmt;
use libboard_zynq::smoltcp::wire::{EthernetAddress, IpAddress};
use super::Config;
pub struct NetAddresses {
pub hardware_addr: EthernetAddress,
pub ipv4_addr: IpAddress,
#[cfg(feature = "ipv6")]
pub ipv6_ll_addr: IpAddress,
#[cfg(feature = "ipv6")]
pub ipv6_addr: Option<IpAddress>
}
impl fmt::Display for NetAddresses {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "MAC={} IPv4={} ",
self.hardware_addr, self.ipv4_addr)?;
#[cfg(feature = "ipv6")]
{
write!(f, "IPv6-LL={}", self.ipv6_ll_addr)?;
match self.ipv6_addr {
Some(addr) => write!(f, " {}", addr)?,
None => write!(f, " IPv6: no configured address")?
}
}
Ok(())
}
}
pub fn get_adresses(cfg: &Config) -> NetAddresses {
let mut hardware_addr = EthernetAddress([0x02, 0x00, 0x00, 0x00, 0x00, 0x52]);
let mut ipv4_addr = IpAddress::v4(192, 168, 1, 52);
if let Ok(Ok(addr)) = cfg.read_str("mac").map(|s| s.parse()) {
hardware_addr = addr;
}
if let Ok(Ok(addr)) = cfg.read_str("ip").map(|s| s.parse()) {
ipv4_addr = addr;
}
#[cfg(feature = "ipv6")]
let ipv6_addr = cfg.read_str("ipv6").ok().and_then(|s| s.parse().ok());
#[cfg(feature = "ipv6")]
let ipv6_ll_addr = IpAddress::v6(
0xfe80, 0x0000, 0x0000, 0x0000,
(((hardware_addr.0[0] ^ 0x02) as u16) << 8) | (hardware_addr.0[1] as u16),
((hardware_addr.0[2] as u16) << 8) | 0x00ff,
0xfe00 | (hardware_addr.0[3] as u16),
((hardware_addr.0[4] as u16) << 8) | (hardware_addr.0[5] as u16));
NetAddresses {
hardware_addr,
ipv4_addr,
#[cfg(feature = "ipv6")]
ipv6_ll_addr,
#[cfg(feature = "ipv6")]
ipv6_addr
}
}

View File

@ -1,303 +0,0 @@
use core_io::{BufRead, Error, ErrorKind, Read, Result as IoResult, Seek, SeekFrom, Write};
use fatfs;
use libboard_zynq::sdio::{sd_card::SdCard, CmdTransferError};
use log::debug;
use alloc::vec::Vec;
const MBR_SIGNATURE: [u8; 2] = [0x55, 0xAA];
const PARTID_FAT12: u8 = 0x01;
const PARTID_FAT16_LESS32M: u8 = 0x04;
const PARTID_FAT16: u8 = 0x06;
const PARTID_FAT32: u8 = 0x0B;
const PARTID_FAT32_LBA: u8 = 0x0C;
fn cmd_error_to_io_error(_: CmdTransferError) -> Error {
Error::new(ErrorKind::Other, "Command transfer error")
}
const BLOCK_SIZE: usize = 512;
/// SdReader struct implementing `Read + BufRead + Write + Seek` traits for `core_io`.
/// Used as an adaptor for fatfs crate, but could be used directly for raw data access.
///
/// Implementation: all read/writes would be split into unaligned and block-aligned parts,
/// unaligned read/writes would do a buffered read/write using a block-sized internal buffer,
/// while aligned transactions would be sent to the SD card directly for performance reason.
pub struct SdReader {
/// Internal SdCard handle.
sd: SdCard,
/// Read buffer with the size of 1 block.
buffer: Vec<u8>,
/// Address for the next byte.
byte_addr: u32,
/// Internal index for the next byte.
/// Normally in range `[0, BLOCK_SIZE - 1]`.
///
/// `index = BLOCK_SIZE` means that the `buffer` is invalid for the current `byte_addr`,
/// the next `fill_buf` call would fill the buffer.
index: usize,
/// Dirty flag indicating the content has to be flushed.
dirty: bool,
/// Base offset for translation from logical address to physical address.
offset: u32,
}
#[derive(Copy, Clone)]
#[allow(unused)]
// Partition entry enum, normally we would use entry1.
pub enum PartitionEntry {
Entry1 = 0x1BE,
Entry2 = 0x1CE,
Entry3 = 0x1DE,
Entry4 = 0x1EE,
}
impl SdReader {
/// Create SdReader from SdCard
pub fn new(sd: SdCard) -> SdReader {
let mut vec: Vec<u8> = Vec::with_capacity(BLOCK_SIZE);
unsafe {
vec.set_len(vec.capacity());
}
SdReader {
sd,
buffer: vec,
byte_addr: 0,
index: BLOCK_SIZE,
dirty: false,
offset: 0,
}
}
/// Internal read function for unaligned read.
/// The read must not cross block boundary.
fn read_unaligned(&mut self, buf: &mut [u8]) -> IoResult<usize> {
if buf.len() == 0 {
return Ok(0);
}
let filled_buffer = self.fill_buf()?;
for (dest, src) in buf.iter_mut().zip(filled_buffer.iter()) {
*dest = *src;
}
self.consume(buf.len());
Ok(buf.len())
}
/// Internal write function for unaligned write.
/// The write must not cross block boundary.
fn write_unaligned(&mut self, buf: &[u8]) -> IoResult<usize> {
if buf.len() == 0 {
return Ok(0);
}
// update buffer if needed, as we will flush the entire block later.
self.fill_buf()?;
self.dirty = true;
let dest_buffer = &mut self.buffer[self.index..];
for (src, dest) in buf.iter().zip(dest_buffer.iter_mut()) {
*dest = *src;
}
self.consume(buf.len());
Ok(buf.len())
}
/// Split the slice into three segments, with the middle block-aligned.
/// Alignment depends on the current `self.byte_addr` instead of the slice pointer address
fn block_align<'b>(&self, buf: &'b [u8]) -> (&'b [u8], &'b [u8], &'b [u8]) {
let head_len = BLOCK_SIZE - (self.byte_addr as usize % BLOCK_SIZE);
if head_len > buf.len() {
(buf, &[], &[])
} else {
let remaining_length = buf.len() - head_len;
let mid_length = remaining_length - remaining_length % BLOCK_SIZE;
let (head, remaining) = buf.split_at(head_len);
let (mid, tail) = remaining.split_at(mid_length);
(head, mid, tail)
}
}
/// Split the mutable slice into three segments, with the middle block-aligned.
/// Alignment depends on the current `self.byte_addr` instead of the slice pointer address
fn block_align_mut<'b>(&self, buf: &'b mut [u8]) -> (&'b mut [u8], &'b mut [u8], &'b mut [u8]) {
let head_len = BLOCK_SIZE - (self.byte_addr as usize % BLOCK_SIZE);
if head_len > buf.len() {
(buf, &mut [], &mut [])
} else {
let remaining_length = buf.len() - head_len;
let mid_length = remaining_length - remaining_length % BLOCK_SIZE;
let (head, remaining) = buf.split_at_mut(head_len);
let (mid, tail) = remaining.split_at_mut(mid_length);
(head, mid, tail)
}
}
/// Invalidate the buffer, so later unaligned read/write would reload the buffer from SD card.
fn invalidate_buffer(&mut self) {
self.index = BLOCK_SIZE;
}
/// Set the base offset of the SD card, to transform from physical address to logical address.
fn set_base_offset(&mut self, offset: u32) -> IoResult<u64> {
self.offset = offset;
self.seek(SeekFrom::Start(0))
}
/// Mount fatfs from partition entry, and return the fatfs object if success.
/// This takes the ownership of self, so currently there is no way to recover from an error,
/// except creating a new SD card instance.
pub fn mount_fatfs(mut self, entry: PartitionEntry) -> IoResult<fatfs::FileSystem<Self>> {
let mut buffer: [u8; 4] = [0; 4];
self.seek(SeekFrom::Start(0x1FE))?;
self.read_exact(&mut buffer[..2])?;
// check MBR signature
if buffer[..2] != MBR_SIGNATURE {
return Err(Error::new(
ErrorKind::InvalidData,
"Incorrect signature for MBR sector.",
));
}
// Read partition ID.
self.seek(SeekFrom::Start(entry as u64 + 0x4))?;
self.read_exact(&mut buffer[..1])?;
debug!("Partition ID: {:0X}", buffer[0]);
match buffer[0] {
PARTID_FAT12 | PARTID_FAT16_LESS32M | PARTID_FAT16 |
PARTID_FAT32 | PARTID_FAT32_LBA => {}
_ => {
return Err(Error::new(
ErrorKind::InvalidData,
"No FAT partition found for the specified entry.",
));
}
}
// Read LBA
self.seek(SeekFrom::Current(0x3))?;
self.read_exact(&mut buffer)?;
let mut lba: u32 = 0;
// Little endian
for i in 0..4 {
lba |= (buffer[i] as u32) << (i * 8);
}
// Set to logical address
self.set_base_offset(lba * BLOCK_SIZE as u32)?;
// setup fatfs
fatfs::FileSystem::new(self, fatfs::FsOptions::new())
}
}
impl Read for SdReader {
fn read(&mut self, buf: &mut [u8]) -> IoResult<usize> {
let total_length = buf.len();
let (a, b, c) = self.block_align_mut(buf);
self.read_unaligned(a)?;
if b.len() > 0 {
// invalidate internal buffer
self.invalidate_buffer();
if let Err(_) = self.sd.read_block(
self.byte_addr / BLOCK_SIZE as u32,
(b.len() / BLOCK_SIZE) as u16,
b,
) {
// we have to allow partial read, as per the trait required
return Ok(a.len());
}
self.byte_addr += b.len() as u32;
}
if let Err(_) = self.read_unaligned(c) {
// we have to allow partial read, as per the trait required
return Ok(a.len() + b.len());
}
Ok(total_length)
}
}
impl BufRead for SdReader {
fn fill_buf(&mut self) -> IoResult<&[u8]> {
if self.index == BLOCK_SIZE {
// flush the buffer if it is dirty before overwriting it with new data
if self.dirty {
self.flush()?;
}
// reload buffer
self.sd
.read_block(self.byte_addr / (BLOCK_SIZE as u32), 1, &mut self.buffer)
.map_err(cmd_error_to_io_error)?;
self.index = (self.byte_addr as usize) % BLOCK_SIZE;
}
Ok(&self.buffer[self.index..])
}
fn consume(&mut self, amt: usize) {
self.index += amt;
self.byte_addr += amt as u32;
}
}
impl Write for SdReader {
fn write(&mut self, buf: &[u8]) -> IoResult<usize> {
let (a, b, c) = self.block_align(buf);
self.write_unaligned(a)?;
if b.len() > 0 {
self.flush()?;
self.invalidate_buffer();
if let Err(_) = self.sd.write_block(
self.byte_addr / BLOCK_SIZE as u32,
(b.len() / BLOCK_SIZE) as u16,
b,
) {
return Ok(a.len());
}
self.byte_addr += b.len() as u32;
}
if let Err(_) = self.write_unaligned(c) {
return Ok(a.len() + b.len());
}
Ok(buf.len())
}
fn flush(&mut self) -> IoResult<()> {
if self.dirty {
let block_addr = (self.byte_addr - self.index as u32) / (BLOCK_SIZE as u32);
self.sd
.write_block(block_addr, 1, &self.buffer)
.map_err(cmd_error_to_io_error)?;
self.dirty = false;
}
Ok(())
}
}
impl Seek for SdReader {
fn seek(&mut self, pos: SeekFrom) -> IoResult<u64> {
let raw_target = match pos {
SeekFrom::Start(x) => self.offset as i64 + x as i64,
SeekFrom::Current(x) => self.byte_addr as i64 + x,
SeekFrom::End(_) => panic!("SD card does not support seek from end"),
};
if raw_target < self.offset as i64 || raw_target > core::u32::MAX as i64 {
return Err(Error::new(ErrorKind::InvalidInput, "Invalid address"));
}
let target_byte_addr = raw_target as u32;
let address_same_block =
self.byte_addr / (BLOCK_SIZE as u32) == target_byte_addr / (BLOCK_SIZE as u32);
// if the buffer was invalidated, we consider seek as different block
let same_block = address_same_block && self.index != BLOCK_SIZE;
if !same_block {
self.flush()?;
}
self.byte_addr = target_byte_addr;
self.index = if same_block {
target_byte_addr as usize % BLOCK_SIZE
} else {
// invalidate the buffer as we moved to a different block
BLOCK_SIZE
};
Ok((self.byte_addr - self.offset) as u64)
}
}
impl Drop for SdReader {
fn drop(&mut self) {
// just try to flush it, ignore error if any
self.flush().unwrap_or(());
}
}

View File

@ -1,14 +0,0 @@
[package]
authors = ["M-Labs"]
name = "core_io"
version = "0.1.20200410"
[lib]
name = "core_io"
[dependencies]
memchr = { version = "2", default-features = false, optional = true }
[features]
alloc = []
collections = ["alloc", "memchr"]

