Go to file
morgan 0b724e84da wrapper: QoL improvement
time array is generated inside of wrapper
set default value for RNGs and ddmtd config
adpll_write_period and start_up_delay argument use seconds as their unit
freq_diff_error RNG now used the seed argument and uniform RNG
2023-12-12 13:33:02 +08:00
src wrapper: QoL improvement 2023-12-12 13:33:02 +08:00
.gitignore git: ignore .venv folder 2023-12-05 10:44:16 +08:00
flake.lock add python dependencies and update flake 2023-12-05 10:41:58 +08:00
flake.nix add python dependencies and update flake 2023-12-05 10:41:58 +08:00
README.md fix helper PLL glitches 2023-12-12 13:32:22 +08:00
requirements.txt add python dependencies and update flake 2023-12-05 10:41:58 +08:00

WRPLL simulation

A time domain simulation for WRPLL

Installing dependencies

Nix:

nix develop

Others:

python -m venv .venv
source .venv/bin/activate
(venv) pip install -r requirements.txt

Quick start

  • Three notebook examples are included

    1. helper_PLL_example.ipynb : helper PLL only
    2. main_PLL_example.ipynb : main PLL only with a user specific helper frequency
    3. both_PLL_example.ipynb : main and helper PLL
  • RAM usage and execution time estimate for simulation ONLY

    1. 100,000,000 time steps: 6GiB RAM and 12 seconds

    2. 200,000,000 time steps: 11GiB RAM and 20 seconds

    3. 300,000,000 time steps: 16GiB RAM and 35 seconds


WRPLL formulas
  • Assume the difference between f_{main}, f_{gtx} is very small

    • Let f_{in} = f_{main} = f_{gtx}

    • f_{helper} = f_{in} * \dfrac{N-1}{N}

    • f_{beat} = f_{in} - f_{helper} = \dfrac{f_{in}}{N}

  • Main and helper Si549 DCXO ADPLL setting

    • ADPLL = \dfrac{\Delta f_{outppm}}{0.0001164}

Limitation

As the simulation is not cycle nor delay accurate, there will be more glitches than the hardware implementation