File diff suppressed because it is too large Load Diff

View File

@ -1,896 +0,0 @@
use crate::io::prelude::*;
use core::cmp;
use crate::io::{self, Error, ErrorKind, Initializer, SeekFrom};
#[cfg(feature = "collections")]
use core::convert::TryInto;
#[cfg(feature="collections")]
use collections::vec::Vec;
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
/// A `Cursor` wraps an in-memory buffer and provides it with a
/// [`Seek`] implementation.
///
/// `Cursor`s are used with in-memory buffers, anything implementing
/// `AsRef<[u8]>`, to allow them to implement [`Read`] and/or [`Write`],
/// allowing these buffers to be used anywhere you might use a reader or writer
/// that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<`[`Vec`]`<u8>>` and
/// `Cursor<`[`&[u8]`][bytes]`>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [`Seek`]: trait.Seek.html
/// [`Read`]: ../../std/io/trait.Read.html
/// [`Write`]: ../../std/io/trait.Write.html
/// [`Vec`]: ../../std/vec/struct.Vec.html
/// [bytes]: ../../std/primitive.slice.html
/// [`File`]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// writer.seek(SeekFrom::End(-10))?;
///
/// for i in 0..10 {
/// writer.write(&[i])?;
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = File::create("foo.txt")?;
///
/// write_ten_bytes_at_end(&mut file)?;
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much slower than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying in-memory buffer.
///
/// Cursor initial position is `0` even if underlying buffer (e.g., `Vec`)
/// is not empty. So writing to cursor starts with overwriting `Vec`
/// content, not with appending to it.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
pub fn into_inner(self) -> T {
self.inner
}
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
pub fn get_ref(&self) -> &T {
&self.inner
}
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner
}
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
pub fn position(&self) -> u64 {
self.pos
}
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
pub fn set_position(&mut self, pos: u64) {
self.pos = pos;
}
}
impl<T> io::Seek for Cursor<T>
where
T: AsRef<[u8]>,
{
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let (base_pos, offset) = match style {
SeekFrom::Start(n) => {
self.pos = n;
return Ok(n);
}
SeekFrom::End(n) => (self.inner.as_ref().len() as u64, n),
SeekFrom::Current(n) => (self.pos, n),
};
let new_pos = if offset >= 0 {
base_pos.checked_add(offset as u64)
} else {
base_pos.checked_sub((offset.wrapping_neg()) as u64)
};
match new_pos {
Some(n) => {
self.pos = n;
Ok(self.pos)
}
None => Err(Error::new(
ErrorKind::InvalidInput,
"invalid seek to a negative or overflowing position",
)),
}
}
fn stream_len(&mut self) -> io::Result<u64> {
Ok(self.inner.as_ref().len() as u64)
}
fn stream_position(&mut self) -> io::Result<u64> {
Ok(self.pos)
}
}
impl<T> Read for Cursor<T>
where
T: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut self.get_ref().as_ref(), buf)?;
self.pos += n as u64;
Ok(n)
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
let n = buf.len();
Read::read_exact(&mut self.get_ref().as_ref(), buf)?;
self.pos += n as u64;
Ok(())
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
#[cfg(feature = "collections")]
impl<T> BufRead for Cursor<T>
where
T: AsRef<[u8]>,
{
fn fill_buf(&mut self) -> io::Result<&[u8]> {
let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
Ok(&self.inner.as_ref()[(amt as usize)..])
}
fn consume(&mut self, amt: usize) {
self.pos += amt as u64;
}
}
// Non-resizing write implementation
#[inline]
fn slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(*pos_mut, slice.len() as u64);
let amt = (&mut slice[(pos as usize)..]).write(buf)?;
*pos_mut += amt as u64;
Ok(amt)
}
// Resizing write implementation
#[cfg(feature = "collections")]
fn vec_write(pos_mut: &mut u64, vec: &mut Vec<u8>, buf: &[u8]) -> io::Result<usize> {
let pos: usize = (*pos_mut).try_into().map_err(|_| {
Error::new(
ErrorKind::InvalidInput,
"cursor position exceeds maximum possible vector length",
)
})?;
// Make sure the internal buffer is as least as big as where we
// currently are
let len = vec.len();
if len < pos {
// use `resize` so that the zero filling is as efficient as possible
vec.resize(pos, 0);
}
// Figure out what bytes will be used to overwrite what's currently
// there (left), and what will be appended on the end (right)
{
let space = vec.len() - pos;
let (left, right) = buf.split_at(cmp::min(space, buf.len()));
vec[pos..pos + left.len()].copy_from_slice(left);
vec.extend_from_slice(right);
}
// Bump us forward
*pos_mut = (pos + buf.len()) as u64;
Ok(buf.len())
}
impl Write for Cursor<&mut [u8]> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "collections")]
impl Write for Cursor<&mut Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "collections")]
impl Write for Cursor<Vec<u8>> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "alloc")]
impl Write for Cursor<Box<[u8]>> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::io::prelude::*;
use crate::io::{Cursor, IoSlice, IoSliceMut, SeekFrom};
#[test]
fn test_vec_writer() {
let mut writer = Vec::new();
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[]), IoSlice::new(&[8, 9]), IoSlice::new(&[10])],)
.unwrap(),
3
);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(writer, b);
}
#[test]
fn test_mem_writer() {
let mut writer = Cursor::new(Vec::new());
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[]), IoSlice::new(&[8, 9]), IoSlice::new(&[10])],)
.unwrap(),
3
);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_mem_mut_writer() {
let mut vec = Vec::new();
let mut writer = Cursor::new(&mut vec);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[]), IoSlice::new(&[8, 9]), IoSlice::new(&[10])],)
.unwrap(),
3
);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn test_box_slice_writer() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_box_slice_writer_vectored() {
let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[0])]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[1, 2, 3]), IoSlice::new(&[4, 5, 6, 7]),])
.unwrap(),
7,
);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[8, 9])]).unwrap(), 1);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[10])]).unwrap(), 0);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(&**writer.get_ref(), b);
}
#[test]
fn test_buf_writer() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
assert_eq!(writer.write(&[10]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_vectored() {
let mut buf = [0 as u8; 9];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[0])]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(
writer
.write_vectored(&[IoSlice::new(&[1, 2, 3]), IoSlice::new(&[4, 5, 6, 7])],)
.unwrap(),
7,
);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[]).unwrap(), 0);
assert_eq!(writer.position(), 8);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[8, 9])]).unwrap(), 1);
assert_eq!(writer.write_vectored(&[IoSlice::new(&[10])]).unwrap(), 0);
}
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_seek() {
let mut buf = [0 as u8; 8];
{
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[1]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
assert_eq!(writer.position(), 2);
assert_eq!(writer.write(&[2]).unwrap(), 1);
assert_eq!(writer.position(), 3);
assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[3]).unwrap(), 1);
assert_eq!(writer.position(), 2);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.position(), 7);
assert_eq!(writer.write(&[4]).unwrap(), 1);
assert_eq!(writer.position(), 8);
}
let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
assert_eq!(buf, b);
}
#[test]
fn test_buf_writer_error() {
let mut buf = [0 as u8; 2];
let mut writer = Cursor::new(&mut buf[..]);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
}
#[test]
fn test_mem_reader() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_mem_reader_vectored() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7]);
let mut buf = [];
assert_eq!(reader.read_vectored(&mut [IoSliceMut::new(&mut buf)]).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut []), IoSliceMut::new(&mut buf),])
.unwrap(),
1,
);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf1 = [0; 4];
let mut buf2 = [0; 4];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut buf1), IoSliceMut::new(&mut buf2),])
.unwrap(),
7,
);
let b1: &[_] = &[1, 2, 3, 4];
let b2: &[_] = &[5, 6, 7];
assert_eq!(buf1, b1);
assert_eq!(&buf2[..3], b2);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7].into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_boxed_slice_reader_vectored() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7].into_boxed_slice());
let mut buf = [];
assert_eq!(reader.read_vectored(&mut [IoSliceMut::new(&mut buf)]).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut []), IoSliceMut::new(&mut buf),])
.unwrap(),
1,
);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf1 = [0; 4];
let mut buf2 = [0; 4];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut buf1), IoSliceMut::new(&mut buf2)],)
.unwrap(),
7,
);
let b1: &[_] = &[1, 2, 3, 4];
let b2: &[_] = &[5, 6, 7];
assert_eq!(buf1, b1);
assert_eq!(&buf2[..3], b2);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn read_to_end() {
let mut reader = Cursor::new(vec![0, 1, 2, 3, 4, 5, 6, 7]);
let mut v = Vec::new();
reader.read_to_end(&mut v).unwrap();
assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(&buf[..], b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.len(), 3);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(&buf[..], b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_slice_reader_vectored() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let reader = &mut &in_buf[..];
let mut buf = [];
assert_eq!(reader.read_vectored(&mut [IoSliceMut::new(&mut buf)]).unwrap(), 0);
let mut buf = [0];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut []), IoSliceMut::new(&mut buf),])
.unwrap(),
1,
);
assert_eq!(reader.len(), 7);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf1 = [0; 4];
let mut buf2 = [0; 4];
assert_eq!(
reader
.read_vectored(&mut [IoSliceMut::new(&mut buf1), IoSliceMut::new(&mut buf2)],)
.unwrap(),
7,
);
let b1: &[_] = &[1, 2, 3, 4];
let b2: &[_] = &[5, 6, 7];
assert_eq!(buf1, b1);
assert_eq!(&buf2[..3], b2);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn test_read_exact() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let reader = &mut &in_buf[..];
let mut buf = [];
assert!(reader.read_exact(&mut buf).is_ok());
let mut buf = [8];
assert!(reader.read_exact(&mut buf).is_ok());
assert_eq!(buf[0], 0);
assert_eq!(reader.len(), 7);
let mut buf = [0, 0, 0, 0, 0, 0, 0];
assert!(reader.read_exact(&mut buf).is_ok());
assert_eq!(buf, [1, 2, 3, 4, 5, 6, 7]);
assert_eq!(reader.len(), 0);
let mut buf = [0];
assert!(reader.read_exact(&mut buf).is_err());
}
#[test]
fn test_buf_reader() {
let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
let mut reader = Cursor::new(&in_buf[..]);
let mut buf = [];
assert_eq!(reader.read(&mut buf).unwrap(), 0);
assert_eq!(reader.position(), 0);
let mut buf = [0];
assert_eq!(reader.read(&mut buf).unwrap(), 1);
assert_eq!(reader.position(), 1);
let b: &[_] = &[0];
assert_eq!(buf, b);
let mut buf = [0; 4];
assert_eq!(reader.read(&mut buf).unwrap(), 4);
assert_eq!(reader.position(), 5);
let b: &[_] = &[1, 2, 3, 4];
assert_eq!(buf, b);
assert_eq!(reader.read(&mut buf).unwrap(), 3);
let b: &[_] = &[5, 6, 7];
assert_eq!(&buf[..3], b);
assert_eq!(reader.read(&mut buf).unwrap(), 0);
}
#[test]
fn seek_past_end() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut r = Cursor::new(vec![10]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.read(&mut [0]).unwrap(), 0);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 0);
}
#[test]
fn seek_past_i64() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
let mut r = Cursor::new(vec![10]);
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert_eq!(r.seek(SeekFrom::Start(6)).unwrap(), 6);
assert_eq!(r.seek(SeekFrom::Current(0x7ffffffffffffff0)).unwrap(), 0x7ffffffffffffff6);
assert_eq!(r.seek(SeekFrom::Current(0x10)).unwrap(), 0x8000000000000006);
assert_eq!(r.seek(SeekFrom::Current(0)).unwrap(), 0x8000000000000006);
assert!(r.seek(SeekFrom::Current(0x7ffffffffffffffd)).is_err());
assert_eq!(r.seek(SeekFrom::Current(-0x8000000000000000)).unwrap(), 6);
}
#[test]
fn seek_before_0() {
let buf = [0xff];
let mut r = Cursor::new(&buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec![10]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut buf = [0];
let mut r = Cursor::new(&mut buf[..]);
assert!(r.seek(SeekFrom::End(-2)).is_err());
let mut r = Cursor::new(vec![10].into_boxed_slice());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
fn test_seekable_mem_writer() {
let mut writer = Cursor::new(Vec::<u8>::new());
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[0]).unwrap(), 1);
assert_eq!(writer.position(), 1);
assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
assert_eq!(writer.position(), 8);
let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
assert_eq!(writer.position(), 0);
assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
assert_eq!(&writer.get_ref()[..], b);
assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
assert_eq!(writer.write(&[1]).unwrap(), 1);
let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
assert_eq!(&writer.get_ref()[..], b);
}
#[test]
fn vec_seek_past_end() {
let mut r = Cursor::new(Vec::new());
assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
assert_eq!(r.write(&[3]).unwrap(), 1);
}
#[test]
fn vec_seek_before_0() {
let mut r = Cursor::new(Vec::new());
assert!(r.seek(SeekFrom::End(-2)).is_err());
}
#[test]
#[cfg(target_pointer_width = "32")]
fn vec_seek_and_write_past_usize_max() {
let mut c = Cursor::new(Vec::new());
c.set_position(<usize>::max_value() as u64 + 1);
assert!(c.write_all(&[1, 2, 3]).is_err());
}
#[test]
fn test_partial_eq() {
assert_eq!(Cursor::new(Vec::<u8>::new()), Cursor::new(Vec::<u8>::new()));
}
#[test]
fn test_eq() {
struct AssertEq<T: Eq>(pub T);
let _: AssertEq<Cursor<Vec<u8>>> = AssertEq(Cursor::new(Vec::new()));
}
}

View File

@ -1,551 +0,0 @@
#[cfg(feature="alloc")] use alloc::boxed::Box;
#[cfg(not(feature="alloc"))] use ::FakeBox as Box;
use core::convert::Into;
use core::fmt;
use core::marker::{Send, Sync};
use core::option::Option::{self, Some, None};
use core::result;
#[cfg(feature="collections")] use collections::string::String;
#[cfg(not(feature="collections"))] use ::ErrorString as String;
use core::convert::From;
/// A specialized [`Result`](../result/enum.Result.html) type for I/O
/// operations.
///
/// This type is broadly used across [`std::io`] for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out [`io::Error`] directly and
/// is otherwise a direct mapping to [`Result`].
///
/// While usual Rust style is to import types directly, aliases of [`Result`]
/// often are not, to make it easier to distinguish between them. [`Result`] is
/// generally assumed to be [`std::result::Result`][`Result`], and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of [`std::result::Result`][`Result`].
///
/// [`std::io`]: ../io/index.html
/// [`io::Error`]: ../io/struct.Error.html
/// [`Result`]: ../result/enum.Result.html
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// io::stdin().read_line(&mut buffer)?;
///
/// Ok(buffer)
/// }
/// ```
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the [`Read`], [`Write`], [`Seek`], and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// [`ErrorKind`].
///
/// [`Read`]: ../io/trait.Read.html
/// [`Write`]: ../io/trait.Write.html
/// [`Seek`]: ../io/trait.Seek.html
/// [`ErrorKind`]: enum.ErrorKind.html
pub struct Error {
repr: Repr,
}
impl fmt::Debug for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.repr, f)
}
}
enum Repr {
Os(i32),
Simple(ErrorKind),
#[cfg(feature="alloc")]
Custom(Box<Custom>),
#[cfg(not(feature="alloc"))]
Custom(Custom),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: String,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
///
/// It is used with the [`io::Error`] type.
///
/// [`io::Error`]: struct.Error.html
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[allow(deprecated)]
#[non_exhaustive]
pub enum ErrorKind {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike [`InvalidInput`], this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
///
/// [`InvalidInput`]: #variant.InvalidInput
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to [`write`] returned [`Ok(0)`].
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
///
/// [`write`]: ../../std/io/trait.Write.html#tymethod.write
/// [`Ok(0)`]: ../../std/io/type.Result.html
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// Any I/O error not part of this list.
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
}
impl ErrorKind {
pub(crate) fn as_str(&self) -> &'static str {
match *self {
ErrorKind::NotFound => "entity not found",
ErrorKind::PermissionDenied => "permission denied",
ErrorKind::ConnectionRefused => "connection refused",
ErrorKind::ConnectionReset => "connection reset",
ErrorKind::ConnectionAborted => "connection aborted",
ErrorKind::NotConnected => "not connected",
ErrorKind::AddrInUse => "address in use",
ErrorKind::AddrNotAvailable => "address not available",
ErrorKind::BrokenPipe => "broken pipe",
ErrorKind::AlreadyExists => "entity already exists",
ErrorKind::WouldBlock => "operation would block",
ErrorKind::InvalidInput => "invalid input parameter",
ErrorKind::InvalidData => "invalid data",
ErrorKind::TimedOut => "timed out",
ErrorKind::WriteZero => "write zero",
ErrorKind::Interrupted => "operation interrupted",
ErrorKind::Other => "other os error",
ErrorKind::UnexpectedEof => "unexpected end of file",
}
}
}
/// Intended for use for errors not exposed to the user, where allocating onto
/// the heap (for normal construction via Error::new) is too costly.
impl From<ErrorKind> for Error {
/// Converts an [`ErrorKind`] into an [`Error`].
///
/// This conversion allocates a new error with a simple representation of error kind.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// let not_found = ErrorKind::NotFound;
/// let error = Error::from(not_found);
/// assert_eq!("entity not found", format!("{}", error));
/// ```
///
/// [`ErrorKind`]: ../../std/io/enum.ErrorKind.html
/// [`Error`]: ../../std/io/struct.Error.html
#[inline]
fn from(kind: ErrorKind) -> Error {
Error { repr: Repr::Simple(kind) }
}
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where
E: Into<String>,
{
Self::_new(kind, error.into())
}
fn _new(kind: ErrorKind, error: String) -> Error {
Error { repr: Repr::Custom(Box::new(Custom { kind, error })) }
}
/// Creates a new instance of an `Error` from a particular OS error code.
///
/// # Examples
///
/// On Linux:
///
/// ```
/// # if cfg!(target_os = "linux") {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(22);
/// assert_eq!(error.kind(), io::ErrorKind::InvalidInput);
/// # }
/// ```
///
/// On Windows:
///
/// ```
/// # if cfg!(windows) {
/// use std::io;
///
/// let error = io::Error::from_raw_os_error(10022);
/// assert_eq!(error.kind(), io::ErrorKind::InvalidInput);
/// # }
/// ```
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_os_error(err: &Error) {
/// if let Some(raw_os_err) = err.raw_os_error() {
/// println!("raw OS error: {:?}", raw_os_err);
/// } else {
/// println!("Not an OS error");
/// }
/// }
///
/// fn main() {
/// // Will print "raw OS error: ...".
/// print_os_error(&Error::last_os_error());
/// // Will print "Not an OS error".
/// print_os_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
Repr::Simple(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {:?}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(&Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn get_ref(&self) -> Option<&String> {
match self.repr {
Repr::Os(..) => None,
Repr::Simple(..) => None,
Repr::Custom(ref c) => Some(&c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
/// use std::{error, fmt};
/// use std::fmt::Display;
///
/// #[derive(Debug)]
/// struct MyError {
/// v: String,
/// }
///
/// impl MyError {
/// fn new() -> MyError {
/// MyError {
/// v: "oh no!".to_string()
/// }
/// }
///
/// fn change_message(&mut self, new_message: &str) {
/// self.v = new_message.to_string();
/// }
/// }
///
/// impl error::Error for MyError {}
///
/// impl Display for MyError {
/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// write!(f, "MyError: {}", &self.v)
/// }
/// }
///
/// fn change_error(mut err: Error) -> Error {
/// if let Some(inner_err) = err.get_mut() {
/// inner_err.downcast_mut::<MyError>().unwrap().change_message("I've been changed!");
/// }
/// err
/// }
///
/// fn print_error(err: &Error) {
/// if let Some(inner_err) = err.get_ref() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(&change_error(Error::last_os_error()));
/// // Will print "Inner error: ...".
/// print_error(&change_error(Error::new(ErrorKind::Other, MyError::new())));
/// }
/// ```
pub fn get_mut(&mut self) -> Option<&mut String> {
match self.repr {
Repr::Os(..) => None,
Repr::Simple(..) => None,
Repr::Custom(ref mut c) => Some(&mut c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// if let Some(inner_err) = err.into_inner() {
/// println!("Inner error: {}", inner_err);
/// } else {
/// println!("No inner error");
/// }
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::Other, "oh no!"));
/// }
/// ```
pub fn into_inner(self) -> Option<String> {
match self.repr {
Repr::Os(..) => None,
Repr::Simple(..) => None,
Repr::Custom(c) => Some(c.error),
}
}
/// Returns the corresponding `ErrorKind` for this error.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// fn print_error(err: Error) {
/// println!("{:?}", err.kind());
/// }
///
/// fn main() {
/// // Will print "No inner error".
/// print_error(Error::last_os_error());
/// // Will print "Inner error: ...".
/// print_error(Error::new(ErrorKind::AddrInUse, "oh no!"));
/// }
/// ```
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(_code) => ErrorKind::Other,
Repr::Custom(ref c) => c.kind,
Repr::Simple(kind) => kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
Repr::Os(code) => fmt
.debug_struct("Os")
.field("code", &code)
.finish(),
Repr::Custom(ref c) => fmt::Debug::fmt(&c, fmt),
Repr::Simple(kind) => fmt.debug_tuple("Kind").field(&kind).finish(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
write!(fmt, "os error {}", code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
Repr::Simple(kind) => write!(fmt, "{}", kind.as_str()),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync + Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use super::{Custom, Error, ErrorKind, Repr};
use crate::error;
use crate::fmt;
use crate::sys::decode_error_kind;
use crate::sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let kind = decode_error_kind(code);
let err = Error {
repr: Repr::Custom(box Custom {
kind: ErrorKind::InvalidInput,
error: box Error { repr: super::Repr::Os(code) },
}),
};
let expected = format!(
"Custom {{ \
kind: InvalidInput, \
error: Os {{ \
code: {:?}, \
kind: {:?}, \
message: {:?} \
}} \
}}",
code, kind, msg
);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("asdf")
}
}
impl error::Error for TestError {}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().to_string());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}

View File

@ -1,378 +0,0 @@
use core::cmp;
use core::fmt;
use crate::io::{
self, Error, ErrorKind, Initializer, Read, Seek, SeekFrom, Write,
};
#[cfg(feature = "collections")] use crate::io::BufRead;
use core::mem;
#[cfg(feature="collections")]
use collections::{
vec::Vec,
string::String,
};
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
// =============================================================================
// Forwarding implementations
impl<R: Read + ?Sized> Read for &mut R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
(**self).initializer()
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
impl<W: Write + ?Sized> Write for &mut W {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(**self).write(buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
(**self).flush()
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
impl<S: Seek + ?Sized> Seek for &mut S {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
(**self).seek(pos)
}
}
#[cfg(feature = "collections")]
impl<B: BufRead + ?Sized> BufRead for &mut B {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
(**self).fill_buf()
}
#[inline]
fn consume(&mut self, amt: usize) {
(**self).consume(amt)
}
#[cfg(feature="collections")]
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
#[cfg(feature="alloc")]
#[cfg(feature="collections")]
impl<R: Read + ?Sized> Read for Box<R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_to_end(buf)
}
#[cfg(feature="collections")]
#[inline]
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_to_string(buf)
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
(**self).read_exact(buf)
}
}
#[cfg(feature="alloc")]
#[cfg(feature="collections")]
impl<W: Write + ?Sized> Write for Box<W> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(**self).write(buf)
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
(**self).flush()
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
(**self).write_all(buf)
}
#[inline]
fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
(**self).write_fmt(fmt)
}
}
#[cfg(feature="collections")]
impl<S: Seek + ?Sized> Seek for Box<S> {
#[inline]
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
(**self).seek(pos)
}
}
#[cfg(feature="collections")]
impl<B: BufRead + ?Sized> BufRead for Box<B> {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
(**self).fill_buf()
}
#[inline]
fn consume(&mut self, amt: usize) {
(**self).consume(amt)
}
#[inline]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
(**self).read_until(byte, buf)
}
#[inline]
fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
(**self).read_line(buf)
}
}
// Used by panicking::default_hook
#[cfg(test)]
/// This impl is only used by printing logic, so any error returned is always
/// of kind `Other`, and should be ignored.
#[cfg(feature="collections")]
impl Write for Box<dyn (::realstd::io::Write) + Send> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(**self).write(buf).map_err(|_| ErrorKind::Other.into())
}
fn flush(&mut self) -> io::Result<()> {
(**self).flush().map_err(|_| ErrorKind::Other.into())
}
}
// =============================================================================
// In-memory buffer implementations
/// Read is implemented for `&[u8]` by copying from the slice.
///
/// Note that reading updates the slice to point to the yet unread part.
/// The slice will be empty when EOF is reached.
impl Read for &[u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let amt = cmp::min(buf.len(), self.len());
let (a, b) = self.split_at(amt);
// First check if the amount of bytes we want to read is small:
// `copy_from_slice` will generally expand to a call to `memcpy`, and
// for a single byte the overhead is significant.
if amt == 1 {
buf[0] = a[0];
} else {
buf[..amt].copy_from_slice(a);
}
*self = b;
Ok(amt)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
if buf.len() > self.len() {
return Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill whole buffer"));
}
let (a, b) = self.split_at(buf.len());
// First check if the amount of bytes we want to read is small:
// `copy_from_slice` will generally expand to a call to `memcpy`, and
// for a single byte the overhead is significant.
if buf.len() == 1 {
buf[0] = a[0];
} else {
buf.copy_from_slice(a);
}
*self = b;
Ok(())
}
#[cfg(feature="collections")]
#[inline]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
buf.extend_from_slice(*self);
let len = self.len();
*self = &self[len..];
Ok(len)
}
}
#[cfg(feature="collections")]
impl BufRead for &[u8] {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(*self)
}
#[inline]
fn consume(&mut self, amt: usize) {
*self = &self[amt..];
}
}
/// Write is implemented for `&mut [u8]` by copying into the slice, overwriting
/// its data.
///
/// Note that writing updates the slice to point to the yet unwritten part.
/// The slice will be empty when it has been completely overwritten.
impl Write for &mut [u8] {
#[inline]
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let amt = cmp::min(data.len(), self.len());
let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
a.copy_from_slice(&data[..amt]);
*self = b;
Ok(amt)
}
#[inline]
fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
if self.write(data)? == data.len() {
Ok(())
} else {
Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
/// Write is implemented for `Vec<u8>` by appending to the vector.
/// The vector will grow as needed.
#[cfg(feature="collections")]
impl Write for Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::io::prelude::*;
#[bench]
fn bench_read_slice(b: &mut test::Bencher) {
let buf = [5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_slice(b: &mut test::Bencher) {
let mut buf = [0; 1024];
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
#[bench]
fn bench_read_vec(b: &mut test::Bencher) {
let buf = vec![5; 1024];
let mut dst = [0; 128];
b.iter(|| {
let mut rd = &buf[..];
for _ in 0..8 {
let _ = rd.read(&mut dst);
test::black_box(&dst);
}
})
}
#[bench]
fn bench_write_vec(b: &mut test::Bencher) {
let mut buf = Vec::with_capacity(1024);
let src = [5; 128];
b.iter(|| {
let mut wr = &mut buf[..];
for _ in 0..8 {
let _ = wr.write_all(&src);
test::black_box(&wr);
}
})
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,13 +0,0 @@
//! The I/O Prelude
//!
//! The purpose of this module is to alleviate imports of many common I/O traits
//! by adding a glob import to the top of I/O heavy modules:
//!
//! ```
//! # #![allow(unused_imports)]
//! use std::io::prelude::*;
//! ```
pub use super::{Read, Seek, Write};
#[cfg(feature = "collections")] pub use super::BufRead;

View File

@ -1,269 +0,0 @@
#![allow(missing_copy_implementations)]
use core::fmt;
use core::mem;
use crate::io::{self, ErrorKind, Initializer, Read, Write};
#[cfg(feature = "collections")] use crate::io::BufRead;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// If youre wanting to copy the contents of one file to another and youre
/// working with filesystem paths, see the [`fs::copy`] function.
///
/// [`fs::copy`]: ../fs/fn.copy.html
///
/// # Errors
///
/// This function will return an error immediately if any call to `read` or
/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
/// handled by this function and the underlying operation is retried.
///
/// # Examples
///
/// ```
/// use std::io;
///
/// fn main() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// io::copy(&mut reader, &mut writer)?;
///
/// assert_eq!(&b"hello"[..], &writer[..]);
/// Ok(())
/// }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where
R: Read,
W: Write,
{
let mut buf = unsafe {
#[allow(deprecated)]
let mut buf: [u8; super::DEFAULT_BUF_SIZE] = mem::uninitialized();
reader.initializer().initialize(&mut buf);
buf
};
let mut written = 0;
loop {
let len = match reader.read(&mut buf) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(&buf[..len])?;
written += len as u64;
}
}
/// A reader which is always at EOF.
///
/// This struct is generally created by calling [`empty`]. Please see
/// the documentation of [`empty()`][`empty`] for more details.
///
/// [`empty`]: fn.empty.html
pub struct Empty {
_priv: (),
}
/// Constructs a new handle to an empty reader.
///
/// All reads from the returned reader will return [`Ok`]`(0)`.
///
/// [`Ok`]: ../result/enum.Result.html#variant.Ok
///
/// # Examples
///
/// A slightly sad example of not reading anything into a buffer:
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = String::new();
/// io::empty().read_to_string(&mut buffer).unwrap();
/// assert!(buffer.is_empty());
/// ```
pub fn empty() -> Empty {
Empty { _priv: () }
}
impl Read for Empty {
#[inline]
fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> {
Ok(0)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
#[cfg(feature="collections")]
impl BufRead for Empty {
#[inline]
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(&[])
}
#[inline]
fn consume(&mut self, _n: usize) {}
}
impl fmt::Debug for Empty {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Empty { .. }")
}
}
/// A reader which yields one byte over and over and over and over and over and...
///
/// This struct is generally created by calling [`repeat`][repeat]. Please
/// see the documentation of `repeat()` for more details.
///
/// [repeat]: fn.repeat.html
pub struct Repeat {
byte: u8,
}
/// Creates an instance of a reader that infinitely repeats one byte.
///
/// All reads from this reader will succeed by filling the specified buffer with
/// the given byte.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
///
/// let mut buffer = [0; 3];
/// io::repeat(0b101).read_exact(&mut buffer).unwrap();
/// assert_eq!(buffer, [0b101, 0b101, 0b101]);
/// ```
pub fn repeat(byte: u8) -> Repeat {
Repeat { byte }
}
impl Read for Repeat {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for slot in &mut *buf {
*slot = self.byte;
}
Ok(buf.len())
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl fmt::Debug for Repeat {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Repeat { .. }")
}
}
/// A writer which will move data into the void.
///
/// This struct is generally created by calling [`sink`][sink]. Please
/// see the documentation of `sink()` for more details.
///
/// [sink]: fn.sink.html
pub struct Sink {
_priv: (),
}
/// Creates an instance of a writer which will successfully consume all data.
///
/// All calls to `write` on the returned instance will return `Ok(buf.len())`
/// and the contents of the buffer will not be inspected.
///
/// # Examples
///
/// ```rust
/// use std::io::{self, Write};
///
/// let buffer = vec![1, 2, 3, 5, 8];
/// let num_bytes = io::sink().write(&buffer).unwrap();
/// assert_eq!(num_bytes, 5);
/// ```
pub fn sink() -> Sink {
Sink { _priv: () }
}
impl Write for Sink {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
Ok(buf.len())
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl fmt::Debug for Sink {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Sink { .. }")
}
}
#[cfg(test)]
mod tests {
use crate::io::prelude::*;
use crate::io::{copy, empty, repeat, sink};
#[test]
fn copy_copies() {
let mut r = repeat(0).take(4);
let mut w = sink();
assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
let mut r = repeat(0).take(1 << 17);
assert_eq!(copy(&mut r as &mut dyn Read, &mut w as &mut dyn Write).unwrap(), 1 << 17);
}
#[test]
fn sink_sinks() {
let mut s = sink();
assert_eq!(s.write(&[]).unwrap(), 0);
assert_eq!(s.write(&[0]).unwrap(), 1);
assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
}
#[test]
fn empty_reads() {
let mut e = empty();
assert_eq!(e.read(&mut []).unwrap(), 0);
assert_eq!(e.read(&mut [0]).unwrap(), 0);
assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
}
#[test]
fn repeat_repeats() {
let mut r = repeat(4);
let mut b = [0; 1024];
assert_eq!(r.read(&mut b).unwrap(), 1024);
assert!(b.iter().all(|b| *b == 4));
}
#[test]
fn take_some_bytes() {
assert_eq!(repeat(4).take(100).bytes().count(), 100);
assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
}
}

View File

@ -1,51 +0,0 @@
//! <p id="core_io-show-docblock"></p>
//! This is just a listing of the functionality available in this crate. See
//! the [std documentation](https://doc.rust-lang.org/nightly/std/io/index.html)
//! for a full description of the functionality.
#![allow(stable_features,unused_features)]
#![feature(question_mark,const_fn,copy_from_slice,try_from,str_internals,align_offset,slice_internals)]
#![cfg_attr(any(feature="alloc",feature="collections"),feature(alloc))]
#![cfg_attr(pattern_guards,feature(bind_by_move_pattern_guards,nll))]
#![cfg_attr(non_exhaustive,feature(non_exhaustive))]
#![cfg_attr(unicode,feature(str_char))]
#![cfg_attr(unicode,feature(unicode))]
#![no_std]
#[cfg_attr(feature="collections",macro_use)]
#[cfg_attr(feature="collections",allow(unused_imports))]
#[cfg(feature="collections")] extern crate alloc as collections;
#[cfg(feature="alloc")] extern crate alloc;
#[cfg(rustc_unicode)]
extern crate rustc_unicode;
#[cfg(std_unicode)]
extern crate std_unicode;
#[cfg(not(feature="collections"))]
pub type ErrorString = &'static str;
// Provide Box::new wrapper
#[cfg(not(feature="alloc"))]
struct FakeBox<T>(core::marker::PhantomData<T>);
#[cfg(not(feature="alloc"))]
impl<T> FakeBox<T> {
fn new(val: T) -> T {
val
}
}
// Needed for older compilers, to ignore vec!/format! macros in tests
#[cfg(not(feature="collections"))]
#[allow(unused)]
macro_rules! vec (
( $ elem : expr ; $ n : expr ) => { () };
( $ ( $ x : expr ) , * ) => { () };
( $ ( $ x : expr , ) * ) => { () };
);
#[cfg(not(feature="collections"))]
#[allow(unused)]
macro_rules! format {
( $ ( $ arg : tt ) * ) => { () };
}
mod io;
pub use io::*;

View File

@ -1,17 +1,23 @@
[package] [package]
name = "libcortex_a9" name = "libcortex_a9"
version = "0.0.0" version = "0.0.0"
authors = ["M-Labs"] authors = ["Astro <astro@spaceboyz.net>"]
edition = "2018" edition = "2018"
[features] [features]
target_zc706 = [] target_zc706 = []
target_cora_z7_10 = [] target_cora_z7_10 = []
target_redpitaya = []
power_saving = []
default = ["target_zc706"] default = ["target_zc706"]
[dependencies] [dependencies]
bit_field = "0.10" r0 = "0.2"
vcell = "0.1"
volatile-register = "0.2" volatile-register = "0.2"
bit_field = "0.10"
libregister = { path = "../libregister" } libregister = { path = "../libregister" }
[dependencies.smoltcp]
git = "https://github.com/m-labs/smoltcp.git"
rev = "8eb01aca364aefe5f823d68d552d62c76c9be4a3"
features = ["ethernet", "proto-ipv4", "socket-tcp"]
default-features = false

View File

@ -1,76 +1,35 @@
/// The classic no-op /// The classic no-op
#[inline] #[inline]
pub fn nop() { pub fn nop() {
unsafe { llvm_asm!("nop" :::: "volatile") } unsafe { asm!("nop" :::: "volatile") }
} }
/// Wait For Event /// Wait For Event
#[inline] #[inline]
pub fn wfe() { pub fn wfe() {
unsafe { llvm_asm!("wfe" :::: "volatile") } unsafe { asm!("wfe" :::: "volatile") }
} }
/// Send Event /// Send Event
#[inline] #[inline]
pub fn sev() { pub fn sev() {
unsafe { llvm_asm!("sev" :::: "volatile") } unsafe { asm!("sev" :::: "volatile") }
} }
/// Data Memory Barrier /// Data Memory Barrier
#[inline] #[inline]
pub fn dmb() { pub fn dmb() {
unsafe { llvm_asm!("dmb" :::: "volatile") } unsafe { asm!("dmb" :::: "volatile") }
} }
/// Data Synchronization Barrier /// Data Synchronization Barrier
#[inline] #[inline]
pub fn dsb() { pub fn dsb() {
unsafe { llvm_asm!("dsb" :::: "volatile") } unsafe { asm!("dsb" :::: "volatile") }
} }
/// Instruction Synchronization Barrier /// Instruction Synchronization Barrier
#[inline] #[inline]
pub fn isb() { pub fn isb() {
unsafe { llvm_asm!("isb" :::: "volatile") } unsafe { asm!("isb" :::: "volatile") }
}
/// Enable IRQ
#[inline]
pub unsafe fn enable_irq() {
llvm_asm!("cpsie i":::: "volatile");
}
/// Disable IRQ, return if IRQ was originally enabled.
#[inline]
pub unsafe fn enter_critical() -> bool {
let mut cpsr: u32;
llvm_asm!(
"mrs $0, cpsr
cpsid i"
: "=r"(cpsr) ::: "volatile");
(cpsr & (1 << 7)) == 0
}
#[inline]
pub unsafe fn exit_critical(enable: bool) {
// https://stackoverflow.com/questions/40019929/temporarily-disable-interrupts-on-arm
let mask: u32 = if enable {
1 << 7
} else {
0
};
llvm_asm!(
"mrs r1, cpsr
bic r1, r1, $0
msr cpsr_c, r1"
:: "r"(mask) : "r1");
}
/// Exiting IRQ
#[inline]
pub unsafe fn exit_irq() {
llvm_asm!("
mrs r0, SPSR
msr CPSR, r0
" ::: "r0");
} }

View File

@ -1,11 +1,8 @@
use super::asm::{dmb, dsb};
use super::l2c::*;
/// Invalidate TLBs /// Invalidate TLBs
#[inline(always)] #[inline(always)]
pub fn tlbiall() { pub fn tlbiall() {
unsafe { unsafe {
llvm_asm!("mcr p15, 0, $0, c8, c7, 0" :: "r" (0) :: "volatile"); asm!("mcr p15, 0, $0, c8, c7, 0" :: "r" (0) :: "volatile");
} }
} }
@ -13,7 +10,7 @@ pub fn tlbiall() {
#[inline(always)] #[inline(always)]
pub fn iciallu() { pub fn iciallu() {
unsafe { unsafe {
llvm_asm!("mcr p15, 0, $0, c7, c5, 0" :: "r" (0) :: "volatile"); asm!("mcr p15, 0, $0, c7, c5, 0" :: "r" (0) :: "volatile");
} }
} }
@ -21,19 +18,10 @@ pub fn iciallu() {
#[inline(always)] #[inline(always)]
pub fn bpiall() { pub fn bpiall() {
unsafe { unsafe {
llvm_asm!("mcr p15, 0, $0, c7, c5, 6" :: "r" (0) :: "volatile"); asm!("mcr p15, 0, $0, c7, c5, 6" :: "r" (0) :: "volatile");
} }
} }
/// Data cache clean by set/way
#[inline(always)]
pub fn dccsw(setway: u32) {
unsafe {
llvm_asm!("mcr p15, 0, $0, c7, c10, 2" :: "r" (setway) :: "volatile");
}
}
/// Data cache invalidate by set/way
#[inline(always)] #[inline(always)]
pub fn dcisw(setway: u32) { pub fn dcisw(setway: u32) {
unsafe { unsafe {
@ -41,21 +29,13 @@ pub fn dcisw(setway: u32) {
// also see example code (for DCCISW, but DCISW will be // also see example code (for DCCISW, but DCISW will be
// analogous) "Example code for cache maintenance operations" // analogous) "Example code for cache maintenance operations"
// on pages B2-1286 and B2-1287. // on pages B2-1286 and B2-1287.
llvm_asm!("mcr p15, 0, $0, c7, c6, 2" :: "r" (setway) :: "volatile"); asm!("mcr p15, 0, $0, c7, c6, 2" :: "r" (setway) :: "volatile");
}
}
/// Data cache clean by set/way
#[inline(always)]
pub fn dccisw(setway: u32) {
unsafe {
llvm_asm!("mcr p15, 0, $0, c7, c14, 2" :: "r" (setway) :: "volatile");
} }
} }
/// A made-up "instruction": invalidate all of the L1 D-Cache /// A made-up "instruction": invalidate all of the L1 D-Cache
#[inline(always)] #[inline(always)]
pub fn dciall_l1() { pub fn dciall() {
// the cache associativity could be read from a register, but will // the cache associativity could be read from a register, but will
// always be 4 in L1 data cache of a cortex a9 // always be 4 in L1 data cache of a cortex a9
let ways = 4; let ways = 4;
@ -69,7 +49,7 @@ pub fn dciall_l1() {
// select L1 data cache // select L1 data cache
unsafe { unsafe {
llvm_asm!("mcr p15, 2, $0, c0, c0, 0" :: "r" (0) :: "volatile"); asm!("mcr p15, 2, $0, c0, c0, 0" :: "r" (0) :: "volatile");
} }
// Invalidate entire D-Cache by iterating every set and every way // Invalidate entire D-Cache by iterating every set and every way
@ -80,157 +60,75 @@ pub fn dciall_l1() {
} }
} }
/// A made-up "instruction": invalidate all of the L1 L2 D-Cache /// Data cache clear and invalidate by memory virtual address. This
#[inline(always)]
pub fn dciall() {
dmb();
l2_cache_invalidate_all();
dciall_l1();
}
/// A made-up "instruction": flush and invalidate all of the L1 D-Cache
#[inline(always)]
pub fn dcciall_l1() {
// the cache associativity could be read from a register, but will
// always be 4 in L1 data cache of a cortex a9
let ways = 4;
let bit_pos_of_way = 30; // 32 - log2(ways)
// the cache sets could be read from a register, but are always
// 256 for the cores in the zync-7000; in general, 128 or 512 are
// also possible.
let sets = 256;
let bit_pos_of_set = 5; // for a line size of 8 words = 2^5 bytes
// select L1 data cache
unsafe {
llvm_asm!("mcr p15, 2, $0, c0, c0, 0" :: "r" (0) :: "volatile");
}
// Invalidate entire D-Cache by iterating every set and every way
for set in 0..sets {
for way in 0..ways {
dccisw((set << bit_pos_of_set) | (way << bit_pos_of_way));
}
}
}
#[inline(always)]
pub fn dcciall() {
dmb();
dcciall_l1();
dsb();
l2_cache_clean_invalidate_all();
dcciall_l1();
dsb();
}
const CACHE_LINE: usize = 0x20;
const CACHE_LINE_MASK: usize = CACHE_LINE - 1;
#[inline]
fn cache_line_addrs(first_addr: usize, beyond_addr: usize) -> impl Iterator<Item = usize> {
let first_addr = first_addr & !CACHE_LINE_MASK;
let beyond_addr = (beyond_addr | CACHE_LINE_MASK) + 1;
(first_addr..beyond_addr).step_by(CACHE_LINE)
}
fn object_cache_line_addrs<T>(object: &T) -> impl Iterator<Item = usize> {
let first_addr = object as *const _ as usize;
let beyond_addr = (object as *const _ as usize) + core::mem::size_of_val(object);
cache_line_addrs(first_addr, beyond_addr)
}
fn slice_cache_line_addrs<T>(slice: &[T]) -> impl Iterator<Item = usize> {
let first_addr = &slice[0] as *const _ as usize;
let beyond_addr = (&slice[slice.len() - 1] as *const _ as usize) +
core::mem::size_of_val(&slice[slice.len() - 1]);
cache_line_addrs(first_addr, beyond_addr)
}
/// Data cache clean and invalidate by memory virtual address. This
/// flushes data out to the point of coherency, and invalidates the /// flushes data out to the point of coherency, and invalidates the
/// corresponding cache line (as appropriate when DMA is meant to be /// corresponding cache line (as appropriate when DMA is meant to be
/// writing into it). /// writing into it).
#[inline(always)] #[inline(always)]
pub fn dccimvac(addr: usize) { pub fn dccimva(addr: usize) {
unsafe { unsafe {
llvm_asm!("mcr p15, 0, $0, c7, c14, 1" :: "r" (addr) :: "volatile"); asm!("mcr p15, 0, $0, c7, c14, 1" :: "r" (addr) :: "volatile");
} }
} }
/// Data cache clean and invalidate for an object. /// clear cache line by virtual address to point of coherency (DCCMVAC)
pub fn dcci<T>(object: &T) { #[inline]
// ref: L2C310 TRM 3.3.10 pub fn dccmvac(addr: u32) {
dmb();
for addr in object_cache_line_addrs(object) {
dccmvac(addr);
}
dsb();
for addr in object_cache_line_addrs(object) {
l2_cache_clean_invalidate(addr);
}
l2_cache_sync();
for addr in object_cache_line_addrs(object) {
dccimvac(addr);
}
dsb();
}
pub fn dcci_slice<T>(slice: &[T]) {
dmb();
for addr in slice_cache_line_addrs(slice) {
dccmvac(addr);
}
dsb();
for addr in slice_cache_line_addrs(slice) {
l2_cache_clean_invalidate(addr);
}
l2_cache_sync();
for addr in slice_cache_line_addrs(slice) {
dccimvac(addr);
}
dsb();
}
/// Data cache clean by memory virtual address.
#[inline(always)]
pub fn dccmvac(addr: usize) {
unsafe { unsafe {
llvm_asm!("mcr p15, 0, $0, c7, c10, 1" :: "r" (addr) :: "volatile"); asm!("mcr p15, 0, $0, c7, c10, 1" :: "r" (addr) :: "volatile");
} }
} }
/// Data cache clean for an object. /// The DCCIVMA (data cache clear and invalidate) applied to the
pub fn dcc<T>(object: &T) { /// region of memory occupied by the argument. This does not modify
dmb(); /// the argument, but due to the invalidate part (only ever needed if
for addr in object_cache_line_addrs(object) { /// external write access is to be granted, e.g. by DMA) it only makes
dccmvac(addr); /// sense if the caller has exclusive access to it as otherwise other
/// accesses might just bring it back into the data cache.
pub fn dcci<T>(object: &mut T) {
let cache_line = 0x20;
let first_addr =
(object as *mut _ as *const _ as usize) & !(cache_line - 1);
let beyond_addr = (
(object as *mut _ as *const _ as usize)
+ core::mem::size_of_val(object)
+ (cache_line - 1)
) & !(cache_line - 1);
for addr in (first_addr..beyond_addr).step_by(cache_line) {
dccimva(addr);
} }
dsb();
for addr in object_cache_line_addrs(object) {
l2_cache_clean(addr);
}
l2_cache_sync();
} }
/// Data cache clean for an object. Panics if not properly pub fn dcci_slice_content<T>(slice: &mut [T]) {
/// aligned and properly sized to be contained in an exact number of
/// cache lines.
pub fn dcc_slice<T>(slice: &[T]) {
if slice.len() == 0 { if slice.len() == 0 {
return; return;
} }
dmb(); let cache_line = 0x20;
for addr in slice_cache_line_addrs(slice) { let first_addr =
dccmvac(addr); (&slice[0] as *const _ as usize) & !(cache_line - 1);
let beyond_addr = (
(&slice[slice.len() - 1] as *const _ as usize)
+ (cache_line - 1)
) & !(cache_line - 1);
for addr in (first_addr..beyond_addr).step_by(cache_line) {
dccimva(addr);
} }
dsb(); }
for addr in slice_cache_line_addrs(slice) {
l2_cache_clean(addr); pub fn dcci_slice_content_unmut<T>(slice: &[T]) {
if slice.len() == 0 {
return;
}
let cache_line = 0x20;
let first_addr =
(&slice[0] as *const _ as usize) & !(cache_line - 1);
let beyond_addr = (
(&slice[slice.len() - 1] as *const _ as usize)
+ (cache_line - 1)
) & !(cache_line - 1);
for addr in (first_addr..beyond_addr).step_by(cache_line) {
dccimva(addr);
} }
l2_cache_sync();
} }
/// Data cache invalidate by memory virtual address. This and /// Data cache invalidate by memory virtual address. This and
@ -238,42 +136,79 @@ pub fn dcc_slice<T>(slice: &[T]) {
/// unsafe, as this discards a write-back cache line, potentially /// unsafe, as this discards a write-back cache line, potentially
/// affecting more data than intended. /// affecting more data than intended.
#[inline(always)] #[inline(always)]
pub unsafe fn dcimvac(addr: usize) { pub unsafe fn dcimva(addr: usize) {
llvm_asm!("mcr p15, 0, $0, c7, c6, 1" :: "r" (addr) :: "volatile"); asm!("mcr p15, 0, $0, c7, c6, 1" :: "r" (addr) :: "volatile");
} }
/// Data cache clean and invalidate for an object. /// Data cache invalidate for an object. Panics if not properly
pub unsafe fn dci<T>(object: &mut T) { /// aligned and properly sized to be contained in an exact number of
let first_addr = object as *const _ as usize; /// cache lines.
let beyond_addr = (object as *const _ as usize) + core::mem::size_of_val(object); pub fn dci<T>(object: &mut T) {
assert_eq!(first_addr & CACHE_LINE_MASK, 0, "dci object first_addr must be aligned"); let cache_line = 0x20;
assert_eq!(beyond_addr & CACHE_LINE_MASK, 0, "dci object beyond_addr must be aligned"); let first_addr = object as *mut _ as *const _ as usize;
let beyond_addr = (object as *mut _ as *const _ as usize) +
dmb(); core::mem::size_of_val(object);
for addr in (first_addr..beyond_addr).step_by(CACHE_LINE) { assert_eq!((first_addr & (cache_line - 1)), 0x00);
l2_cache_invalidate(addr); assert_eq!((beyond_addr & (cache_line - 1)), 0x00);
for addr in (first_addr..beyond_addr).step_by(cache_line) {
unsafe {
dcimva(addr);
}
} }
l2_cache_sync();
for addr in (first_addr..beyond_addr).step_by(CACHE_LINE) {
dcimvac(addr);
}
dsb();
} }
pub unsafe fn dci_slice<T>(slice: &mut [T]) { /// Data cache invalidate for the contents of a slice. Panics if not
/// properly aligned and properly sized to be contained in an exact
/// number of cache lines.
pub fn dci_slice_content<T>(slice: &mut [T]) {
if slice.len() == 0 {
return;
}
let cache_line = 0x20;
let first_addr = &slice[0] as *const _ as usize; let first_addr = &slice[0] as *const _ as usize;
let beyond_addr = (&slice[slice.len() - 1] as *const _ as usize) + let beyond_addr = (&slice[slice.len() - 1] as *const _ as usize)
core::mem::size_of_val(&slice[slice.len() - 1]); + core::mem::size_of::<T>();
assert_eq!(first_addr & CACHE_LINE_MASK, 0, "dci slice first_addr must be aligned"); assert_eq!((first_addr & (cache_line - 1)), 0x00);
assert_eq!(beyond_addr & CACHE_LINE_MASK, 0, "dci slice beyond_addr must be aligned"); assert_eq!((beyond_addr & (cache_line - 1)), 0x00);
for addr in (first_addr..beyond_addr).step_by(cache_line) {
dmb(); unsafe {
for addr in (first_addr..beyond_addr).step_by(CACHE_LINE) { dcimva(addr);
l2_cache_invalidate(addr); }
}
}
pub unsafe fn dci_more_than_slice_content<T>(slice: &mut [T]) {
if slice.len() == 0 {
return;
}
let cache_line = 0x20;
let first_addr =
(&slice[0] as *const _ as usize) & !(cache_line - 1);
let beyond_addr = (
(&slice[slice.len() - 1] as *const _ as usize)
+ (cache_line - 1)
) & !(cache_line - 1);
assert_eq!((first_addr & (cache_line - 1)), 0x00);
assert_eq!((beyond_addr & (cache_line - 1)), 0x00);
for addr in (first_addr..beyond_addr).step_by(cache_line) {
dcimva(addr);
}
}
pub unsafe fn dci_more_than_slice_content_nonmut<T>(slice: &[T]) {
if slice.len() == 0 {
return;
}
let cache_line = 0x20;
let first_addr =
(&slice[0] as *const _ as usize) & !(cache_line - 1);
let beyond_addr = (
(&slice[slice.len() - 1] as *const _ as usize)
+ (cache_line - 1)
) & !(cache_line - 1);
assert_eq!((first_addr & (cache_line - 1)), 0x00);
assert_eq!((beyond_addr & (cache_line - 1)), 0x00);
for addr in (first_addr..beyond_addr).step_by(cache_line) {
dcimva(addr);
} }
l2_cache_sync();
for addr in (first_addr..beyond_addr).step_by(CACHE_LINE) {
dcimvac(addr);
}
dsb();
} }

View File

@ -1,14 +0,0 @@
/// Enable FPU in the current core.
pub fn enable_fpu() {
unsafe {
llvm_asm!("
mrc p15, 0, r1, c1, c0, 2
orr r1, r1, (0b1111<<20)
mcr p15, 0, r1, c1, c0, 2
vmrs r1, fpexc
orr r1, r1, (1<<30)
vmsr fpexc, r1
":::"r1");
}
}

View File

@ -1,328 +0,0 @@
use libregister::{register, register_at, register_bit, register_bits, RegisterRW, RegisterR, RegisterW};
use super::asm::dmb;
use volatile_register::RW;
pub fn enable_l2_cache() {
dmb();
let regs = RegisterBlock::new();
// disable L2 cache
regs.reg1_control.modify(|_, w| w.l2_enable(false));
regs.reg15_prefetch_ctrl.modify(|_, w|
w.instr_prefetch_en(true)
.data_prefetch_en(true)
.double_linefill_en(true)
.incr_double_linefill_en(true)
.pref_drop_en(true)
);
regs.reg1_aux_control.modify(|_, w| {
w.early_bresp_en(true)
.instr_prefetch_en(true)
.data_prefetch_en(true)
.cache_replace_policy(true)
.way_size(3)
});
regs.reg1_tag_ram_control.modify(|_, w| w.ram_wr_access_lat(1).ram_rd_access_lat(1).ram_setup_lat(1));
regs.reg1_data_ram_control.modify(|_, w| w.ram_wr_access_lat(1).ram_rd_access_lat(2).ram_setup_lat(1));
// invalidate L2 ways
unsafe {
regs.reg7_inv_way.write(0xFFFF);
}
// poll for completion
while regs.reg7_cache_sync.read().c() {}
// write to a magic memory location with a magic sequence
// required in UG585 Section 3.4.10 Initialization Sequence
unsafe {
core::ptr::write_volatile(0xF8000008usize as *mut u32, 0xDF0D);
core::ptr::write_volatile(0xF8000A1Cusize as *mut u32, 0x020202);
core::ptr::write_volatile(0xF8000004usize as *mut u32, 0x767B);
}
regs.reg1_control.modify(|_, w| w.l2_enable(true));
dmb();
}
#[inline(always)]
pub fn l2_cache_invalidate_all() {
let regs = RegisterBlock::new();
unsafe {
regs.reg7_inv_way.write(0xFFFF);
}
// poll for completion
while regs.reg7_cache_sync.read().c() {}
}
#[inline(always)]
pub fn l2_cache_clean_all() {
let regs = RegisterBlock::new();
unsafe {
regs.reg7_clean_way.write(0xFFFF);
}
// poll for completion
while regs.reg7_cache_sync.read().c() {}
}
#[inline(always)]
pub fn l2_cache_clean_invalidate_all() {
let regs = RegisterBlock::new();
unsafe {
regs.reg7_clean_inv_way.write(0xFFFF);
}
// poll for completion
while regs.reg7_cache_sync.read().c() {}
}
/// L2 cache sync, similar to dsb for L1 cache
#[inline(always)]
pub fn l2_cache_sync() {
let regs = RegisterBlock::new();
regs.reg7_cache_sync.write(Reg7CacheSync::zeroed().c(false));
}
#[inline(always)]
pub fn l2_cache_clean(addr: usize) {
let regs = RegisterBlock::new();
unsafe {
regs.reg7_clean_pa.write(addr as u32);
}
}
#[inline(always)]
pub fn l2_cache_invalidate(addr: usize) {
let regs = RegisterBlock::new();
unsafe {
regs.reg7_inv_pa.write(addr as u32);
}
}
#[inline(always)]
pub fn l2_cache_clean_invalidate(addr: usize) {
let regs = RegisterBlock::new();
unsafe {
regs.reg7_clean_inv_pa.write(addr as u32);
}
}
#[repr(C)]
struct RegisterBlock {
/// cache ID register, Returns the 32-bit device ID code it reads off the CACHEID input bus.
/// The value is specified by the system integrator. Reset value: 0x410000c8
pub reg0_cache_id: Reg0CacheId,
/// cache type register, Returns the 32-bit cache type. Reset value: 0x1c100100
pub reg0_cache_type: Reg0CacheType,
unused0: [u32; 62],
/// control register, reset value: 0x0
pub reg1_control: Reg1Control,
/// auxilary control register, reset value: 0x02020000
pub reg1_aux_control: Reg1AuxControl,
/// Configures Tag RAM latencies
pub reg1_tag_ram_control: Reg1TagRamControl,
/// configures data RAM latencies
pub reg1_data_ram_control: Reg1DataRamControl,
unused1: [u32; 60],
/// Permits the event counters to be enabled and reset.
pub reg2_ev_counter_ctrl: Reg2EvCounterCtrl,
/// Enables event counter 1 to be driven by a specific event. Counter 1 increments when the
/// event occurs.
pub reg2_ev_counter1_cfg: Reg2EvCounter1Cfg,
/// Enables event counter 0 to be driven by a specific event. Counter 0 increments when the
/// event occurs.
pub reg2_ev_counter0_cfg: Reg2EvCounter0Cfg,
/// Enable the programmer to read off the counter value. The counter counts an event as
/// specified by the Counter Configuration Registers. The counter can be preloaded if counting
/// is disabled and reset by the Event Counter Control Register.
pub reg2_ev_counter1: RW<u32>,
/// Enable the programmer to read off the counter value. The counter counts an event as
/// specified by the Counter Configuration Registers. The counter can be preloaded if counting
/// is disabled and reset by the Event Counter Control Register.
pub reg2_ev_counter0: RW<u32>,
/// This register enables or masks interrupts from being triggered on the external pins of the
/// cache controller. Figure 3-8 on page 3-17 shows the register bit assignments. The bit
/// assignments enables the masking of the interrupts on both their individual outputs and the
/// combined L2CCINTR line. Clearing a bit by writing a 0, disables the interrupt triggering on
/// that pin. All bits are cleared by a reset. You must write to the register bits with a 1 to
/// enable the generation of interrupts. 1 = Enabled. 0 = Masked. This is the default.
pub reg2_int_mask: Reg2IntMask,
/// This register is a read-only.It returns the masked interrupt status. This register can be
/// accessed by secure and non-secure operations. The register gives an AND function of the raw
/// interrupt status with the values of the interrupt mask register. All the bits are cleared
/// by a reset. A write to this register is ignored. Bits read can be HIGH or LOW: HIGH If the
/// bits read HIGH, they reflect the status of the input lines triggering an interrupt. LOW If
/// the bits read LOW, either no interrupt has been generated, or the interrupt is masked.
pub reg2_int_mask_status: Reg2IntMaskStatus,
/// The Raw Interrupt Status Register enables the interrupt status that excludes the masking
/// logic. Bits read can be HIGH or LOW: HIGH If the bits read HIGH, they reflect the status of
/// the input lines triggering an interrupt. LOW If the bits read LOW, no interrupt has been
/// generated.
pub reg2_int_raw_status: Reg2IntRawStatus,
/// Clears the Raw Interrupt Status Register bits. When a bit is written as 1, it clears the
/// corresponding bit in the Raw Interrupt Status Register. When a bit is written as 0, it has
/// no effect
pub reg2_int_clear: Reg2IntClear,
unused2: [u32; 323],
/// Drain the STB. Operation complete when all buffers, LRB, LFB, STB, and EB, are empty
pub reg7_cache_sync: Reg7CacheSync,
unused3: [u32; 15],
/// Invalidate Line by PA: Specific L2 cache line is marked as not valid
pub reg7_inv_pa: RW<u32>,
unused4: [u32; 2],
/// Invalidate by Way Invalidate all data in specified ways, including dirty data. An
/// Invalidate by way while selecting all cache ways is equivalent to invalidating all cache
/// entries. Completes as a background task with the way, or ways, locked, preventing
/// allocation.
pub reg7_inv_way: RW<u32>,
unused5: [u32; 12],
/// Clean Line by PA Write the specific L2 cache line to L3 main memory if the line is marked
/// as valid and dirty. The line is marked as not dirty. The valid bit is unchanged
pub reg7_clean_pa: RW<u32>,
unused6: [u32; 1],
/// Clean Line by Set/Way Write the specific L2 cache line within the specified way to L3 main
/// memory if the line is marked as valid and dirty. The line is marked as not dirty. The valid
/// bit is unchanged
pub reg7_clean_index: Reg7CleanIndex,
/// Clean by Way Writes each line of the specified L2 cache ways to L3 main memory if the line
/// is marked as valid and dirty. The lines are marked as not dirty. The valid bits are
/// unchanged. Completes as a background task with the way, or ways, locked, preventing
/// allocation.
pub reg7_clean_way: RW<u32>,
unused7: [u32; 12],
/// Clean and Invalidate Line by PA Write the specific L2 cache line to L3 main memory if the
/// line is marked as valid and dirty. The line is marked as not valid
pub reg7_clean_inv_pa: RW<u32>,
unused8: [u32; 1],
/// Clean and Invalidate Line by Set/Way Write the specific L2 cache line within the specified
/// way to L3 main memory if the line is marked as valid and dirty. The line is marked as not
/// valid
pub reg7_clean_inv_index: Reg7CleanInvIndex,
/// Clean and Invalidate by Way Writes each line of the specified L2 cache ways to L3 main
/// memory if the line is marked as valid and dirty. The lines are marked as not valid.
/// Completes as a background task with the way, or ways, locked, preventing allocation.
pub reg7_clean_inv_way: RW<u32>,
unused9: [u32; 0x1D8],
pub reg15_prefetch_ctrl: Reg15PrefetechCtrl,
}
register_at!(RegisterBlock, 0xF8F02000, new);
register!(reg0_cache_id, Reg0CacheId, RW, u32);
register_bits!(reg0_cache_id, implementer, u8, 24, 31);
register_bits!(reg0_cache_id, cache_id, u8, 10, 15);
register_bits!(reg0_cache_id, part_num, u8, 6, 9);
register_bits!(reg0_cache_id, rtl_release, u8, 0, 5);
register!(reg0_cache_type, Reg0CacheType, RW, u32);
register_bit!(reg0_cache_type, data_banking, 31);
register_bits!(reg0_cache_type, ctype, u8, 25, 28);
register_bit!(reg0_cache_type, h, 24);
register_bits!(reg0_cache_type, dsize_middsize_19, u8, 20, 22);
register_bit!(reg0_cache_type, l2_assoc_d, 18);
register_bits!(reg0_cache_type, l2cache_line_len_disize_11, u8, 12, 13);
register_bits!(reg0_cache_type, isize_midisize_7, u8, 8, 10);
register_bit!(reg0_cache_type, l2_assoc_i, 6);
register_bits!(reg0_cache_type, l2cache_line_len_i, u8, 0, 1);
register!(reg1_control, Reg1Control, RW, u32);
register_bit!(reg1_control, l2_enable, 0);
register!(reg1_aux_control, Reg1AuxControl, RW, u32);
register_bit!(reg1_aux_control, early_bresp_en, 30);
register_bit!(reg1_aux_control, instr_prefetch_en, 29);
register_bit!(reg1_aux_control, data_prefetch_en, 28);
register_bit!(reg1_aux_control, nonsec_inte_access_ctrl, 27);
register_bit!(reg1_aux_control, nonsec_lockdown_en, 26);
register_bit!(reg1_aux_control, cache_replace_policy, 25);
register_bits!(reg1_aux_control, force_write_alloc, u8, 23, 24);
register_bit!(reg1_aux_control, shared_attr_override_en, 22);
register_bit!(reg1_aux_control, parity_en, 21);
register_bit!(reg1_aux_control, event_mon_bus_en, 20);
register_bits!(reg1_aux_control, way_size, u8, 17, 19);
register_bit!(reg1_aux_control, associativity, 16);
register_bit!(reg1_aux_control, shared_attr_inva_en, 13);
register_bit!(reg1_aux_control, ex_cache_config, 12);
register_bit!(reg1_aux_control, store_buff_dev_lim_en, 11);
register_bit!(reg1_aux_control, high_pr_so_dev_rd_en, 10);
register_bit!(reg1_aux_control, full_line_zero_enable, 0);
register!(reg1_tag_ram_control, Reg1TagRamControl, RW, u32);
register_bits!(reg1_tag_ram_control, ram_wr_access_lat, u8, 8, 10);
register_bits!(reg1_tag_ram_control, ram_rd_access_lat, u8, 4, 6);
register_bits!(reg1_tag_ram_control, ram_setup_lat, u8, 0, 2);
register!(reg1_data_ram_control, Reg1DataRamControl, RW, u32);
register_bits!(reg1_data_ram_control, ram_wr_access_lat, u8, 8, 10);
register_bits!(reg1_data_ram_control, ram_rd_access_lat, u8, 4, 6);
register_bits!(reg1_data_ram_control, ram_setup_lat, u8, 0, 2);
register!(reg2_ev_counter_ctrl, Reg2EvCounterCtrl, RW, u32);
register_bit!(reg2_ev_counter_ctrl, ev_ctr_en, 0);
register!(reg2_ev_counter1_cfg, Reg2EvCounter1Cfg, RW, u32);
register_bits!(reg2_ev_counter1_cfg, ctr_ev_src, u8, 2, 5);
register_bits!(reg2_ev_counter1_cfg, ev_ctr_intr_gen, u8, 0, 1);
register!(reg2_ev_counter0_cfg, Reg2EvCounter0Cfg, RW, u32);
register_bits!(reg2_ev_counter0_cfg, ctr_ev_src, u8, 2, 5);
register_bits!(reg2_ev_counter0_cfg, ev_ctr_intr_gen, u8, 0, 1);
register!(reg2_int_mask, Reg2IntMask, RW, u32);
register_bit!(reg2_int_mask, decerr, 8);
register_bit!(reg2_int_mask, slverr, 7);
register_bit!(reg2_int_mask, errrd, 6);
register_bit!(reg2_int_mask, errrt, 5);
register_bit!(reg2_int_mask, errwd, 4);
register_bit!(reg2_int_mask, errwt, 3);
register_bit!(reg2_int_mask, parrd, 2);
register_bit!(reg2_int_mask, parrt, 1);
register_bit!(reg2_int_mask, ecntr, 0);
register!(reg2_int_mask_status, Reg2IntMaskStatus, RW, u32);
register_bit!(reg2_int_mask_status, decerr, 8);
register_bit!(reg2_int_mask_status, slverr, 7);
register_bit!(reg2_int_mask_status, errrd, 6);
register_bit!(reg2_int_mask_status, errrt, 5);
register_bit!(reg2_int_mask_status, errwd, 4);
register_bit!(reg2_int_mask_status, errwt, 3);
register_bit!(reg2_int_mask_status, parrd, 2);
register_bit!(reg2_int_mask_status, parrt, 1);
register_bit!(reg2_int_mask_status, ecntr, 0);
register!(reg2_int_raw_status, Reg2IntRawStatus, RW, u32);
register_bit!(reg2_int_raw_status, decerr, 8);
register_bit!(reg2_int_raw_status, slverr, 7);
register_bit!(reg2_int_raw_status, errrd, 6);
register_bit!(reg2_int_raw_status, errrt, 5);
register_bit!(reg2_int_raw_status, errwd, 4);
register_bit!(reg2_int_raw_status, errwt, 3);
register_bit!(reg2_int_raw_status, parrd, 2);
register_bit!(reg2_int_raw_status, parrt, 1);
register_bit!(reg2_int_raw_status, ecntr, 0);
register!(reg2_int_clear, Reg2IntClear, RW, u32, 0);
register_bit!(reg2_int_clear, decerr, 8, WTC);
register_bit!(reg2_int_clear, slverr, 7, WTC);
register_bit!(reg2_int_clear, errrd, 6, WTC);
register_bit!(reg2_int_clear, errrt, 5, WTC);
register_bit!(reg2_int_clear, errwd, 4, WTC);
register_bit!(reg2_int_clear, errwt, 3, WTC);
register_bit!(reg2_int_clear, parrd, 2, WTC);
register_bit!(reg2_int_clear, parrt, 1, WTC);
register_bit!(reg2_int_clear, ecntr, 0, WTC);
register!(reg7_cache_sync, Reg7CacheSync, RW, u32);
register_bit!(reg7_cache_sync, c, 0);
register!(reg7_clean_index, Reg7CleanIndex, RW, u32);
register_bits!(reg7_clean_index, way, u8, 28, 30);
register_bits!(reg7_clean_index, index, u8, 5, 11);
register_bit!(reg7_clean_index, c, 0);
register!(reg7_clean_inv_index, Reg7CleanInvIndex, RW, u32);
register_bits!(reg7_clean_inv_index, way, u8, 28, 30);
register_bits!(reg7_clean_inv_index, index, u8, 5, 11);
register_bit!(reg7_clean_inv_index, c, 0);
register!(reg15_prefetch_ctrl, Reg15PrefetechCtrl, RW, u32);
register_bit!(reg15_prefetch_ctrl, double_linefill_en, 30);
register_bit!(reg15_prefetch_ctrl, instr_prefetch_en, 29);
register_bit!(reg15_prefetch_ctrl, data_prefetch_en, 28);
register_bit!(reg15_prefetch_ctrl, pref_drop_en, 24);
register_bit!(reg15_prefetch_ctrl, incr_double_linefill_en, 23);

View File

@ -1,37 +1,11 @@
#![no_std] #![no_std]
#![feature(llvm_asm, global_asm)] #![feature(asm, global_asm)]
#![feature(never_type)] #![feature(never_type)]
#![feature(const_fn)]
extern crate alloc;
pub mod asm; pub mod asm;
pub mod regs; pub mod regs;
pub mod cache; pub mod cache;
pub mod mmu; pub mod mmu;
pub mod mutex; pub mod mutex;
pub mod sync_channel;
pub mod semaphore;
pub mod l2c;
mod uncached;
mod fpu;
pub use uncached::UncachedSlice;
pub use fpu::enable_fpu;
global_asm!(include_str!("exceptions.s")); global_asm!(include_str!("exceptions.s"));
#[inline]
pub fn spin_lock_yield() {
#[cfg(feature = "power_saving")]
asm::wfe();
}
#[inline]
pub fn notify_spin_lock() {
#[cfg(feature = "power_saving")]
{
asm::dsb();
asm::sev();
}
}

View File

@ -1,5 +1,5 @@
use bit_field::BitField; use bit_field::BitField;
use super::{regs::*, asm::*, cache::*}; use super::{regs::*, asm};
use libregister::RegisterW; use libregister::RegisterW;
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
@ -44,12 +44,6 @@ pub enum AccessPermissions {
} }
impl AccessPermissions { impl AccessPermissions {
fn new(ap: u8, apx: bool) -> Self {
unsafe {
core::mem::transmute(if apx { 0b100 } else { 0 } | ap)
}
}
fn ap(&self) -> u8 { fn ap(&self) -> u8 {
(*self as u8) & 0b11 (*self as u8) & 0b11
} }
@ -71,64 +65,45 @@ pub struct L1Section {
pub bufferable: bool, pub bufferable: bool,
} }
const ENTRY_TYPE_SECTION: u32 = 0b10;
pub const L1_PAGE_SIZE: usize = 0x100000;
#[repr(C)] #[repr(C)]
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
pub struct L1Entry(u32); pub struct L1Entry(u32);
impl L1Entry { impl L1Entry {
#[inline(always)] #[inline(always)]
pub fn from_section(phys_base: u32, section: L1Section) -> Self { pub fn section(phys_base: u32, section: L1Section) -> Self {
// Must be aligned to 1 MB // Must be aligned to 1 MB
assert!(phys_base & 0x000f_ffff == 0); assert!(phys_base & 0x000f_ffff == 0);
let mut entry = L1Entry(phys_base); let mut entry = L1Entry(phys_base);
entry.set_section(section); entry.0.set_bits(0..=1, 0b10);
entry entry.0.set_bit(2, section.bufferable);
} entry.0.set_bit(3, section.cacheable);
entry.0.set_bit(4, !section.exec);
pub fn get_section(&mut self) -> L1Section {
assert_eq!(self.0.get_bits(0..=1), ENTRY_TYPE_SECTION);
let access = AccessPermissions::new(
self.0.get_bits(10..=11) as u8,
self.0.get_bit(15)
);
L1Section {
global: !self.0.get_bit(17),
shareable: self.0.get_bit(16),
access,
tex: self.0.get_bits(12..=14) as u8,
domain: self.0.get_bits(5..=8) as u8,
exec: !self.0.get_bit(4),
cacheable: self.0.get_bit(3),
bufferable: self.0.get_bit(2),
}
}
pub fn set_section(&mut self, section: L1Section) {
self.0.set_bits(0..=1, ENTRY_TYPE_SECTION);
self.0.set_bit(2, section.bufferable);
self.0.set_bit(3, section.cacheable);
self.0.set_bit(4, !section.exec);
assert!(section.domain < 16); assert!(section.domain < 16);
self.0.set_bits(5..=8, section.domain.into()); entry.0.set_bits(5..=8, section.domain.into());
self.0.set_bits(10..=11, section.access.ap().into()); entry.0.set_bits(10..=11, section.access.ap().into());
assert!(section.tex < 8); assert!(section.tex < 8);
self.0.set_bits(12..=14, section.tex.into()); entry.0.set_bits(12..=14, section.tex.into());
self.0.set_bit(15, section.access.apx()); entry.0.set_bit(15, section.access.apx());
self.0.set_bit(16, section.shareable); entry.0.set_bit(16, section.shareable);
self.0.set_bit(17, !section.global); entry.0.set_bit(17, !section.global);
entry
} }
} }
const L1_TABLE_SIZE: usize = 4096; const L1_TABLE_SIZE: usize = 4096;
static mut L1_TABLE: L1Table = L1Table { #[doc(hidden)]
#[link_section = ".bss.l1_table"]
#[no_mangle]
pub static mut l1_table: L1Table = L1Table {
table: [L1Entry(0); L1_TABLE_SIZE] table: [L1Entry(0); L1_TABLE_SIZE]
}; };
#[repr(C, align(16384))] /// The `#[repr(align(16384))]` is unfortunately ineffective. Hence we
/// require explicit linking to a region defined in the linker script.
#[repr(align(16384))]
pub struct L1Table { pub struct L1Table {
table: [L1Entry; L1_TABLE_SIZE] table: [L1Entry; L1_TABLE_SIZE]
} }
@ -136,7 +111,7 @@ pub struct L1Table {
impl L1Table { impl L1Table {
pub fn get() -> &'static mut Self { pub fn get() -> &'static mut Self {
unsafe { unsafe {
&mut L1_TABLE &mut l1_table
} }
} }
@ -153,18 +128,31 @@ impl L1Table {
bufferable: true, bufferable: true,
}); });
/* (DDR cacheable) */ /* (DDR cacheable) */
for ddr in 1..=0x3ff { for ddr in 1..=0x1ff {
self.direct_mapped_section(ddr, L1Section { self.direct_mapped_section(ddr, L1Section {
global: true, global: true,
shareable: true, shareable: true,
access: AccessPermissions::FullAccess, access: AccessPermissions::FullAccess,
tex: 0b0, tex: 0b101,
domain: 0b1111, domain: 0b1111,
exec: true, exec: true,
cacheable: true, cacheable: true,
bufferable: true, bufferable: true,
}); });
} }
/* (unassigned/reserved). */
for undef in 0x1ff..=0x3ff {
self.direct_mapped_section(undef, L1Section {
global: false,
shareable: false,
access: AccessPermissions::PermissionFault,
tex: 0,
domain: 0,
exec: false,
cacheable: false,
bufferable: false,
});
}
/* 0x40000000 - 0x7fffffff (FPGA slave0) */ /* 0x40000000 - 0x7fffffff (FPGA slave0) */
for fpga_slave in 0x400..=0x7ff { for fpga_slave in 0x400..=0x7ff {
self.direct_mapped_section(fpga_slave, L1Section { self.direct_mapped_section(fpga_slave, L1Section {
@ -213,7 +201,7 @@ impl L1Table {
access: AccessPermissions::FullAccess, access: AccessPermissions::FullAccess,
tex: 0, tex: 0,
domain: 0, domain: 0,
exec: false, exec: true,
cacheable: false, cacheable: false,
bufferable: true, bufferable: true,
}); });
@ -338,7 +326,7 @@ impl L1Table {
/* 0xfff00000 - 0xffffffff (256K OCM when mapped to high address space) */ /* 0xfff00000 - 0xffffffff (256K OCM when mapped to high address space) */
self.direct_mapped_section(0xfff, L1Section { self.direct_mapped_section(0xfff, L1Section {
global: true, global: true,
shareable: true, shareable: false,
access: AccessPermissions::FullAccess, access: AccessPermissions::FullAccess,
tex: 0b100, tex: 0b100,
domain: 0, domain: 0,
@ -355,34 +343,7 @@ impl L1Table {
assert!(index < L1_TABLE_SIZE); assert!(index < L1_TABLE_SIZE);
let base = (index as u32) << 20; let base = (index as u32) << 20;
self.table[index] = L1Entry::from_section(base, section); self.table[index] = L1Entry::section(base, section);
}
pub fn update<T, F, R>(&mut self, ptr: *const T, f: F) -> R
where
F: FnOnce(&'_ mut L1Section) -> R,
{
let index = (ptr as usize) >> 20;
let entry = &mut self.table[index];
let mut section = entry.get_section();
let result = f(&mut section);
entry.set_section(section);
// Flush L1Dcache
dcciall();
// // TODO: L2?
// Invalidate TLB
tlbiall();
// Invalidate all branch predictors
bpiall();
// ensure completion of the BP and TLB invalidation
dsb();
// synchronize context on this processor
isb();
result
} }
} }
@ -410,15 +371,14 @@ pub fn with_mmu<F: FnMut() -> !>(l1table: &L1Table, mut f: F) -> ! {
.a(false) .a(false)
.c(true) .c(true)
.i(true) .i(true)
.z(true)
.unaligned(true) .unaligned(true)
); );
// Synchronization barriers // Synchronization barriers
// Allows MMU to start // Allows MMU to start
dsb(); asm::dsb();
// Flushes pre-fetch buffer // Flushes pre-fetch buffer
isb(); asm::isb();
f(); f();
} }

View File

@ -1,10 +1,20 @@
use core::ops::{Deref, DerefMut}; use core::ops::{Deref, DerefMut};
use core::sync::atomic::{AtomicU32, Ordering}; use core::sync::atomic::{AtomicU32, Ordering};
use core::cell::UnsafeCell; use core::cell::UnsafeCell;
use super::{ use super::asm::*;
spin_lock_yield, notify_spin_lock,
asm::{enter_critical, exit_critical} /// [Power-saving features](http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/ch01s03s02.html)
}; #[inline]
fn wait_for_update() {
wfe();
}
/// [Power-saving features](http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/ch01s03s02.html)
#[inline]
fn signal_update() {
dsb();
sev();
}
const LOCKED: u32 = 1; const LOCKED: u32 = 1;
const UNLOCKED: u32 = 0; const UNLOCKED: u32 = 0;
@ -31,31 +41,18 @@ impl<T> Mutex<T> {
/// Lock the Mutex, blocks when already locked /// Lock the Mutex, blocks when already locked
pub fn lock(&self) -> MutexGuard<T> { pub fn lock(&self) -> MutexGuard<T> {
let mut irq = unsafe { enter_critical() }; while self.locked.compare_and_swap(UNLOCKED, LOCKED, Ordering::Acquire) != UNLOCKED {
while self.locked.compare_and_swap(UNLOCKED, LOCKED, Ordering::AcqRel) != UNLOCKED { wait_for_update();
unsafe {
exit_critical(irq);
spin_lock_yield();
irq = enter_critical();
}
}
MutexGuard { mutex: self, irq }
}
pub fn try_lock(&self) -> Option<MutexGuard<T>> {
let irq = unsafe { enter_critical() };
if self.locked.compare_and_swap(UNLOCKED, LOCKED, Ordering::AcqRel) != UNLOCKED {
unsafe { exit_critical(irq) };
None
} else {
Some(MutexGuard { mutex: self, irq })
} }
dmb();
MutexGuard { mutex: self }
} }
fn unlock(&self) { fn unlock(&self) {
dmb();
self.locked.store(UNLOCKED, Ordering::Release); self.locked.store(UNLOCKED, Ordering::Release);
notify_spin_lock(); signal_update();
} }
} }
@ -63,7 +60,6 @@ impl<T> Mutex<T> {
/// `Deref`/`DerefMutx` /// `Deref`/`DerefMutx`
pub struct MutexGuard<'a, T> { pub struct MutexGuard<'a, T> {
mutex: &'a Mutex<T>, mutex: &'a Mutex<T>,
irq: bool,
} }
impl<'a, T> Deref for MutexGuard<'a, T> { impl<'a, T> Deref for MutexGuard<'a, T> {
@ -83,6 +79,5 @@ impl<'a, T> DerefMut for MutexGuard<'a, T> {
impl<'a, T> Drop for MutexGuard<'a, T> { impl<'a, T> Drop for MutexGuard<'a, T> {
fn drop(&mut self) { fn drop(&mut self) {
self.mutex.unlock(); self.mutex.unlock();
unsafe { exit_critical(self.irq) };
} }
} }

View File

@ -8,10 +8,10 @@ macro_rules! def_reg_r {
impl RegisterR for $name { impl RegisterR for $name {
type R = $type; type R = $type;
#[inline] #[inline(always)]
fn read(&self) -> Self::R { fn read(&self) -> Self::R {
let mut value: u32; let mut value: u32;
unsafe { llvm_asm!($asm_instr : "=r" (value) ::: "volatile") } unsafe { asm!($asm_instr : "=r" (value) ::: "volatile") }
value.into() value.into()
} }
} }
@ -23,13 +23,12 @@ macro_rules! def_reg_w {
impl RegisterW for $name { impl RegisterW for $name {
type W = $type; type W = $type;
#[inline] #[inline(always)]
fn write(&mut self, value: Self::W) { fn write(&mut self, value: Self::W) {
let value: u32 = value.into(); let value: u32 = value.into();
unsafe { llvm_asm!($asm_instr :: "r" (value) :: "volatile") } unsafe { asm!($asm_instr :: "r" (value) :: "volatile") }
} }
#[inline]
fn zeroed() -> Self::W { fn zeroed() -> Self::W {
0u32.into() 0u32.into()
} }
@ -44,7 +43,6 @@ macro_rules! wrap_reg {
pub inner: u32, pub inner: u32,
} }
impl From<u32> for Read { impl From<u32> for Read {
#[inline]
fn from(value: u32) -> Self { fn from(value: u32) -> Self {
Read { inner: value } Read { inner: value }
} }
@ -54,13 +52,11 @@ macro_rules! wrap_reg {
pub inner: u32, pub inner: u32,
} }
impl From<u32> for Write { impl From<u32> for Write {
#[inline]
fn from(value: u32) -> Self { fn from(value: u32) -> Self {
Write { inner: value } Write { inner: value }
} }
} }
impl Into<u32> for Write { impl Into<u32> for Write {
#[inline]
fn into(self) -> u32 { fn into(self) -> u32 {
self.inner self.inner
} }
@ -79,31 +75,8 @@ pub struct LR;
def_reg_r!(LR, u32, "mov $0, lr"); def_reg_r!(LR, u32, "mov $0, lr");
def_reg_w!(LR, u32, "mov lr, $0"); def_reg_w!(LR, u32, "mov lr, $0");
pub struct VBAR;
def_reg_r!(VBAR, u32, "mrc p15, 0, $0, c12, c0, 0");
def_reg_w!(VBAR, u32, "mcr p15, 0, $0, c12, c0, 0");
pub struct MVBAR;
def_reg_r!(MVBAR, u32, "mrc p15, 0, $0, c12, c0, 1");
def_reg_w!(MVBAR, u32, "mcr p15, 0, $0, c12, c0, 1");
pub struct HVBAR;
def_reg_r!(HVBAR, u32, "mrc p15, 4, $0, c12, c0, 0");
def_reg_w!(HVBAR, u32, "mcr p15, 4, $0, c12, c0, 0");
/// Multiprocess Affinity Register
pub struct MPIDR; pub struct MPIDR;
def_reg_r!(MPIDR, mpidr::Read, "mrc p15, 0, $0, c0, c0, 5"); def_reg_r!(MPIDR, u32, "mrc p15, 0, $0, c0, c0, 5");
wrap_reg!(mpidr);
register_bits!(mpidr,
/// CPU core index
cpu_id, u8, 0, 1);
register_bits!(mpidr,
/// Processor index in "multi-socket" systems
cluster_id, u8, 8, 11);
register_bit!(mpidr,
/// true if part of uniprocessor system
u, 30);
pub struct DFAR; pub struct DFAR;
def_reg_r!(DFAR, u32, "mrc p15, 0, $0, c6, c0, 0"); def_reg_r!(DFAR, u32, "mrc p15, 0, $0, c6, c0, 0");
@ -156,13 +129,10 @@ register_bit!(actlr, excl, 7);
register_bit!(actlr, smp, 6); register_bit!(actlr, smp, 6);
register_bit!(actlr, write_full_line_of_zeros, 3); register_bit!(actlr, write_full_line_of_zeros, 3);
register_bit!(actlr, l1_prefetch_enable, 2); register_bit!(actlr, l1_prefetch_enable, 2);
// L2 cache prefetch hint, in UG585 section 3.4.8
register_bit!(actlr, l2_prefetch_enable, 1);
// Cache/TLB maintenance broadcast // Cache/TLB maintenance broadcast
register_bit!(actlr, fw, 0); register_bit!(actlr, fw, 0);
impl RegisterRW for ACTLR { impl RegisterRW for ACTLR {
#[inline]
fn modify<F: FnOnce(Self::R, Self::W) -> Self::W>(&mut self, f: F) { fn modify<F: FnOnce(Self::R, Self::W) -> Self::W>(&mut self, f: F) {
let r = self.read(); let r = self.read();
let w = actlr::Write { inner: r.inner }; let w = actlr::Write { inner: r.inner };
@ -175,10 +145,6 @@ impl ACTLR {
pub fn enable_smp(&mut self) { pub fn enable_smp(&mut self) {
self.modify(|_, w| w.smp(true).fw(true)); self.modify(|_, w| w.smp(true).fw(true));
} }
pub fn enable_prefetch(&mut self) {
self.modify(|_, w| w.l1_prefetch_enable(true).l2_prefetch_enable(true))
}
} }
/// Domain Access Control Register /// Domain Access Control Register

View File

@ -1,71 +0,0 @@
use super::{spin_lock_yield, notify_spin_lock};
use core::{
task::{Context, Poll},
pin::Pin,
future::Future,
sync::atomic::{AtomicI32, Ordering}
};
pub struct Semaphore {
value: AtomicI32,
max: i32
}
impl Semaphore {
pub const fn new(value: i32, max: i32) -> Self {
Semaphore { value: AtomicI32::new(value), max}
}
pub fn try_wait(&self) -> Option<()> {
loop {
let value = self.value.load(Ordering::Relaxed);
if value > 0 {
if self.value.compare_and_swap(value, value - 1, Ordering::SeqCst) == value {
return Some(());
}
} else {
return None;
}
}
}
pub fn wait(&self) {
while self.try_wait().is_none() {
spin_lock_yield();
}
}
pub async fn async_wait(&self) {
struct Fut<'a>(&'a Semaphore);
impl Future for Fut<'_> {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.0.try_wait() {
Some(_) => Poll::Ready(()),
None => {
cx.waker().wake_by_ref();
Poll::Pending
}
}
}
}
Fut(&self).await
}
pub fn signal(&self) {
loop {
let value = self.value.load(Ordering::Relaxed);
if value < self.max {
if self.value.compare_and_swap(value, value + 1, Ordering::SeqCst) == value {
notify_spin_lock();
return;
}
} else {
return;
}
}
}
}

View File

@ -1,187 +0,0 @@
use core::{
pin::Pin,
future::Future,
sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
task::{Context, Poll},
};
use alloc::boxed::Box;
use super::{spin_lock_yield, notify_spin_lock};
pub struct Sender<'a, T> where T: Clone {
list: &'a [AtomicPtr<T>],
write: &'a AtomicUsize,
read: &'a AtomicUsize,
}
pub struct Receiver<'a, T> where T: Clone {
list: &'a [AtomicPtr<T>],
write: &'a AtomicUsize,
read: &'a AtomicUsize,
}
impl<'a, T> Sender<'a, T> where T: Clone {
pub const fn new(list: &'static [AtomicPtr<T>], write: &'static AtomicUsize, read: &'static AtomicUsize) -> Self {
Sender {list, write, read}
}
pub fn try_send<B: Into<Box<T>>>(&mut self, content: B) -> Result<(), B> {
let write = self.write.load(Ordering::Relaxed);
if (write + 1) % self.list.len() == self.read.load(Ordering::Acquire) {
Err(content)
} else {
let ptr = Box::into_raw(content.into());
let entry = &self.list[write];
let prev = entry.swap(ptr, Ordering::Relaxed);
// we allow other end get it first
self.write.store((write + 1) % self.list.len(), Ordering::Release);
notify_spin_lock();
if !prev.is_null() {
unsafe {
Box::from_raw(prev);
}
}
Ok(())
}
}
pub fn send<B: Into<Box<T>>>(&mut self, content: B) {
let mut content = content;
while let Err(back) = self.try_send(content) {
content = back;
spin_lock_yield();
}
}
pub async fn async_send<B: Into<Box<T>>>(&mut self, content: B) {
struct Send<'a, 'b, T> where T: Clone, 'b: 'a {
sender: &'a mut Sender<'b, T>,
content: Result<(), Box<T>>,
}
impl<T> Future for Send<'_, '_, T> where T: Clone {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match core::mem::replace(&mut self.content, Ok(())) {
Err(content) => {
if let Err(content) = self.sender.try_send(content) {
// failure
self.content = Err(content);
cx.waker().wake_by_ref();
Poll::Pending
} else {
// success
Poll::Ready(())
}
}
Ok(_) => panic!("Send future polled after success"),
}
}
}
Send {
sender: self,
content: Err(content.into()),
}.await
}
/// free all items in the queue. It is the user's responsibility to
/// ensure no reader is trying to copy the data.
pub unsafe fn drop_elements(&mut self) {
for v in self.list.iter() {
let original = v.swap(core::ptr::null_mut(), Ordering::Relaxed);
if !original.is_null() {
Box::from_raw(original);
}
}
}
/// Reset the `sync_channel`, *forget* all items in the queue. Affects both the sender and
/// receiver.
pub unsafe fn reset(&mut self) {
self.write.store(0, Ordering::Relaxed);
self.read.store(0, Ordering::Relaxed);
for v in self.list.iter() {
v.store(core::ptr::null_mut(), Ordering::Relaxed);
}
}
}
impl<'a, T> Receiver<'a, T> where T: Clone {
pub const fn new(list: &'static [AtomicPtr<T>], write: &'static AtomicUsize, read: &'static AtomicUsize) -> Self {
Receiver {list, write, read}
}
pub fn try_recv(&mut self) -> Result<T, ()> {
let read = self.read.load(Ordering::Relaxed);
if read == self.write.load(Ordering::Acquire) {
Err(())
} else {
let entry = &self.list[read];
let data = unsafe {
// we cannot deallocate the box
Box::leak(Box::from_raw(entry.load(Ordering::Relaxed)))
};
let result = data.clone();
self.read.store((read + 1) % self.list.len(), Ordering::Release);
notify_spin_lock();
Ok(result)
}
}
pub fn recv(&mut self) -> T {
loop {
if let Ok(data) = self.try_recv() {
return data;
}
spin_lock_yield();
}
}
pub async fn async_recv(&mut self) -> T {
struct Recv<'a, 'b, T> where T: Clone, 'b: 'a {
receiver: &'a mut Receiver<'b, T>,
}
impl<T> Future for Recv<'_, '_, T> where T: Clone {
type Output = T;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if let Ok(content) = self.receiver.try_recv() {
Poll::Ready(content)
} else {
cx.waker().wake_by_ref();
Poll::Pending
}
}
}
Recv {
receiver: self,
}.await
}
}
impl<'a, T> Iterator for Receiver<'a, T> where T: Clone {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
Some(self.recv())
}
}
#[macro_export]
/// Macro for initializing the sync_channel with static buffer and indexes.
/// Note that this requires `#![feature(const_in_array_repeat_expressions)]`
macro_rules! sync_channel {
($t: ty, $cap: expr) => {
{
use core::sync::atomic::{AtomicUsize, AtomicPtr};
use $crate::sync_channel::{Sender, Receiver};
static LIST: [AtomicPtr<$t>; $cap + 1] = [AtomicPtr::new(core::ptr::null_mut()); $cap + 1];
static WRITE: AtomicUsize = AtomicUsize::new(0);
static READ: AtomicUsize = AtomicUsize::new(0);
(Sender::new(&LIST, &WRITE, &READ), Receiver::new(&LIST, &WRITE, &READ))
}
};
}

View File

@ -1,67 +0,0 @@
use core::{
ops::{Deref, DerefMut},
mem::{align_of, size_of},
};
use alloc::alloc::{dealloc, Layout, LayoutErr};
use crate::mmu::{L1_PAGE_SIZE, L1Table};
pub struct UncachedSlice<T: 'static> {
layout: Layout,
slice: &'static mut [T],
}
impl<T> UncachedSlice<T> {
/// allocates in chunks of 1 MB
pub fn new<F: Fn() -> T>(len: usize, default: F) -> Result<Self, LayoutErr> {
// round to full pages
let size = ((len * size_of::<T>() - 1) | (L1_PAGE_SIZE - 1)) + 1;
let align = align_of::<T>()
.max(L1_PAGE_SIZE);
let layout = Layout::from_size_align(size, align)?;
let ptr = unsafe { alloc::alloc::alloc(layout).cast::<T>() };
let start = ptr as usize;
assert_eq!(start & (L1_PAGE_SIZE - 1), 0);
for page_start in (start..(start + size)).step_by(L1_PAGE_SIZE) {
// non-shareable device
L1Table::get()
.update(page_start as *const (), |l1_section| {
l1_section.tex = 0b10;
l1_section.cacheable = true;
l1_section.bufferable = false;
});
}
let slice = unsafe { core::slice::from_raw_parts_mut(ptr, len) };
// verify size
assert!(unsafe { slice.get_unchecked(len) } as *const _ as usize <= start + size);
// initialize
for e in slice.iter_mut() {
*e = default();
}
Ok(UncachedSlice { layout, slice })
}
}
/// Does not yet mark the pages cachable again
impl<T> Drop for UncachedSlice<T> {
fn drop(&mut self) {
unsafe {
dealloc(self.slice.as_mut_ptr() as *mut _ as *mut u8, self.layout);
}
}
}
impl<T> Deref for UncachedSlice<T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
self.slice
}
}
impl<T> DerefMut for UncachedSlice<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.slice
}
}

View File

@ -1,7 +1,7 @@
[package] [package]
name = "libregister" name = "libregister"
version = "0.0.0" version = "0.0.0"
authors = ["M-Labs"] authors = ["Astro <astro@spaceboyz.net>"]
edition = "2018" edition = "2018"
[dependencies] [dependencies]

View File

@ -55,7 +55,6 @@ macro_rules! register_r {
impl libregister::RegisterR for $struct_name { impl libregister::RegisterR for $struct_name {
type R = $mod_name::Read; type R = $mod_name::Read;
#[inline]
fn read(&self) -> Self::R { fn read(&self) -> Self::R {
let inner = self.inner.read(); let inner = self.inner.read();
$mod_name::Read { inner } $mod_name::Read { inner }
@ -70,12 +69,10 @@ macro_rules! register_w {
impl libregister::RegisterW for $struct_name { impl libregister::RegisterW for $struct_name {
type W = $mod_name::Write; type W = $mod_name::Write;
#[inline]
fn zeroed() -> $mod_name::Write { fn zeroed() -> $mod_name::Write {
$mod_name::Write { inner: 0 } $mod_name::Write { inner: 0 }
} }
#[inline]
fn write(&mut self, w: Self::W) { fn write(&mut self, w: Self::W) {
unsafe { unsafe {
self.inner.write(w.inner); self.inner.write(w.inner);
@ -89,7 +86,6 @@ macro_rules! register_w {
macro_rules! register_rw { macro_rules! register_rw {
($mod_name: ident, $struct_name: ident) => ( ($mod_name: ident, $struct_name: ident) => (
impl libregister::RegisterRW for $struct_name { impl libregister::RegisterRW for $struct_name {
#[inline]
fn modify<F: FnOnce(Self::R, Self::W) -> Self::W>(&mut self, f: F) { fn modify<F: FnOnce(Self::R, Self::W) -> Self::W>(&mut self, f: F) {
unsafe { unsafe {
self.inner.modify(|inner| { self.inner.modify(|inner| {
@ -100,19 +96,6 @@ macro_rules! register_rw {
} }
} }
); );
($mod_name: ident, $struct_name: ident, $mask: expr) => (
impl libregister::RegisterRW for $struct_name {
#[inline]
fn modify<F: FnOnce(Self::R, Self::W) -> Self::W>(&mut self, f: F) {
unsafe {
self.inner.modify(|inner| {
f($mod_name::Read { inner }, $mod_name::Write { inner: inner & ($mask) })
.inner
});
}
}
}
);
} }
#[doc(hidden)] #[doc(hidden)]
@ -122,7 +105,6 @@ macro_rules! register_vcell {
impl libregister::RegisterR for $struct_name { impl libregister::RegisterR for $struct_name {
type R = $mod_name::Read; type R = $mod_name::Read;
#[inline]
fn read(&self) -> Self::R { fn read(&self) -> Self::R {
let inner = self.inner.get(); let inner = self.inner.get();
$mod_name::Read { inner } $mod_name::Read { inner }
@ -131,18 +113,15 @@ macro_rules! register_vcell {
impl libregister::RegisterW for $struct_name { impl libregister::RegisterW for $struct_name {
type W = $mod_name::Write; type W = $mod_name::Write;
#[inline]
fn zeroed() -> $mod_name::Write { fn zeroed() -> $mod_name::Write {
$mod_name::Write { inner: 0 } $mod_name::Write { inner: 0 }
} }
#[inline]
fn write(&mut self, w: Self::W) { fn write(&mut self, w: Self::W) {
self.inner.set(w.inner); self.inner.set(w.inner);
} }
} }
impl libregister::RegisterRW for $struct_name { impl libregister::RegisterRW for $struct_name {
#[inline]
fn modify<F: FnOnce(Self::R, Self::W) -> Self::W>(&mut self, f: F) { fn modify<F: FnOnce(Self::R, Self::W) -> Self::W>(&mut self, f: F) {
let r = self.read(); let r = self.read();
let w = $mod_name::Write { inner: r.inner }; let w = $mod_name::Write { inner: r.inner };
@ -181,14 +160,6 @@ macro_rules! register {
libregister::register_common!($mod_name, $struct_name, VolatileCell<$inner>, $inner); libregister::register_common!($mod_name, $struct_name, VolatileCell<$inner>, $inner);
libregister::register_vcell!($mod_name, $struct_name); libregister::register_vcell!($mod_name, $struct_name);
); );
// Define read-write register with mask on write (for WTC mixed access.)
($mod_name: ident, $struct_name: ident, RW, $inner: ty, $mask: expr) => (
libregister::register_common!($mod_name, $struct_name, volatile_register::RW<$inner>, $inner);
libregister::register_r!($mod_name, $struct_name);
libregister::register_w!($mod_name, $struct_name);
libregister::register_rw!($mod_name, $struct_name, $mask);
);
} }
/// Define a 1-bit field of a register /// Define a 1-bit field of a register
@ -198,7 +169,6 @@ macro_rules! register_bit {
$(#[$outer])* $(#[$outer])*
impl $mod_name::Read { impl $mod_name::Read {
#[allow(unused)] #[allow(unused)]
#[inline]
pub fn $name(&self) -> bool { pub fn $name(&self) -> bool {
use bit_field::BitField; use bit_field::BitField;
@ -209,7 +179,6 @@ macro_rules! register_bit {
$(#[$outer])* $(#[$outer])*
impl $mod_name::Write { impl $mod_name::Write {
#[allow(unused)] #[allow(unused)]
#[inline]
pub fn $name(mut self, value: bool) -> Self { pub fn $name(mut self, value: bool) -> Self {
use bit_field::BitField; use bit_field::BitField;
@ -218,47 +187,6 @@ macro_rules! register_bit {
} }
} }
); );
// Single bit read-only
($mod_name: ident, $(#[$outer:meta])* $name: ident, $bit: expr, RO) => (
$(#[$outer])*
impl $mod_name::Read {
#[allow(unused)]
#[inline]
pub fn $name(&self) -> bool {
use bit_field::BitField;
self.inner.get_bit($bit)
}
}
);
// Single bit write to clear. Note that this must be used with WTC register.
($mod_name: ident, $(#[$outer:meta])* $name: ident, $bit: expr, WTC) => (
$(#[$outer])*
impl $mod_name::Read {
#[allow(unused)]
#[inline]
pub fn $name(&self) -> bool {
use bit_field::BitField;
self.inner.get_bit($bit)
}
}
$(#[$outer])*
impl $mod_name::Write {
/// Clear bit field. (WTC)
#[allow(unused)]
#[inline]
pub fn $name(mut self) -> Self {
use bit_field::BitField;
self.inner.set_bit($bit, true);
self
}
}
);
} }
/// Define a multi-bit field of a register /// Define a multi-bit field of a register
@ -267,7 +195,6 @@ macro_rules! register_bits {
($mod_name: ident, $(#[$outer:meta])* $name: ident, $type: ty, $bit_begin: expr, $bit_end: expr) => ( ($mod_name: ident, $(#[$outer:meta])* $name: ident, $type: ty, $bit_begin: expr, $bit_end: expr) => (
impl $mod_name::Read { impl $mod_name::Read {
#[allow(unused)] #[allow(unused)]
#[inline]
$(#[$outer])* $(#[$outer])*
pub fn $name(&self) -> $type { pub fn $name(&self) -> $type {
use bit_field::BitField; use bit_field::BitField;
@ -280,7 +207,6 @@ macro_rules! register_bits {
$(#[$outer])* $(#[$outer])*
impl $mod_name::Write { impl $mod_name::Write {
#[allow(unused)] #[allow(unused)]
#[inline]
pub fn $name(mut self, value: $type) -> Self { pub fn $name(mut self, value: $type) -> Self {
use bit_field::BitField; use bit_field::BitField;
@ -300,7 +226,6 @@ macro_rules! register_bits_typed {
($mod_name: ident, $(#[$outer:meta])* $name: ident, $bit_type: ty, $type: ty, $bit_begin: expr, $bit_end: expr) => ( ($mod_name: ident, $(#[$outer:meta])* $name: ident, $bit_type: ty, $type: ty, $bit_begin: expr, $bit_end: expr) => (
impl $mod_name::Read { impl $mod_name::Read {
#[allow(unused)] #[allow(unused)]
#[inline]
$(#[$outer])* $(#[$outer])*
pub fn $name(&self) -> $type { pub fn $name(&self) -> $type {
use bit_field::BitField; use bit_field::BitField;
@ -312,7 +237,6 @@ macro_rules! register_bits_typed {
impl $mod_name::Write { impl $mod_name::Write {
#[allow(unused)] #[allow(unused)]
#[inline]
$(#[$outer])* $(#[$outer])*
pub fn $name(mut self, value: $type) -> Self { pub fn $name(mut self, value: $type) -> Self {
use bit_field::BitField; use bit_field::BitField;
@ -330,7 +254,6 @@ macro_rules! register_at {
($name: ident, $addr: expr, $ctor: ident) => ( ($name: ident, $addr: expr, $ctor: ident) => (
impl $name { impl $name {
#[allow(unused)] #[allow(unused)]
#[inline]
pub fn $ctor() -> &'static mut Self { pub fn $ctor() -> &'static mut Self {
let addr = $addr as *mut Self; let addr = $addr as *mut Self;
unsafe { &mut *addr } unsafe { &mut *addr }

View File

@ -1,24 +0,0 @@
[package]
name = "libsupport_zynq"
description = "Software support for running in the Zynq PS"
version = "0.0.0"
authors = ["M-Labs"]
edition = "2018"
[features]
target_zc706 = ["libboard_zynq/target_zc706"]
target_cora_z7_10 = ["libboard_zynq/target_cora_z7_10"]
target_redpitaya = ["libboard_zynq/target_redpitaya"]
panic_handler = []
dummy_irq_handler = []
alloc_core = []
default = ["panic_handler", "dummy_irq_handler"]
[dependencies]
r0 = "1"
compiler_builtins = "0.1"
linked_list_allocator = { version = "0.8", default-features = false }
libregister = { path = "../libregister" }
libcortex_a9 = { path = "../libcortex_a9" }
libboard_zynq = { path = "../libboard_zynq" }

View File

@ -1,70 +0,0 @@
use libregister::RegisterR;
use libcortex_a9::regs::{DFSR, MPIDR};
use libboard_zynq::{println, stdio};
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
pub unsafe extern "C" fn UndefinedInstruction() {
stdio::drop_uart();
println!("UndefinedInstruction");
loop {}
}
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
pub unsafe extern "C" fn SoftwareInterrupt() {
stdio::drop_uart();
println!("SoftwareInterrupt");
loop {}
}
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
pub unsafe extern "C" fn PrefetchAbort() {
stdio::drop_uart();
println!("PrefetchAbort");
loop {}
}
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
pub unsafe extern "C" fn DataAbort() {
stdio::drop_uart();
println!("DataAbort on core {}", MPIDR.read().cpu_id());
println!("DFSR: {:03X}", DFSR.read());
loop {}
}
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
pub unsafe extern "C" fn ReservedException() {
stdio::drop_uart();
println!("ReservedException");
loop {}
}
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
#[cfg(feature = "dummy_irq_handler")]
pub unsafe extern "C" fn IRQ() {
stdio::drop_uart();
println!("IRQ");
loop {}
}
#[link_section = ".text.boot"]
#[no_mangle]
#[naked]
pub unsafe extern "C" fn FIQ() {
stdio::drop_uart();
println!("FIQ");
loop {}
}

View File

@ -1,100 +0,0 @@
use alloc::alloc::Layout;
use core::alloc::GlobalAlloc;
use core::ptr::NonNull;
use libcortex_a9::{
mutex::Mutex,
regs::MPIDR
};
use libregister::RegisterR;
use linked_list_allocator::Heap;
#[cfg(not(feature = "alloc_core"))]
use libboard_zynq::ddr::DdrRam;
#[global_allocator]
static ALLOCATOR: CortexA9Alloc = CortexA9Alloc(
Mutex::new(Heap::empty()),
Mutex::new(Heap::empty()),
);
struct CortexA9Alloc(Mutex<Heap>, Mutex<Heap>);
unsafe impl Sync for CortexA9Alloc {}
unsafe impl GlobalAlloc for CortexA9Alloc {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
if cfg!(not(feature = "alloc_core")) || MPIDR.read().cpu_id() == 0 {
&self.0
} else {
&self.1
}
.lock()
.allocate_first_fit(layout)
.ok()
.map_or(0 as *mut u8, |allocation| allocation.as_ptr())
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
if cfg!(not(feature = "alloc_core"))
|| ((&__heap0_start as *const usize as usize <= ptr as usize)
&& ((ptr as usize) < &__heap0_end as *const usize as usize))
{
&self.0
} else {
&self.1
}
.lock()
.deallocate(NonNull::new_unchecked(ptr), layout)
}
}
#[cfg(not(feature = "alloc_core"))]
pub fn init_alloc_ddr(ddr: &mut DdrRam) {
unsafe {
ALLOCATOR
.0
.lock()
.init(ddr.ptr::<u8>() as usize, ddr.size());
}
}
extern "C" {
static __heap0_start: usize;
static __heap0_end: usize;
#[cfg(feature = "alloc_core")]
static __heap1_start: usize;
#[cfg(feature = "alloc_core")]
static __heap1_end: usize;
}
pub fn init_alloc_core0() {
unsafe {
let start = &__heap0_start as *const usize as usize;
let end = &__heap0_end as *const usize as usize;
ALLOCATOR.0.lock().init(start, end - start);
}
}
#[cfg(feature = "alloc_core")]
pub fn init_alloc_core1() {
unsafe {
let start = &__heap1_start as *const usize as usize;
let end = &__heap1_end as *const usize as usize;
ALLOCATOR.1.lock().init(start, end - start);
}
}
#[alloc_error_handler]
fn alloc_error(layout: core::alloc::Layout) -> ! {
let id = MPIDR.read().cpu_id();
let used = if cfg!(not(feature = "alloc_core")) || id == 0 {
ALLOCATOR.0.lock().used()
} else {
ALLOCATOR.1.lock().used()
};
panic!(
"Core {} alloc_error, layout: {:?}, used memory: {}",
id,
layout,
used
);
}

72
link.x Normal file
View File

@ -0,0 +1,72 @@
ENTRY(_boot_cores);
STACK_SIZE = 0x8000;
/* Provide some defaults */
PROVIDE(Reset = _boot_cores);
PROVIDE(UndefinedInstruction = Reset);
PROVIDE(SoftwareInterrupt = Reset);
PROVIDE(PrefetchAbort = Reset);
PROVIDE(DataAbort = Reset);
PROVIDE(ReservedException = Reset);
PROVIDE(IRQ = Reset);
PROVIDE(FIQ = Reset);
MEMORY
{
/* 256 kB On-Chip Memory */
OCM : ORIGIN = 0, LENGTH = 0x30000
OCM3 : ORIGIN = 0xFFFF0000, LENGTH = 0x10000
}
SECTIONS
{
.exceptions ORIGIN(OCM) :
{
KEEP(*(.text.exceptions));
} > OCM
.__fill (NOLOAD) : {
. = ORIGIN(OCM) + 0x8000;
} > OCM
.text (ORIGIN(OCM) + 0x8000) :
{
*(.text.boot);
*(.text .text.*);
} > OCM
.rodata : ALIGN(4)
{
*(.rodata .rodata.*);
} > OCM
.data : ALIGN(4)
{
*(.data .data.*);
} > OCM
.bss (NOLOAD) : ALIGN(0x4000)
{
/* Aligned to 16 kB */
KEEP(*(.bss.l1_table));
*(.bss .bss.*);
. = ALIGN(4);
} > OCM
__bss_start = ADDR(.bss);
__bss_end = ADDR(.bss) + SIZEOF(.bss);
.stack (NOLOAD) : ALIGN(0x1000) {
. += STACK_SIZE;
} > OCM
__stack_end = ADDR(.stack);
__stack_start = ADDR(.stack) + SIZEOF(.stack);
/DISCARD/ :
{
/* Unused exception related info that only wastes space */
*(.ARM.exidx);
*(.ARM.exidx.*);
*(.ARM.extab.*);
}
}

View File

@ -1,37 +0,0 @@
{ pkgs, board ? "zc706" }:
let
gnutoolchain = import ./gnutoolchain.nix { inherit pkgs; };
in
pkgs.stdenv.mkDerivation {
name = "${board}-fsbl";
src = pkgs.fetchFromGitHub {
owner = "Xilinx";
repo = "embeddedsw";
rev = "65c849ed46c88c67457e1fc742744f96db968ff1";
sha256 = "1rvl06ha40dzd6s9aa4sylmksh4xb9dqaxq462lffv1fdk342pda";
};
patches = [ ./fsbl.patch ];
nativeBuildInputs = [
pkgs.gnumake
gnutoolchain.binutils
gnutoolchain.gcc
];
patchPhase =
''
patch -p1 -i ${./fsbl.patch}
patchShebangs lib/sw_apps/zynq_fsbl/misc/copy_bsp.sh
echo 'SEARCH_DIR("${gnutoolchain.newlib}/arm-none-eabi/lib");' >> lib/sw_apps/zynq_fsbl/src/lscript.ld
'';
buildPhase =
''
cd lib/sw_apps/zynq_fsbl/src
make BOARD=${board} "CFLAGS=-DFSBL_DEBUG_INFO -g"
'';
installPhase =
''
mkdir $out
cp fsbl.elf $out
'';
doCheck = false;
dontFixup = true;
}

View File

@ -1,31 +0,0 @@
diff --git a/lib/sw_apps/zynq_fsbl/src/Makefile b/lib/sw_apps/zynq_fsbl/src/Makefile
index 0e3ccdf1c5..a5b02f386e 100644
--- a/lib/sw_apps/zynq_fsbl/src/Makefile
+++ b/lib/sw_apps/zynq_fsbl/src/Makefile
@@ -71,11 +71,14 @@ endif
all: $(EXEC)
$(EXEC): $(LIBS) $(OBJS) $(INCLUDES)
- cp $(BSP_DIR)/$(BOARD)/ps7_init.* .
$(LINKER) $(LD1FLAGS) -o $@ $(OBJS) $(LDFLAGS)
rm -rf $(OBJS)
-
-
+
+.PHONY: ps7_init
+
+ps7_init:
+ cp $(BSP_DIR)/$(BOARD)/ps7_init.* .
+
$(LIBS):
echo "Copying BSP files"
$(BSP_DIR)/copy_bsp.sh $(BOARD) $(CC)
@@ -86,7 +89,7 @@ $(LIBS):
make -C $(BSP_DIR) -k all "CC=armcc" "AR=armar" "C_FLAGS= -O2 -c" "EC_FLAGS=--debug --wchar32"; \
fi;
-%.o:%.c
+%.o:%.c ps7_init
$(CC) $(CC_FLAGS) $(CFLAGS) $(ECFLAGS) -c $< -o $@ $(INCLUDEPATH)
%.o:%.S

View File

@ -1,134 +0,0 @@
{ pkgs ? import <nixpkgs> }:
let
platform = "arm-none-eabi";
binutils-pkg = { stdenv, buildPackages
, fetchurl, zlib
, extraConfigureFlags ? []
}:
stdenv.mkDerivation rec {
basename = "binutils";
version = "2.30";
name = "${basename}-${platform}-${version}";
src = fetchurl {
url = "https://ftp.gnu.org/gnu/binutils/binutils-${version}.tar.bz2";
sha256 = "028cklfqaab24glva1ks2aqa1zxa6w6xmc8q34zs1sb7h22dxspg";
};
configureFlags = [
"--enable-deterministic-archives"
"--target=${platform}"
"--with-cpu=cortex-a9"
"--with-fpu=vfpv3"
"--with-float=hard"
"--with-mode=thumb"
] ++ extraConfigureFlags;
outputs = [ "out" "info" "man" ];
depsBuildBuild = [ buildPackages.stdenv.cc ];
buildInputs = [ zlib ];
enableParallelBuilding = true;
meta = {
description = "Tools for manipulating binaries (linker, assembler, etc.)";
longDescription = ''
The GNU Binutils are a collection of binary tools. The main
ones are `ld' (the GNU linker) and `as' (the GNU assembler).
They also include the BFD (Binary File Descriptor) library,
`gprof', `nm', `strip', etc.
'';
homepage = http://www.gnu.org/software/binutils/;
license = stdenv.lib.licenses.gpl3Plus;
/* Give binutils a lower priority than gcc-wrapper to prevent a
collision due to the ld/as wrappers/symlinks in the latter. */
priority = "10";
};
};
gcc-pkg = { stdenv, buildPackages
, fetchurl, gmp, mpfr, libmpc, platform-binutils
, extraConfigureFlags ? []
}:
stdenv.mkDerivation rec {
basename = "gcc";
version = "9.1.0";
name = "${basename}-${platform}-${version}";
src = fetchurl {
url = "https://ftp.gnu.org/gnu/gcc/gcc-${version}/gcc-${version}.tar.xz";
sha256 = "1817nc2bqdc251k0lpc51cimna7v68xjrnvqzvc50q3ax4s6i9kr";
};
preConfigure =
''
mkdir build
cd build
'';
configureScript = "../configure";
configureFlags =
[ "--target=${platform}"
"--with-arch=armv7-a"
"--with-tune=cortex-a9"
"--with-fpu=vfpv3"
"--with-float=hard"
"--disable-libssp"
"--enable-languages=c"
"--with-as=${platform-binutils}/bin/${platform}-as"
"--with-ld=${platform-binutils}/bin/${platform}-ld" ] ++ extraConfigureFlags;
outputs = [ "out" "info" "man" ];
hardeningDisable = [ "format" "pie" ];
propagatedBuildInputs = [ gmp mpfr libmpc platform-binutils ];
enableParallelBuilding = true;
dontFixup = true;
};
newlib-pkg = { stdenv, fetchurl, buildPackages, platform-binutils, platform-gcc }:
stdenv.mkDerivation rec {
pname = "newlib";
version = "3.1.0";
src = fetchurl {
url = "ftp://sourceware.org/pub/newlib/newlib-${version}.tar.gz";
sha256 = "0ahh3n079zjp7d9wynggwrnrs27440aac04340chf1p9476a2kzv";
};
nativeBuildInputs = [ platform-binutils platform-gcc ];
configureFlags = [
"--target=${platform}"
"--with-cpu=cortex-a9"
"--with-fpu=vfpv3"
"--with-float=hard"
"--with-mode=thumb"
"--enable-interwork"
"--disable-multilib"
"--disable-newlib-supplied-syscalls"
"--with-gnu-ld"
"--with-gnu-as"
"--disable-newlib-io-float"
"--disable-werror"
];
dontFixup = true;
};
in rec {
binutils-bootstrap = pkgs.callPackage binutils-pkg { };
gcc-bootstrap = pkgs.callPackage gcc-pkg {
platform-binutils = binutils-bootstrap;
extraConfigureFlags = [ "--disable-libgcc" ];
};
newlib = pkgs.callPackage newlib-pkg {
platform-binutils = binutils-bootstrap;
platform-gcc = gcc-bootstrap;
};
binutils = pkgs.callPackage binutils-pkg {
extraConfigureFlags = [ "--with-lib-path=${newlib}/arm-none-eabi/lib" ];
};
gcc = pkgs.callPackage gcc-pkg {
platform-binutils = binutils;
extraConfigureFlags = [ "--enable-newlib" "--with-headers=${newlib}/arm-none-eabi/include" ];
};
}

Some files were not shown because too many files have changed in this diff Show More